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Abstract— Charges injection at metal/dielectric interface and 

their motion in silicon nitride layer is investigated using samples 

with embedded lateral electrodes and surface potential 

measurement by Kelvin Probe Force Microscopy (KPFM). 

Bipolar charge injection was evidenced using this method. From 

surface potential profile, charge density distribution is extracted 

by using Poisson's equation. The evolution of the charge density 

profile with polarization bias and depolarization time was also 

investigated. 
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I.  INTRODUCTION 

Charges accumulation in dielectrics has been extensively 
studied during the last decades. The approach is based on 
charge probing methods providing information on charge 
localization at micrometer scale -space charge measurement 
[1]- or more integral scale (thermo-stimulated current [2] or 
surface potential measurements for example). The information 
gained cannot be directly connected to microstructure of the 
material because of the rather coarse resolution of the methods. 
Therefore the information is treated as representative of bulk 
homogeneous material physics. The approach is no longer 
sustainable in the modern times owing to the development of 
nanoscale components (microelectronic and microsystems) or 
the availability of new materials (nanocomposite for example). 
Indeed, review about dielectric breakdown in MOS structure 
highlights that injected and trapped charges exert a strong 
impact on components reliability [3]. Whereas main physical 
phenomena occur at nanometer-scale, relevant parameters, as 
energy barrier to injection or interface/bulk defect energetic 
features are extracted from macroscale measurements [4]. As a 
consequence of the limited information, simplified schemes are 
produced, leading to a failure of theoretical predictions to 
explain different measurements. For example, the origin of 
anode hole injection and heterogeneous breakdown in metal-
SiO2-metal structure is still a controversy subject [5]. 

Whatever the considered application field, it is actually 
necessary to implement diagnostic means which provide 
information at relevant scale, that is to say at the scale level 
where the physical processes occur. Along this scheme, for 
investing electronic carriers generation, or transport in 
nanocomposite structures, it is required to probe and control 
processes acting at interfaces (outer as metal-dielectric 
interface, or internal as in nanocomposites).  

To reach this goal, incremental improvement of currently 
available perturbation-based charge probing methods appears 
problematic. Besides, electrical modes derived from Atomic 
Force Microscopy (AFM) were extensively used during the 
past decades. According to bibliographical review three main 
experimental techniques can be used to investigate charges in 
dielectrics, either dynamically or statically:  

(i) Current measurement using Conductive-AFM permits to 
investigate locally conduction process from leakage current 
to breakdown [6]. But issues like surface collection 
indetermination limit the extraction of physical parameters as 
energy barrier to injection and the measurement requires 
hypotheses on the bulk transport [7].  

(ii) Electrostatic Force Microscopy (EFM) [8] measurements 
provide estimates of surface charge density in very thin 
dielectric materials (for sample thickness less than 5nm) and 
is expected to be sensitive to single charge detection [9]. But 
its sensitivity to image charges and to applied bias now limits 
its use.  

(iii) Kelvin Probe Force Microscopy (KPFM) [10], through 
its ability to probe directly the potential induced by 
electrostatic charges stored in dielectric materials, is 
preferred to EFM to probe charges. Whereas KPFM reaches 
atomic resolution and single charge probing under vacuum 
and in Non-Contact mode on isolated molecules adsorbed on 
well-adapted surface [11], the spatial resolution is much more 
coarse (25-to-100nm) in the conditions of nanoscale 
characterization of trapped charges (air environment, tapping 
mode KPFM, unknown charge distribution in volume, etc.).  

A convenient way to investigate charge storage using AFM 
consists in generating charges in the dielectric using a biased 
AFM tip as depicted in Fig. 1.a. The potential profile (as in 
KPFM) and its time dependence should provide information on 
the charge quantity, localization and motion. However, due to 
experimental artefact (apparent height, convolution of potential 
distribution due to the long range of electrostatic forces, etc.) 
quantitative charge density estimation is not straightforward. In 
the configuration of Fig. 1.a, the main issue concerns the 
vertical distribution of charges which should be known to 
manage to determine volume charges density [12]. However, 
the KPFM does not provide information on that. There are 
some available models for KPFM, but they are based on strong 
hypotheses about the charge localization profile in volume of 
the studied dielectric [12-13]. One way for overcoming this 



drawback is to use lateral electrodes to inject charges (Fig. 1.b). 
Supposing that the charges are injected uniformly in volume 
along each electrode, charges injection study which is a 3D 
problem in Fig. 1.a. becomes a 2D problem in Fig. 1.b. The use 
of lateral electrodes is an interesting way to investigate charges 
injection phenomena. This configuration was already used to 
study charges transport in organic semiconductor using EFM 
[14-15] or KPFM [16]. Interesting results were obtained, 
mainly combining with current measurement [15, 17], but a 
strong dependence on the film morphology is observed [14], 
which makes interpretation tricky. 

The aim of this contribution is to investigate the feasibility 
of measuring surface potential modification due to charges 
injected by lateral electrodes in case of inorganic insulating 
materials. In the first part of the contribution, the experimental 
set-up will be described. In the following surface potential 
modification during polarization and depolarization step will 
be investigated by KPFM. Finally, a first attempt to extract 
charge density profiles from surface potential measurements is 
proposed. 

 

Fig. 1. Hypothesized charge injection patterns using (a) biased conductive 
AFM-tip and (b) biased lateral electrodes. 

II. EXPERIMENTS 

In this study, a SiNx dielectric layer processed in High 
Frequency Plasma Enhanced Chemical Vapor Deposition 
process [18] was used as thin dielectric layer deposited on Si 
substrate. Using lift-off process, 70nm-thick aluminum 
electrodes were embedded in the 270nm-thick SiNx. This 
geometry ensures an intimate metal/dielectric contact (verified 
using Scanning Electron Microscopy on cross-section) and 
small surface roughness (less than 5nm height difference 
between the SiNx and the Al-electrodes). Finally, a 5nm 
passivation cover-layer of SiNx was deposited over the 
electrode. The upper dielectric surface ensures isolation of the 
AFM tip from the electrodes when biasing the electrodes. In 
addition, the resulting surface is flat enough to reduce 
topography artefacts on the surface potential profile. Fig. 2 
represents the final structure observed by optical microscopy. 
Structures with different inter electrodes distances were 
designed (from 5µm to 40µm).  

The AM-KPFM (Amplitude Modulation KPFM) surface 
potential measurements were realized on a Bruker Multimode 8 
set-up using Pt-coated silicon tip (SCM-PIT provided by 
Bruker) in lift mode (10nm lift distance). All measurements 
were performed under dry nitrogen atmosphere after sample 
annealing for 4min on 120°C hot plate to remove the naturally 
adsorbed on the surface water layer. Charges were injected 

applying symmetric bias (V=10V to 20V) on the lateral 

electrodes (Fig. 2). The electric field was applied during fixed 
time (1 to 3h). The measurements were realized about 60s after 
removing the bias voltage. The electrodes were normally short-
circuit. 

 

Fig. 2. Optical microscopy picture (top view) Al-lateral electrodes 
embedded in SiNx. Inter-electrode distance of 20µm-width. 

III. RESULTS AND INTERPRETATION 

A. Polarization step 

Fig.3.a. represents a topography image realized over the 
electrodes and the dielectric layer. The distance between 
electrodes is 10µm and the maximum height difference 
between electrode and SiNx is 4.8 nm. Before polarization, the 
surface potential profile between the electrodes is flat. After the 

polarization (1h at V =20V the potential profile is no longer 
homogeneous as depicted in (Fig. 3.b.). The all potential 
variation is found over the dielectric between the electrodes. 
These potential variations are not related to topographical 
perturbation since the metal/dielectric interface is smooth. 
Negative charges are injected close to cathode and positive 
charges close to anode. The potential profile appears fairly 
homogeneous when moving in a direction parallel to the 
electrode.  

 

Fig. 3. (a) Topography and (b) surface potential cartography after 1h 
polarization at 20V applied on lateral electrodes separated by 10µm. Cathode 
to the left (-10V applied) and anode to the right (+10V applied on right 
electrode). 

Fig. 4 represents potential profiles induced by injected 
charges for different applied potentials. The interfaces between 
layers have been defined following AFM topographic images. 
Note that the offset appearing in some cases over the electrodes 
could be due either to charge build-up in the dielectric 
passivation layer, or to uncontrolled electrodes short-circuiting. 
Results highlight that when the applied bias (i.e. electric field) 
increases, the maximum potential increases whereas the 
position of the peak moves slightly towards the bulk of the 
material. The peak full width at half-maximum (FWHM) is 
about 2µm in all cases. Positive and negative peaks have 



roughly the same magnitude (though apparently a bit larger for 
positive charges), meaning that electrons and holes appear 
injected with the same efficiency.   
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Fig. 4. Surface potential profile VS(x) between electrodes separated by 10µm 
measured after 180min of polarization at different applied voltages. 

B. Extraction of charge density 

The simplest hypothesis for determining charge quantity 
consists in supposing that the measured potential corresponds 
actually to the inter-electrode potential distribution. This 
appears as reasonable hypothesis given the fact that the lift 
distance and the tip apex are small in respect to the inter-
electrode distance. More sophisticated EFM modelling has 
confirmed the validity of the approximation. From the surface 
potential VS(x), charges density ρ(x) has been extracted by 
using the Poisson's equation: 

,                                             (1) 

with ε0 is the vacuum permittivity, εr is the SiNx relative 
permittivity (εr=5.7) and x the lateral position. 

Applying this treatment (equation 1) to surface potential 
profiles depicted on Fig. 4, charge density profiles were 
extracted as represented in Fig. 5. It is confirmed that negative 
space charge is formed adjacent to the cathode and positive 
charges to the anode. Moreover, image charges are formed on 
the electrodes. To provide estimates of profile to profile 
variation of derived charge density, the potential profile over 
large area as in Fig. 3 exhibits a 8% variation of maximum 
potential. This leads to a 10% variation on charges density. 
Even if the noise level (not due to profile-to-profile dispersion) 
is important and would require signal treatment improvement, 
some information could be extracted from the results. First, the 
charge density profiles have roughly the same shape; the 
charged region extends up to about 2µm from the 
electrode/dielectric interface for both electrons and holes. 
Moreover the maximum density increases with polarization 
bias; for example, for holes the maximum density is equal to 
25 C/m

3
 and 48 C/m

3
 for polarization at 10 V and 20 V, 

respectively. At this point and with the associated noise, no 
difference between positive and negative charge build up can 
be put forward.  
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Fig. 5. Charge density profiles extracted from Fig. 4 for different polarization 
conditions (inter-electrode distance of 10µm) Charges release during 

depolarization steps 

 

Fig.6 represents the evolution of surface potential profile with 

time after polarization under 20 V. With the time increasing, 

the surface potential maximum decreases; its position moves 

away from the interface and the potential profile broadens. 

Potential profiles of Fig.6 were treated using equation 1, and 

the extracted parameters relevant to the charge density profiles 

are given in Table 1. With time after charging, the charge 

density decreases and the peak moves away from the 

electrode/dielectric interface. In the same time charge density 

distribution broadens (the FWHM changes from 1.5µm to 

2µm for initial and after 247min, respectively. For these 

results, the positive charges density appears larger than the 

negative ones, a feature somewhat clearer than in the previous 

results presented in Fig. 5. 
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Fig. 6. Evolution of surface potential profile with time after 3h at 20V 

(inter-electrode distance of 15µm). 

  initial 30min 62min 247min 

Maximum 

(C/m3) 

Holes 16 14 13 9 

Electrons 12 6 4 4 

Position 

(µm) 

Holes 1 1.5 1.5 1.5 

Electrons 1.5 2 2 2 
Table 1. Evolution of charge density maximum and position related to 

electrode/dielectric interface with time after polarization for 3h under 20V. 



C. Discussion 

The above presented results show the feasibility of measuring 

charge build-up in thin dielectric layers using embedded 

electrodes. Charge injection from Al electrodes into SiNx is 

clearly revealed. In the current measurement conditions, the 

apparent penetration depth of the charges ranges from 1 to 2 

µm, with polarization time of several hours, but with moderate 

fields (1-2 kV/mm). Charge densities of the order of 20C/m³ 

were measured producing residual space charge induced-field 

of the order of 0.5kV/mm, i.e. a substantial fraction from the 

previously applied field. The width of the potential profiles 

reported herein is consistent with the one obtained (1-2µm) 

using more conventional KPFM measurements following 

charging of similar materials SiNx with an AFM tip [18]. 

Hence, at this stage, though the real spatial resolution of the 

method is difficult to estimate, it can be anticipated that the 

potential shape is controlled by intrinsic material behavior 

rather than by instrument limitations. In another respect, it 

would be tempting to probe charges generated with applying 

higher fields, which could be reached by increasing bias 

voltage and/or decreasing inter-electrode distance. Three 

limitations can be anticipated along that goal, related to 

instrument security (voltage), resolution of the method/actual 

charge position (thickness) and flashover phenomenon 

appearance between the electrodes (both). The use of model 

materials with more resistance to charging could be a way to 

address the instrumental resolution limits.   

IV. CONCLUSION 

In this paper the feasibility of using surface potential 

measurement by KPFM on lateral embedded electrodes to 

study charges injection was demonstrated. For different 

polarization conditions, charge density profiles were extracted 

by using Poisson's equation. Injected charges are located close 

to electrode/dielectric interface. The next step is now to 

determine a signal treatment in order to reduce noise on 

charges density profile and to determine the limit of the 

numerical method to extract charge profiles mainly for thin 

dielectric films. 
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