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GEODESIC STRETCH, PRESSURE METRIC AND MARKED LENGTH
SPECTRUM RIGIDITY

COLIN GUILLARMOU, GERHARD KNIEPER, AND THIBAULT LEFEUVRE

Abstract. We refine the recent local rigidity result for the marked length spectrum ob-
tained by the first and third author in [GL19] and give an alternative proof using the geodesic
stretch between two Anosov flows and some uniform estimate on the variance appearing in
the central limit theorem for Anosov geodesic flows. In turn, we also introduce a new pres-
sure metric on the space of isometry classes, that reduces to the Weil-Petersson metric in
the case of Teichmüller space and is related to the works of [MM08, BCLS15].

1. Introduction

Let M be a smooth closed n-dimensional manifold. We denote byM the Fréchet manifold
consisting of smooth metrics on M . We denote by Mk,α the set of metrics with regularity
Ck,α, k ∈ N, α ∈ (0, 1). We fix a smooth metric g0 ∈ M with Anosov geodesic flow ϕg0t
and define the unit tangent bundle by Sg0M := {(x, v) ∈ TM | |v|g0 = 1}. Recall that being
Anosov means that there exists a flow-invariant continuous splitting

T (Sg0M) = RX ⊕ Es ⊕ Eu,

such that
‖dϕg0t (w)‖ ≤ Ce−λt‖w‖, ∀w ∈ Es, ∀t ≥ 0,

‖dϕg0t (w)‖ ≤ Ce−λ|t|‖w‖, ∀w ∈ Eu, ∀t ≤ 0,

where the constants C, λ > 0 are uniform and the norm here is the one induced by the Sasaki
metric of g0. Such a property is satisfied in negative curvature.

1.1. Geodesic stretch and marked length spectrum rigidity. The set of primitive free
homotopy classes C of M is in one-to-one correspondance with the primitive conjugacy classes
of π1(M,x0) (where x0 ∈ M is arbitrary). When g0 is Anosov, there exists a unique closed
geodesic γg0(c) in each primitive free homotopy class c ∈ C (see [Kli74]). This allows us to
define the marked length spectrum of the metric g0 by:

Lg0 : C → R+, Lg0(c) = `g0(γg0(c)),

where `g0(γ) denotes the g0-length of a curve γ ⊂M computed with respect to g0. The marked
length spectrum can alternatively be defined for the whole set of free homotopy classes but it is
obviously an equivalent definition. Given c ∈ C, we will write δg0(c) to denote the probability
Dirac measure carried by the unique g0-geodesic γg0(c) ∈ c.

It was conjectured by Burns-Katok [BK85] that the marked length spectrum of negatively
curved manifolds determine the metric up to isometry in the sense that two negatively curved
metrics g and g0 with same marked length spectrum (namely Lg = Lg0) should be isometric.
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Although the conjecture was proved for surfaces by Croke and Otal [Ota90, Cro90]) and
in some particular cases in higher dimension (for conformal metrics by Katok [Kat88] and
when (M, g0) is a locally symmetric space by the work of Hamenstädt and Besson-Courtois-
Gallot [BCG95, Ham99]), it is still open in dimension higher or equal to 3 and open even in
dimension 2 in the more general setting of Riemannian metrics with Anosov geodesic flows.
The same type of problems can also be asked for billiards and we mention recent results on
this problem by Avila-De Simoi-Kaloshin [ADSK16] and De Simoi-Kaloshin-Wei [DSKW17]
for convex domains close to ellipses (although the Anosov case would rather correspond to the
case of hyperbolic billiards). Recently, the first and last author obtained the following result
on Burns-Katok conjecture:

Theorem (Guillarmou-Lefeuvre [GL19]). Let (M, g0) be a smooth Riemannian manifold with
Anosov geodesic flow and further assume that its curvature is nonpositive if dimM ≥ 3. Then
there exists k ∈ N depending only on dimM and ε > 0 small enough depending on g0 such that
the following holds: if g ∈ M is such that ‖g − g0‖Ck ≤ ε and Lg = Lg0, then g is isometric
to g0.

One of the aims of this paper is to further investigate this result from different perspec-
tives: new stability estimates and a refined characterization of the condition under which the
isometry may hold. More precisely, we can relax the assumption that the two marked length
spectra of g and g0 exactly coincide to the weaker assumption that they "coincide at infinity"
and still obtain the isometry. In the following, we say that Lg/Lg0 → 1 when

lim
j→+∞

Lg(cj)

Lg0(cj)
= 1, (1.1)

for any sequence (cj)j∈N of primitive free homotopy classes such that limj→∞ Lg0(cj) = +∞,
or equivalently limj→∞ Lg(cj)/Lg0(cj) = 1, if C = (cj)j∈N is ordered by the increasing lengths
Lg0(cj). We prove in the Appendix A, that Lg/Lg0 → 1 is actually equivalent to Lg = Lg0 .
As a consequence, by [GL19], if (1.1) holds and if ‖g−g0‖Ck < ε for some small enough ε > 0,
then g is isometric to g0. If we restrict ourselves to metrics with same topological entropy, the
knowledge of Lg(cj)/Lg0(cj) for a subsequence so that the geodesic γg0(cj) equidistributes is
even sufficient, see Theorem 2.9.

We develop a new strategy of proof, different from [GL19], which relies on the introduction
of the geodesic stretch between two metrics. This quantity was first introduced by Croke-
Fathi [CF90] and further studied by the second author [Kni95]. If g is close enough to g0,
then by Anosov structural stability, the geodesic flows ϕg0 and ϕg are orbit equivalent via a
homeomorphism ψg, i.e. they are conjugate up to a time reparametrization

ϕgκg(z,t)(ψg(z)) = ψg(ϕ
g0
t (z))

for some time rescaling κg(z, t). The infinitesimal stretch is the infinitesimal function of time
reparametrization ag(z) = ∂tκg(z, t)|t=0: it satisfies dψg(z)Xg0(z) = ag(z)Xg(ψg(z)) where
z ∈ Sg0M and Xg0 (resp. Xg) denotes the geodesic vector field of g0 (resp. g). The geodesic
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stretch between g and g0 with respect to the Liouville1 measure µL
g0 of g0 is then defined by

IµLg0
(g0, g) :=

∫
Sg0M

ag dµ
L
g0 .

The function ag is uniquely defined up to a coboundary [dlLMM86] so that the geodesic stretch
is well-defined2.

Since obviously 〈δg0(cj), ag〉 = Lg(cj)/Lg0(cj), we have

IµLg0
(g0, g) = lim

j→∞

Lg(cj)

Lg0(cj)
,

if (cj)j∈N ⊂ C is a sequence so that the uniform probability measures (δg0(cj))j∈N supported
on the closed geodesics of g0 in the class cj converge to µL

g0 in the weak sense of measures.3

In particular Lg = Lg0 implies that IµLg0 (g0, g) = 1 (alternatively Lg = Lg0 implies that ag is
cohomologous to 1 by Livsic’s theorem). While it has an interest on its own, it turns out that
this method involving the geodesic stretch provides a new estimate which quantifies locally the
distance between isometry classes in terms of this geodesic stretch functional (belowH−1/2(M)

denotes the L2-based Sobolev space of order −1/2 and α ∈ (0, 1) is any fixed exponent).

Theorem 1.1. Let (M, g0) be a smooth Riemannian n-dimensional manifold with Anosov
geodesic flow and further assume that its curvature is nonpositive if n ≥ 3. There exists k ∈ N
large enough depending only on n, some positive constants C, ε depending on g0 and Cn > 0

depending on n such that for all α ∈ (0, 1), the following holds: for each g ∈ Mk,α with
‖g − g0‖Ck,α(M) ≤ ε, there exists a Ck+1,α-diffeomorphism ψ : M →M such that

C‖ψ∗g − g0‖2H−1/2(M)
≤ P

(
− Jug0 − ag +

∫
Sg0M

ag dµ
L
g0

)
+ Cn

(
IµLg0

(g0, g)− 1
)2

C‖ψ∗g − g0‖2H−1/2(M)
≤ |L+(g)|+ |L−(g)|

where Jug0 is the unstable Jacobian of ϕg0 , P denotes the topological pressure for the ϕg0 flow
defined by (2.11), ag is the reparameterization coefficient relating ϕg0 and ϕg defined above,
and

L+(g) := lim sup
j→∞

Lg(cj)

Lg0(cj)
− 1, L−(g) := lim inf

j→∞

Lg(cj)

Lg0(cj)
− 1.

In particular if (1.1) holds, then g0 and g are isometric.

Note that g does not need to have nonpositive curvature in the Theorem. We also remark
that the curvature condition on g0 can be replaced by the injectivity of the X-ray transform I2

on divergence-free symmetric 2-tensors, and similarly for Theorem 1.2 below. From the proof
one sees that the exponent k can be taken to be k = 3n/2 + 17.

Theorem 1.1 is an improvement over the Hölder stability result [GL19, Theorem 3] as it only
involves the asymptotic behaviour of Lg/Lg0 or some natural quantity from thermodynamic

1Normalized with total mass 1.
2Although this is only used in §5.2, we also point out that the existence of the conjugacy ψg and of the

reparametrization ag is actually global and one does not need to assume that the two metrics are close. This
is a very particular feature of the geodesic structure. We refer to Appendix B for a proof of this fact.

3The existence of the sequence cj follows from [Sig72, Theorem 1].
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formalism. We insist on the fact that the new ingredient here is the stability estimate in itself
(the rigidity result is not new).

We also emphasize that one of the key facts to prove this theorem still boils down to some
elliptic estimate on some variance operator acting on symmetric 2-tensors, denoted by Πg0

2 in
[GL19, Gui17]: indeed, we show that the combination of the Hessians of the geodesic stretch
at g0 and of the pressure functional can be expressed in terms of this variance operator, which
enjoys uniform lower bounds Cg0‖ψ∗g − g0‖H−1/2 for some Cg0 > 0, at least once we have
factored out the gauge (the diffeomorphism action by pull-back on metrics).

We also notice that in Theorem 1.1, although the H−1/2(M) norm is a weak norm, a
straightforward interpolation argument using that ‖g‖Ck,α ≤ ‖g0‖Ck,α+ε is uniformly bounded
shows that an estimate of the form

‖ψ∗g − g0‖Ck′ ≤ C (|L+(g)|+ |L−(g)|)δ

holds for any k′ < k−n/2 and some explicit δ ∈ (0, 1/2) depending on k, k′ (C > 0 depending
only on g0).

1.2. Variance and pressure metric. The variance operator appearing in the proof of The-
orem 1.1 can be defined for h1, h2 ∈ C∞(M ;S2T ∗M) satisfying the condition∫

M
Trg0(hi) dvolg0 = 0, (1.2)

for i = 1, 2 (see §2.2 for further details on tensor analysis) by

〈Πg0
2 h1, h2〉 :=

∫
R

∫
SM

π∗2h1(ϕg0t (z))π∗2h2(z) dµL
g0(z)dt,

where, z = (x, v) ∈ SM and given a symmetric 2-tensor h ∈ C∞(M ;S2T ∗M), we define the
pullback operator

π∗2h(x, v) := hx(v, v).

The quadratic form 〈Πg0
2 h, h〉 corresponds to the variance VarµL(π∗2h) for ϕg0t with respect to

the Liouville measure of the lift π∗2h of the tensor h to SM (see §2.5 and (2.5)). Note that
the trace-free condition (1.2) is equivalent to∫

SM
π∗2h(x, v)dµL

g0(x, v) = 0,

see §2.2. The integral defining Πg0
2 then converges (in the L1 sense) by the rapid mixing of

ϕg0 (proved in [Liv04]). The operator Πg0
2 is a pseudodifferential operator of order −1 that

is elliptic on divergence-free tensors (see [Gui17, GL19, GL]). As a consequence, it satisfies
elliptic estimates on all Sobolev or Hölder spaces (see Lemma 2.1). More precisely, there is
Cg0 > 0 such that for all h ∈ H−1/2(M ;S2T ∗M) which is divergence-free (i.e. Trg0(∇g0h) = 0)

〈Πg0
2 h, h〉 ≥ Cg0‖h‖

2
H−1/2(M)

, (1.3)

provided g0 is Anosov with non-positive curvature (or simply Anosov if dimM = 2). We show
in Proposition 4.1 that g 7→ Πg

2 is continuous with values in Ψ−1(M) and this implies that for
g0 a smooth Anosov metric (with non-positive curvature if dimM > 2), (1.3) holds uniformly
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if we replace g0 by any metric g in a small C∞-neighborhood of g0. This allows to obtain a
more uniform version of Theorem 1.1.

Theorem 1.2. Let (M, g0) be a smooth Riemannian n-dimensional manifold with Anosov
geodesic flow and further assume that its curvature is nonpositive if n ≥ 3. Then there exists
k ∈ N, ε > 0 and Cg0 depending on g0 such that for all g1, g2 ∈M such that ‖g1− g0‖Ck ≤ ε,
‖g2 − g0‖Ck ≤ ε, there is a Ck- diffeomorphism ψ : M →M such that

‖ψ∗g2 − g1‖2H−1/2(M)
≤ Cg0(|L+(g1, g2)|+ |L+(g2, g1)|)

with
L+(g1, g2) := lim sup

j→∞

Lg2(cj)

Lg1(cj)
− 1.

In particular if Lg1/Lg2 → 1, then g2 is isometric to g1.

This result suggests to define a distance on isometry classes4 metrics from the marked length
spectrum by setting for g1, g2 two Ck,α metrics

dL(g1, g2) := lim sup
j→∞

∣∣∣ log
Lg1(cj)

Lg2(cj)

∣∣∣.
We have as a corollary of Theorem 1.2:

Corollary 1.3. The map dL descends to the space of isometry classes of Anosov non-positively
curved metrics and defines a distance near the diagonal.

We also define the Thurston asymmetric distance by

dT (g1, g2) := lim sup
j→∞

log
Lg2(cj)

Lg1(cj)
,

and show that this is a distance on isometry classes of metrics with topological entropy equal
to 1, see Proposition 5.4. This distance was introduced in Teichmüller theory by Thurston in
[Thu98].

The elliptic estimate (1.3) allows also to define a pressure metric on the open set consisting
of isometry classes of Anosov non-positively curved metric (contained in M/D0 if D0 is the
group of smooth diffeomorphisms isotopic to the identity) by setting for h1, h2 ∈ Tg0(M/D0) ⊂
C∞(M ;S2T ∗M)

Gg0(h1, h2) := 〈Πg0
2 h1, h2〉L2(M,d volg0 ).

We show in Section 3.3.1 that this metric is well-defined and restricts to (a multiple of) the
Weil-Petersson metric on Teichmüller space if dimM = 2: it is related to the construction of
Bridgeman-Canary-Labourie-Sambarino [BCLS15, BCS18] and Mc Mullen [MM08], but with
the difference that we work here in the setting of variable negative curvature and the space
of metrics considered here is infinite dimensional. In a related but different context with
infinite dimension, we note that the variance is used to define a metric on the space of Hölder
potentials by Giulietti, Kloeckner, Lopes and Marcon [GKLM18] and its curvature is studied
by Lopes and Ruggiero [LR18].

4Here we mean isometries homotopic to the Identity.
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We finally notice that, in the study of Katok entropy conjecture near locally symmetric
spaces, the variance was an important tool in the work of Pollicott and Flaminio [Pol94, Fla95].
In that case, one can use representation theory to analyze this operator.

Acknowledgement: We warmly thank the referees for their many helpful comments. In
particular, one of the referees suggested a short and elegant argument to show that Lg/Lg0 → 1

implies Lg = Lg0 (see Appendix A). This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 725967). This material is based upon work supported by
the National Science Foundation under Grant No. DMS-1440140 while C.G and T.L were
in residence at the Mathematical Sciences Research Institute in Berkeley, California, during
the Fall 2019 semester. The second author was partially supported by the SFB/TRR 191
"Symplectic structures in geometry, algebra and dynamics".

2. Preliminaries

Notation: If H = Ck, Hs, C−∞ etc is a regularity scale and E → M a smooth bundle over
a smooth compact manifold M , we will use the notation H(M ;E) for sections of E with
regularity H while, if N is a smooth manifold, we use the notation H(M,N) for the space of
maps from M to N with regularity H.

2.1. Microlocal calculus. On a closed manifold M , we will denote by Ψm(M ;V ) the space
of classical pseudo-differential operators of order m ∈ R acting on a vector bundle V over
M (see [GS94]; the operators could map sections of two distinct vector bundles but this will
not be needed here). We recall that for fixed m ∈ R, this is a Fréchet space: indeed, using
a fixed smooth cutoff function θ supported in a small neighborhood of the diagonal, a fixed
system of charts, each A ∈ Ψm(M ;V ) has Schwartz kernel κA that can be decomposed as
θκA + (1− θ)κA. For the part (1− θ)κA we can use the C∞(M ×M ;V ⊗ V ∗) topology while
for χκA one can use the semi-norms of the full symbols of χκA using the local charts the left
quantization in the charts. We also denote by Hs(M) the L2-based Sobolev space of order
s ∈ R, with norm given by fixing an arbitrary Riemannian metric g0 on M . More precisely,
denoting by ∆ the non-negative Laplacian associated to this metric, we define

‖f‖Hs(M) := ‖(1 + ∆)s/2f‖L2(M,dvol),

andHs(M) is the completion of C∞(M) with respect to this norm. This definition is naturally
extended to section of vector bundles. What is important is that the spaces and the norm (up
to a scaling factor) do not depend on the choice of metric g0. For k ∈ N, α ∈ (0, 1), the spaces
Ck,α(M) are the usual Hölder spaces and D′(M) will denote the space of distributions, dual
to C∞(M). We will denote by 〈·, ·〉L2 the continuous extension of the pairing

C∞(M)× C∞(M) 3 (f, f ′) 7→
∫
M
ff̄ ′dvolg0 ,

to the pairing Hs(M)×H−s(M)→ C for each s ∈ R (and same thing for sections of bundles).
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2.2. Symmetric tensors and X-ray transform. In this paragraph, we assume that the
metric g is fixed and that its geodesic flow ϕgt is Anosov on the unit tangent bundle SM of
g. We denote by µL the Liouville measure, normalized to be a probability measure on SM .
For the sake of simplicity, we drop the index g in the notations. Given an integer m ∈ N,
we denote by ⊗mT ∗M → M , SmT ∗M → M the respective vector bundle of m-tensors and
symmetric m-tensors on M . Given f ∈ C∞(M ;SmT ∗M), we denote by π∗mf ∈ C∞(SM)

the canonical morphism π∗mf : (x, v) 7→ fx(v, ..., v). We also introduce the trace operator
Tr : C∞(M ;Sm+2T ∗M)→ C∞(M ;SmT ∗M) defined pointwise in x ∈M by:

Tr(f) =
n∑
i=1

f(ei, ei, ·, ..., ·),

where (e1, ..., en) denotes an orthonormal basis of TM in a neighborhood of a fixed point
x0 ∈ M . Observe that, for f =

∑n
i,j=1 fije

∗
i ⊗ e∗j ∈ C∞(M ;S2T ∗M) defined around x0, we

have ∫
SM

π∗2f dµ
L
g =

∫
M

(∫
SxM

π∗2f(x, v)dSx(v)

)
dvol(x)

=
n∑

i,j=1

∫
M
fij(x)

(∫
SxM

vivjdSx(v)

)
dvol(x)

= Cn

n∑
i=1

∫
M
fii(x)dvol(x) = Cn

∫
M

Trg(f)dvol,

for some constant Cn =
∫
Sn−1 v

2
1dv depending on n = dimM . This justifies the claim that the

trace-free condition (1.2) was equivalent to the fact that the pullback of the symmetric tensor
to SM was of average 0.

The natural derivation of symmetric tensors is D := σ ◦ ∇, where ∇ is the Levi-Civita
connection and σ : ⊗mT ∗M → SmT ∗M is the operation of symmetrization. This operator
satisfies the important identity:

Xπ∗m = π∗m+1D, (2.1)

where X denotes the geodesic vector field on SM . The operator D is elliptic [GL, Lemma
2.4] with trivial kernel when m is odd and 1-dimensional kernel when m is even, given by the
Killing tensors cσ(g⊗m/2), c ∈ R (this is a simple consequence of (2.1) combined with the fact
that the geodesic flow is ergodic in the Anosov setting). We denote by 〈·, ·〉 the scalar product
on C∞(M ;SmT ∗M) induced by the metric g (see [GL, Section 2] for further details). The
formal adjoint of D with respect to this scalar product is D∗ = −Tr ◦∇. We also denote by
the same 〈·, ·〉 the natural L2 scalar product on C∞(SM) induced by the Liouville measure
µL. The formal adjoint of π∗m with respect to these two scalar products is denoted by

πm∗ : D′(SM)→ D′(M ;SmT ∗M)

where D′ denotes the space of distributions, dual to C∞.

We recall that C, the set of free homotopy classes in M , is in one-to-one correspondance
with the set of conjugacy classes of π1(M,x0) for some arbitrary choice of x0 ∈M (see [Kli74])
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and for each c ∈ C there exists a unique closed geodesic γ(c) ∈ c. We denote its Riemannian
length with respect to g by L(c) = `g(γ(c)). The X-ray transform on SM is the operator
defined by:

I : C0(SM)→ `∞(C), If(c) =
1

L(c)

∫ L(c)

0
f(ϕt(z)) dt,

where z ∈ γ(c) is any point. This is a continuous linear operator when `∞(C) is endowed
with the sup norm on the sequences. Then, the X-ray transform Im of symmetric m-tensors
is simply defined by Im := I ◦ π∗m. Using (2.1), we immediately have{

Dp | p ∈ C∞(M ;Sm−1T ∗M)
}
⊂ ker Im ∩ C∞(M ;SmT ∗M). (2.2)

Using the ellipticity of D, any tensor f ∈ C∞(M ;SmT ∗M) can be decomposed uniquely as a
sum

f = Dp+ h, (2.3)

with p ∈ C∞(M ;Sm−1T ∗M) and h ∈ C∞(M ;SmT ∗M) is such that D∗h = 0. We call Dp
the potential part of f and h the solenoidal part. The same decomposition holds in Sobolev
regularity Hs(M), s ∈ R, and in the Ck,α(M) regularity, k ∈ N, α ∈ (0, 1). We will write
h = πkerD∗f and the solenoidal projection πkerD∗ := 1 − Dg∆

−1
g D∗g is a pseudodifferential

operator of order 0 [GL, Lemma 2.6] (here ∆g := D∗gDg is the Laplacian on 1-forms). The
X-ray transform is said to be solenoidal injective (or s-injective in short) if (2.2) is an equality.
It is conjectured that Im is s-injective as long as the metric is Anosov but it is only known in
the following cases:

• for m = 0, 1 [DS10],
• for any m ∈ N in dimension 2 [PSU14, Gui17],
• for any m ∈ N, in any dimension in non-positive curvature [CS98].

It is also known that ker Im/ ranD is finite dimensional for general Anosov geodesic flow (see
[DS03, Theorem 1.5] or [Gui17, Remark 3.7]).

The direct study of the analytic properties of Im is difficult as this operator involves integrals
over the set of closed orbits, which is not a manifold. Nevertheless, in [Gui17], the second
author introduced an operator Πm that involves a sort of integration of tensors over "all orbits"
and this space is essentially the manifold SM . The construction of Πm : C∞(M ;SmT ∗M)→
D′(M ;SmT ∗M) relies on microlocal tools coming from [FS11, DZ16] but a simpler definition
that uses the fast mixing of the flow ϕt is given by

Πm := πm∗(Π + 〈·, 1〉)π∗m with

Π : C∞(SM)→ D′(SM), 〈Πf, f ′〉 := lim
T→∞

∫ T

−T
〈etXf, f ′〉 dt

(2.4)

if 〈f, 1〉 =
∫
SM f dµL = 0 and Π(1) := 0. The convergence of the integral as T → ∞ is

ensured by the exponential decay of correlations [Liv04] (but also follows from the existence
of the variance [KS90]). We can thus write for 〈f, 1〉 = 0

〈Πf, f ′〉 =

∫
R
〈f ◦ ϕt, f ′〉L2(SM) dt.

We note the following useful properties of Π, proved in [Gui17, Theorem 1.1]:
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• Π : Hs(SM)→ H−s(SM) is bounded for all s > 0

• if f ∈ Hs(SM) with s > 0, XΠf = 0

• if f and Xf belong to Hs(SM) for s > 0, then ΠXf = 05.

As is well known (see for example [KS90, Proof of Proposition 1.2.]), we can make a link
between Π and the variance in the central limit theorem for Anosov geodesic flows. Let us
quickly explain this fact by using the fast mixing of the flow. The variance of ϕt with respect
to the Liouville measure µL is defined for u ∈ Cα(SM), α ∈ (0, 1) real-valued by:

VarµL(u) := lim
T→∞

1

T

∫
SM

(∫ T

0
u(ϕt(z)) dt

)2
dµL(z), (2.5)

under the condition that
∫
SM u dµL = 0. We observe, since ϕt preserves µL, that

VarµL(u) = lim
T→∞

1

T

∫
SM

∫ T

0

∫ T

0
u(ϕt−s(z))u(z) dtdsdµL(z)

= lim
T→∞

∫ 1

0

∫
R
1[(t−1)T,tT ](r)〈u ◦ ϕr, u〉L2 drdt.

where the L2 pairing is with respect to µL. By exponential decay of correlations [Liv04], we
have for |r| large

|〈u ◦ ϕr, u〉L2 | ≤ Ce−ν|r|‖u‖2Cα
for some α > 0, ν > 0, C > 0 independent of u. Thus, by the Lebesgue theorem,

VarµL(u) = 〈Πu, u〉, (2.6)

if 〈u,1〉 = 0, where 1 denotes the constant function equal to 1, showing that the quadratic
form associated to our operator Π is nothing more than the variance. For a symmetric 2-tensor
h satisfying 〈h, g〉L2 =

∫
M Trg(h) dvolg = 0, we have

∫
SM π∗2h dµ

L
g = 0 and

〈Π2h, h〉 = 〈Ππ∗2h, π∗2h〉 = VarµL(π∗2h).

One has the following properties for Πm:

• Πm is a positive self-adjoint pseudodifferential operator of order −1 , elliptic on
solenoidal tensors, see [Gui17, Theorem 3.5] and [GL, Lemma 4.3].
• ΠmD = 0 and D∗Πm = 0 (by [Gui17, Theorem 3.5] and Xπ∗m−1 = π∗mD)
• If Im is s-injective, then Πm is invertible on solenoidal tensors in the sense that there
exists a pseudodifferential operator Q of order 1 such that QΠm = πkerD∗ , see [GL,
Theorem 4.7].
• Conversely, if Πm|kerD∗ is injective, then Im is s-injective: indeed, by [Gui17, Corollary
2.8], if Imh = 0 then π∗mh = Xu for some u ∈ C∞(SM) and thus Πmh = πm∗ΠXu = 0.

In particular, using the spectral theorem, there is a bounded self-adjoint operator
√

Πm on
L2 such that

√
Πm

√
Πm = Πm. We add the following property which will be crucially used in

this article:

5In [Gui17], f is assumed to be in Hs+1(SM) but one can reduce to the case f ∈ Hs(SM) by using a
density argument and [DZ19, Lemma E.45]
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Lemma 2.1. If (M, g) has Anosov geodesic flow and I2 is s-injective, there exists a constant
C > 0 such that for all tensors h ∈ H−1/2(M ;S2T ∗M),

〈Π2h, h〉 ≥ C‖πkerD∗h‖2H−1/2(M)
.

Proof. In [GL, Theorem 4.4 and Lemma 2.2.], the principal symbol of Π2 was computed and
turned out to be

σ2 := σ(Π2) : (x, ξ) 7→ |ξ|−1πker iξA
2
2πker iξ ,

for some positive definite diagonal endomorphism A2 which is constant on both subspaces
S2

0T
∗M := {h ∈ S2T ∗M |Trg(h) = 0} and Rg = {λg ∈ S2T ∗M |λ ∈ R}. Here iξ is the

interior product with the dual vector ξ] ∈ TxM of ξ with respect to the metric. We introduce
the symbol b ∈ C∞(T ∗M) of order −1/2 defined by b : (x, ξ) 7→ χ(x, ξ)|ξ|−1/2A2, where
χ ∈ C∞(T ∗M) vanishes near the 0 section in T ∗M and equal to 1 for |ξ| > 1 and define
B := Op(b) ∈ Ψ−1/2(M ;S2T ∗M), where Op is a quantization on M . Using that the principal
symbol of πkerD∗ is πker iξ (see [GL, Lemma 2.6]), we observe that Π2 = πkerD∗B

∗BπkerD∗+R,
where R ∈ Ψ−2(M ;S2T ∗M). Thus, given h ∈ H−1/2(M,S2T ∗M):

〈Π2h, h〉L2 = ‖BπkerD∗h‖2L2 + 〈Rh, h〉L2 (2.7)

By ellipticity of B, there exists a pseudodifferential operator Q of order 1/2 such that
QBπkerD∗ = πkerD∗ + R′, where R′ ∈ Ψ−∞(M ;S2T ∗M) is smoothing. Thus there is C > 0

such that for each h ∈ C∞(M ;S2T ∗M)

‖πkerD∗h‖2H−1/2 ≤ ‖QBπkerD∗h‖2H−1/2 + ‖R′h‖2
H−1/2 ≤ C‖BπkerD∗h‖2L2 + ‖R′h‖2

H−1/2 .

Since Lemma 2.1 is trivial on potential tensors, we can already assume that h is solenoidal,
that is πkerD∗h = h. Recalling (2.7), we obtain that

‖h‖2
H−1/2 ≤ C〈Π2h, h〉L2 − C〈Rh, h〉L2 + ‖R′h‖2

H−1/2

≤ C〈Π2h, h〉L2 + C‖Rh‖H1/2‖h‖H−1/2 + ‖R′h‖2
H−1/2 .

(2.8)

Now, assume by contradiction that the statement in Lemma 2.1 does not hold, that is we can
find a sequence of tensors fn ∈ C∞(M ;S2T ∗M) such that ‖fn‖H−1/2 = 1 with D∗fn = 0 and

‖
√

Π2fn‖2L2 = 〈Π2fn, fn〉L2 ≤
1

n
‖fn‖2H−1/2 =

1

n
→ 0.

Up to a subsequence, and since R is of order −2, we can assume that Rfn → v1 in H1/2 for
some v1, and R′fn → v2 in H−1/2. Then, using (2.8), we obtain that (fn)n∈N is a Cauchy
sequence in H−1/2 which thus converges to an element v3 ∈ H−1/2 such that ‖v3‖H−1/2 = 1

and D∗v3 = 0. By continuity, Π2fn → Π2v3 in H1/2 and thus 〈Π2v3, v3〉 = 0. Since v3 is
solenoidal, we get

√
Π2v3 = 0, thus Π2v3 = 0. Since we assumed I2 s-injective, Π2 is also

injective by [GL, Lemma 4.6]. This implies that v3 ≡ 0, thus contradicting ‖v3‖H−1/2 = 1. �

We note that the same proof also works for tensors of any order m ∈ N. In fact we can
even get a uniform estimate:
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Lemma 2.2. Let (M, g0) be a smooth compact Anosov Riemannian manifold with Ig02 being
s-injective. There exists a C∞ neighborhood Ug0 of g0 and a constant C > 0 such that for all
g ∈ Ug0 and all tensors h ∈ H−1/2(M ;S2T ∗M),

〈Πg
2h, h〉L2 ≥ C‖πkerD∗gh‖

2
H−1/2(M)

.

Proof. First, let g0 be fixed Anosov metric with Ig02 s-injective (in particular it is the case if
it has non-positive curvature). Proposition 4.1 (which will be proved later) shows that the
operator Π2 = Πg

2 is a continuous family as a map

g ∈ Ug0 7→ Πg
2 ∈ Ψ−1(M ;S2T ∗M)

where Ug0 ⊂ C∞(M ;S2T ∗M) is a C∞-neighborhood of g0 and Ψ−1(M ;S2T ∗M) is equipped
with its Fréchet topology as explained before. Let h ∈ kerD∗g be a solenoidal (with respect to
g) symmetric 2-tensor, then h = πkerD∗gh. Let Cg0 > 0 be the constant provided by Lemma 2.1
applied to the metric g0. We choose Ug0 small enough so that ‖Πg

2−Πg0
2 ‖H−1/2→H1/2 ≤ Cg0/3

(this is made possible by the continuity of g 7→ Πg
2 ∈ Ψ−1). Then:

〈Πg
2h, h〉 = 〈(Πg

2 −Πg0
2 )h, h〉+ 〈Πg0

2 h, h〉 ≥ Cg0‖πkerD∗g0
h‖2

H−1/2 − Cg0/3× ‖h‖2H−1/2 .

But the map Ug0 3 g 7→ πkerD∗g = 1 − Dg∆
−1
g D∗g ∈ Ψ0 is continuous: this follows from the

fact that one can construct a full parametrix Qg ∈ Ψ−2(M) of ∆g modulo smoothing in a
continuous way with respect to g (by standard elliptic microlocal analysis), the fact that ∆g

is injective since kerDg = 0 for g Anosov (as Dgu = 0 implies Xπ∗1u = 0, thus π∗1u has
to be constant, thus 0 since π∗1u(x,−v) = −π∗1u(x, v)) and the continuity of composition of
pseudodifferential operators. This implies that for g in a possibly smaller neighborhood Ug0
of g0, using h = πkerD∗gh:

〈Πg
2h, h〉 ≥ Cg0‖πkerD∗gh‖

2
H−1/2 −

2Cg0
3
× ‖h‖2

H−1/2 = Cg0/3‖πkerD∗gh‖
2
H−1/2 .

The proof is complete. �

We also observe that the generalization of the previous Lemma to tensors of any order is
straightforward. As mentioned earlier, an immediate consequence of the previous lemma is
the following

Proposition 2.3. Let (M, g0) be a smooth Riemannian n-dimensional Anosov manifold with
Ig0m s-injective. Then, there exists a C∞-neighborhood Ug0 of g0 in M such that for any
g ∈ Ug0, for any m ∈ N, Igm is s-injective.

Proof. As mentionned above (before Lemma 2.1), the s-injectivity of Igm is equivalent to that
of Πg

m on solenoidal tensors and the previous Lemma allows to conclude. �

2.3. The space of Riemannian metrics. We fix a smooth metric g0 ∈M and consider an
integer k ≥ 2 and α ∈ (0, 1). We recall that the space M of all smooth metrics is a Fréchet
manifold. We denote by D0 := Diff0(M) the group of smooth diffeomorphisms on M that are
isotopic to the identity, this is a Fréchet Lie group in the sense of [Ham82, Section 4.6]. The
right action

M×D0 →M, (g, ψ) 7→ ψ∗g



12 COLIN GUILLARMOU, GERHARD KNIEPER, AND THIBAULT LEFEUVRE

is smooth and proper [Ebi68, Ebi70]. Moreover, if g is a metric with Anosov geodesic flow,
it is directly seen from ergodicity that there are no Killing vector fields and thus the isotropy
subgroup {ψ ∈ D0 | ψ∗g = g} of g is finite. For negatively curved metrics it is shown in
[Fra66] that the action is free, i.e. the isotropy group is trivial. One cannot apply the usual
quotient theorem [Tro92, p.20] in the setting of Banach or Hilbert manifolds but rather smooth
Fréchet manifolds instead (using the Nash-Moser theorem). Thus, in the setting of the space
of smooth metrics with Anosov geodesic flows6, which is an open set of a Frechet vector space,
the slice theorem says that there is a neighborhood U of g0, a neighborhood V of Id in D0 and
a Frechet submanifold S containing g0 so that

S × V → U , (g, ψ) 7→ ψ∗g (2.9)

is a diffeomorphism of Frechet manifolds and Tg0S = {h ∈ Tg0M | D∗g0h = 0}, see [Ebi68,
Ebi70]. Moreover S parametrizes the set of orbits g ·D0 for g near g0 and TgS ∩T (g ·D0) = 0.

On the other hand, if one considers Mk,α, the space of metrics with Ck,α regularity and
Dk+1,α

0 := Diffk+1,α
0 (M), the group of diffeomorphisms isotopic to the identity with Ck+1,α

regularity, then both spaces are smooth Banach manifolds. However, the action of Dk+1,α
0

on Mk,α is no longer smooth but only topological which also prevents us from applying the
quotient theorem.

Nevertheless, recalling g0 is smooth, if we consider Ok,α(g0) := g0 · Dk+1,α
0 ⊂ Mk,α, then

this is a smooth submanifold ofMk,α and

TgOk,α(g0) =
{
Dgp | p ∈ Ck+1,α(M ;T ∗M)

}
.

Notice that (2.3) in Ck,α regularity exactly says that given g ∈ Ok,α(g0), one has the decom-
position:

TgM = TgOk,α(g0)⊕ kerD∗g |Ck,α(M,S2T ∗M). (2.10)

Thus, an infinitesimal perturbation of a metric g ∈ Ok,α(g0) by a symmetric 2-tensor that is
solenoidal with respect to g is actually an infinitesimal displacement transversally to the orbit
Ok,α(g0).

We will need a stronger version of the previous decomposition (2.10) which can be under-
stood as a slice theorem. Its knowledge goes back to [Ebi68, Ebi70], see also [GL19, Lemma
4.1] for a short proof in the Ck,α category.

Lemma 2.4. Let k be an integer ≥ 2 and α ∈ (0, 1), let g0 be a Ck+3,α metric with Anosov
geodesic flow. There exists a neighborhood U ⊂Mk,α of g0 in the Ck,α-topology such that for
any g ∈ U , there exists a unique Ck+1,α-diffeomorphism ψ such that ψ∗g is solenoidal with
respect to g0. Moreover, the following map is C2

Ck,α(M ;S2T ∗M)× Ck+3,α(M ;S2T ∗M)→ Dk+1,α
0 (M), (g, g0) 7→ ψ.

Remark 2.5. The previous Lemma is not stated exactly this way in [GL19, Lemma 4.1].
Indeed, the proof assumes that g0 is smooth and fixed. However, inspecting the proof, it

6The important fact, to apply Ebin’s slice theorem, is that metrics with Anosov geodesic flows do not have
Killing vector fields, i.e. infinitesimal isometries. This is due to the fact that kerD|C∞(M,T∗M) = {0} as
mentioned earlier, which itself follows from the ergodicity of the geodesic flow.
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readily applies to g0 ∈ Ck+3,α and the implicit function theorem used in that proof shows the
regularity of ψ with respect to g0. We do not include the proof of these details in order not
to burden the discussion.

We also see that we need to use to Ck,α regularity for α 6= 0, 1 instead of Ck: this is due
to the fact that the pseudodifferential operator inverting the linearization D∗g0Dg0 that arises
naturally in the proof of this lemma (see [GL19, Lemma 4.1]) act on these spaces but on Ck,
for k ∈ N. Instead, one would have to resort to Zygmund spaces Ck∗ . We refer to [Tay91,
Appendix A] for further details.

2.4. Thermodynamic formalism. Let f be a Hölder-continuous function on Sg0M . We
recall that its pressure [Wal82, Theorem 9.10] is defined by:

P(f) := sup
µ∈Minv

(
hµ(ϕg01 ) +

∫
Sg0M

f dµ

)
, (2.11)

where Minv denotes the set of invariant (by the flow ϕg0) Borel probability measures and
hµ(ϕg01 ) is the metric entropy of the flow ϕg01 at time 1. It is actually sufficient to restrict
the sup to ergodic measures Minv,erg [Wal82, Corollary 9.10.1]. Since the flow is Anosov, the
supremum is always achieved for a unique invariant ergodic measure µf (by [BR75, Theorem
3.3.], see also [HF19, Theorem 9.3.4] and the following discussion therein) called the equilibrium
state of f , and

µf = µf ′ =⇒ f − f ′ = Xg0u+ c for some u Hölder and c is constant, (2.12)

see [HF19, Theorem 9.3.16]. The measure µf is also mixing and positive on open sets which
rules out the possibility of a finite combination of Dirac measures supported on a finite number
of closed orbits. Moreover µf can be written as an infinite weighted sum of Dirac masses δg0(cj)

supported over the geodesics γg0(cj), where cj ∈ C are the primitive classes (see [Par88] for the
case P(f) ≥ 0 or [PPS15, Theorem 9.17] for the general case). For example when P(f) ≥ 0,∫

u dµf = lim
T→∞

1

N(T, f)

∑
{j|Lg0 (cj)∈[T,T+1]}

e
∫
γg0 (cj)

f
∫
γg0 (cj)

u, (2.13)

where N(T, f) :=
∑

j,Lg0 (cj)∈[T,T+1] Lg0(cj)e
∫
γg0 (cj)

f
. When f = 0, this is the measure of max-

imal entropy, also called the Bowen-Margulis measure µBM
g0 ; in that case P(0) = htop(ϕg01 ) is

the topological entropy of the flow. When f = −Jug0 , where J
u
g0 : x 7→ ∂t(| det dϕgt (x)|Eu(x))|t=0

is the unstable Jacobian, one obtains the Liouville measure µL
g0 induced by the metric g0; in

that case, P(−Jug0) = 0. If we fix an exponent of Hölder regularity ν > 0, then the map
Cν(Sg0M) 3 f 7→ P(f) is real analytic (see [Rue04, Corollary 7.10] for discrete systems and
Parry-Pollicott [PP90, Proposition 4.7] for flows).

2.5. Geodesic stretch. We refer to [CF90, Kni95] for the original definition of this notion.

2.5.1. Structural stability and time reparametrization. We fix a smooth metric g0 ∈ M with
Anosov geodesic flow and we view the geodesic flow and vector fields of any metric g close
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to g0 as living on the unit tangent bundle Sg0M of g0 by simply pulling them back by the
diffeomorphism

(x, v) ∈ Sg0M →
(
x,

v

|v|g
)
∈ SgM.

We fix some constant k ≥ 2 and α ∈ (0, 1). There exists a regularity parameter ν > 0 and
a neighborhood U ⊂ Mk,α of g0 such that, by the structural stability theorem ([dlLMM86,
Appendix A] or [KKPW89, Proposition 2.2] for the Hölder regularity case), for any g ∈ U ,
there exists a Cν Hölder homeomorphism ψg : Sg0M → Sg0M , differentiable in the flow
direction, which is an orbit conjugacy i.e. such that

dψg(z)Xg0(z) = ag(z)Xg(ψg(z)), ∀z ∈ Sg0M, (2.14)

where ag is in Cν(Sg0M). Moreover, the map

U 3 g 7→ (ag, ψg) ∈ Cν(Sg0M)× Cν(Sg0M,Sg0M)

is Ck−2 and ψg is homotopic to the identity. For the proof of Theorem 1.2, we will also need
the continuity of ag = ag0,g and of its g-derivatives of order ` ≤ k− 2 as a function of the base
metric g0. This continuity follows essentially from the proof of [KKPW89, Proposition 2.2],
we give a proof of this fact in Proposition C.1 of the Appendix.

Note that neither ag nor ψg are unique but ag is unique up to a coboundary and in all the
following paragraphs, adding a coboundary to ag will not affect the results. From (2.14), we
obtain that for t ∈ R, z ∈ Sg0M , ϕgκag (z,t)(ψg(z)) = ψg(ϕ

g0
t (z)) with:

κag(z, t) =

∫ t

0
ag(ϕ

g0
s (z)) ds. (2.15)

If c ∈ C is a free homotopy class, then one has:

Lg(c) =

∫ Lg0 (c)

0
ag(ϕ

g0
s (z)) ds, (2.16)

for any z ∈ γg0(c), the unique g0-closed geodesic in c.

2.5.2. Definition of the geodesic stretch. We denote by M̃ the universal cover of M . Given
a metric g ∈ M on M , we denote by g̃ its lift to the universal cover. Given two metrics g1

and g2 on M , there exists a constant c > 0 such that c−1g1 ≤ g2 ≤ cg1. This implies that
any g̃1-geodesic is a quasi-geodesic for g̃2. We now assume that the two metrics g1, g2 are
Anosov on M . The ideal (or visual) boundary ∂∞M̃ is independent of the choice of g and
is naturally endowed with the structure of a topological manifold (see Appendix B) whose
regularity inherits that of the foliation (i.e. it is at least Hölder continuous and is C2−ε for
any ε > 0 on negatively-curved surfaces by [HK90]). In negative curvature, we refer to [BH99,
Chapter H.3] and [Kni02] for further details. For the general Anosov case, we refer to [Kni12]
and the Appendix B of the present paper.

We denote by Gg := Sg̃M̃/ ∼ (where z ∼ z′ if and only if there exists a time t ∈ R such that
ϕt(z) = z′) the set of g-geodesics on M̃ : this is smooth 2n-dimensional manifold. Moreover,
there exists a Hölder continuous homeomorphism Φg : Gg → ∂∞M̃ × ∂∞M̃ \ ∆, where ∆ is
the diagonal in ∂∞M̃ × ∂∞M̃ . Given a point z ∈ Sg̃M̃ , we will denote by z+, z− ∈ ∂∞M̃
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the points (resp. in the future and in the past) on the boundary at infinity of the geodesic
generated by z.

We now consider a fixed metric g0 onM and a metric g in a neighborhood of g0. If ψg denotes
an orbit equivalence between the two geodesic flows, then ψg induces a homeomorphism Ψg :

Gg0 → Gg. The map

Φg ◦Ψg ◦ Φ−1
g0 : ∂∞M̃ × ∂∞M̃ \∆→ ∂∞M̃ × ∂∞M̃ \∆

is nothing but the identity.
Given z = (x, v) ∈ Sg0M , we denote by cg0(z) : t 7→ cg0(z, t) ∈ M the unique geodesic7

such that cg0(z, 0) = x, ċg0(z, 0) = v. We consider c̃g0(z), a lift of cg0(z) to the universal cover
M̃ and introduce the function

b : Sg0M × R→ R, b(z, t) := dg̃(c̃g0(z, 0), c̃g0(z, t)),

which computes the g̃-distance between the endpoints of the g̃0-geodesic joing c̃g0(z, 0) to
c̃g0(z, t). It is an immediate consequence of the triangle inequality that (z, t) 7→ b(z, t) is a
subadditive cocycle for the geodesic flow ϕg0 , that is:

b(z, t+ s) ≤ b(z, t) + b(ϕg0t (z), s), ∀z ∈ Sg0M,∀t, s ∈ R

As a consequence, by the subadditive ergodic theorem (see [Wal82, Theorem 10.1] for instance),
we obtain the following

Lemma 2.6. Let µ be an invariant probability measure for the flow ϕg0t . Then, the quantity

Iµ(g0, g, z) := lim
t→+∞

b(z, t)/t

exists for µ-almost every z ∈ Sg0M , Iµ(g0, g, ·) ∈ L1(Sg0M,dµ) and this function is invariant
by the flow ϕg0t .

We define the geodesic stretch of the metric g, relative to the metric g0, with respect to the
measure µ by:

Iµ(g0, g) :=

∫
Sg0M

Iµ(g0, g, z) dµ(z).

When the measure µ in the previous definition is ergodic, the function Iµ(g0, g, ·) is thus (µ-
almost everywhere) equal to the constant Iµ(g0, g). We recall that δg0(c) is the normalized
measure supported on γg0(c), that is:

δg0(c) : u 7→ 1

Lg0(c)

∫ Lg0 (c)

0
u(ϕg0t (z)) dt.

We can actually describe the stretch using the time reparametrization ag.

Lemma 2.7. Let µ be an ergodic invariant measure with respect to the flow ϕg0t . Then:

Iµ(g0, g) =

∫
SMg0

ag dµ = lim
j→+∞

Lg(cj)

Lg0(cj)
,

where (cj)j≥0 ∈ CN is such that8 δg0(cj) ⇀j→+∞ µ.
7For the sake of simplicity, we identify the geodesic and its arc-length parametrization.
8The existence of cj follows from [Sig72, Theorem 1].
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Proof. We first prove the left equality. Let M̃ be the universal covering of M and Γ the group
of deck transformations. Denote as above ψ̃g : Sg̃0M̃ → Sg̃M̃ the lift of the conjugacy between
the geodesic flow of the metrics g̃ and g̃0. Then for all γ ∈ Γ

ϕ̃gκag (z,t)(ψ̃g(z)) = ψ̃g(ϕ̃
g0
t (z)) and ψ̃g(γ∗z) = γ∗ψ̃g(z).

If π : TM̃ → M̃ is the canonical projection the function dg̃(π(ψ̃g(z)), π(z)) is Γ-invariant.
This follows since

dg̃(π(ψ̃g(γ∗z)), π(γ∗z)) = dg̃(π(γ∗ψ̃g(z)), π(γ∗z))

= dg̃(γπ(ψ̃g(z)), γπ(z)) = dg̃(π(ψ̃g(z)), π(z)).

Hence, by the compactness of M and the continuity of dg̃(π(ψ̃g(z)), π(z)) there is a constant
C > 0 such that dg̃(π(ψ̃g(z)), π(z)) ≤ C for all z ∈ SM̃ . Using the triangle inequality we
obtain

|b(z, t)− κag(t, z)| = |dg̃(π(ϕ̃g0t (z)), π(z))− dg̃(π(ϕ̃gκag (z,t)(ψ̃g(z))), π(ψ̃g(z)))|

= |dg̃(π(ϕ̃g0t (z)), π(z))− dg̃(π(ψ̃g(ϕ̃
g0
t (z))), π(ψ̃g(z)))|

≤ dg̃(π(ϕ̃g0t (z)), π(ψ̃g(ϕ̃
g0
t (z)))) + dg̃(π(ψ̃g(z)), π(z)) ≤ 2C.

This implies, using (2.15) that:

lim
t→+∞

b(z, t)/t = lim
t→+∞

κag(z, t)/t = lim
t→+∞

1

t

∫ t

0
ag(ϕ

g0
s (z)) ds =

∫
Sg0M

ag dµ,

for µ-almost every z ∈ Sg0M , by the Birkhoff ergodic Theorem [Wal82, Theorem 1.14]. By
(2.16) we also have ∫

Sg0M
ag dµf = lim

j→∞
〈δg0(cj), ag〉 = lim

j→∞

Lg(cj)

Lg0(cj)

thus the proof is complete. �

As a consequence, we immediately obtain the

Corollary 2.8. Let g belong to a fixed neighborhood U of g0 in Mk,α, and assume that for
any sequence of primitive free homotopy classes (cj)j≥0 ∈ CN such that Lg0(cj)→∞, one has
limj→∞ Lg(cj)/Lg0(cj) = 1. Then, for any equilibrium state µf with respect to ϕg0t associated
to some Hölder function f , we have Iµf (g0, g) = 1.

Combining this with the results of [GL19, Theorem 1], namely the local rigidity of the
marked length spectrum, we also easily obtain:

Theorem 2.9. Let (M, g0) be a smooth Riemannian n-dimensional manifold with Anosov
geodesic flow, topological entropy htop(g0) = 1 and assume that its curvature is nonpositive if
n ≥ 3. Then there exists k ∈ N large enough depending only on n, ε > 0 small enough such
that the following holds: there is C > 0 depending on g0 so that for each g ∈ Ck(M ;S2T ∗M)

with ‖g − g0‖Ck ≤ ε, if

htop(g) = 1, lim
j→+∞

Lg(cj)

Lg0(cj)
= 1,
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for some sequence (cj)j∈N of primitive free homotopy classes such that δg0(cj) ⇀j→+∞ µBM
g0 ,

then g is isometric to g0.

Proof. Given a metric g, one has by [Kni95, Theorem 1.2]9 that

htop(g) ≥ htop(g0)

IµBM
g0

(g0, g)
, (2.17)

with equality if and only if ϕg0 and ϕg are, up to a scaling, time-preserving conjugate, that
is there exists homeomorphism ψ such that ψ ◦ ϕctg0 = ϕtg ◦ ψ with c := htop(g)/htop(g0). In
particular, restricting to metrics with entropy 1 one obtains that IµBM

g0
(g0, g) ≥ 1 with equality

if and only if the geodesic flows are conjugate, that is if and only if Lg = Lg0 (by Livsic
theorem). As a consequence, given g0, g with entropy 1 such that Lg(cj)/Lg0(cj) →j→+∞ 1

for some sequence δg0(cj) ⇀j→+∞ µBM
g0 , we obtain that IµBM

g0
(g0, g) = 1, hence Lg = Lg0 . If

k ∈ N was chosen large enough at the beginning, we can then conclude by the local rigidity
of the marked length spectrum [GL19, Theorem 1]. �

In Theorem 2.9, we assume that g0 has entropy 1. This is actually a harmless assumption
insofar as the same result holds true on metric of constant topological entropy htop(g) =

λ > 0. Recall that by considering λ2g0 for some constant λ > 0, the entropy scales as
htop(λ2g0) = htop(g0)/λ [Pat99, Lemma 3.23] and we can thus always reduce to the previous
case htop(g0) = 1. We also observe that the previous Theorem implies the local rigidity of
the marked length spectrum: if Lg = Lg0 , then htop(g0) = htop(g) because the topological
entropy htop(g) is the first pole of the Ruelle zeta function ([PP90, Theorem 9.1])

ζg(s) :=
∏
c∈C

(1− e−sLg(c)).

We can then apply Theorem 2.9 to deduce that g is isometric to g0. We will provide an
alternate proof of this fact in the next section without using the proof of [GL19].

3. A functional on the space of metrics

Given a metric g in a Ck,α-neighborhood U of g0, we define the potential

Vg := Jug0 + ag − 1 ∈ Cν(Sg0M) (3.1)

for some ν > 0. We remark that U 3 g 7→ Vg ∈ Cν(Sg0M) is Ck−2 and for g = g0, Vg0 = Jug0 .
Consider the map ψ :Mk,α → R, defined for g0 a fixed smooth metric with Anosov geodesic
flow, by:

Ψ(g) := P
(
− Jug0 − ag +

∫
Sg0M

ag dµ
L
g0

)
= P(−Vg) + IµLg0

(g0, g)− 1. (3.2)

9In [Kni95] the metric is assumed to be negatively curved, but the argument applies also for Anosov flows,
as is shown in [BCLS15, Proposition 3.8]: it corresponds to Proposition 3.10 below in the case f := 1 and
f ′ = ag.
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We also define the maps

F :Mk,α → R, F (g) := P(−Vg), (3.3)

Φ :Mk,α → R, Φ(g) = IµLg0
(g0, g)− 1. (3.4)

satisfying Ψ(g) = F (g) + Φ(g). We note that Ψ,Φ, F are Ck−2 by [Con92]. We also make the
following observation: since P(−Jug0) = 0 and ag0 is cohomologous to 1, we have Ψ(g0) = 0

and

Φ(g) = −
(
hµLg0

(ϕg01 ) +

∫
Sg0M

(1− Jug0 − ag)dµ
L
g0

)
≥ −P(1− Jug0 − ag) = −F (g) (3.5)

by using the variational definition (2.11) of the pressure. This shows that for all g ∈Mk,α

Ψ(g) ≥ Ψ(g0) = 0.

Moreover, Ψ(g) = 0 if and only if the inequality (3.5) becomes an equality, which means that
µLg0 is the equilibrium measure of −Jug0 + 1 − ag. Since µLg0 is also the equilibrium measure
associated to −Jug0 , we conclude by (2.12) that 1 − ag is cohomologous to a constant, or
equivalently ag is cohomologous to a constant. We have thus shown

Lemma 3.1. The map Ψ satisfies Ψ(g) ≥ Ψ(g0) = 0, and Ψ(g) = Ψ(g0) = 0 if and only if ag
is cohomologous to a constant, or equivalently Lg = λLg0 for some λ > 0.

The proof of Theorem 1.1 will be a consequence of the fact that Taylor expansion of Ψ at
g = g0 has leading term given by the Hessian, which turns out to be the variance operator Π2

studied before.

3.1. The proof of Theorem 1.1. In the following paragraphs, we will compute the deriva-
tives of the map Ψ,Φ, F . As mentioned earlier, they are Ck−2 by [Con92, Theorem C] and
explicit computations of their derivatives can be found in [PP90, Proposition 4.10] (case of
subshift) and [KKW91], [KKPW90] (case of the topological entropy). The first step in the
proof is the following

Proposition 3.2. The non-negative functional Ψ :Mk,α → R+ defined in (3.2) satisfies the
following property: there is a neighborhood U of g0 in C5,α(M,S2T ∗M) and a constant Cg0
depending on g0 such that for all g ∈ U

Ψ(g) ≥ 1

8

(
〈Πg0

2 (g − g0), (g − g0)〉L2 − 〈(g − g0), g0〉2L2

)
− Cg0‖g − g0‖3C5,α .

Proof. We shall compute the Taylor expansion of Ψ at g = g0 to second order. By [PP90,
Proposition 4.10], we have for h ∈ TgMk,α:

dFg.h = −
∫
Sg0M

dag.h dmg

where mg is the equilibrium measure of −Vg. In particular, observe that for g = g0, one has:

dFg0 .h = −
∫
Sg0M

dag0 .h dµ
L
g0 , (3.6)
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since mg0 = µL
g0 . Next, we get for h ∈ Tg0Mk,α

dΦg0 .h =

∫
Sg0M

dag0 .h dµ
L
g0 = −dFg0 .h (3.7)

thus dΨg0 .h = 0 for all h ∈ Tg0Mk,α.
Let us next compute the second derivative d2Ψg0(h, h). First, we have

d2Φg0 =

∫
Sg0M

d2ag0(h, h) dµLg0 .

Then, by [PP90, Proposition 4.11] we know that

d2P−Vg0 (dVg0 .h, dVg0 .h) = VarµLg0
(dVg0 .h− 〈dVg0 .h, 1〉) = 〈Πg0dVg0 .h, dVg0 .h〉L2 ,

dP−Vg0 (dVg0 .h) =

∫
Sg0M

dVg0 .h dµ
L
g0

(3.8)

where VarµLg0
(h) is the variance defined in (2.5), equal to 〈Πg0h, h〉L2 by (2.6) and Πg01 = 0.

Therefore,

d2Fg0(h, h) =− dP−Vg0 .d
2Vg0(h, h) + d2P−Vg0 (dVg0 .h, dVg0 .h)

=− dP−Vg0 .d
2ag0(h, h) + 〈Πg0dag0 .h, dag0 .h〉L2 .

All together, we finally get

d2Ψg0(h, h) = 〈Πg0dag0 .h, dag0 .h〉L2 .

To conclude, we claim in Lemma 3.3 below that dag0 .h− 1
2π
∗
2h is a coboundary so that

d2Ψg0(h, h) = 〈Πg0π∗2h, π
∗
2h〉L2 =

1

4

(
〈Πg0

2 h, h〉L2 − 〈h, g0〉2L2

)
.

The statement of the proposition is then simply the Taylor expansion of Ψ(g) at g = g0, with
h = g − g0. (We need the map to be C3 for the Taylor expansion, hence the need of the C5,α

regularity since we lose two derivatives as mentioned at the beginning of §3.) �

Lemma 3.3. Consider a smooth deformation (gλ)λ∈(−1,1) of g0 inside Mk,α. Then, there
exists a Hölder-continuous function f : Sg0M → R such that

π∗2 (∂λgλ|λ=0)− 2∂λaλ|λ=0 = Xg0f.

Proof. Let c be a fixed free homotopy class, γ0 ∈ c be the unique closed g0-geodesic in
the class c, which we parametrize by unit-speed z0 : [0, `g0(γ0)] → Sg0M . We define
zλ(s) = ψλ(z0(s)) = (αλ(s), α̇λ(s)) (the dot is the derivative with respect to s) where ψλ
is the conjugacy between gλ and g0 : this gives a non-unit-speed parametrization of γλ, the
unique closed gλ-geodesic in c. We recall that π : TM → M is the projection. We obtain
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using (2.14)∫ `g0 (γ0)

0
gλ(α̇λ(s), α̇λ(s))ds =

∫ `g0 (γ0)

0
gλ (∂s(π ◦ zλ(s)), ∂s(π ◦ zλ(s))) ds

=

∫ `g0 (γ0)

0
gλ (∂s(π ◦ ψλ ◦ z0(s)), ∂s(π ◦ ψλ ◦ z0(s))) ds

=

∫ `g0 (γ0)

0
a2
λ(z0(s)) gλ (dπ(Xgλ(zλ(s))), dπ(Xgλ(zλ(s))))︸ ︷︷ ︸

=1

ds

=

∫ `g0 (γ0)

0
a2
λ(z0(s))ds.

Since s 7→ α0(s) is a unit-speed geodesic for g0, it is a critical point of the energy functional
(with respect to g0). Thus, by differentiating the previous identity with respect to λ and
evaluating at λ = 0, one obtains:∫ `g0 (γ0)

0
∂λgλ|λ=0(α̇0(s), α̇0(s))ds = 2

∫ `g0 (γ0)

0
∂λaλ|λ=0(z0(s))ds.

As a consequence, π∗2 (∂λgλ|λ=0)− 2∂λaλ|λ=0 is a Hölder-continuous function in the kernel of
the X-ray transform: by the usual Livsic theorem, there exists a function f (with the same
Hölder regularity), differentiable in the flow direction, such that π∗2 (∂λgλ|λ=0)− 2∂λaλ|λ=0 =

Xg0f . �

As a corollary, we get:

Corollary 3.4. For k ≥ 5, α ∈ (0, 1), there is a neighborhood U of g0 in Ck,α(M ;S2T ∗M)

and constants Cg0 , C ′g0 > 0 depending on g0 such that for all g ∈ U

Cg0‖πkerD∗g0
(g − g0)‖2

H−1/2(M)
≤ Ψ(g) +

1

4
〈(g − g0), g0〉2L2 + C ′g0‖g − g0‖3C5,α .

There is a neighborhood U ′ of g0 in Ck,α(M ;S2T ∗M) and a constant C ′′g0 > 0 depending on
g0 such that for all g ∈ U ′, there is a diffeomorphism ψ ∈ Ck+1,α(M) such that

Cg0‖ψ∗g − g0‖2H−1/2(M)
≤ Ψ(g) +

1

4
〈(ψ∗g − g0), g0〉2L2 + C ′′g0‖ψ

∗g − g0‖3C5,α

Proof. The first inequality follows from Proposition 3.2 and Lemma 2.2. For the second
inequality, we apply the first inequality to ψ∗g where ψ is the diffeomorphism obtained from
Lemma 2.4, and we use that Ψ(ψ∗g) = Ψ(g). �

The next step is to control the term 〈(ψ∗g − g0), g0〉L2 by the geodesic stretch. We will
show

Proposition 3.5. There is k ∈ N large enough, depending only on n = dimM , such that if
g0 is smooth with Anosov geodesic flow, and non-positive curvature in the case n > 2, there is
Cg0 > 0 and Cn > 0, an open neighborhood U in Ck,α(M ;S2T ∗M) of g0, such that for each
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g ∈ U , there is a diffeomorphism ψ satisfying

Cg0‖ψ∗g − g0‖2H−1/2(M)
≤ P

(
− Jug0 − ag +

∫
Sg0M

ag dµ
L
g0

)
+ Cn

(
IµLg0

(g0, g)− 1
)2
,

Cg0‖ψ∗g − g0‖2H−1/2(M)
≤ P

(
− Jug0 − ag +

∫
Sg0M

ag dµ
L
g0

)
+ Cn

(
P(−Jug0 − ag + 1)

)2
,

Cg0‖ψ∗g − g0‖2H−1/2(M)
≤ P

(
− Jug0 − ag +

∫
Sg0M

ag dµ
L
g0

)
+
(

Volg(M)−Volg0(M)
)2
.

Here Cg0 depends on g0 and Cn on n only.

Proof. We write the Taylor expansion of Φ(ψ∗g) = Φ(g) = IµLg0
(g0, g)−1 at g = g0: by Lemma

3.6 and Lemma 3.3,

dΦg0 .h =

∫
Sg0M

dag0 .h dµ
L
g0 =

1

2

∫
Sg0M

π∗2h dµ
L
g0 = Cn〈h, g0〉L2

for some Cn > 0 depending only on n = dimM . Then:

Φ(g) = Φ(ψ∗g) = Cn〈ψ∗g − g0, g0〉L2 +O(‖ψ∗g − g0‖2C5,α)

Combining with Corollary 3.4, we obtain

Cg0‖ψ∗g − g0‖2H−1/2(M)
≤ Ψ(g) + 2C−2

n Φ(g)2 + C ′′g0‖ψ
∗g − g0‖3C5,α (3.9)

if ‖ψ∗g−g0‖C5,α is small enough, which is the case if ‖g−g0‖C5,α is small enough by Lemma 2.4.
To obtain the first inequality of Proposition 3.5, we apply Sobolev embedding and interpolation
estimates10 ([Tay96, Chapter 4]) and get, for some constants cg0 > 0, c′g0 > 0 depending on g0

only,

‖ψ∗g − g0‖3C5,α ≤ cg0‖ψ∗g − g0‖3
H
n
2 +5+α′ ≤ c′g0‖ψ

∗g − g0‖2H−1/2‖ψ∗g − g0‖Hk ,

if k > 3
2n+ 16 + 3α and α′ > α. This means that if ‖ψ∗g− g0‖Hk is small enough, depending

on the constants Cg0 , C ′′g0 , cg0 , c
′
g0 , one can absorb the ‖ψ∗g − g0‖3C5,α term of (3.9) into the

left-hand side and get the first inequality of Proposition 3.5. The smallness of ‖ψ∗g − g0‖Hk

is implied by the smallness of ‖g − g0‖Ck,α by Lemma 2.4. The same exact argument applies
by replacing Φ(g) by F (g) using that dFg0 = −dφg0 , this proves the second inequality of
Proposition 3.5. The last inequality is similar since

Volg(M)−Volg0(M) =
1

2

∫
M

Trg0(h) dvolg0 +O(‖h‖2C5,α) =
1

2
〈h, g0〉L2 +O(‖h‖2C5,α)

for h := g − g0. The proof is complete. �

10The interpolation estimate ‖u‖Hc ≤ ‖u‖tHa‖u‖1−t
Hb for c = ta+(1− t)b is obtained by applying Hadamard

three lines theorem to the holomorphic function s 7→
∑
j(1 + λj)

s〈u, ej〉2L2 on Re(s) ∈ [a, b] where ej is
an orthonormal basis of eigenfunctions of any positive elliptic self-adjoint differential operator of order 2 on
symmetric tensors and λj being the corresponding eigenvalues.
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To conclude the proof of Theorem 1.1, we need to estimate Φ(g) and F (g) in terms of
L±(g). Recall that (see [PPS15, Corollary 9.17])

P(−Vg) = lim
T→∞

1

T
log

∑
c∈C,Lg0 (c)∈[T,T+1]

e
−

∫
γg0 (c) Vg

= lim
T→∞

1

T
log

∑
c∈C,Lg0 (c)∈[T,T+1]

e
−

∫
γg0 (c) J

u
g0eLg0 (c)−Lg(c).

Thus, if we order C = (cj)j∈N by the lengths (i.e. Lg0(cj) ≥ Lg0(cj−1)), and we define

L+(g) := lim sup
j→∞

Lg(cj)

Lg0(cj)
− 1, L−(g) := lim inf

j→∞

Lg(cj)

Lg0(cj)
− 1,

we see that for all δ > 0 small, there is T0 > 0 large so that for all j with Lg0(cj) ∈ [T, T + 1]

with T ≥ T0:

emin((T+1)(−L+(g)−δ),T (−L+(g)−δ)) ≤ eLg0 (cj)−Lg(cj) ≤ emax((T+1)(−L−(g)+δ),T (−L−(g)+δ)).

We deduce, using P(−Vg0) = 0,

−L+(g)− δ ≤ P(−Vg) ≤ −L−(g) + δ.

Since δ > 0 is arbitrarily small, we obtain |F (g)| ≤ max(|L+(g)|, |L−(g)|). Similarly, Lemma
2.7 shows that |Φ(g)| ≤ max(|L+(g)|, |L−(g)|). So the proof of Theorem 1.1 is complete by
combining these bounds with Proposition 3.5 (the right hand side in the first and second
inequality of Proposition 3.5 being F (g) + Φ(g) + CnΦ(g)2 and F (g) + Ψ(g) + CnF (g)2).

3.2. A submanifold of the space of metrics. It is quite natural to describe the stretch
functional Φ on the space

N k,α :=
{
g ∈Mk,α | P(−Vg) = 0

}
, (3.10)

and on N k,α
sol := N k,α ∩ kerD∗g0 . Indeed, as we shall see, this becomes a strictly convex

functional near g0 ∈ N k,α
sol when restricted to N k,α

sol . It is possible that the map is strictly
convex globally on N k,α

sol , in which case that would prove the global rigidity of the marked
length spectrum.

Given g ∈ N k,α, we denote by mg the unique equilibrium state for the potential Vg. We will
also denote N for the case where k =∞. First we check that these are (infinite dimensional)
manifolds.

Lemma 3.6. There exists a neighborhood U ⊂Mk,α of g0 such that N k,α∩U is a codimension
one Ck−2-submanifold of U and N k,α

sol ∩ U is a Ck−2-submanifold of U . Similarly, there is
U ⊂M an open neighborhood so that N ∩ U is a Fréchet submanifold ofM.

Proof. To prove this lemma, we will use the notion of differential calculus on Banach manifolds
as it is stated in [Zei88, Chapter 73]. Note that Mk,α is a smooth Banach manifold and
N k,α ⊂Mk,α is defined by the implicit equation F (g) = 0 for

F : g 7→ P(−Vg) ∈ R. (3.11)
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The map F being Ck−2, we only need to prove that dFg0 does not vanish by [Zei88, Theorem
73.C]. This will immediately give that Tg0N k,α = ker dFg0 . In order to do so, we need a
deformation lemma. For the sake of simplicity, we write the objects ·λ instead of ·gλ .

We can now complete the proof of Lemma 3.6. We first prove the first part concerning
N k,α. Recall the formula (3.6) for dFg0 . Using Lemma 3.3, one obtains

dFg0 .h = −
∫
Sg0M

dag0 .h dµ
L
g0 = −1

2

∫
Sg0M

π∗2h dµ
L
g0 = −Cn〈h, g0〉L2 , (3.12)

for some constant Cn > 0 depending on n. This is obviously surjective and we also obtain:

Tg0N k,α = ker dFg0 =
{
h ∈ Ck,α(M ;S2T ∗M) | 〈h, g0〉L2 = 0

}
= (Rg0)⊥,

where the orthogonal is understood with respect to the L2-scalar product.
We now deal with N k,α

sol . First observe that kerD∗g0 is a closed linear subspace ofMk,α and
thus a smooth submanifold ofMk,α. By [Zei88, Corollary 73.50], it is sufficient to prove that
kerD∗g0 and N k,α are transverse at g0. But observe that g0 ∈ kerD∗g0 ' Tg0 kerD∗g0 and thus

Tg0 kerD∗g0 + Tg0N k,α = Tg0Mk,α,

showing transversality.
The case of N follows directly from the Nash-Moser theorem: F is obviously a smooth tame

map from C∞(M ;S2T ∗M) to R, moreover dFg has a right inverse Hg since11

dFg.g = −
∫
Sg0M

dag.g dmg = −1

2

∫
Sg0M

ag dmg = −1

2
Img(g0, g)

one can take Hg.1 := −2g/Img(g0, g). The family of right inverse: g 7→ Hg is smooth since
g 7→ ag and g 7→ mg are smooth by [Con92, Theorem C], and it is clearly also tame thus we
can apply directly [Ham82, Theorem 1.1.3, page 172] to deduce that F has a smooth tame
right inverse, which shows that N is a Fréchet submanifold. �

We remark that if Lg = Lg0 , then ag is cohomologous to 1, so P(−Vg) = P(−Vg0) = 0

in that case, which means that g ∈ N k,α. From the second inequality in Proposition 3.5, we
obtain:

Corollary 3.7. Let g0 be a smooth metric with Anosov geodesic flow, with non-positive cur-
vature if n > 2. There is Cg0 > 0, a neighborhood U ⊂ N k,α such that for all g ∈ U , there is
a diffeomorphism ψ ∈ Dk+1,α

0 so that

Cg0‖ψ∗g − g0‖2H−1/2(M)
≤ IµLg0 (g0, g)− 1

As suggested by this estimate, the functional Φ turns out to be strictly convex near g0 when
restricted on N k,α

sol . First, one has for h ∈ Tg0N k,α

dΦg0 .h = −dFg0 .h = 0

so that Φ : N k,α → R has a critical point at g0. For the second derivative at g0, the same
computation as in the previous section easily gives

11Note that 2dag.g is cohomologous to ag, as can be seen by differentiating Lg(c) =
∫
γg0 (c)

ag and using

Livsic theorem.
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Lemma 3.8. The map Φ : N k,α
sol → R is strictly convex at g0 and there is C > 0 such that

d2Φg0(h, h) =
1

4
〈Πg0

2 h, h〉 ≥ C‖h‖
2
H−1/2(M)

for all h ∈ Tg0N
k,α
sol .

Proof. The proof follows exactly that of Proposition 3.2, using Tg0N k,α = (Rg0)⊥. �

3.3. The pressure metric on the space of negatively curved metrics. The results of
this paragraph are stated in negative curvature but it is very likely that one could relax the
assumption to the Anosov case. Again, the only obstruction for the moment is that it is still
not known whether the X-ray transform I2 (hence the operator Π2) is injective on solenoidal
tensors in the Anosov case when dim(M) ≥ 3.

3.3.1. Definition of the pressure metric using the variance. On M−, the cone of smooth
negatively-curved metrics, we introduce the non-negative symmetric bilinear form

Gg(h1, h2) := 〈Πg
2h1, h2〉L2(M,d volg), (3.13)

defined for g ∈ M, hj ∈ TgM ' C∞(M ;S2T ∗M). It is nondegenerate on TgM∩ kerD∗g ,
namely Gg(h, h) ≥ Cg‖h‖2H−1/2 by Lemma 2.2 and the constant Cg turns out to be locally
uniform for g near a given metric g0. Combining these facts, we obtain

Proposition 3.9. Let g0 ∈ M−, then the bilinear form G defined in (3.13) produces a Rie-
mannian metric on the quotient spaceM−/D0 near the class [g0], whereM−/D0 is identified
with the slice S passing through g0 as in (2.9).

Proof. It suffices to show that G is non-degenerate on TS. Let h ∈ TgS and assume that
Gg(h, h) = 0. We can write h = LV g+ h′ where D∗gh′ = 0 and V is a smooth vector field and
LV the Lie derivative with respect to V . By Lemma 2.1 we obtain 0 = Gg(h, h) ≥ C‖h′‖H−1/2 .
Thus h = LV g, but we also know that TgS ∩ {LV g | V ∈ C∞(M ;T ∗M)} = {0} since S is a
slice. Therefore h = 0. �

3.3.2. Definition using the intersection number. In this paragraph, we want to relate the pres-
sure metric previously introduced to some renormalized intersection numbers involving some
well-chosen potentials. This will be needed to show that the pressure metric coincides with
the (a multiple of) Weil-Petersson metric in the case where M is a surface and one restricts
to hyperbolic metrics. This also makes a relation with recent work of [BCLS15].

Let us assume that g is in a fixed C2-neighborhood of g0. Since Jug0 > 0, we obtain that
Vg = Jug0 +ag−1 > 0 if g is close enough to g0. By [Sam14, Lemma 2.4], there exists a unique
constant hVg ∈ R such that P(−hVgVg) = 0. In particular, N coincides in a neighborhood of
g0 with the set

{
g ∈M | hVg = 1

}
. One can express the constant hVg as hVg = htop(ϕ

g0,Vg
t ),

where ϕg0,Vgt is a time-reparametrization of the geodesic flow of g0 (see [BCLS15, Section
3.1.1]). More precisely, given f ∈ Cν(Sg0M) a Hölder-continuous positive function on Sg0M ,
we introduce hf to be the unique real number such that P(−hff) = 0 and we set:

Sg0M × R 3 (z, t) 7→ κf (z, t) :=

∫ t

0
f(ϕg0s (z)) ds.
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For a fixed z ∈ Sg0M , this is a homeomorphism on R and thus allows to define:

ϕg0,fκf (z,t)(z) := ϕg0t (z). (3.14)

We now follow the approach of [BCLS15, Section 3.4.1]. Given two Hölder-continous functions
f, f ′ ∈ Cν(Sg0M) such that f > 0, one can define an intersection number [BCLS15, Eq. (13)]

Ig0(f, f ′) :=

∫
Sg0M

f ′ dµ−hff∫
Sg0M

f dµ−hff

where dµ−hff is the equilibrium measure for the potential −hff . We have the following
result, which follows from [BCLS15, Proposition 3.8] stated for Anosov flows on compact
metric spaces:

Proposition 3.10 (Bridgeman-Canary-Labourie-Sambarino [BCLS15]). Let f, f ′ : Sg0M →
R+ be two Hölder-continuous positive functions. Then:

Jg0(f, f ′) :=
hf ′

hf
Ig0(f, f ′) ≥ 1

with equality if and only if hff and hf ′f
′ are cohomologous for the geodesic flow ϕg0t of g0.

The quantity Jg0(f, f ′) is called the renormalized intersection number.

We apply the previous proposition with f := Jug0 (then hJug0
= 1) and f ′ := Vg. Without

assuming that g ∈ N (that is we do not necessarily assume that hVg = 1), we have

Jg0(Jug0 , Vg) = hVgIg0(Jug0 , Vg) = hVg

∫
Sg0M

(Jug0 + ag − 1) dµL
g0∫

Sg0M
Jug0dµ

L
g0

= hVg
hL(g0) + IµLg0

(g0, g)− 1

hL(g0)
≥ 1

where hL(g0) is the entropy of Liouville measure for g0. In the specific case where g ∈ N ,
hVg = 1 and we find that IµLg0 (g0, g) ≥ 1 with equality if and only if ag is cohomologous
to 1, that is if and only if Lg = Lg0 , or alternatively if and only if ϕg and ϕg0 are time-
preserving conjugate. This computation holds as long as Jug0 + ag − 1 > 0 (which is true in a
C2-neighborhood of g0).

In particular, on N , we have the linear relation

Jg0(Jug0 , Vg) = 1 +
IµLg0

(g0, g)− 1

hL(g0)
.

In the notations of [BCLS15, Proposition 3.11], the second derivative computed for the family
(gλ)λ∈(−1,1) ∈ N is

∂2
λJg0(Jug0 , Vgλ)|λ=0 =

1

hL(g0)
∂2
λIµLg0

(g0, gλ)|λ=0 =
〈Πg0

2 ġ0, ġ0〉
4hL(g0)

(3.15)

and is called the pressure form. When considering a slice transverse to the D0 action on N ,
it induces a metric called the pressure metric by Lemma 2.1. To summarize:
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Lemma 3.11. Given a smooth metric g0, the metric Gg0 restricted to N can be obtained from
the renormalized intersection number by

Gg0(h, h) = 4hL(g0)∂2
λJg0(Jug0 , Vgλ)|λ=0

where (gλ)λ∈(−1,1) is any family of metrics such that gλ ∈ N and ġ0 = h ∈ Tg0N .

3.3.3. Link with the Weil-Petersson metric. We now assume that M = S is an orientable
surface of genus ≥ 2. Let T (S) be the Teichmüller space of S. We show that the pressure
metric coincides with the (a multiple of) Weil-Petersson metric in restriction to T (S). We fix
a hyperbolic metric g0. Given η, ρ ∈ T (S) and gη, gρ the associated hyperbolic metrics, since
T (S) is connected (indeed a ball in C3(genus(M)−1)) there is topological conjugacy between
gη, gρ and g0 and one can defined the time rescaling agη and agρ by using a path of hyperbolic
metrics relating g0 to gη or to gρ. The intersection number is defined as

I(η, ρ) := Ig0(agη , agρ) =

∫
Sg0M

agρdµη∫
Sg0M

agηdµη

where [gη] = η, [gρ] = ρ and µη is the equilibrium state of −hagηagη . Note that hagη =

htop(ϕ
g0,aη
t ) = 1 since ϕg0,aη is conjugate to the geodesic flow of gη, which in turn has constant

curvature, and by [Sam14, Lemma 2.4], agηdµη/
∫
Sg0M

agηdµη is the measure of maximal
entropy of the flow ϕ

g0,aη
t , thus also the normalized Liouville measure of gη (viewed on Sg0M).

This number I(η, ρ) is in fact independent of g0 as it can alternatively be written

I(η, ρ) = lim
T→∞

1

NT (η)

∑
c∈C,Lgη (c)≤T

Lgρ(c)

Lgη(c)

where NT = ]{c ∈ C |Lgη(c) ≤ T} (see [BCS18, Proof of Th. 4.3]). In particular, taking
g0 = gη, one has

I(η, ρ) = IµLgη
(gη, gρ).

As explained in [BCS18, Theorem 4.3], up to a normalization constant c0 depending on the
genus only, the Weil-Petersson metric on T (S) is equal to

‖h‖2WP = c0∂
2
λ I(η, ηλ)|λ=0 = c0∂

2
λIµLgη

(gη, gηλ)|λ=0, (3.16)

where η̇0 = h and (gηλ)λ∈(−1,1) is a family of hyperbolic metrics such that [gηλ ] = ηλ, η =

η0 = [g0]. This fact follows from combined works of Thurston, Wolpert [Wol86] and Mc Mullen
[MM08]: the length of a random geodesic γ on (S, g0) with respect to gηλ has a local minimum
at λ = 0 and the Hessian is positive definite (Thurston), is equal to the Weil-Petersson norm
squared of ġ (Wolpert [Wol86, FF93]) and is given by a variance (Mc Mullen [MM08]); here
random means equidistributed with respect to the Liouville measure of g0. We can check that
the metric G also corresponds to this metric:

Proposition 3.12. The metric G on T (S) is a multiple of the Weil-Petersson metric.

Proof. This follows directly from (3.15), (3.16) and the fact that hL(gη) = 1 if gη has curvature
−1. �
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Remark 3.13. We notice that the positivity of the metric in the case of Teichmüller space
follows only from some convexity argument in finite dimension. In the case of general metrics
with negative curvature, the elliptic estimate of Lemma 2.1 on the variance is much less obvious
due to the infinite dimensionality of the space. As it turns out, this is the key for the local
rigidity in our results.

4. Uniform elliptic estimates on Π2

In this section, we prove that the operator Πg
2 ∈ Ψ−1(M ;S2T ∗M) depends continuously on

g. LetMAn be the space of smooth Riemannian metrics with Anosov geodesic flow.

Proposition 4.1. The mapMAn 3 g 7→ Πg
2 ∈ Ψ−1(M ;S2T ∗M) is continuous, when Ψ−1(M ;S2T ∗M)

is equipped with its topology of Fréchet spaces.

Recall that the Fréchet topology was introduced at the beginning of §2.1. We fix a metric
g0 and we work in a neighborhood U of g0 in the C∞ topology. In particular, we will always
assume that this neighborhood U is small enough so that any g ∈ U has an Anosov geodesic
flow that is orbit-conjugated to that of g0 by structural stability. We will also see the geo-
desic flows (ϕgt )t∈R as acting on the unit bundle SM := Sg0M for g0 by using the natural
identification SgM → Sg0M obtained by scaling in the fibers. The operator π∗2 associated to
g becomes: for (x, v) ∈ Sg0M

(π∗2h)(x, v) = hx(v, v)|v|−2
g .

4.1. The resolvents of Xg and anisotropic spaces. We first recall the construction of
resolvents of Xg from Faure-Sjöstrand [FS11] (see also [DZ16]) and in particular the version
used in Dang-Guillarmou-Rivière-Shen [DGRS20] that deals with the continuity with respect
to the flow Xg. Let E∗u/s(g) ⊂ T ∗(SM) be the annihilators of Eu/s(g)⊕ E0(g), i.e.

E∗u(g)(Eu(g)⊕ E0(g)) = 0, E∗s (g)(Es(g)⊕ E0(g)) = 0.

There are two resolvents bounded on L2 for Xg defined for Re(λ) > 0 by

R±g (λ) := ±
∫ ∞

0
e−λte±tXgf dt

for f ∈ L2(SM, dµL
g ). They solve (−Xg ± λ)R±g (λ) = Id on L2. The following results are

proved in [FS11], and we use here the presentation of [DGRS20, Sections 3.2 and 3.3] due
to the need of uniformity with respect to g: there is c0 > 0 depending only on g, locally
uniform with respect to g (c0 depends only on the Anosov exponents of contraction/dilation
of dϕg1), such that for each N0 > 0, N1 > 16N0, R±g (λ) admits a meromorphic extension in
Re(λ) > −c0N0 as a bounded operator

R−g (λ) : Hm
N0,N1
g → Hm

N0,N1
g , R+

g (λ) : H−m
N0,N1
g → H−m

N0,N1
g (4.1)

where H±m
N0,N1
g are Hilbert spaces depending on N0 > 0, N1 > 0 satisfying the following

properties:

H2N1(SM) ⊂ Hm
N0,N1
g ⊂ H−2N0(SM), H2N0(SM) ⊂ H−m

N0,N1
g ⊂ H−2N1(SM)
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and defined by

H±m
N0,N1
g = (A

m
N0,N1
g

)∓1L2(SM), A
m
N0,N1
g

:= Op(em
N0,N1
g log f )

and A
m
N0,N1
g

is an invertible pseudo-differential operator with inverse having principal sym-

bol e−m
N0,N1
g log f . Here Op denotes a quantization (with a fixed small semi-classical pa-

rameter to ensure that Op(em
N0,N1
g log f ) is invertible), while mN0,N1

g ∈ S0(T ∗(SM)), f ∈
S1(T ∗(SM), [1,∞)) (the usual classes of symbols) are homogeneous of respective degree 0

and 1 in |ξ| > R, for some R > 1 independent of g, and constructed from the lifted flow
Φg
t = ((dϕgt )

−1)T acting on T ∗(SM). The function f can be taken depending only on g0 for g
in a small enough C∞ neighborhood U of g0. Moreover there are small conic neighborhoods
Cu(g0) and Cs(g0) of E∗u(g0) and E∗s (g0) such that for any smaller open conic neighborhood
C ′u(g0) ⊂ Cu(g0) of E∗u(g0) and C ′s(g0) ⊂ Cs(g0) of E∗s (g0), mN1,N1

g satisfies:
mN0,N1
g (z, ξ) ≥ N1, (z, ξ) ∈ C ′s(g0),

mN0,N1
g (z, ξ) ≥ N1/8 (z, ξ) /∈ Cu(g0),

mN0,N1
g (z, ξ) ≤ −N0 (z, ξ) ∈ C ′u(g0),

(4.2)

and mg(x, ξ) ∈ [−2N0, 2N1] for all (z, ξ) ∈ T ∗(SM). We note that [DGRS20, Lemma 3.3]
shows that mN0,N1

g is smooth with respect to the metric g and that f can be taken to be
independent of g for g close enough to g0. The spaces Hm

N0,N1
g are called anisotropic Sobolev

spaces. The pseudodifferential operators A
m
N0,N1
g

belong to the class Ψ2N1(SM) but also to

some anisotropic subclass denoted Ψm
N0,N1
g (SM) admitting composition formulas; we refer to

[FRS08, FS11] for details.
Eventually, [DGRS20, Proposition 6.1] shows that there is a small open neighborhood Wδ

of the circle {λ ∈ C | |λ| = δ} for some small δ > 0 so that

U ×Wδ 3 (g, λ) 7→ A
m
N0,N1
g

R−g (λ)(A
m
N0,N1
g

)−1 ∈ L(H1(SM), L2(SM)) (4.3)

is continuous.12

4.2. The operator Πg
2 in terms of resolvents. Following [Gui17], the link between Πg and

the resolvent is given by the Laurent expansion

Πg = R+
g (0)−R−g (0)

where R+
g (λ) has a pole of order 1 and R±g (0) is defined by

R±g (λ) = ±λ−1〈·,1〉+R±g (0) +O(λ)

and R−g (0) = −(R+
g (0))∗ where the adjoint is with respect to the Liouville measure.

12In [DGRS20, Proposition 6.1], there is a small semi-classical parameter h > 0 appearing: we can just fix
this parameter small enough. It does not play any role here except in the quantization procedure Op. We also
add that in [DGRS20, Proposition 6.1], N1 is chosen to be equal to 20N0 for notational convenience, but the
proof does not use that fact.
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Lemma 4.2. Let χ ∈ C∞c (R) be even and equal to 1 in [−T, T ] and supported in the interval
(−T − 1, T + 1). Then we have

Πg =

∫
R
χ(t)etXgdt−R+

g (0)

∫ +∞

0
χ′(t)etXgdt+R−g (0)

∫ +∞

0
χ′(t)e−tXgdt− 〈·,1〉

∫
R
χ. (4.4)

Proof. For Re(λ) > 0, we can write by integration by parts

R±g (λ) =±
∫ ∞

0
χ(t)e−t(λ∓Xg)dt±

∫ ∞
0

(1− χ(t))e−t(λ∓Xg)dt

=±
∫ ∞

0
χ(t)e−t(λ∓Xg)dt−R±g (λ)

∫ ∞
0

χ′(t)et(±Xg−λ)dt.

Then taking the limit as λ→ 0, we obtain

R±g (0) = ±
∫ ∞

0
χ(t)e±tXgdt−R±g (0)

∫ ∞
0

χ′(t)e±tXgdt∓
∫ ∞

0
χ(t)dt〈·,1〉

and summing gives the result. �

Next, we remark that, using that ϕgt (x,−v) = −ϕg−t(x, v) (where multiplication by −1 is
the symmetry in the fibers of SM), it is straightforward to check that for all t ∈ R

π2∗e
tXgπ∗2 = π2∗e

−tXgπ∗2,

which also implies that π2∗R
+
g (0)etXgπ∗2 = −π2∗R

−
g (0)e−tXgπ∗2 and thus

Πg
2 = 2π2∗

∫ ∞
0

χ(t)e−tXg dtπ∗2 + 2π2∗R
−
g (0)

∫ +∞

0
χ′(t)e−tXg dtπ∗2 +

(
1−

∫
R
χ

)
〈·,1〉. (4.5)

We are going to prove that these three terms depend continuously on g. Note that(
1−

∫
R
χ

)
〈f,1〉 =

(
1−

∫
R
χ

)∫
SM

f(z)dµL
g (z)

and thus the g-continuity of this term is immediate. Now, we claim the following:

Lemma 4.3. There is T > 0 large enough and a neighborhood U ′ ⊂ U of g0 in MAn so that
for all x ∈M and all g ∈ U ′ the exponential map of g in the universal cover M̃

expg̃x : {v ∈ TxM̃ ; |v|g ≤ T} → M̃

is a diffeomorphism onto its image and Φg
t (V

∗ ∩ ker ιXg) ⊂ C ′u(g0) for all t ≥ T , if Φg
t :=

((dϕgt )
−1)T is the symplectic lift of ϕgt , V ∗ ⊂ T ∗(SM) is the annihilator of the vertical bundle

V = ker dπ0 ⊂ T (SM) and ιX : T ∗(SM)→ R is the contraction ιXg(ξ) = ξ(Xg).

We also mention here as it is used in the following proof that, as a consequence of hyper-
bolicity,

V ∗ ∩ E∗s = V ∗ ∩ E∗u = {0} .

This can be found in [Pat99, Theorem 2.50] for instance (formulated for the tangent bundle
T (SM) but the adaptation to T ∗(SM) is straightforward). The T in Lemma 4.2 will be
chosen accordingly so that Lemma 4.3 is satisfied.
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Proof. By Lemma 3.1 of [DGRS20], the cone C′u(g0) can be chosen so that there is T > 0

and U ′ such that for all t ≥ T and all g ∈ U ′, Φg
t (C

′
u(g0)) ⊂ C ′u(g0). We also know that

Φg0
T0

(V ∗ ∩ ker ιXg) ⊂ C ′u(g0) for some T0 > T by hyperbolicity of g0 (i.e. the stable bundle E∗s
only intersects trivially the vertical bundle V ∗ ∩ ker ıXg), but by continuity of g 7→ Φg

T0
, the

same holds for all g in some possibly smaller neighborhood U ′′ ⊂ U ′, thus for all t ≥ T0 and
all g ∈ U ′′, Φg

t (V
∗ ∩ ker ιXg) ⊂ C ′u(g0). Now, we claim that, up to choosing U ′′ even smaller,

the exponential map is a diffeomorphism on {|v|g ≤ T} in the universal cover: indeed, Anosov
geodesic flows have no pair of conjugate points. �

4.3. Proof or Proposition 4.1. Let us define

Ωg
1 := π2∗

∫ ∞
0

χ(t)e−tXg dtπ∗2, Ωg
2 := π2∗R

−
g (0)

∫ +∞

0
χ′(t)e−tXg dtπ∗2

Proposition 4.1 is a consequence of the following two Lemmas.

Lemma 4.4. For each g ∈ U ′, Ωg
1 ∈ Ψ−1(M ;S2T ∗M) with principal symbol

σ(Ωg
1)(x, ξ) = cn|ξ|−1πker iξA

2
2πker iξ

for some cn > 0 depending only on n = dimM and A2 some positive definite endomorphism
defined in Lemma 2.1, and the map g 7→ Ωg

1 is continuous with respect to the smooth topology
on U ′ and the usual Fréchet topology on Ψ−1(M ;S2T ∗M).

Proof. The fact that, for each g ∈ MAn, the operator Ωg
1 ∈ Ψ−1(M ;S2T ∗M) is proved in

[Gui17, Theorem 3.5], the computation of the principal symbol follows from the computation
[SSU05, SU04] and is done in details in our setting in [GL, Theorem 4.4.]. We need to check
the continuity with respect to g in the Ψ−1(M ;S2T ∗M) topology and we can proceed as
in [SU04, Proposition 1 and 2]. For h ∈ C∞(M ;S2T ∗M), we can write explicitly in (xi)i
coordinates in the universal cover M̃ near a point p ∈ M̃

(Ωg
1h(x))ij =

∫
SxM̃

∫ ∞
0

χ(t)h̃
expg̃x(tv)

(∂t expg̃x(tv), ∂t expg̃x(tv))pij(x, v) dtdSx(v)

where pij(x, v) are homogeneous polynomials of order 2 in the v variable, h̃ ∈ C∞(M̃ ;S2T ∗M)

is the lift of h to the universal cover M̃ , dSx is the natural measure on the sphere SxM̃ . Using
Lemma 4.3, we can perform the change of coordinates (t, v) ∈ (0, T )×SxM̃ 7→ y := expg̃x(tv) ∈
M̃ , we get t = dg̃(x, y) the distance in M̃ , and

dtdv =
Jgx(y)

(dg̃(x, y))n−1
dvolg(y), v = −∇g̃ydg̃(x, y), ∂t expg̃x(tv) = (∇g̃xdg̃(x, y)),

for some Jgx(y) smooth in x, y, g. We claim that this implies that

Ωg
1h(x) =

∫
M
Kg(x, y)h(y) dvolg(y)

for some Kg(x, y) which is smooth in (g, x, y) outside the diagonal x = y and, near the
diagonal, it has the form (for some L <∞)

Kg(x, y) =
L∑
`=1

c`(g, x, y)ω`,g,x(x− y)
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with c` a matrix valued function, smooth in all its variables and ω`,g,x(v) a vector valued
function smooth in g, x, homogeneous of degree −(n − 1) in v ∈ Rn. Indeed, one can
work in the universal cover M̃ where xi are globally defined coordinates, so that writing
h(x) =

∑
i,j hij(x)dxidxj and p =

∑
ij pij(x)dxidxj , and we get that Kg(x, y) is a matrix with

coefficients

(Kg(x, y))iji′j′ = χ(dg̃(x, y))pij(x)F gi (x, y)F gj (x, y)Ggi′(x, y)Ggj′(x, y)
Jgx(y)

dg̃(x, y)n−1

where F gi (x, y) = −dxi(∇g̃ydg̃(x, y)) and Ggi (x, y) = dxi(∇g̃xdg̃(x, y)). Now we can use the
standard fact (see for example [SU04, Lemma 1]) that

d2
g̃(x, y) =

∑
ij

H1
ij(g, x, y)(x− y)i(x− y)j , dxi(∇gxdg̃(x, y)) =

∑
ij H

2
ij(g, x, y)(x− y)j

dg̃(x, y)

(and the same thing for dxi(∇gydg̃(x, y)) by symmetry) where Hk
ij(g, x, y) are smooth in all

variables and positive definite for x = y. The kernel Kg is thus smooth outside the diagonal
(as a function of g, x, y), and it can be written near the diagonal as a sum of terms of the
form c(g, x, y)ωg,x(x− y) where c is smooth in all its variables and ωg,x(v) is a homogeneous
distribution of degree −(n − 1) in the variable v, smooth in g, x. The off-diagonal term for
the Fréchet topology is then clearly smooth in g, while the near diagonal term has full local
symbols that are Fourier transforms of c(g, x, x− v)ωg,x(v):

σ(g;x, ξ) =

∫
R
eivξc(g, x, x− v)ωg,x(v)dv.

It is then a standard and easy exercise to check that this provides uniform bounds on semi-
norms of the symbol13. We deduce the continuity (and indeed, smoothness) of Ωg

1 as an
element of Ψ−1(M ;S2T ∗M) with respect to the metric g. �

Lemma 4.5. The operator Ωg
2 has a smooth Schwartz kernel for each g ∈ U ′ and the map

g ∈ U ′ 7→ Ωg
2 ∈ C

∞(M ×M ;S2T ∗M ⊗ (S2T ∗M)∗)

is continuous if we identify Ω2
g with its Schwartz kernel.

Proof. First we observe that if B ∈ Ψ0(SM) is chosen, independently of g, so that B∗ = B

and B microsupported in a small conic neighborhood of V ∗ not intersecting Cu(g0) and equal
microlocally to the identity in a slightly smaller conic neighborhood of V ∗, then

π∗2 = Bπ∗2 + Sg, π2∗ = π2∗B + S∗g

with Sg a continuous family of smoothing operators. This decomposition is a consequence
of the fact that π∗2 maps C−∞(M ;S2T ∗M) to the space C−∞V ∗ (SM) of distributions with

13Alternatively, the semi-norms on the full-symbol are equivalent to semi-norms in the space of distributions
onM×M that are conormal to the diagonal, defined through differentiations ofKg(x, y) with respect to smooth
fields tangent to diag(M ×M), see [Mel, Chapter 5, Proposition 6.1.1 and its proof]. Such norms for Kg are
clearly uniformly bounded in terms of g.
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wavefront set contained in V ∗ (π∗2 being essentially a pullback, this follows for instance from
[Hör03, Theorem 8.2.4]). We will show that the operator

Ωg
3 := π2∗BR

−
g (0)

∫ T+1

T
χ′(t)e−tXgBπ∗2dt

is a continuous family (with respect to g) of smoothing operators. We need to show that for
each N > 0, Ωg

3 : H−N (SM)→ HN (SM) is a continuous family with respect to g of bounded
operators. To study R−g (0), it suffices to write it under the form

R−g (0) =
1

2πi

∫
|λ|=δ

R−g (λ)

λ
dλ (4.6)

with δ small enough so that the only pole of R−g (λ) in |λ| ≤ δ is λ = 014, and thus it amounts to
analyze R−g (λ) on {|λ| = δ}. We decompose B = B1 +B2 with Bi ∈ Ψ0(SM) where WF(B1)

is contained in a conic neighborhood of ker ιXg0 not intersecting the annihilator E0(g0)∗ of
Eu(g0)⊕Es(g0) (the neutral direction) and WF(B2)∩ker ιXg0 = ∅ (B2 is microsupported in the
elliptic region). For i = 1, 2 we let Bi

T ∈ Ψ0(SM) be microsupported in a conic neighborhood
of ∪t∈[T,T+1]Φ

g
t (WF(Bi)), so that by Egorov (or simply the formula of composition of Ψ0(SM)

with diffeomorphisms of SM)

∀t ∈ [T, T + 1], e−tXgBi = Bi
T e
−tXgBi + S′g,i(t)

for some continuous family (g, t) 7→ S′g,i(t) of smoothing operators (for g close enough to g0).
We note that by taking U ′ small enough and WF(B1) close enough to V ∗ ∩ ker ιXg0 , Lemma
4.3 insures that we can choose B1

T depending only on T (thus uniform in g ∈ U ′) so that
WF(B1

T ) ⊂ C ′u(g0). Thus∫ T+1

T
χ′(t)e−tXgB1dt = B1

T

∫ T+1

T
χ′(t)e−tXgB1dt+ S′′g,1

for some continuous family g 7→ S′′g,1 of smoothing operators. Next we use (4.1) with the
choice N0 = N + 1 and N1/16 = N + 2. Since by (4.2)

mg(z, ξ) ≤ −N − 1 for all (z, ξ) ∈WF(B1
T ),

we obtain, using the composition properties in [FRS08, Theorem 8] that A
m
N0,N1
g

B1
T ∈

Ψ−N−1(SM) is uniformly bounded with respect to g and continuous as a map g ∈ U ′ 7→
A
m
N0,N1
g

B1
T ∈ L(H−N (SM), H1(SM)). In particular

U ′ 3 g 7→ A
m
N0,N1
g

∫ T+1

T
χ′(t)e−tXgB1dt ∈ L(H−N (SM), H1(SM)) (4.7)

is continuous. Next, we deal with the “elliptic region” term, i.e. the term B2. The idea is to
show it is smoothing, since it is a Schwartz function of Xg microlocalized in the elliptic region

14This is possible for g close enough to g0 by continuity of g 7→ R−g (λ) proved in [DGRS20]. Note that the
spectrum (the Pollicott-Ruelle resonances) depend continuously on the metric as was shown by [Gue20].
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of Xg. First, WF(B2
T ) does not intersect ker ιXg for g ∈ U ′ after possibly reducing U ′ since it

does not intersect ker ιXg0 . Moreover we have

X2N
g

∫ T+1

T
χ′(t)e−tXgB2dt =

∫ T+1

T
χ(1+2N)(t)e−tXgB2dt,

and since WF(B2
T ) does not intersect ker ιXg for g ∈ U ′, there is by microlocal ellipticity

([DZ19, Proposition E.32]) a family Qg ∈ Ψ−2N (SM) and Zg ∈ Ψ−∞(SM), both continuous
with respect to g, so that

QgX
2N
g = B2

T + Zg.

We write

B2
T

∫ T+1

T
χ′(t)e−tXgB2dt =QgX

2N
g

∫ T+1

T
χ′(t)e−tXgB2dt+ Z ′g

=Qg

∫ T+1

T
χ(1+2N)(t)e−tXgB2dt+ Z ′g

where Z ′g ∈ L(H−N (SM), HN (SM)) continuously in g. Since
∫ T+1
T χ′(t)e−tXgB2dt is con-

tinuous in g as a bounded map L(H−N (SM)) and Qg is continuous in g as a bounded map
L(H−N (SM), HN (SM)), we get

B2
T

∫ T+1

T
χ′(t)e−tXgB2dt ∈ L(H−N (SM), HN (SM))

continuously in g ∈ U ′. Combine these facts with (4.7), (4.3) and (4.6), we deduce that

U ′ 3 g 7→ A
m
N0,N1
g

R−g (0)(A
m
N0,N1
g

)−1A
m
N0,N1
g

∫ T+1

T
χ′(t)e−tXgBdt ∈ L(H−N (SM), L2(SM))

is continuous. Finally, using that WF(B) ∩ Cu(g0) = ∅ and −mN0,N1
g ≤ −2N − 4 outside

Cu(g0) by (4.2), we have that B(A
m
N0,N1
g

)−1 ∈ Ψ−2N−4(SM) uniformly in g (using again
[FRS08, Theorem 8] and [DGRS20, Lemma 3.2]) and the following map is continuous

U ′ 3 g 7→ B(A
m
N0,N1
g

)−1 ∈ L(L2(SM), HN (SM)).

This shows that U ′ 3 g 7→ Ωg
3 ∈ L(H−N (M ;S2T ∗M), HN (M ;S2T ∗M)) is continuous. The

terms involving the smoothing remainders Sg appearing in the difference between Ωg
2 and Ωg

3

can be dealt using the same argument, and indeed are even simpler to consider. The proof is
then complete. �

The proof of Proposition 4.1 is simply the combination of Lemma 4.5 and Lemma 4.4. �

As a corollary we prove Theorem 1.2.
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4.4. Proof of Theorem 1.2. Let g0 ∈ MAn and assume g0 has non-positive curvature if
n ≥ 3. Using Lemma 2.4, for g1, g2 ∈ M close enough to g0 in Ck+3,α norm, we can find
ψ ∈ Dk+1,α

0 (with k ≥ 5 to be chosen later), depending in a C2 fashion on (g1, g2) such that
D∗g1(ψ∗g2) = 0. Moreover g′2 = ψ∗g2 satisfies

‖g′2 − g1‖Ck,α ≤ C(‖g1 − g0‖Ck,α + ‖g2 − g0‖Ck,α)

for some C depending only on g0. We can then rewrite the proof of Theorem 1.1 replacing g0 by
g1. Let Ψg1(g2) = P

(
−Jug1−ag1,g2 +

∫
Sg0M

ag1,g2 dµ
L
g1

)
be the map (3.2) with (g1, g2) replacing

(g0, g), and Φg1(g2) = IµLg1
(g1, g2), where ag1,g2 is the time reparameterization coefficient (2.14)

in the conjugacy between the flows ϕg1 and ϕg2 and the pressure and the stretch are taken
with respect to the flow ϕg1 . Combining [Con92, Theorem C] and Proposition C.1, the maps
(g1, g2) 7→ Ψg2(g1) and (g1, g2) 7→ Φg1(g2) are C3 in g2 if k is chosen large enough, and each
g2-derivative of order ` ≤ 3 is continuous with respect to (g1, g2) ∈ Ck+3 × Ck+3 (again k is
fixed large enough). Following the proof of Proposition 3.5, this gives that for g1, g2 smooth
but close enough to g0 inMk+3,α

Cn(Φg1(g2)− 1)2 + Ψg1(g2) ≥ 1

8
〈Πg1

2 (g′2 − g1), (g′2 − g1)〉 − C ′g1‖g2 − g1‖3Ck0,α

where Cn depends only on n = dimM , C ′g1 depends on ‖g1‖Ck0,α for some fixed k0.
Combining Proposition 4.1 and Lemma 2.2, we deduce that there exist Cg0 , C ′g0 > 0 de-

pending only on g0 so that for g1, g2 ∈M in a small enough neighborhood of g0 in the Ck+3,α

topology (for k ≥ k0),

Cn(Φg1(g2)− 1)2 + Ψg1(g2) ≥ Cg0‖g′2 − g1‖H−1/2(M) − C
′
g0‖g2 − g1‖3C5,α .

This means that there exists ε > 0 depending on g0 and k large enough so that for all g1, g2 ∈
M smooth satisfying ‖gj − g0‖Ck+3,α(M) ≤ ε the estimates of Proposition 3.5 with (g1, g2)

replacing (g0, g) hold uniformly with respect to (g1, g2). This proves the desired result. �

5. Distances from the marked length spectrum

In this paragraph, we discuss different notions of distances involving the marked length
spectrum on the space of isometry classes of negatively-curved metrics. Again, if the X-ray
transform I2 were known to be injective, it is likely that one could only assume the Anosov
property for the metrics in this paragraph.

5.1. Length distance. We define the following map:

Definition 5.1. Let k be as in Theorem 1.2. We define the marked length distance map
dL :Mk,α ×Mk,α → R+ by

dL(g1, g2) := lim sup
j→∞

∣∣∣ log
Lg1(cj)

Lg2(cj)

∣∣∣.
This is indeed well defined. If g1, g2 are two such metrics, then there exists a constant

C = C(g1, g2) ≥ 1 such that for all (x, v) ∈ TM , 1/C × |v|g1(x) ≤ |v|g2(x) ≤ C × |v|g1(x). As a
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consequence, using that a geodesic is a minimizer of the length among a free homotopy class,
we obtain:

Lg1(cj)

Lg2(cj)
=
`g1(γg1(cj))

`g2(γg2(cj))
≤ `g1(γg2(cj))

`g2(γg2(cj))
≤ C1/2 `g2(γg2(cj))

`g2(γg2(cj))
= C1/2,

and the lower bound follows from a similar computation. We get as a Corollary of Theorem
1.2:

Corollary 5.2. The map dL descends to the set of isometry classes near g0 and defines a
distance in a small Ck,α-neighborhood of the isometry class of g0.

Proof. It is clear that dL is invariant by action of diffeomorphisms homotopic to Identity since
Lg = Lψ∗g for such diffeomorphisms ψ. Now let g1, g2, g3 three metrics. We have

lim sup
j→∞

∣∣∣ log
Lg1(cj)

Lg2(cj)

∣∣∣ = lim sup
j→∞

∣∣∣ log
Lg1(cj)

Lg3(cj)

Lg3(cj)

Lg2(cj)

∣∣∣
≤ lim sup

j→∞

∣∣∣ log
Lg1(cj)

Lg3(cj)

∣∣∣+ lim sup
j→∞

∣∣∣ log
Lg3(cj)

Lg2(cj)

∣∣∣.
thus dL satisfies the triangle inequality. Finally, By Theorem 1.2, if dL(g1, g2) = 0 with g1, g2

in the Ck,α neighborhood Ug0 of Theorem 1.2, we have g1 isometric to g2, showing that dL
produces a distance on the quotient of Ug0 by diffeomorphisms. �

We also note that Theorem 1.2 states that there is Cg0 > 0 such that for each g1, g2 ∈
Ck,α(M ;S2T ∗M) close to g0 there is a diffeomorphism such that:

dL(g1, g2)1/2 ≥ Cg0‖ψ∗g1 − g2‖H−1/2 .

5.2. Thurston’s distance. We also introduce the Thurston distance on metrics with topo-
logical entropy 1, generalizing the distance introduced by Thurston in [Thu98] for surfaces
on Teichmüller space (all hyperbolic metrics on surface have topological entropy equal to 1).
We denote by E (resp. Ek,α) the space of negatively curved metrics in M (resp. in Mk,α)
with topological entropy htop(g) = 1. (Let us also recall here for the sake of clarity that
htop(λ2g) = htop(g)/λ, for λ > 0.) With the same arguments as in Lemma 3.6, this is a
codimension 1 submanifold ofM and if g0 ∈ Ek,α, one has:

Tg0Ek,α :=

{
h ∈ Ck,α(M ;S2T ∗M) |

∫
Sg0M

π∗2h dµ
BM
g0 = 0

}
. (5.1)

Definition 5.3. We define the Thurston non-symmetric distance map dT : Ek,α×Ek,α → R+

by

dT (g1, g2) := lim sup
j→∞

log
Lg2(cj)

Lg1(cj)
.

Note that the finiteness of the previous quantity also follows from the same argument as
the one justifying the finiteness of Definition 5.1. Its non-negativity will be a consequence of
Lemma 5.5 where it is proved that this can be expressed in terms of the geodesic stretch. We
will prove the
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Proposition 5.4. The map dT descends to the set of isometry classes of metrics in Ek,α (for
k ∈ N large enough, α ∈ (0, 1)) with topological entropy equal to 1 and defines a non-symmetric
distance in a small Ck,α-neighborhood of the diagonal.

Moreover, this distance is non-symmetric in the pair (g1, g2) which is also the case of the
original distance introduced by Thurston [Thu98] but this is just an artificial limitation15: “It
would be easy to replace L16 by its symmetrization 1/2(L(g, h) + L(h, g)), but it seems that,
because of its direct geometric interpretations, L is more useful just as it is.” In order to
justify that this is a distance, we start with the

Lemma 5.5. Let g1, g2 ∈M be negatively curved. Then:

lim sup
j→∞

Lg2(cj)

Lg1(cj)
= sup

m∈Minv,erg

Im(g1, g2) ≥ 0

Note that there is no need to assume g1 and g2 to be close in this Lemma: this follows
from Appendix B, where we discuss the fact that the stretch (and the time-reparametrization)
is well-defined despite the fact that the metrics may not be close. Here m is seen as an
invariant ergodic measure for the flow ϕg1t living on Sg1M . However, writing M = Γ\M̃ with
Γ ' π1(M,x0) for x0 ∈ M , it can also be identified with a geodesic current on ∂∞M̃ ×
∂∞M̃ \ ∆, that is a Γ-invariant Borel measure, also invariant by the flip (ξ, η) 7→ (η, ξ) on
∂∞M̃ × ∂∞M̃ \ ∆. This point of view has the advantage of being independent of g1 (see
[STar]).

Proof. First of all, we claim that17

sup
m∈Minv,erg

Im(g1, g2) = sup
m∈Minv

Im(g1, g2).

Of course, it is clear that supm∈Minv,erg
Im(g1, g2) ≤ supm∈Minv

Im(g1, g2) and thus we are left
to prove the reverse inequality. By compactness, we can consider a measure m0 ∈Minv real-
izing supm∈Minv

Im(g1, g2). By the Choquet representation Theorem (see [Wal82, pp. 153]),
there exists a (unique) probability measure τ on Minv,erg such that m0 admits the ergodic
decomposition m0 =

∫
Minv,erg

m dτ(m). Thus:

Im0(g1, g2) =

∫
Sg1M

ag1,g2 dm0

=

∫
Minv,erg

∫
Sg1M

ag1,g2 dm dτ(m)

≤ sup
m∈Minv,erg

∫
Sg1M

ag1,g2 dm

∫
Minv,erg

dτ(m) = sup
m∈Minv,erg

Im(g1, g2),

which eventually proves the claim.

15Thurston, [Thu98].
16In the notations of Thurston, L(g, h) = lim supj→∞ log

Lg(cj)

Lh(cj)
.

17As pointed out to us by one of the referees, the map Minv 3 m 7→ Im(g1, g2) is continuous and linear on
a compact convex set; it thus achieves its maximum on the extremal points of the convex sets (the ergodic
measures) so the argument could be shortened.
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Let (cj)j∈N be a subsequence such that limj→+∞ Lg2(cj)/Lg1(cj) realizes the lim sup. Then,
by compactness, we can extract a subsequence such that δg1(cj) ⇀m ∈Minv. Thus:

Lg2(cj)/Lg1(cj) = 〈δg1(cj), ag1,g2〉 →j→+∞ 〈m, ag1,g2〉 = Im(g1, g2),

which proves, using our preliminary remark, that

lim sup
j→+∞

Lg2(cj)/Lg1(cj) ≤ sup
m∈Minv,erg

Im(g1, g2).

To prove the reverse inequality, we consider a measure m0 ∈Minv,erg such that Im0(g1, g2) =

supm∈Minv,erg
Im(g1, g2) (which is always possible by compactness). Since m0 is invariant and

ergodic, there exists a sequence of free homotopy classes (cj)j∈N such that δg1(cj) ⇀ m0 (by
[Sig72]). Then, as previously, one has

Im0(g1, g2) = lim
j→+∞

Lg2(cj)/Lg1(cj) ≤ lim sup
j→+∞

Lg2(cj)/Lg1(cj),

which provides the reverse inequality. �

We can now prove Proposition 5.4.

Proof of Proposition 5.4. By (2.17), for g1, g2 ∈ Ek,α, we have that IµBM
g1

(g1, g2) ≥ 1 and thus
by Lemma 5.5, we obtain that dT (g1, g2) ≥ 0 (note that g1 and g2 do not need to be close for
this property to hold). Moreover, triangle inequality is immediate for this distance. Eventually,
if dT (g1, g2) = 0, then 0 ≤ log IµBM

g1
(g1, g2) ≤ dT (g1, g2) = 0, that is IµBM

g1
(g1, g2) = 1 and by

Theorem 2.9, it implies that g1 is isometric to g2 if g2 is close enough to g1 in the Ck,α-topology
(note that this neighborhood depends on g1). �

We now investigate with more details the structure of the distance dT . A consequence of
Lemma 5.5 is the following expression of the Thurston Finsler norm:

Lemma 5.6. Let g0 ∈ Ek,α and (gt)t∈[0,ε) be a smooth family of metrics and let f := ∂tgt|t=0.
Then:

‖f‖T :=
d

dt
dT (g0, gt)

∣∣∣∣
t=0

=
1

2
sup

m∈Minv,erg

∫
Sg0M

π∗2f dm (5.2)

The norm ‖ · ‖T is a Finsler norm on Tg0Ek,α ∩ kerD∗g0

Proof. We introduce
u(t) := edT (g0,gt) = sup

m∈Minv,erg

Im(g0, gt)

and write at := ag0,gt for the time reparametrization (as in (2.14)). Then:

lim
t→0

u(t)− u(0)

t
= lim

t→0
sup

m∈Minv,erg

∫
Sg0M

at − 1

t
dm = sup

m∈Minv,erg

∫
Sg0M

ȧ0 dm

=
1

2
sup

m∈Minv,erg

∫
Sg0M

π∗2f dm = u′(0) =
d

dt
dT (g0, gt)

∣∣∣∣
t=0

,

since ȧ0 = ∂tat|t=0 and π∗2f are cohomologous by Lemma 3.3. This also shows that the
derivative exists. The inversion of the limit and the sup follows from the fact that, writing
Ft(m) :=

∫
Sg0M

(at−1)/t dm, one has supm∈Minv,erg
|Ft(m)−F0(m)| →t→0 0. Note that, up to
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taking a large k ∈ N and iterating the same computation for higher order derivatives, shows
that t 7→ u(t) (thus t 7→ dT (g0, gt)) is at least C2.

We now prove that this is a Finsler norm in a neighborhood of the diagonal. We fix g0 ∈ Ek,α.
By Lemma 2.4, isometry classes near g0 can be represented by solenoidal tensors, namely
there exists a Ck,α-neighborhood U of g0 such that for any g ∈ U , there exists a (unique)
ψ ∈ Dk+1,α

0 such that D∗g0ψ
∗g = 0. Moreover, if g ∈ Ek,α, then ψ∗g ∈ Ek,α. As a consequence,

using (5.1), the statement now boils down to proving that (5.2) is a norm for solenoidal tensors
f ∈ Ck,α(M ;S2T ∗M) such that

∫
Sg0M

π∗2f dµ
BM
g0 = 0. Since triangle inequality, R+-scaling

and non-negativity are immediate, we simply need to show that ‖f‖T = 0 implies f = 0.
Now, for such a tensor f , we have

P(π∗2f) = sup
m∈Minv,erg

hm(ϕg01 ) +

∫
Sg0M

π∗2fdm

≤ sup
m∈Minv,erg

hm(ϕg01 ) + sup
m∈Minv,erg

∫
Sg0M

π∗2fdm = htop(ϕg01 )︸ ︷︷ ︸
=1

+0

and this supremum is achieved for m = µBM
g0 and P(π∗2f) = 1. As a consequence, the equilib-

rium state associated to the potential π∗2f is the Bowen-Margulis measure µBM
g0 (the equilib-

rium state associated to the potential 0) and thus π∗2f is cohomologous to a constant c ∈ R
(see [HF19, Theorem 9.3.16]) which has to be c = 0 since the average of π∗2f with respect
to Bowen-Margulis is equal to 0, that is there exists a Hölder-continuous function u such
that π∗2f = Xu. Since f ∈ kerD∗g0 , the s-injectivity of the X-ray transform Ig02 implies that
f ≡ 0. �

The asymmetric Finsler norm ‖ · ‖T induces a distance dF between isometry classes namely

dF (g1, g2) = inf
γ:[0,1]→E,γ(0)=g1,γ(1)=g2

∫ 1

0
‖γ̇(t)‖T dt.

It is easy to prove that dT (g1, g2) ≤ dF (g1, g2), which shows that dF is indeed a distance in
a neighborhood of the diagonal, just like dT . Indeed, consider a C1-path γ : [0, 1] → E such
that γ(0) = g1, γ(1) = g2. Then, considering N ∈ N, ti := i/N , we have by triangle inequality

dT (g1, g2) ≤
N−1∑
i=0

dT (γ(ti), γ(ti+1)) =

N−1∑
i=0

‖γ̇(ti)‖T (ti+1 − ti) +O(|ti+1 − ti|2)

→N→+∞

∫ 1

0
‖γ̇(t)‖T dt,

which proves the claim (note that we here use the fact that t 7→ dT (g0, gt) is at least C2).
In [Thu98], Thurston proves that, on restriction to Teichmüller space, the asymmetric Finsler
norm induces the distance dT , that is dT = dF . We make the following conjecture:

Conjecture 5.7. The distances dT coincide with dF for isometry classes of negatively curved
metrics with topological entropy equal to 1.

This conjecture would imply the marked length spectrum rigidity conjecture. Indeed, as
mentioned just after Theorem 2.9, two metrics with same marked length spectrum have same
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topological entropy and it is harmless (up to a scaling of the metrics) to assume that this
topological entropy is equal to 1. Then, if the previous conjecture is true, using that their
Thurston distance dT is zero, we obtain that their Finsler distance dF is zero. But this implies
that the metrics are isometric.

Appendix A. Asymptotic marked length spectrum

In this Appendix, we show the following (the proof was communicated to us by one of the
referees):

Lemma A.1. Let g and g0 be two metrics with Anosov geodesic flows on a fixed manifold M
and assume that g is close to g0 in Ck,α norm. Assume that for all sequences (cj)j≥0 in C,
Lg(cj)/Lg0(cj)→j→+∞ 1. Then Lg = Lg0.

Proof. By Sigmund [Sig72, Theorem 1], the set D := {δg0(c) | c ∈ C} is dense in Minv (the set
of invariant measures by the g0-geodesic flow on Sg0M). If µ ∈ Minv \ D, we can therefore
find a sequence such that δg0(cj) ⇀j→+∞ µ and Lg0(cj) → +∞. (Indeed, if Lg0(cj) ≤ C for
some C ≥ 0, then the sequence (δg0(cj))j≥0 only achieves a finite number of measures which
would imply that µ is a Dirac mass on a closed orbit and this is excluded since µ /∈ D.) Then,
the condition Lg/Lg0 → 1 immediately implies that

Iµ(g0, g) =

∫
Sg0M

ag(z)dµ(z) = 1.

Now for c ∈ C and t > 0 small, the linear combination tµ + (1 − t)δg0(c) /∈ D. Indeed, if
not, we would have tµ + (1 − t)δg0(c) = δg0(ct) but by continuity, ct = c0 for t small, which
contradicts µ /∈ D. Therefore:

t

∫
Sg0M

ag(z)dµ(z) + (1− t) 1

Lg0(c)

∫ Lg0 (c)

0
ag(ϕ

g0
s (z))ds = 1,

that is
1

Lg0(c)

∫ Lg0 (c)

0
ag(ϕ

g0
s (z))ds =

Lg(c)

Lg0(c)
= 1. �

Appendix B. Global conjugacy for Riemannian Anosov flows

Let (M, g) be a closed Riemannian manifold whose geodesic flow is Anosov. As has been
shown by Klingenberg [Kli74] the geodesic flow has no conjugate points. Let (M̃, g) be the
universal cover of M where for simplicity the lifted metric is also denoted by g. Let Γ be
the group of deck transformations. As has been remarked in [Kni12] the universal cover M̃
is Gromov hyperbolic (see [BH99, Section III.H.1] for a definition of Gromov-hyperbolicity).
Denote by ∂∞M̃ the Gromov boundary which is equipped with the visibility topology (see e.g
[Kni02] for more details). For ξ ∈ ∂∞M̃ and x0 ∈ M̃ the Busemann function x 7→ bgξ(x0, x) is
defined by

bgξ(x0, x) := lim
z→ξ

dg(x0, z)− dg(x, z). (B.1)
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It has the following properties:

bgξ(x0, x) = bgξ(x0, x1) + bgξ(x1, x) (cocycle property) (B.2)

and

bgγ(ξ)(γ(x0), γ(x)) = bgξ(x0, x) (Γ - equivariance) (B.3)

for all γ ∈ Γ. We introduce the gradient of the Busemann function Bg(x, ξ) := ∇xbgξ(x0, x)

which is independent of x0 by property B.2. Also observe that Bg(x, ξ) ∈ SgM̃ by the very
definition (B.1). Here, SgM̃ is the unit tangent bundle on the universal cover and π : SgM̃ →
M̃ denotes the projection. Given z = (x, v) ∈ SgM̃ , we introduce cg(z, t) := π(ϕgt (x, v)),
where (ϕgt )t∈R is the (lift of) the geodesic flow on M̃ . We set zg± = cg(z,±∞) ∈ ∂∞M̃ .

For ξ = zg+ the submanifolds W ss(z) = {(x,−Bg(x, ξ)) ∈ SgM̃ | bgξ(x0, x) = bgξ(x0, πz)}
andW uu(z) = {(x,Bg(x, ξ)) ∈ SgM̃ | bgξ(x0, x) = bgξ(x0, πz)} are the lifts of the leafs of strong
stable and unstable foliations through z ∈ SgM̃ . Since the leafs are smooth and the foliations
are Hölder continuous, the Busemann functions (x, ξ) 7→ bgξ(x0, x) are smooth with respect to
x and Hölder continuous with respect to ξ. The following Lemma was proved in [STar] (see
also [Gro00]) in negative curvature.

Lemma B.1. LetM = M̃/Γ be a closed manifold, g1, g2 two Riemannian metrics with Anosov
geodesic flow. Consider the map ψg1,g2 : Sg1M̃ → Sg2M̃ defined by ψg1,g2(z) = w where
w ∈ Sg2M̃ is the unique vector with wg2+ = zg1+ and wg2− = zg1− and bg2

z
g1
+

(π(z), π(w)) = 0. Then
ψg1,g2 is a Hölder continuous homeomorphism with

ϕ̃g2τ(z,t)ψg1,g2(z) = ψg1,g2(ϕ̃g1t (z))

where

τ(z, t) = bg2
z
g1
+

(π(z), π(ϕ̃g1t (z))) =

∫ t

0
g2(Bg2(π(ϕ̃g1s (z)), zg1+ ), ϕ̃g1s (z))ds

for all z ∈ Sg1M̃ . Furthermore, for all γ ∈ Γ we have

γ∗ψg1,g2(z) = ψg1,g2(γ∗z)

and τ(γ∗z, t) = τ(z, t) and therefore ψg1,g2 descends to a conjugacy between the geodesic flows
on the quotients.

Proof. We show first that for each (z, t) ∈ Sg1M̃ × R we have

ϕ̃g2τ(z,t)ψg1,g2(z) = ψg1,g2(ϕ̃g1t (z))
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where τ(z, t) = bg2
z
g1
+

(π(z), π(ϕ̃g1t (z)). From the cocycle property B.2 of the Busemann function
we obtain

bg2
z
g1
+

(π(ϕ̃g1t (z)), π(ϕ̃g2τ(z,t)ψg1,g2(z)))

= bg2
z
g1
+

(π(ϕ̃g1t (z)), π(ψg1,g2(z))) + bg2
z
g1
+

(π(ψg1,g2(z)), π(ϕ̃g2τ(z,t)ψg1,g2(z)))

= bg2
z
g1
+

(π(ϕ̃g1t (z)), π(ψg1,g2(z))) + τ(z, t)

= bg2
z
g1
+

(π(ϕ̃g1t (z)), π(z)) + bg2
z
g1
+

(π(z), π(ψg1,g2(z))) + τ(z, t)

= −bg2
z
g1
+

(π(z), π(ϕ̃g1t (z)) + τ(z, t) = 0.

By the definition of ψg1,g2 this yields ϕ̃g2τ(z,t)ψg1,g2(z) = ψg1,g2(ϕ̃g1t (z)). The regularity of the
Busemann function shows that the conjugacy is Hölder continuous. The remaining assertions
follow from the Γ-equivariance B.3 of the Busemann function. �

Appendix C. Anosov Stability

The proof of the Anosov stability theorem is written down using the implicit function
theorem in [dlLMM86] in the C0 category, the extension to the Hölder setting (with the same
method) is written down in [KKPW89]. We need the continuity with respect to the two
metrics here, the proof of [dlLMM86, KKPW89] indeed shows this, as we explain below. Let
ν ∈ (0, 1), then if X is a Ck vector field for k ≥ 4 with flow ϕXt , we will denote CνX(M,M)

the space of Cν maps ψ on a closed manifold M so that dψ.X := ∂t(ψ ◦ ϕXt )|t=0 exists and
belongs to Cν(M;TM). This is a Banach manifold [KKPW89, Proposition 2.2.].

Proposition C.1. Let g0 be a smooth metric, and assume that Xg0 its geodesic vector field
on M := Sg0M is Anosov. We view all geodesic vector field Xg associated to g near g0 as
vector fields on M (by pulling back from SgM to Sg0M). For k ≥ 4, there is ν > 0 and two
open neighborhoods U0 ⊂ U of Xg0 in Ck+1(M;TM) such that for each Y ∈ U , and each
g ∈ Ck+2(M ;S2T ∗M) so that Xg ∈ U0, there is a homeomorphism ψg,Y ∈ CνXg(M,M) and
ag,Y ∈ Cν(M,R+) such that

∀x ∈M, dψg,Y (x)Xg(x) = ag,Y (x)Y (ψg,Y (x))

where Xg is the geodesic vector field of g. Moreover Y ∈ U 7→ ag,Y ∈ Cν(M,R+) and
Y 7→ ψg,Y ∈ CνXg(M,M) are Ck, and each derivative of order ` ≤ k with respect to Y is
continuous with respect to (g, Y ) with values in Cν .

Proof. The proof is essentially contained in [KKPW89, Proposition 2.2.], except for the state-
ment about the continuity with respect to Xg. Consider for ν ∈ (0, 1) the map

FXg : Ck+1(M;TM)× CνXg(M,M)× Cν(M)→ Ck+1(M;TM)× Cν(M, TM) =: E

defined by

FXg(Y, u, γ) := (Y, γdu.Xg − Y ◦ u).
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This is a Ck map between Banach manifolds. The differential of FXg at (Xg, Id, 1) is given
(as in [KKPW89]) by

dF
Xg
(Xg ,Id,1)(Y, V, γ) = (Y,−Y + LXgV + γXg). (C.1)

where V ∈ CνXg(M;TM) := {V ∈ Cν(M;TM) | LXgV ∈ Cν}. Let αg be the contact form of
g, so that kerαg = Eu(g)⊕Es(g) is the smooth bundle of stable or unstable vectors for g. By
[KKPW89, Proposition 2.2. and Lemma 2.3], the operator LXg : V 7→ LXgV is invertible from
CνXg(M; kerαg) → Cν(M; kerαg) for some ν depending on the maximal/minimal expansion

rates of the flow ϕ
Xg
t . The inverse is given by:

L−1
Xg

: V = Vu + Vs 7→ L−1
Xg
V = −

∫ +∞

0
dϕ

Xg
−t Vu ◦ ϕ

Xg
t dt+

∫ +∞

0
dϕ

Xg
t Vs ◦ ϕ

Xg
−t dt,

where the integrals converge due to the contraction of the differential: for all t ≥ 0

C−1e−λ+t ≤ ‖dϕXgt |Es(g)‖ ≤ Ce
−λ−t, C−1e−λ+t ≤ ‖dϕXg−t |Eu(g)‖ ≤ Ce−λ−t. (C.2)

This operator maps continuously Cν(M; kerαg) to CνXg(M; kerαg) if ν > 0 is small enough

depending on λ+ and ‖ϕXgT ‖C2 for T > 0 large (see below). Moreover, by continuity of the
bundles Es(g), Eu(g) with respect to g ([HP68, Theorem 3.2]), for g close enough to g0 in
Ck+5, Eu(g) and Es(g) are contained in a small conic neighborhood of Eu(g0) and Es(g0)

respectively, and the contraction exponents λ±(g) are also close to λ±(g0) (see for ex [Gue20,
Lemma 3]), so this will give the boundedness of L−1

Xg
in Cν for some fixed ν > 0 for g close

enough to g0 in Ck+5. From the expression of L−1
Xg

, and the fact that (C.2) holds uniformly for g
close to g0 for some 0 < λ− < λ+ (and similarly on Eu(g)), we claim that, if πg : TM→ kerαg
is the projection given by πg(V ) = V − αg(V )Xg, then

L−1
Xg
πg : Cν(M;TM)→ Cν(M;TM)

is continuous with respect to g (in Ck+5) for ν > 0 small enough. To prove this, we rewrite
L−1
Xg
πg as

L−1
X πg =

∫ ∞
0

e−tLXgπsgdt−
∫ ∞

0
etLXgπug dt (C.3)

where πug : Cν(M;TM) → Cν(M;TM) is the projection on Eu parallel to Es and πsg :

Cν(M;TM)→ Cν(M;TM) is the projection on Es parallel to Eu, and etLXgY := dϕ
Xg
−t Y ◦

ϕ
Xg
t is the propagator. Here ν is chosen small so that Eu and Es are Cν bundles (see [HP68]),

and by [Con92] the maps g 7→ πug and g 7→ πsg are continuous (actually Cr for some r depending
on the smoothness of g). Next, there is C > 0 and Λ > 0 such that for all t, ‖ϕXgt ‖C2 ≤ CeΛ|t|

for all g near g0 in Ck+5, which implies for all V ∈ C1(M;TM),

∀t, ‖etLXgV ‖C1 ≤ Ce2Λ|t|‖V ‖C1 , ‖etLXgV ‖C0 ≤ CeΛ|t|‖V ‖C0

thus if ν0 ∈ (0, 1) is such that Eu ∈ Cν0 , we have by interpolation that ‖etLXg ‖L(Cν) ≤
Ce(1+ν0)Λ|t| for each ν ≤ ν0. Since ‖etLXgπug ‖L(C0) + ‖e−tLXgπsg‖L(C0) ≤ Ce−λ−t for all t ≥ 0,
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we obtain by interpolating Cν between the spaces C0 and Cν0 with ν = θ × 0 + (1− θ)× ν0

(for θ ∈ (0, 1)) that for all t ≥ 0

‖etLXgπug ‖L(Cν) + ‖e−tLXgπsg‖L(Cν) ≤ Ce(−θλ−+(1−θ)(1+ν0)Λ)t

We can now fix ν small enough (i.e. θ close enough to 1) to guarantee

−θλ− + (1− θ)(1 + ν0)Λ < 0,

which implies that (C.3) is uniformly converging with respect to g near g0 in Ck+5. Since
g 7→ etLXgπug and g 7→ e−tLXgπsg are continuous for each t ≥ 0, we can apply the Lebesgue
Theorem to deduce the continuity of g 7→ L−1

Xg
πg ∈ L(Cν) for ν > 0 small enough.

Next, we consider the map F̃Xg : E → E defined by

F̃Xg(Y, V ) := FXg(Y, expg0(L−1
Xg
πg(Y + V )), αg(Y + V ))

= (Y, αg(Y + V )d(expg0(L−1
Xg
πg(Y + V ))).Xg − Y ◦ expg0(L−1

Xg
πg(Y + V )))

where we recall that E = Ck+1(M;TM)×Cν(M, TM) and expg0 is the exponential map of
g0. This map satisfies F̃Xg(Xg, 0) = (Xg, 0). We want to apply the inverse function theorem
to find a pre-image to each (Y, 0) close to (Xg, 0). As in [KKPW89, Proposition 2.2] (see
also [dlLMM86, Appendix A]), the map F̃Xg is Ck, and moreover it depends continuously on
g ∈ Ck+5(M ;S2T ∗M), with all its derivatives of order ` ≤ k being also continuous with respect
to g, due to the continuity of g 7→ L−1

Xg
πg as a map Ck+5(M ;S2T ∗M) → L(Cν(M;TM)).

Now, we have
dF̃Xg(Xg, 0) = Id,

by using (C.1) and πg(Xg) = 0. In particular there is ε > 0 such that if ‖g − g0‖Ck+5 < ε,
‖Y −Xg‖Ck+1 < ε and ‖V ‖Cν < ε, then

‖dF̃Xg(Y,V ) − Id‖L(Cν(M;TM)) < 1/4.

For each Y close to Xg, we can then use the fixed point theorem (like in the proof of the inverse
function theorem) to the map (Z, V ) ∈ E 7→ (Z + Y, V ) − F̃Xg(Z, V ) and obtain that there
is a unique (Y, V (Y )) such that (Y, 0) = F̃Xg(Y, V (Y )), and V (Y ) ∈ Cν(M;TM) depends
in a Ck fashion on Y and is continuous with respect to g. Moreover, the usual argument in
the inverse function theorem used to prove the Ck property of Y 7→ V (Y ) also shows that the
derivatives of order ` ≤ k are continuous with respect to (Xg, Y ), by using the continuity of
F̃Xg and its derivatives with respect to g. This shows that for each Y close to Xg in Ck+1

norm and g close to g0 in Ck+5 norm, there is a

u = expg0(L−1
Xg
πg(Y + V )) ∈ CνXg(M,M), γ = αg(Y + V ) ∈ Cν(M)

so that γdu.Xg = Y ◦ u, with

Ck+1(M;TM) 3 Y 7→ (u, γ) ∈ Cν(M×M)× Cν(M),

being Ck and all the derivatives of order ` ≤ k are continuous in (g, Y ) (with values in
Cν(M,M)× Cν(M)). �
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