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Abstract 

In previous works [1], reduced models have been used for solving inverse problems, characterized by 
a complex geometry requiring a large number of nodes and / or an objective of online identification. 
The treated application was a brake disc in two-dimensional representation, in rotation at variable 
speed. The dissipated heat flux at the pad-disk interface had been identified by Beck's method. We 
present here a similar application using the adjoint method. The modal reduction is done by using 
special bases (called branch bases) that offer the advantage of dealing with nonlinear problems and / or 
unsteady parameters. Adjoint method provides particularly accurate results in this configuration. 

Keywords : Reduced model, Modal method, Inverse problem, Advection-diffusion equation, 
Adjoint method 

Nomenclature  
c Heat capacity [J.m-3.K-1] 
e Disk thickness [m] 
k Thermal conductivity [W.m-1.K1] 
h Heat exchange coefficient [W.m-2.K-1] 
U Disk velocity [m.s-1] 
T Temperature [°C] 
zi Eigenvalue [s-1] 
x Modal temporal amplitude 
V Eigenvector [K] 
Nt Number of measurement steps 
 

Greek symbols 
φ  Heat flux [W] 
ω  Rotation velocity [rad.s-1] 
ζ  Steklov number [kg.s-2.K-1] 
 
subscript 
u dimensionless quantity 
m Maximum Value 
~ Reduced quantity 
^ Estimate  

Introduction 

In the domain of heat conduction, inverse problems are generally ill-posed in the sense of 
Hadamard and then require complex procedures to obtain satisfactory results. Two techniques 
are used, the future time step method (Beck) [2] which has the particularity of being a 
sequential method, and the adjoint method [3] which is an iterative method based on 
successive computation of descent directions to minimize a criterion taking into account all 
the data. 
In these inverse problems, mathematical complexity of the technique limits the size of the 
characteristic matrices of the thermal problem and the different studied geometries are often 
reduced to a simple, two-dimensional appearance. This problem is even more blatant when it 
comes to conduct an online identification, which involves fast calculations [4]. Under these 
conditions, the use of modal models [5], which allows a significant decrease in the number of 
unknowns while maintaining a satisfactory accuracy over the entire domain, allows the 
extension of the inverse techniques to geometries characterized by mesh of large size. Already 
developed to a diffusion-transport problem, this identification technique using low order 



models involved the identification by Beck's method of the heat flux dissipated by friction 
during braking phases of a brake disk [1]. A similar configuration is studied in order to extend 
the use of reduced models to the adjoint method. A comparison between the two techniques is 
then presented. 

Position of the problem 

A brake disk (Fig. 1) rotating at variable speed is considered. It receives during the braking 
phase a time dependant heat flux on the friction zone with the brake pads (domain Ω1). In the 
studied case, the surrounding temperature is set to Text = 0°C and the uniform initial 
temperature field is T0 = 0°C. The different time dependant parameters, the radial velocity 
ω(t), the heat exchange coefficient h(t) and flux dissipated by friction φ(t) are expressed in 
terms of their maximum values and are therefore dimensionless: 
 

     ( ) ( )= u mt tω ω ω ,     (1) 

     ( ) ( )= u mh t h t h ,     (2) 
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The heat flux dissipated by friction ϕm is not uniform on Ω1 but varies linearly with velocity, 
so with the radius. The temporal evolution of ωu(t), hu(t), and φu(t) are shown in Figure 2, and 
their maximum values are ωm = 2π rad/s, hm = 110W.m-2.K-1, and φm = 600 W. 

  
Figure 1 : Computational domain. Figure 2 :Temporal evolution of thermal loads 

Numerical solution : the detailed model 

Given the characteristic dimensions of the disk (k = 50W.m-1.K-1, c = 3.66.106J.m-3.K-1, e = 8 
mm), the Biot number corresponding to the worst case (hm = 110W.m-2.K-1) has a value Bi = 
0.018 << 1. It is then possible to neglect the thermal gradient in the thickness e of the disc. By 
setting (η, ζ)  local coordinates Ω in the plane perpendicular to this thickness, temperature is 
expressed as T(x, y, z) = T (η, ζ). This produces a thermal problem of shell type whose 
variational formulation is : 
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with ( )1g H Ω∈  a test function, and 1 2Ω Ω Ω= ∪ . 



The discretization of this problem by linear finite element reveals a matrix system of 
dimension N (number of nodes) which is written in the order of previous terms: 

 ( ) ( ) ( ) = + + + CT K U H T Πu u ut h t tω φ  (5) 
After a sensitivity analysis, the mesh consists of 9,860 nodes forming 19,362 triangle 
elements. For a direct problem, the temporal heat flux evolution is known and the evolution of 
the discrete temperature field T is done by solving Eq. (5). Figure 3 represents the evolution 
of temperature at point A, placed 10mm downstream from the friction area (see Fig. 1). The 
analysis of the temperature field shows that the local friction on the Ω1 area leads to the 
appearance of a sharp temperature front conveyed at the rotational speed. A fixed sensor 
detects a very rapid temperature variation, which as will be seen later makes the inverse 
problem difficult to solve. 

 
Figure 3 :Temperature evolution at point A 

Modal reduction 

The branch problem 

The modal decomposition supposes the existence of a base such that the following 
decomposition is unique: 
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where Vi(M) are eigenvectors (or modes), and xi(t) are the unknown coefficients named 
hereafter modal amplitudes. The modes can be seen as elementary thermal fields. 
 
The branch problem associates to the previous physical problem an eigenvalue problem 
defined by equations (7) and (8): 

∀ ∈Ω ∪ Ω ∇ =2
1 2 i i iM , k V z cV      (7) 

∀ ∈ ∪ ∇ ⋅ = −1 2 i i iM , k V n z VΓ Γ ζ
           (8) 

 
where zi is the eigenvalue associated with the eigenvector Vi.  
 
The boundary condition (Eq. (8)) is a non physical condition that involves the eigenvalue of 
the mode. The number of Steklov ζ ensures dimensional homogeneity of the boundary 
condition and prevents degeneration of the modal problem, i.e. to balance Eqs. (7) and (8). 



This special boundary condition reveals two types of modes. The first type is constituted of 
modes quasi null on the boundary but not on the domain (domain modes), and the second one 
formed of modes quasi null on the domain but not on the boundary (boundary modes). This 
second type of modes allows to link the temperature fields on the interface. Examples of such 
modes are given in Fig. 4. The existence of boundary modes allows one to rebuild 
temperature and thermal flux density for all convective coefficient. This basis is then adapted 
to nonstationary and nonlinear thermal problems. 

 
Figures 4 : Examples of branch modes : boundary modes ((a) and (b)) and domain 

modes ((c) and (d)) 

Reduction method 

The modal formulation only shifts the problem : instead of being temperature values at the 
nodes of a mesh, the unknowns are the amplitudes of the modes xi(t). The number of modes 
needed to approach correctly the solution needs to be reduced. This is done by the amalgam 
method [5] [6]. In this method, the most influential eigenmodes are kept (they are called 
major eigenmodes), and the remaining eigenmodes (called minor) are added to them, 
weighted by a factor αi,p. This results in new amalgamated eigenmodes iV , which are a linear 
combination of eigenvectors of the original branch basis. 
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The determination of factors 𝛼𝛼𝑖𝑖 ,𝑝𝑝  is performed by minimizing the deviation of energy between 
a reference model and the reduced model. Note that in our case the reference problem used is 
constructed independently of the temporal evolution φu(t) to be identified. With these 
amalgamated modes, the modal decomposition of temperature is given by : 
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The amplitude equation is obtained by replacing the temperature by its modal decomposition 
(Eq. (10)) in the physical problem (Eq. (4)), while the test functions are the modes. It replaces 

(a) (d)

(c) (d)



the problem on temperatures at the nodes of the mesh size by a problem on the temporal 
amplitudes of the modes. In discrete form, Eq. (4) becomes: 
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where = tL V CV  , = t

KM V KV  , t
UM = V UV  , = t

HM V HV  et = tN V Π , V  being the 
matrix containing the N  amalgamated eigenvectors, and vector X  contains the N temporal 
amplitude ( )x t . 

 
Figure 5 :Temperature evolution at point A obtained with different models for the first 3 

seconds of the simulation 

A reduced base with 50 modes is used. In the case of the direct problem (Eq. (11)), the modal 
model recovers the evolution of the thermal field with an average error compared to the 
detailed model of 0.046°C and a maximum error of 6.18°C, the temperature range being of 
139°C, showing the good agreement between reduced and detailed models. At point A, the 
error averaged over time is 0.105°C. Figure 5 shows the temperature difference between these 
two models at the measurement point for the first seconds of the simulation. 

Inverse problem 

The temporal evolution of the heat flux received by friction by the rotating disc is identified 
from an observable vector Y, consisting here of a single measurement point located at A. 
Given the size of the discrete problem, modal formulation is used to reduce the size of the 
inverse problem. The relationship between the output vector Y and the modal amplitude X 
has to be added to the direct problem defined by equation (11) : 
 

 = =Y ET E VX   (12) 
Two inversion techniques are used, Beck and adjoint method. 
 
 
 
 
 



Beck's method 

Beck's method consists in determining the amplitude of flux at each time step so that the 
temperature difference between the measurement and the simulation is the smallest possible. 
An implicit time discretization (at a fixed time-step ∆t = 0.02 s) of Eq. (11) yields the 
amplitude of each mode: 

 ( ) 1k 1 k k 1
ut t t∆ ∆ φ

−+ +  = − +    
X L M LX Π   (13) 

A least squares minimization between measurement and temperature computed from the 
estimate at the previous time-step brings the estimation of the searched solicitation : 
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with Θ  and Z  defined by : 
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This technique is first used in an ideal case, wherein the temperature variation at point A used 
for identification comes directly from the simulation performed by the reduced model. There 
is then no error in this situation between the measurement and the direct model. The accuracy 
of the identification carried out is characterized by global error on the flux (

uφσ ) and the 

temperature ( Tσ ), which are defined by equations (17) and (18) 
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These simulations were performed for a time-step equal to 0.02s. The choice of this reduced 
time-step is explained by the influence of the transport term that creates sudden temperature 
changes that need to be taken into account for identification. The choice of the time-step then 
does not depend on the simple diffusion time between the source and the sensor, but also on 
the time of transport and the ability of the model to detect sudden changes in temperature. In 
an ideal case, results are satisfying as

uφσ =0.039 and Tσ =0.962°C. 
 
In a real case, the temperature of a probe is simulated by the full thermal model (Eq. (5)), to 
which is added a Gaussian white noise characterized by a quadratic error σb= 0.3 °C. In this 
case the identification results are directly unusable: the error on the identified flux is 

uφσ
=1.59. Indeed, as shown in Fig. 5, the bias to both the use of reduced model in the inverse 
procedure and measurement error strongly modifies the rapid changes in temperature. The 
various regularization attempts (increasing the number of measurement points, using a 
growing number of future time-steps) do not improve significantly the results. This problem 
had already been shown in previous work [1], and the recommended solution was the use of a 
low-frequency filter on the identified flux by Fourier transform, assuming that any variation 



frequency greater than the frequency rotation could only be a numerical distortion. The 
application of this technique to our configuration is shown in Figure 6. The results are 
satisfactory since the use of a 0.4 Hz cutoff frequency results in an error on the identified flow 
equal to 

uφσ = 0.038 and an error on the temperature Tσ = 0.832 ° C. 

 
Figure 6 :Heat flux identification obtained with Beck's method after filtering 

Adjoint method 

The second inversion technique is the adjoint method. It is a global method in which a 
quadratic functional built on the differences between the measured temperatures and those 
computed with the identified heat flux is minimized. This function can also be penalized by a 
regularization term ε  : 

 ( )
 

= − + 
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The identification process consists in finding optimum solicitations uφ such that J is minimum. 

u uarg[min J( )]φ φ=      (20) 
This problem is solved using a descent method. These methods require the estimation of the 
functional gradient with respect to the solicitations. The amplitude equation of the model can 
be seen as a constraint between the thermal loads and temperatures. It involves the Lagrangian 
La associated with the minimization problem under the constraint of the state equation. This 
term is constructed by summing the functional and the state equation weighted by a Lagrange 
multiplier (λ): 

 a u u u
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At the point where the functional is minimal, the derivatives of the Lagrangian with respect to 
these three variables are null : 
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The computation of derivative defined by Eq. (22) retrieves the amplitude equation (Eq. (11)). 
The two last derivatives (Eqs. (23) and (24)) bring two new relations, called gradient equation 
and adjoint equation: 

 ε∇ = − tJ U Π Vλ  (25) 

 ( )ˆ( t ) ( t )− = + −* tLλ M λ V E Y Y  (26) 

where M* is the adjoint matrix of M. 
 
Thus the interest of this formulation is to compute the gradient J∇  (Eq. (25)) from the 
resolution of the single equation (26). The iterative calculation of the thermal load k

uϕ  is done 
using this gradient J∇ . Many descent patterns exist. We present here the conjugate gradient 
method, which combines the flux value at a previous iteration with a descent direction (noted 

kw here): 

 + = + wk 1 k k k
u uφ φ ρ  (27) 

This iterative calculation is finished when one of the following criteria is met. The first is 
based on the evolution of the functional J (Eq. (28)). The second compares the difference 
between the estimated temperature and the measurements, which should be of the same order 
of magnitude as the level of uncertainty of the measurement (principle of Morozov Eq. (29)). 
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The direction of descent kw  is a combination between the current and previous descent 
directions weighted by a coefficient kγ  called Fletcher-Reeves conjugation parameter: 

 kkγ Jww 1kk ∇−= −  (30) 
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and kρ  is the optimal descent step, computed by the secant method (α is a small non null 
random number) 
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The treated case corresponds to noisy temperatures (σb = 0.3 °C) issued from the detailed 
model. In the inverse procedure, the penalization term is null (ε = 0). The above presented 
algorithm converges to the imposed flux in 379 iterations. As shown in Figure 7, this method 
does not need additional filtering to recover properly the temporal flux variations. Flux 
deviation is 

uφσ = 0.051, which is very slightly greater than the deviations obtained by Beck's 

method with low frequency filtering, and in terms of temperatures Tσ = 0.389 ° C, which is 
less than the error obtained by Beck's method with filtering. 



 
Figure 7 : Heat flux identification with adjoint method 

Obtaining such satisfying results without filtering can be explained by the fact that the 
estimated flux is issued from a minimization including the entire temperature variation. In 
contrast, in Beck's method only the next time step is used to estimate the flux at a given time, 
which makes this technique much more sensitive to sudden changes and noise measurements. 

Conclusion 

The study first of all showed the interest of using low order models in inverse problems, as 
the loss of information generated by the reduction remains below the noise measurements. 
Regarding the comparison of the two inverse techniques used in this paper, results showed the 
difficulty in obtaining correct results with Beck's method. In fact, the sequential aspect of this 
method does not filter the errors directly obtained from the measurement which are amplified 
significantly during the flux identification process. A solution is possible, however, but at the 
cost of additional low frequency filtering, which eliminates the sequential aspect of this 
technique. The effectiveness of the adjoint method was shown, since very satisfactory results 
were obtained, with no obligation to use any additional filtering or penalty term functional. 
This method, more comprehensive, naturally filters the noise during the functional 
minimization process. The price to pay is that the adjoint method requires more computation 
time (750s) that Beck's method (115s). These are very encouraging results, paving the way for 
online identification, both by a search for the minimum acceptable reduction of the modal 
model, and by the development of a more appropriate adjoint technique (order 2 descent 
method, temporal sliding window). 
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