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Abstract We compare six methods of estimating effective radiative forcing (ERF) using a set of
atmosphere‐ocean general circulation models. This is the first multiforcing agent, multimodel evaluation
of ERF values calculated using different methods. We demonstrate that previously reported apparent
consistency between the ERF values derived from fixed sea surface temperature simulations and linear
regression holds for most climate forcings, excluding black carbon (BC). When land adjustment is accounted
for, however, the fixed sea surface temperature ERF values are generally 10–30% larger than ERFs
derived using linear regression across all forcing agents, with a much larger (~70–100%) discrepancy for BC.
Except for BC, this difference can be largely reduced by either using radiative kernel techniques or by
exponential regression. Responses of clouds and their effects on shortwave radiation show the strongest
variability in all experiments, limiting the application of regression‐based ERF in small forcing simulations.

Plain Language Summary Climate drivers such as greenhouse gases and aerosols influence the
Earth's climate by perturbing the Earth's energy budget at the top of the atmosphere, which is referred to
as effective radiative forcing (ERF) when the atmospheric response is included in the calculation. ERF plays
a crucial role in understanding the climate response to these drivers and predicting long‐term climate
change. Previously, ERFs have been estimated for greenhouse gases using two techniques that generally
lead to similar values. Here we show that such consistency holds for most climate drivers. ERF values
estimated from different methods may differ by 10–50%, and this difference may reach 70–100% for black
carbon. Regression techniques do not work well in some models when imposed forcings are relatively small.

1. Introduction

Effective radiative forcing (ERF) is defined as the net downward radiative flux at the top of the atmosphere
(TOA) after allowing for atmospheric temperature, water vapor, and clouds to adjust but with surface tem-
perature or a portion of surface conditions unchanged (Myhre, Shindell, et al., 2013). It has been shown to
be amore accurate indicator of the temperature response to forcing agents than the standard stratospherically
adjusted radiative forcing, due to the inclusion of tropospheric adjustments. Better estimation of ERF is crucial
to understanding the climate response to different forcings as well as predicting long‐term climate change.

Two methods are commonly employed to determine ERF (see section 2): One is to simulate the climate
response with fixed sea surface temperature (fsst) simulations (Hansen et al., 2002); the other is to linearly
regress the net TOA radiative flux against global mean temperature change (ΔT) in a transient model simu-
lation (Gregory et al., 2004). It has been reported that the values from these two methods are quantitatively
consistent (Andrews et al., 2012). However, the ERF values from both methods may be biased. The former
method allows land response in the simulations, and although Hansen et al. (2005) showed that accounting
for land adjustment substantially increases ERF values, this is typically not included in fsst ERF calculations.
The latter assumes a constant feedback parameter of the climate system in the adjustment process, which
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has been questioned by recent studies (Andrews et al., 2015; Armour et al., 2013; Gregory & Andrews, 2016;
Proistosescu & Huybers, 2017). For example, Armour et al. (2013) suggest that the linear regression
technique has fundamental biases because the slope depends on the regions where the surface is warming
most rapidly at the time when the regression is performed. Andrews et al. (2015) suggest that the
feedback parameters would become less negative after a few decades, making the response concave
instead of linear and leading to ERF values that are low biased using linear regression. Thus, a better
understanding of ERF estimated with different methods is needed. There is no study so far, to our best
knowledge, that compares the ERF values estimated with different approaches and multiple climate
drivers and models. This study aims to bridge this gap, comparing the effects of methodological choices
on the estimation of ERF values, using a group of global climate models forced with five different climate
drivers. Data and methods are described in section 2. Results are presented in section 3, and discussions
and summary are given in section 4.

2. Data and Methods
2.1. Model Data

This study employs output from models participating in the Precipitation Driver and Response Model
Intercomparison Project (PDRMIP), utilizing simulations examining the individual responses to CO2,
CH4, solar insolation, black carbon (BC), and sulfate aerosols. The nine models used in this study are
CanESM, GISS, HadGEM2, HadGEM3, MIROC, CAM4, CAM5, NorESM, and IPSL (see Table 1). In these
simulations, global‐scale perturbations were applied to the models: a doubling of CO2 concentration
(CO2 × 2), a tripling of CH4 concentration (CH4 × 3), a 2% increase in solar irradiance (Solar + 2%), a tenfold
increase of present‐day BC concentration/emisssion (BC × 10), and a fivefold increase of present‐day SO4

concentration/emission (SO4 × 5). All perturbations were abrupt. Greenhouse gas and solar perturbations
were applied relative to the models' baseline values. For aerosol perturbations, monthly year 2000 concen-
trations were derived from the AeroCom Phase II initiative (Myhre, Samset, et al., 2013) and multiplied
by the stated factors in concentration‐driven models. Some models were unable to perform simulations with
prescribed concentrations. Thesemodels multiplied emissions by these factors instead, using either the same
emissions or in one case another data set (Table 1). Each perturbation was run in two configurations, a 15‐
year fsst simulation and a 100‐year coupled simulation. One model (CESM‐CAM4) used a slab ocean setup
for the coupled simulation, whereas the others used a full dynamic ocean. More detailed descriptions of
PDRMIP and its initial findings are given in Samset et al. (2016), Myhre et al. (2017), and Tang et al. (2018).

2.2. Estimating ERF

For fsst simulations, ERF (ERF_fsst) is typically diagnosed by calculating the change of global mean TOA
radiative flux (Hansen et al., 2002):

Table 1
Descriptions of the Nine Precipitation Driver and Response Model Intercomparison Project Models Used in This Study

Model name Version Resolution Ocean setup Aerosol setup References

CanESM 2010 2.8 × 2.8 (35 levels) Coupled Emission Arora et al. (2011)
GISS‐E2 E2‐R 2 × 2.5 (40 levels) Coupled Fixed concentration Schmidt et al. (2014)
HadGEM2‐ES 6.6.3 1.875 × 1.25 (38 levels) Coupled Emissions Collins et al. (2011)
HadGEM3 GA 4.0 1.875 × 1.25 Coupled Fixed concentration Bellouin et al. (2011) and Walters et al. (2014)

85 levels
MIROC‐SPRINTARS 5.9.0 T85 (40 levels) Coupled HTAP2 emissions Takemura et al. (2005), Takemura et al.

(2009), and Watanabe et al. (2010)
CESM‐CAM4 1.0.3 2.5 × 1.9 (26 levels) Slab Fixed concentration Neale et al. (2010) and Gent et al. (2011)
CESM‐CAM5 1.1.2 2.5 × 1.9 (30 levels) Coupled Emissions Hurrell et al. (2013), Kay et al. (2015),

and Otto‐Bliesner et al. (2016)
NorESM 1‐M 2.5 × 1.9 (26 levels) Coupled Fixed concentration Bentsen et al. (2013), Iversen et al. (2013),

and Kirkevåg et al. (2013)
IPSL‐CM 5A 3.75 × 1.9 (19 levels) Coupled Fixed concentration Dufresne et al. (2013)

Note. GA = Global Atmosphere; HTAP2 = Hemispheric Transport Air Pollution, Phase 2.

10.1029/2018JD030188Journal of Geophysical Research: Atmospheres

TANG ET AL. 4383



ERF fsst ¼ ΔSWþ ΔLW; (1)

where ΔSW and ΔLW indicate the change of shortwave (SW) and longwave (LW) radiation at the TOA,
respectively. For this calculation, we use years 6–15 from the fsst simulations. In ERF_fsst, the sea surface
temperature and sea ice are fixed, while the land surface is allowed to adjust; as in practice, it is difficult
to fix land temperature in the models. This means the global temperature has partially responded to the for-
cing, which causes the original external forcing to be underestimated. To account for this, Hansen et al.
(2005) proposed a modified definition of ERF based on fsst simulations:

ERF fsst ΔTland ¼ ΔSWþΔLWþΔT land∕λ; (2)

whereΔT_land is the change in land surface air temperature and λ is the climate sensitivity parameter (K·W
−1·m−2, in this case evaluated from the PDRMIP CO2 × 2 experiment). Like all ERFs, ERF_fsst_ΔTland
allows tropospheric and stratospheric conditions to adjust to the presence of the forcing agent.

For regression, following Gregory et al. (2004), global mean radiative flux at the TOA is linearly regressed
against ΔT in the coupled simulations to obtain ERF_linr:

N ¼ F–H ¼ F−α×ΔT; (3)

where N is the net radiation flux (W/m2, positive downward), F is the imposed forcing (W/m2, positive
downward), and H is the radiative response caused by the climate change (W/m2, positive upward), which
is linearly proportional to global surface temperature change (ΔT). All values in equation (3) are global
averages (W/m2). α is the climate feedback parameter (W·m−2·K−1), indicating the strength of the climate
system's net feedback. If F and α are constant, N is a linear function ofΔT with a slope of−α and an intercept
of F (N = −α × ΔT + F). When ΔT = 0, the intercept F = N, which is thus the ERF. Like ERFs diagnosed
from fsst simulations, rapid adjustments of both the troposphere and stratosphere, including indirect effects
of aerosols, are included. Note that although the ERF is a short‐term concept (e.g., a few months after the
forcing is imposed), the regression results inherently depend on the evolution of the climate system on
longer time scales (e.g., a few decades; Gregory et al., 2004). The first 30‐year of data were primarily used
for regression analyses in this study.

We also apply two simple curved fits to the evolution of N and ΔT. The first is an exponential fit (ERF_exp):

N ¼ a× exp b×ΔTð Þ; (4)

where a and b are the best‐fit coefficients. When ΔT = 0, N = a, which thus gives the ERF.

The second is a quadratic polynomial fit (ERF_poly):

Table 2
Forcing, Feedback, and Global Mean Land Temperature Change (ΔT_land) for the CO2 × 2 Experiment

CO2 × 2

Model

ERF (W/m2)

−α (W·m−2·K−1) ΔT_land (K)fsst linr fsst_ΔTland poly exp kernel

CanESM 3.57 4.38 4.31 4.15 5.15 4.01 −1.37 0.46
GISS 4.06 4.32 6.50 2.85 4.95 4.59 −2.22 0.56
HadGEM2 3.35 3.22 4.08 4.26 3.97 3.92 −0.78 0.49
HadGEM3 3.65 3.52 4.36 3.69 3.98 4.28 −0.72 0.61
MIROC 3.62 4.13 5.22 4.41 5.43 4.02 −1.74 0.45
CAM4 3.62 3.04 4.36 3.64 6.39 4.07 −0.98 0.54
CAM5 4.08 4.09 5.55 3.05 4.68 4.63 −1.23 0.67
NorESM 3.50 3.25 4.34 5.54 4.31 3.82 −1.11 0.40
IPSL 3.39 3.09 4.28 3.64 3.47 3.80 −0.76 0.53
MMM ± 1std 3.65 ± 0.26 3.67 ± 0.55 4.78 ± 0.81 3.91 ± 0.80 4.70 ± 0.89 4.13 ± 0.31 −1.21 ± 0.50 0.52 ± 0.09

Note. 1 std indicates one standard deviation across the nine models. ERF = effective radiative forcing; fsst = fixed sea surface temperature.
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N ¼ p1×ΔT2 þ p2×ΔTþ p3; (5)

where p1, p2, and p3 are the best‐fit coefficients. When ΔT = 0, N = p3, which is hence the ERF.

Another method evaluated in this study involves the technique of radiative kernels (Soden et al., 2008).

ERF kernel ¼ ERF fsst−AT land−AT−Aq−Aa: (6)

In this approach, the ERF_kernel value is obtained by subtracting the rapid adjustments associated with the
land surface change from the ERF_fsst (obtained by equation (1)) while keeping rapid adjustments in the
atmosphere that are not as directly associated with the land surface response, such as cloud responses. Ax

are the rapid adjustments associated with land surface responses, which include land surface temperature
(AT_land) and albedo (Aa). In addition, land surface temperature change also causes changes in the tropo-
spheric temperature (AT), and here we assume a constant lapse rate in the troposphere, therefore the same
change in tropospheric temperature as that of the surface. For water vapor, the fraction of the radiative flux
change from a constant lapse rate to the full tropospheric temperature change has been used to scale the cal-
culation of total water vapor change in order to account for the portion of water change associated with the
surface temperature response (Aq). A rapid adjustment is the product of the direct radiative response to an
incremental change in the respective variable and the total climate response of that variable. The former
term is the radiative kernel, derived from a single offline radiative transfer model, while the latter is esti-
mated from the response of a given PDRMIP model. More details of the radiative kernel method are given
in Zhang and Huang (2014), Chung and Soden (2015), Myhre et al. (2018), and Smith et al. (2018).

Figure 1. The evolution of radiative imbalance (N) with surface temperature change (ΔT) in the CO2 × 2 experiments, with a linear fit (black dashed line), a quad-
ratic polynomial fit (black solid line), and an exponential fit (blue line). The intercepts of the fits indicate ERF_linr, ERF_poly, and ERF_exp, respectively. The y
coordinates of green circles indicate ERF_fsst_ΔTland and red stars indicate ERF_fsst. The x coordinates of red stars indicate the global mean surface
temperature change due to land (ΔT_land) in the fsst experiment. Linear correlation coefficients between N and ΔT are shown in the upper‐right corners.
ERF = effective radiative forcing; fsst = fixed sea surface temperature.
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Uncertainties are reported for multimodel mean (MMM) values based on the model‐to‐model variation in
results. Additional discussion of uncertainties is presented in section 4.

3. Results

The results from the CO2 × 2 experiment for each model are shown in Table 2 and Figure 1. The MMM
ERF_fsst is 3.65 ± 0.26 W/m2 and ERF_linr is 3.67 ± 0.55 W/m2. These are quantitatively consistent
(Table 2), in line with Gregory et al. (2004) and Andrews et al. (2012). All models show fairly strong linear
correlations between N and ΔT (Figure 1). Five models show larger values of ERF_fsst than ERF_linr and
vice versa for the remaining models. The intermodel spread in ERF_linr is much larger than that of
ERF_fsst, consistent with the results of Forster et al. (2016), which is presumably due to the extra processes
involving the ocean in the coupled simulations and faster increase in the signal‐to‐noise ratio in equilibrium
fsst simulations. When it comes to ERF_fsst_ΔTland, the MMM value is 4.78 W/m2, which is roughly 30%
larger than either ERF_fsst or ERF_linr, due to the inclusion of land adjustment in the case of comparison
with ERF_fsst. The models with greater increases from ERF_fsst to ERF_fsst_ΔTland generally show stron-
ger feedback (e.g., GISS andMIROC). Examining the two curved regression fits, MMM values are 3.91W/m2

for ERF_poly and 4.70 W/m2 for ERF_exp, making the latter consistent with ERF_fsst_ΔTland, though
large discrepancies occur in some individual models. Three models (CanESM, GISS, and CAM5) show oppo-
site curvature in the polynomial fit relative to the exponential fit. We calculated the root mean square errors
for all three regression methods, which give similar goodness of fit (Table 7). Thus, it is difficult to determine
which one is better from a statistical perspective. The MMM of ERF_kernel is 4.13 W/m2, which is roughly
13% larger than ERF_fsst but smaller than the ERF_fsst_ΔTland. This indicates that the sign of the net
adjustments due to albedo, tropospheric temperatures, and tropospheric water vapor is opposite to that of
the land surface temperature in a warming scenario.

Figure 2. Same as Figure 1 but for Solar + 2% experiment.
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The results for the Solar + 2% and SO4 × 5 experiments are similar to the CO2 × 2 experiment (see Figures 2
and 3 and Tables 3 and 4). The magnitudes of the forcings are comparable to that of the CO2 × 2 experiment,
with MMM values of 4.19 ± 0.15 and −3.52 ± 1.90 W/m2 for the Solar + 2% and SO4 × 5 experiments
(ERF_fsst), respectively. All nine models show significant linear correlations between N and ΔT, and the
MMM values of ERF_linr and ERF_fsst are again consistent. For the Solar + 2% experiment, both
ERF_poly and ERF_exp MMM values are consistent with ERF_fsst_ΔTland. For SO4 × 5 experiment, both
ERF_poly and ERF_exp methods give larger MMM values than ERF_fsst_ΔTland, but they are within the
uncertainty ranges. All three regression methods show similar goodness of fit (Table 7). However,

Figure 3. Same as Figure 1 but for SO4 × 5 experiment.

Table 3
Same as Table 2 but for Solar + 2% Experiment

Solar + 2%

Model

ERF (W/m2)

−α (W·m−2·K−1) ΔT_land (K)fsst linr fsst_ΔTland poly exp kernel

CanESM 4.09 4.20 4.53 4.44 4.95 4.24 −1.10 0.27
GISS 4.48 4.22 5.30 3.85 4.83 4.57 −2.40 0.19
HadGEM2 4.20 3.32 4.58 4.08 3.92 4.38 −0.90 0.26
HadGEM3 4.36 3.56 4.68 4.75 4.14 4.56 −0.62 0.27
MIROC 4.15 3.78 4.85 4.43 4.84 4.31 −1.63 0.20
CAM4 4.11 2.84 4.43 3.60 5.44 4.21 −1.02 0.24
CAM5 4.24 4.01 4.88 3.39 4.85 4.41 −1.41 0.29
NorESM 4.01 3.60 4.69 9.40 5.47 4.20 −1.27 0.32
IPSL 4.07 3.89 4.56 4.27 4.47 4.27 −0.96 0.30
MMM ± 1std 4.19 ± 0.15 3.71 ± 0.44 4.72 ± 0.26 4.70 ± 1.82 4.77 ± 0.52 4.35 ± 0.14 −1.26 ± 0.52 0.26 ± 0.05
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polynomial fits show the opposite curvature in some individual models again. The MMM values using the
ERF_kernel method are larger than ERF_fsst but smaller than ERF_fsst_ΔTland for both experiments.
The feedback parameters remain essentially unchanged when compared with the CO2 × 2 experiment for
all the models in both experiments.

The behavior is different, however, for the BC × 10 experiment (Table 5 and Figure 4). Despite the large per-
turbation (BC × 10), the forcing is small in somemodels, with aMMM value of 1.35 ± 0.98W/m2 (ERF_fsst),
roughly one third of that for the CO2 × 2 experiment. The ERF_linr diverges more substantially from
ERF_fsst. In fact, except for the CanESM, GISS, and IPSL models, the remaining six models show at least
25% smaller values in ERF_linr than ERF_fsst. There are only five models (CanESM, GISS, HadGEM2,
MIROC, and CAM5) that show fairly good correlations (r > 0.48, this value is chosen because of the large
gap between 0.49 and 0.33, see Figure 4) between N and ΔT, and the largest r is only 0.68, indicating that
the relationship between N and ΔT is noisy. When only these five models are considered, ERF_linr is 30%
smaller than ERF_fsst on average. ERF_fsst_ΔTland is 21% larger than ERF_fsst and 72% larger than
ERF_linr, based on MMM values. Both ERF_poly and ERF_exp are less than ERF_fsst_ΔTland, and the
ERF_kernel values are almost the same as ERF_fsst but 13% smaller than the ERF_fsst_ΔTland values on
average. For all methods, the model‐to‐model variability is large, and so it is difficult to evaluate the robust-
ness of differences between methodologies. For example, ERF_linr and ERF_fsst differ by up to a factor of
two in several models, but they are very similar in others. The feedback parameters remain nearly
unchanged in these five models relative to the simulations discussed previously.

Table 5
Same as Table 2 but for BC × 10 Experiment

BC × 10

Model

ERF (W/m2)
−α (W·m
−2·K−1)

ΔT_land
(K)fsst linr fsst_ΔTland poly exp kernel

CanESM* 1.55 1.57 1.96 1.59 2.01 1.65 −1.08 0.25
GISS* 1.23 1.06 1.57 1.07 1.91 1.32 −2.15 0.08
HadGEM2* 2.90 1.45 3.18 2.43 2.03 3.05 −0.66 0.19
HadGEM3 0.70 0.31 0.82 −0.02 0.30 0.75 −0.18 0.10
MIROC* 0.63 0.47 0.64 0.48 0.44 0.67 −1.72 0.00
CAM4 0.77 0.08 0.92 0.41 N/A 0.89 −0.14 0.11
CAM5* 0.42 0.22 0.82 0.23 0.14 0.40 −1.13 0.19
NorESM 1.41 1.04 1.75 2.94 2.32 1.53 −1.19 0.16
IPSL 0.82 0.69 0.93 0.80 0.76 0.87 −0.68 0.06
MMM ± 1std 1.35 ± 0.98 0.95 ± 0.59 1.63 ± 1.02 1.16 ± 0.89 1.31 ± 0.93 1.42 ± 1.04 −1.35 ± 0.59 0.14 ± 0.10

Note. N/A indicates the exponential fit gives an error. Models with linear fit correlations│r│ > 0.48 (Figure 4) are denoted with an asterisk and multimodel
mean calculations are based on these models only for all methods.

Table 4
Same as Table 2 but for SO4 × 5 Experiment

SO4 × 5

Model

ERF (W/m2)
−α (W·m
−2·K−1) ΔT_land (K)fsst linr fsst_ΔTland poly exp kernel

CanESM −3.24 −3.39 −3.71 −2.80 −3.85 −3.50 −1.01 −0.30
GISS −2.79 −3.59 −3.46 −7.70 −10.50 −2.91 −3.41 −0.15
HadGEM2 −4.02 −3.63 −4.44 −5.17 −4.52 −4.26 −0.91 −0.28
HadGEM3 −8.26 −7.46 −8.56 −8.97 −8.20 −8.47 −0.66 −0.26
MIROC −2.77 −2.75 −3.47 −2.27 −3.24 −2.82 −2.05 −0.19
CAM4 −2.04 −2.00 −2.31 −3.05 −5.14 −2.18 −1.33 −0.20
CAM5 −2.10 −2.02 −2.07 −2.90 −2.78 −2.02 −1.43 0.02
NorESM −3.79 −3.40 −4.29 −4.06 −4.09 −3.90 −1.49 −0.24
IPSL −2.70 −2.54 −3.09 −2.50 −2.69 −2.87 −0.84 −0.24
MMM ± 1std −3.52 ± 1.90 −3.42 ± 1.64 −3.93 ± 1.91 −4.38 ± 2.43 −5.00 ± 2.65 −3.66 ± 1.95 −1.46 ± 0.84 −0.20 ± 0.09
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The results for the CH4 × 3 experiment (Table 6 and Figure 5) are somewhat similar to the BC × 10 experi-
ment in that the climate forcing is relatively small (1.06 W/m2 for MMM of ERF_fsst), and the linear regres-
sion technique does not work well for some models. Only four out of the nine models show fairly strong
correlations between N and ΔT (r > =0.48), with the largest ragain being 0.68. When considering these four
models only, however, the ERF_fsst (1.06 W/m2) and ERF_linr (1.02 W/m2) are consistent.
ERF_fsst_ΔTland (1.38 W/m2) is 30% larger than ERF_fsst, and ERF_exp (1.31 W/m2) is consistent with
ERF_fsst_ΔTland. These results are similar to those found for CO2 × 2. The ERF_poly (0.93 W/m2),

Table 6
Same as Table 2 but for CH4 × 3 Experiment

CH4 × 3

Model

ERF (W/m2)
−α (W·m
−2·K−1)

ΔT_land
(K)fsst linr fsst_ΔTland poly exp kernel

CanESM 1.36 0.89 1.65 0.79 0.88 1.46 −1.12 0.18
GISS* 1.34 1.45 2.02 0.89 1.45 1.60 −1.97 0.16
HadGEM2 0.97 0.55 1.05 0.93 0.59 1.03 −0.23 0.05
HadGEM3 1.39 1.15 1.56 1.62 1.43 1.49 −0.87 0.15
MIROC* 0.78 0.85 0.97 0.82 0.99 0.84 −1.60 0.05
CAM4* 1.27 0.80 1.45 1.13 1.86 1.36 −0.73 0.13
CAM5* 0.86 0.96 1.06 0.88 0.93 0.91 −1.77 0.09
NorESM 1.25 0.31 1.53 1.37 0.32 1.34 0.43 0.14
IPSL 1.58 1.32 1.88 1.75 1.45 1.75 −0.63 0.18
MMM ± 1std 1.06 ± 0.28 1.02 ± 0.30 1.38 ± 0.48 0.93 ± 0.14 1.31 ± 0.44 1.18 ± 0.36 −1.52 ± 0.55 0.11 ± 0.05

Note. Models with linear fit correlations│r│ ≥ 0.48 (Figure 5) are denoted with an asterisk and multimodel mean calculations are based on these models only
for all methods.

Figure 4. Same as Figure 1, but for BC × 10 experiment.
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however, is 32% lower than ERF_fsst_ΔTland and even lower than ERF_linr. The ERF_kernel again stands
between ERF_fsst and ERF_fsst_ΔTland (Table 7).

4. Discussion and Summary

The magnitude of ERF_fsst_ΔTland, on average, is 32% (CO2 × 2), 30% (CH4 × 3), 13% (Solar + 2%), 21%
(BC × 10), and 11% (SO4 × 5) larger than ERF_fsst for the indicated experiments (Figure 6), due to the fact
that the former accounts for land adjustment (ΔT_land / λ). In the greenhouse gas experiments, the adjust-
ment to the forcing is roughly one third of the original ERF_fsst. Interestingly, ΔT_land in the CO2 × 2
experiment is more than double that in the Solar + 2% and SO4 × 5 experiments, despite their similar mag-
nitude forcings. When compared with ERF_linr, ERF_fsst_ΔTland is also substantially larger. The MMM
ratios of ERF_fsst_ΔTland/ERF_linr are 1.30, 1.35, 1.27, and 1.15 for the CO2 × 2, CH4 × 3, Solar + 2%,

and SO4 × 5 experiments, respectively. When it comes to BC, however,
the ratio is 2.00 ± 1.04 (mean ± 1 standard deviation), obtained by calcu-
lating individual model ratios and then averaging them, which is much
larger than the ratios in other experiments (Figure 6, blue bar). Note that
this value is larger than the 72% reported above (Table 5) due to the differ-
ent order of averaging; that value was obtained by taking the ratio of
MMM values.

The consistency between MMM ERF_fsst and ERF_linr seen in prior
work also holds in our current study across all experiments, except for
BC (Figure 6, black bars). When land adjustment is included and values
are hence presumably more physically realistic, however, the values
derived from fsst simulations (ERF_fsst_ΔTland) are consistently larger

Table 7
Comparison of Multimodel Mean Values of Root‐Mean‐Squared Errors (in
W/m2), Which Shows the Goodness of the Fit

Experiment Linear Polynomial Exponential

CO2 × 2 0.42 ± 0.11 0.41 ± 0.11 0.43 ± 0.11
CH4 × 3 0.37 ± 0.15 0.38 ± 0.16 0.40 ± 0.18
Solar + 2% 0.38 ± 0.11 0.36 ± 0.10 0.38 ± 0.11
BC × 10 0.36 ± 0.10 0.36 ± 0.11 0.37 ± 0.11
SO4 × 5 0.45 ± 0.12 0.43 ± 0.12 0.44 ± 0.12

Note. For CH4 × 3 and BC × 10 experiments, only asterisked models
(Tables 5 and 6) are used for multimodel mean calculations.

Figure 5. Same as Figure 1, but for the CH4 × 3 experiments.
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than ERF_linr. This can be plausibly attributed to time‐varying feedback parameters leading to low biases in
linear regressions (Andrews et al., 2015; Armour et al., 2013; Gregory & Andrews, 2016; Proistosescu &
Huybers, 2017). To explore this further, we calculated the feedback parameters for land and ocean
separately (by regressing N against global ΔT for each grid box) for all models and all experiments. The
feedback parameters for years 1–30 are −1.14 ± 0.12 W·m−2·K−1 over land and −1.33 ± 0.12 W·m−2·K−1

over oceans, while for years 31–90, they are −0.49 ± 0.10 W·m−2·K−1 over land and −0.68 ± 0.17 W·m
−2·K−1 over oceans. The feedback parameters thus become significantly less negative for both regions
during the later years, but are similar in the two areas, with slightly larger values for the ocean. Thus, it is
not clear that land feedbacks differ greatly from ocean feedbacks, although there is a very large spread
across models (Table 8), but there is strong evidence that early feedbacks are larger than later ones. The
two curved fits attempt to account for the concavity in feedbacks in the longer coupled runs. Based on
MMM, the ERF values derived with a polynomial fit are consistent with the ERF_fsst_ΔTland in the
Solar + 2% and SO4 × 5 experiments, but not in the other experiments (Figure 6, green bars), while the
values using an exponential fit largely reconcile the regression results with the ERF_fsst_ΔTland values
within the uncertainty range, with especially close correspondence for CO2, CH4, and solar experiments
(Figure 6, red bars). For BC, the MMM ratio of ERF_fsst_ΔTland/ERF_exp remains high at 2.1 (Figure 6,
red bar), though there is a large intermodel spread (mainly due to the CAM5 model). The reason for this

Table 8
Feedback Parameters for Land/Ocean in the Different Time Periods for the CO2 × 2 Experiment

Model

CO2 × 2

Years 1–30 Years 31–90 Years 1–90

Land Ocean Land Ocean Land Ocean

CanESM −1.49 −1.24 −1.21 −0.97 −1.30 −1.07
GISS −2.62 −2.19 −1.42 −0.38 −2.40 −1.59
HadGEM2 −0.64 −0.86 −1.11 0.37 −0.81 −0.65
HadGEM3 −0.89 −0.56 −0.38 −0.21 −0.62 −0.26
MIROC −1.20 −1.87 −1.14 −1.78 −1.22 −1.95
CAM4 −0.92 −0.88 0.27 0.25 −0.90 −0.82
CAM5 −0.57 −1.35 −0.38 −2.48 −0.89 −1.43
NorESM −1.35 −0.94 0.18 −0.56 −0.85 −1.06
IPSL −1.50 −0.45 −0.89 −0.31 −1.26 −0.52
MMM ± 1std −1.24 ± 0.62 −1.15 ± 0.58 −0.68 ± 0.62 −0.67 ± 0.93 −1.14 ± 0.53 −1.04 ± 0.54

Note. The values in the text are multimodel mean for all five experiments.

Figure 6. Comparison of different ERF values for each experiment. The symbols in each bar indicate multimodel mean
values of ratios for each experiment, while the error bars show one standard deviation across the models. For CH4 × 3
and BC × 10 experiments, only the models with│r│ > =0.48 are used. ERF = effective radiative forcing; fsst = fixed sea
surface temperature.
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discrepancy is not yet clear, though we reiterate that the regression‐based results are highly uncertain in
many models.

To further investigate uncertainties and the sensitivity to the time period used for the regression results, we
compared the ERF values for three regressions using results from years 1–30 and years 1–100 of the coupled
simulations (Table 9). In other studies, linear regressions have generally been applied to the first 20–30 years
of data. Results based on shorter time spans (e.g., 10 years) would be subject to strong internal variability
(Hansen et al., 2005). For ERF_poly and ERF_exp, there are no significant changes when more years are
included except for the CO2 × 2 experiment, which shows a slight increase in both values, but they remain
within the uncertainty ranges. For ERF_linr, however, there are systematic decreases (6–10%) across all five
experiments when a longer time span is used due to time‐varying feedback parameters. This analysis indi-
cates that both ERF_poly and ERF_exp are less sensitive to the chosen time period. Moreover, all three
regressions show similar goodness of fit.

For comparison, we also calculated the uncertainty ranges for the nonregression ERF values. For ERF_fsst,
the MMM values are ±0.16 W/m2 (CO2 × 2), ±0.17 W/m2 (CH4 × 3), ±0.18 W/m2 (Solar+2%), ±0.16 W/m2

(BC × 10), and ±0.19 W/m2 (SO4 × 5), based on the interannual variability of radiative fluxes. These uncer-
tainty ranges are generally 0.12 W/m2 larger in magnitude for the ERF_fsst_ΔTland due to the additional
variability in climate sensitivity and land response (ΔTland). For ERF_kernel, the uncertainty in the addi-
tional kernel‐derived adjustments was estimated by analyzing the spread in rapid adjustments calculated
using six kernels from Smith et al. (2018) for each model. The spread in the rapid adjustments are generally
0.02–0.05 W/m2 across most of the models and experiments. When combined with uncertainties of
ERF_fsst, they produce MMM uncertainties (estimated by δERF_kernel = (δERF_fsst2 + δrapid adjust-
ments2)1/2, where δ is the uncertainty for each component) of ±0.17 W/m2 (CO2 × 2), ±0.17 W/m2

(CH4 × 3), ±0.19 W/m2 (Solar + 2%), ±0.18 W/m2 (BC × 10), and ±0.19 W/m2 (SO4 × 5), similar to those
of ERF_fsst and smaller than the regression‐based analyses (Table 8).

Our analyses show that the ERF values may differ by ~10–50% with different methods, based on MMM
results, and this difference may reach 100% for BC. It is difficult to determine, however, which method for
calculating ERF is the best. Researchers need to choose the appropriate approach, depending on available
model output, computation resources, and research needs. With fsst simulations, it is easy and fast to obtain
either ERF_fsst or ERF_fsst_ΔTland values. However, for researchers who only have coupled simulations,
regression methods are the only option to obtain the ERF. Linear regression is simple and is the most widely
used (Myhre, Shindell, et al., 2013) and is also generally consistent with ERF_fsst values. The latter, how-
ever, neglects a known process (land temperature adjustment), and so arguably, ERF_fsst_ΔTland is a more
physically realistic method. Based on MMM values, an exponential fit is shown to be more consistent with
ERF_fsst_ΔTland values, though exceptions exist in individual models. In addition, it is less sensitive to the
chosen time period than linear regression. The polynomial fit is sensitive to natural variability and may give
opposite curvature to that inferred from a direct analysis of the feedback's temporal evolution (e.g., GISS
model in Figure 1). We also investigated higher‐order polynomial fits, but the curvatures do not fit the

Table 9
Comparison of Multimodel Mean (Mean ± 1 Standard Deviation) Values of ERF Derived With Different Time Periods

Experiment Year

ERF_linr ERF_poly ERF_exp

ERF RMSE ERF RMSE ERF RMSE

CO2 × 2 1–30 3.67 ± 0.55 0.42 ± 0.11 3.91 ± 0.80 0.41 ± 0.11 4.70 ± 0.89 0.43 ± 0.11
1–100 3.45 ± 0.57 0.39 ± 0.09 4.12 ± 0.66 0.39 ± 0.09 5.30 ± 1.60 0.40 ± 0.10

CH4 × 3 1–30 1.02 ± 0.30 0.37 ± 0.15 0.93 ± 0.14 0.38 ± 0.16 1.31 ± 0.44 0.40 ± 0.18
1–100 0.83 ± 0.18 0.37 ± 0.12 0.98 ± 0.23 0.36 ± 0.12 1.37 ± 0.79 0.38 ± 0.14

Solar + 2% 1–30 3.71 ± 0.44 0.38 ± 0.11 4.69 ± 1.82 0.36 ± 0.10 4.77 ± 0.52 0.38 ± 0.11
1–100 3.45 ± 0.51 0.38 ± 0.08 4.41 ± 1.02 0.38 ± 0.08 5.06 ± 0.88 0.39 ± 0.09

BC × 10 1–30 0.95 ± 0.59 0.36 ± 0.10 1.16 ± 0.89 0.36 ± 0.11 1.31 ± 0.93 0.37 ± 0.11
1–100 0.83 ± 0.52 0.38 ± 0.11 1.06 ± 0.73 0.38 ± 0.11 1.26 ± 0.98 0.40 ± 0.12

SO4 × 5 1–30 −3.42 ± 1.64 0.45 ± 0.12 −4.38 ± 2.43 0.43 ± 0.12 −5.00 ± 2.65 0.44 ± 0.12
1–100 −3.06 ± 1.87 0.43 ± 0.10 −4.24 ± 1.91 0.42 ± 0.11 −4.91 ± 2.15 0.42 ± 0.11
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evolution of N and ΔT. The radiative kernel method provides another option to obtain ERF values account-
ing for land‐related responses and leads to only slight increases (4–13%) compared with ERF_fsst (Figure 6,
purple bars). The disadvantage of this method is that it requires more output from the simulations and more
computation resources compared with other approaches.

The poor correlations between N and ΔT for the BC × 10 experiments suggest that the regression technique
may not work well in the BC × 10 experiment, at least for some models and for the time scales considered in
this study. This may be partly attributable to internal variability. The forcing in the BC × 10 experiment is
relatively small compared with the CO2 × 2 experiment, ranging from 0.8–2.0 W/m2 for most models.
However, the interannual variability of N in the BC × 10 experiment ranges from 0.3–0.5 W/m2, which is
a substantial fraction of the forcing. Such variability blurs the relation of N andΔT. Further analyses indicate
that this variability is mainly associated with SW cloud effects (not shown), suggesting the pivotal role of
low‐level clouds on the unforced fluctuations of radiation budgets. Due to the larger forcing in CO2 × 2,
Solar + 2%, and SO4 × 5 experiments (~ 4 W/m2), the SW cloud effects did not significantly affect the fits
in those cases, whereas the regression techniques do not work well for some models in the CH4 × 3 and
BC × 10 experiments with small forcing. Therefore, the regression techniques (linear, polynomial, and expo-
nential) appear useful in those large‐forcing experiments but should be used with caution in small‐
forcing simulations.

In this study, we compared six methods for estimating ERF values from nine models participating in the
PDRMIP project. The consistency between the values of ERF_fsst and ERF_linr in prior studies holds for
most climate forcings, except for BC. When land response is accounted for in fsst simulations, the
ERF_fsst_ΔTland is roughly 10–30% larger than ERF_linr, however, and 100% larger for the BC × 10 experi-
ments. Such adjustments can also be accounted for by using radiative kernels, which typically leads to values
in between the ERF_fsst and ERF_fsst_ΔTland results. There is a tendency for the values derived from linear
regression to be lower than ERF_fsst_ΔTland values, which appears to be explained by the time‐varying
feedbacks. Such differences can be largely eliminated by using an exponential regression, making them con-
sistent with the fsst values with land adjustment included under most climate forcings based on MMM
results. BC forcing is quite sensitive to the method used, the reasons for which merit further study.
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