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Dysentery is a major health threat that dramatically impacts childhood morbidity and 

mortality in developing countries. Various pathogenic agents cause dysentery such as 

Shigella spp. and Escherichia coli, which are very closely related if not identical 

species. Sensitive and precise detection and identification of the infectious agent is 

important to target the best therapeutic strategy but the differential diagnosis of these 

two groups remains a challenge using conventional methods. Here we present a nuclear 

magnetic resonance (NMR) based multivariate classification model employing bacterial 

metabolic footprints in post-culture growth media with remarkable segregation 
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capability, including the discrimination of lactose negative E. coli and Shigella species. 

Our results confirm the potential of metabolomic markers in the field of bacterial 

identification for the distinction of even very closely related species. 

Shigella spp. and Escherichia coli belong to the family of the Enterobacteriaceae. They 

represent species with a very high genetic relatedness 1-2. In fact, they could even be classified 

as one distinctive species in the genus Escherichia 3-5. Many Shigella isolates are responsible 

for shigellosis (bacillary dysentery) that can lead to life-threatening dysentery, with a global 

impact on childhood morbidity and mortality 6. Clinical isolates of E. coli species can be 

commensal or pathogenic, with some isolates such as entero-invasive E. coli (EIEC) causing 

illnesses similar to shigellosis. Hence, most E. coli are commensals normally found in the 

human gut flora, whereas Shigella spp. are generally considered real pathogens. Shigella spp. 

are considered distinct from E. coli mainly from a clinical perspective.  

The Shigella and E. coli initial differentiation based on phenotypic and biochemical tests 7 has 

rapidly shown limitations and remains a challenge for clinical laboratories 4, 8. The triple sugar 

iron (TSI) test separates E. coli and Shigella spp on the basis of acidification of a pH indicator-

containing growth medium, but with poor sensitivity and specificity regarding discrimination of 

E. coli and Shigella from other species 9. 16S rRNA gene sequencing cannot differentiate these 

species and identification relies on a limited number of phenotypic and biochemical 

characteristics which may still not correctly identify all isolates 10. In particular, a sub-group of 

E. coli isolates that does not ferment lactose, usually termed lactose negative, is biochemically 

very similar to Shigella spp. and consequently difficult to separate from Shigella 8. Matrix-

assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has 

become the microbial identification method of choice over the past few years 11. However, E. 

coli and Shigella usually do not separate with the conventional MS standard operating 

procedures and additional classification methods and algorithms have recently emerged to 

tackle the distinction between these closely related species 12-13. Molecular tests do exist to 

identify these species and pathovars but can be expensive, preventing their use in routine 
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settings 3, 14. Nowadays serological identification remains a key test for the diagnostic of 

infections by Shigella but certain species remain non-serotypeable 15. Recent advances in 

next-generation sequencing open a more comprehensive and high-resolution analysis of their 

genome differences and evolution 16-18. However, they still need to be translated into easy-to-

use diagnostic tests available in routine settings.  

NMR is an intrinsically quantitative, non-destructive and information-rich technique for the 

determination of molecular structures that is uniquely suited for the analysis of complex 

mixtures such as bio-fluids. Significant advances in NMR technology and automation have 

positioned this technique as a method of choice for metabolomic investigations 19-20 that aim 

at comprehensive and quantitative analysis of metabolites present in biological samples 21. 

Various metabolomic approaches have been adapted to study bacteria 22 and have been 

successfully used to investigate intra- and extracellular bacterial imprints 23-27, metabolic 

pathways 28-30, or antibiotic modes of action 31-32. NMR-based metabolomic approaches have 

also been proposed for targeted bacterial identification and discrimination 33-37. We notably 

established a method to rapidly discriminate and identify bacterial species that relies on 

untargeted metabolic profiling of bacterial culture supernatants 38. In the present study, we 

evaluate the potential of this approach to distinguish the closely related, and hard to 

discriminate Shigella and E. coli species. The various groups of bacteria studied are well 

discriminated from supervised multivariate data analyses of their metabolic footprints. We 

present a robust classification signature based on a limited set of metabolite concentrations, 

which may be measurable by other analytical techniques, thus allowing application of our 

approach to microbial clinical diagnosis.  

MATERIALS AND METHODS  

Bacterial samples. We studied a total of 144 samples of bacterial growth media collected 

after 1.5 hour (Te) of culture initiation. These samples correspond to 48 cultivated strains from 

the bioMérieux collection, with 3 independent cultures (biological replicates) each, which 
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classify into 3 main groups for the present study: Shigella species, E. coli lactose (+) and 

lactose (-) strains (i.e. lactose fermenting and non-fermenting isolates, respectively), with 16 

strains per group. The group of Shigella species includes sets of S. boydii, S. flexneri, and S. 

sonnei strains. The detailed list of the 48 bacterial strains is provided in the supplementary 

material (Table S1, ESI). Te corresponds to the middle of the exponential growth phase as was 

determined previously when applying the bacterial growth conditions used in this study. A blind 

investigation was conducted on an additional cohort of 60 E. coli lactose (-) and Shigella growth 

media samples, as independent validation of this work. 

Bacterial culture and sample preparation. Clinical isolates of bacterial species, stored at -

80°C, were thawed, and pre-cultured on Columbia agar + Sheep blood 5% (2 consecutive sub-

cultures). Cultures were then realized at 37°C in Mueller-Hinton (MH) (5 mL) liquid medium 

until Te, from a suitable inoculum calibrated to obtain the same numbers of bacteria for all 

strains at Te. This corresponds to a concentration at T0 between 2 and 2.5 MacFarland units 

(McF). One mL of the culture medium was collected at time T0 and Te in Eppendorf tubes and 

centrifuged for 10 min at 4000g. Supernatants were collected in Eppendorf tubes and stored 

at -80°C until NMR analysis. 

NMR analysis. The samples for NMR were prepared as follows: 60 μL of phosphate buffer 

(1.25M KH2PO4, 2mM NaN3 and 0.1% trimethylsilyl propionate-2,2,3,4-d4 (TMSP) in D2O, 

pH=7.4) were added to 540 μL of bacterial culture supernatants and mixed thoroughly. Finally, 

550 μL were then transferred to 5 mm NMR tubes. Samples were kept at 4 °C until analysis.  

All NMR spectra were acquired at 27°C on a 600 MHz Bruker Avance III NMR spectrometer 

equipped with a 5 mm TCI cryoprobe. A SampleJet auto-sampler enabled high throughput 

data acquisition. A standard 1H 1D NMR NOESY (nuclear Overhauser effect spectroscopy) 

experiment with z-gradient and water pre-saturation (Bruker pulse program noesygppr1d) was 

carried out on each sample, with 128 transient free induction decays (FID) co-added, an 

acquisition time of 2 s and a spectral width of 20 ppm. The relaxation delay was set to 4 s, the 

NOESY mixing time was 10 ms and the 90° pulse length was automatically determined for 
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each sample (around 14.5 μs). The total acquisition time for each spectrum was 13 min 48 

sec. We note that 1H CPMG NMR spectra recorded for these types of samples (data not 

shown) are fairly identical to the 1H NOESY fingerprints exploited in this study. 

Data processing. Prior Fourier transform, all NMR FIDs were multiplied by an exponential 

function corresponding to a 0.3 Hz line-broadening factor. 1H-NMR spectra were phased and 

referenced to the TMSP signal (-0.016 ppm) using Topspin 3.2 (Bruker GmbH, Rheinstetten, 

Germany). Extraction of a data matrix for multivariate statistical analysis from the 1H NMR 

profiles was done using the software AMIX (Bruker GmbH). Spectra were integrated and 

bucketed from 0.3 to 10 ppm in steps of 0.01 ppm, excluding the region of residual water signal 

(5.10 to 4.50 ppm), and normalized to total intensity. The resulting data matrix contained 970 

NMR variables.  

Metabolite identification and quantification. NMR peak assignments were obtained from 

comparisons with metabolites databases such as HMDB, Chenomx NMR Suite (Chenomx Inc., 

Edmonton, Canada) and BBIOREFCODE (Bruker GmbH) and verified with homonuclear and 

heteronuclear 2D NMR experiments (1H-13C HSQC, 1H-13C HMBC, 1H-1H TOCSY and J-

resolved experiments). Individual metabolite concentrations were determined by manual fitting 

of the proton resonance lines for the compounds available in the Chenomx database. The line-

width used for deconvolution with the reference database was adjusted to the width of one 

component of the alanine doublet. 

Multivariate data analysis. Principal component analysis (PCA), O-PLS discriminant analysis 

(O-PLS-DA) and Receiver of Operator (ROC) were performed using SIMCA-P 15 (Umetrics, 

Umea, Sweden) with centered variables (no scaling). O-PLS-DA analyses 39-40 were used to 

build predictive sample classification models based on either 0.01 ppm bucketed NOESY NMR 

spectra (950 variables) or metabolite concentrations (26 metabolites). Results were visualized 

on score plots, corresponding to sample projections onto the predictive axis and the first 

orthogonal component of the model, and the associated loadings plot. The optimal number of 
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orthogonal components was selected using a 7-fold cross validation procedure. The R2 and 

Q2 parameters were computed as a measure of the goodness of fit and prediction, i.e. the 

explained and predicted variances, respectively. The O-PLS-DA models were validated using 

permutations under the null hypothesis (1000 times); for each permutated classification labels, 

R2 and Q2 were recalculated and compared to the original ones, their decrease indicating the 

good quality of the model 41. For each O-PLS-DA model, variable importance values in the 

projection (VIP) were computed 42. Receiver Operating Characteristic (ROC) curves 43 and 

corresponding area under the curve (AUC) were calculated for individual metabolites based 

on univariate testing, or for multivariate analysis based on O-PLS-DA cross-validation. Subsets 

of discriminant metabolites were obtained using the feature selection algorithm in 

Metaboanalyst 4.0 44, a multivariate exploratory ROC analysis based on random sub-sampling 

and cross-validation performance of PLS-DA.  

 

RESULTS AND DISCUSSION 

E. coli and Shigella species NMR metabolic footprints in culture media. 

Bacteria were cultured in a classical, rich Mueller Hinton medium during 1.5 hour, a delay 

sufficient to reach exponential growth for both Shigella spp. and E. coli species. As metabolites 

were consumed or produced, a complex metabolic footprint was detected by untargeted NMR 

analysis. Well-resolved 1H NMR metabolic profiles were obtained for each sample of bacterial 

culture medium (Fig. 1a). The spectra displayed typical sharp lines corresponding to small 

metabolites, overlaid with broad signals at baseline from lipids or larger proteins, which 

appeared as minor contributors in the case of our culture supernatants. Detailed analysis of 

the 1H 1D as well as additional two-dimensional 1H-1H and 1H-13C 2D NMR correlation spectra 

recorded for a subset of representative samples delivered the identification of 43 metabolites 

(Table S2, ESI) that belong to a variety of biochemical classes (amino-acids, sugars, 

nucleotides and metabolic intermediates). The library of 138 1H 1D NMR footprints (6 samples 
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were excluded due to poor quality of spectra) was then exploited by multivariate statistical 

analysis. 

PCA of the bucketed NMR profiles was first used to evaluate the dataset homogeneity and the 

potential of unsupervised sample class discrimination concerning Shigella spp. and E. coli 

footprints, following the approach proposed in our previous study 38. No strong outliers were 

identified on the PCA score plot (Fig. 1b), confirming the reproducibility of our experimental 

approach. A straightforward species-based discrimination could be observed on this 

unsupervised model between E. coli lactose (+) and Shigella spp. but not between E. coli 

lactose (-) and Shigella. An independent PCA model of E. coli lactose (+) and Shigella samples 

is presented in Fig. 1c to highlight the corresponding discrimination. The first two principal 

components of this model explain 57.1% of the variance within the dataset, and this model 

soundly represents the data structure as attested by high values of goodness-of-fit parameters 

R2 = 0.985 and Q2= 0.915, related respectively to the variance explained and predicted by the 

model. In contrast, E. coli lactose (-) and Shigella could not be discriminated from unsupervised 

analysis. Altogether these results confirm our previous observations that NMR analysis of 

culture supernatants is adapted to distinguish bacterial species 38, but also illustrate, at the 

exo-metabolome level, the detailed phenotype resemblances between E. coli lactose (-) and 

Shigella species that lead to identification issues using regular analytical techniques. 

Discrimination of E. coli lactose (-) and Shigella spp. using O-PLS-DA. 

To address the discrimination challenge between E. coli lactose (-) and Shigella species, a 

supervised analysis of the NMR metabolic profiles was conducted by O-PLS-DA 39-40. While 

the principal objective of this study was the global binary discrimination of E. coli lactose (-) 

and Shigella species, supervised O-PLS-DA multivariate analysis of the 1H NMR bacterial 

culture footprints was able to robustly distinguish the four types of lactose negative species 

investigated, i.e. E. coli lactose (-), S. boydii, S. flexneri, and S. sonnei, as shown in Figure 2. 

Corresponding model validation from permutations of the Y values is provided in the 

supplementary material (Fig. S1, ESI). Subsequently, focusing on the 2-class discrimination of 
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E. coli lactose (-) vs. Shigella species, we obtained a robust predictive O-PLS-DA model 

(R2(X)= 0.861, R2(Y)=0.962 and Q2 = 0.893) based on the full NMR fingerprint (Fig. S2, ESI).  

This analysis, carried out using the 950 NMR variables to exploit the full dynamic range of 

spectral information, was then repeated on a set of 26 quantified metabolites to broaden the 

applicability of our study. Indeed, metabolite concentrations could potentially be determined 

without NMR using a wide range of biochemical methods. Here, metabolites concentrations 

were obtained from NMR spectrum deconvolution of each sample of culture supernatant for E. 

coli lactose (-) and Shigella spp. (91 samples). A significant discrimination was obtained from 

the O-PLS-DA score plot between E. coli lactose (-) and Shigella samples (Fig. 3a), associated 

with high values of goodness-of-fit model parameters (R2(X)= 0.99, R2(Y)= 0.75 and Q2 = 

0.639). Robustness of the model was validated by permutation testing (1000 permutations) 

under the null hypothesis, showing a clear decrease of R2 and Q2 with the correlation between 

original and permuted class information in the Y matrix (Fig. 3b). The reliability of our 

multivariate model was also assessed by a p-value of 7.53 x10-11 from analysis of variance 

(CV-ANOVA). Out of the 26 quantified metabolites, 7 metabolites (succinate, acetate, 

aspartate, formate, lysine, propionate and threonine) appeared to have a significant 

contribution to the statistical model as shown by Variable Importance in Projection for 

independent variables (VIP) values superior to one. Most of these metabolites were differently 

secreted in the medium by the two species (succinate, acetate, formate, and propionate), 

lysine and threonine were only secreted by Shigella spp. and one (aspartate) was consumed 

by both at different levels.  

Combinations of small sets of metabolites provide significant discrimination between 

E. coli lactose (-) and Shigella species 

Classification models that rely on only a few metabolites have the potential to be easily 

implemented using analytical data from various chemical and biochemical platforms, and 

therefore to be globally more accessible to the scientific and diagnostic communities. We thus 

evaluated the classification potential of individual metabolites, as well as combinations of small 
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sets of metabolites. Individual metabolites were chosen according to highest VIP values 

described above, for which consumption or secretion patterns differ between E. coli lactose (-

) and Shigella spp. (succinate, acetate, aspartate, formate, lysine, propionate and threonine). 

Mean concentrations and standard deviations for individual metabolites are reported in the 

supplementary material (Table S3 and Fig. S3, ESI). Combination of metabolites were 

obtained using an objective feature selection method based on multivariate exploratory ROC 

analysis 44. Multivariate models classification performance were evaluated based on AUC 

values of the ROC curves 43 constructed from O-PLS-DA cross-validation, as well as O-PLS-

DA Q2 values. Results are summarized in Table 1. For the entire 26 metabolites’ dataset, we 

obtained a remarkable AUC of 0.9995, confirming the powerful classification ability of the 

model. As expected, individual metabolites displayed modest classification capacities with 

AUCs under 0.77. We obtained higher AUCs of 0.86 and 0.97 when using limited sets of 5 or 

10 metabolites, respectively. These results show that simple combinations of discriminating 

metabolites can be designed to derive effective classification models between E. coli lactose 

(-) and Shigella spp. While individual metabolites fail to provide any satisfying discrimination 

between these closely related types of bacteria, multivariate models based on five, or ten 

metabolites could be exploited, depending on the analytical capacity and classification 

tolerance, retaining a diagnostic potential close to models constructed with the full ensemble 

of 26 quantified metabolites. 

Independent validation of E. coli lactose (-) and Shigella multivariate discrimination 

A second, independent series of 60 bacterial cultures was investigated to validate the 

classification model obtained for E. coli lactose (-) and Shigella species discrimination. NMR 

analysis, subsequent metabolite quantification and multivariate statistics were conducted 

without knowledge of the samples’ class membership, which was revealed to the operator at 

readout stage only. One sample was discarded as an outlier from PCA analysis. Predicted 

scores (Fig. S4a, ESI), i.e. projection of this independent dataset onto the model of Fig. 3, 

show a clear separation of the two classes of samples along the predictive latent variable 
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(horizontal axis). Yet, individual class membership prediction is not accurate, with a clear shift 

of the whole validation cohort towards the left side of the diagram. This systematic error 

conveys a clear batch effect associated with the use of different batches of bacterial growth 

media for the two independent studies, whereas the good separation of the two classes along 

the predictive component stresses the robustness of this latent variable towards Shigella vs. 

E. coli lac (-) discrimination. When considering the above selected subset of 5 metabolites 

only, OPLS-DA blind prediction of individual class membership is noticeably enhanced (Fig. 

S4b-c, ESI), and predicted samples project onto their counterparts from the model cohort. 

Despite the presence of batch differences between the two cohorts, an OPLS-DA analysis 

carried out on the merged datasets of 26 quantified metabolites (Fig. S5, ESI), provides a 

robust discrimination of Shigella vs. E. coli lac (-) growth media, with homogenous groups of 

samples for each class, and the same set of main VIPs contributing to the model as the one 

determined from Fig. 3c in the initial cohort. In this work, the diversity of strains studied (16 

strains per group) largely accounted for intra-species variability . Classification models based 

on larger cohorts will be certainly required to cover further variability among bacterial growth 

media sources, and generalize the proposed approach to robust classification of E. coli lac (-) 

and Shigella culture media of unknow origin. 

 

CONCLUSION 

This study demonstrates that untargeted proton NMR metabolomics of bacterial culture 

supernatants can robustly classify E. coli lactose (+) and Shigella spp. by unsupervised data 

analysis, and E. coli lactose (-) and Shigella spp. using supervised approaches. Lactose 

negative species have traditionally shown to be difficult to discriminate using classical 

(biochemical) techniques but also including the more modern ones such as mass spectrometry 

and nucleic acid amplification and sequencing. Statistical evaluation of 1H NMR profiles of the 

bacterial exo-metabolome, as detected from culture media footprints, provides a robust and 
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predictive species classification between E. coli lactose (-) and Shigella species. Simple 

classification models, based on limited sets (5 or 10 metabolites) of easily measurable 

metabolite concentrations from supernatants of bacterial cultures in Mueller Hinton medium, 

delivered significant discrimination for E. coli lactose (-) vs. Shigella spp. Our approach 

demonstrates the relevance of NMR footprinting in the field of bacterial identification and 

discrimination, even in the case of traditionally challenging bacterial species discrimination. 

We stress however that the proposed classification based on small sets of metabolites does 

not require NMR as an exclusive analytical workhorse, and can potentially rely on other 

technologies or biochemical methods for metabolite quantification. The proposed approach 

opens up new prospects for accurate and cost-effective microbial clinical diagnosis.  
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FIGURE LEGENDS 
 

Fig. 1: NMR analyses of the exo-metabolome. (a) Typical 1H NMR spectrum of a Shigella 

boydii sample (culture supernatant) at exponential growth, i.e. after 1.5 hours of culture in a 

Mueller Hinton medium. Unsupervised multivariate data analysis based on the 950 variables 

derived from the NMR 1D spectra of culture media samples (centered variables, with no 

scaling). (b) Score plot of the PCA model (PC1 and PC2) including both E. coli lactose (+) and 

(-) and Shigella (N=138, R2= 0.986 and Q2 = 0.92 on 32 principal components). E. coli lactose 

(-) and Shigella cannot be discriminated. (c) Score plot (PC1 and PC2) of the PCA model of E. 

coli lactose (+) and Shigella samples (N=91, R2= 0.95 and Q2 = 0.854 on 15 principal 

components). The discrimination between those samples is straightforward.  

 

Fig. 2. Supervised multivariate discriminant analysis (O-PLS-DA) of S. boydii, S. flexneri, 
S. sonnei and E. coli lactose (-) culture supernatants. The 4-classes model is built from the 

full NMR data matrix (950 variables, no scaling) with 3 predictive and 12 orthogonal 

components; R2(X) = 0.994, R2(Y) = 0.846 and Q2 = 0.666. Score plots represent data 

projections on planes defined by (a) the first 2 predictive components, and (b) the 1st and 3rd 

predictive components that displays optimum discrimination of species, respectively. 

 

Fig. 3. O-PLS-DA model based on 26 exo-metabolite concentrations derived from 1H 
NMR profiles of Shigella and E. coli lactose (-) culture supernatants. (a) Score plot of the 

(1+7) O-PLS-DA model discriminating 46 Shigella samples (in purple) and 45 E. coli lactose (-

) (in blue); R2(X) = 0.99, R2(Y) = 0.75 and Q2 = 0.639, CV-ANOVA p-value= 7.53 x10-11. (b) 

The O-PLS model was validated by re-sampling under the null hypothesis. (c) VIP value of 

each metabolite. 
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Table 1: AUC of the ROC curves based on the cross-validated score values from O-PLS-DA 

models for the discrimination of E. coli lac(-) and Shigella species, for individual metabolites 

presented by predictive VIP order, and combination of metabolites obtained by feature 

selection from multivariate ROC exploratory analysis 44. 

Individual metabolites Individual 
AUC 

Succinate (Suc) 0.674 

Acetate (Ace) 0.680 

Aspartate (Asp) 0.589 

Formate (Form) 0.588 

Lysine (Lys) 0.762 

Proprionate (PrP) 0.717 

Threonine (Thr)a 0.636 

Full Model AUC R2X R2Y Q2 Number of 
components 

All 26 quantified metabolites 0.9995 0.99 0.75 0.639 1+7 

Combination by ROC 
analysis AUC R2X R2Y Q2 Number of 

components 
3 metabolites:  
Ace-Suc-Form 

0.779 1 0.249 0.203 1+2 

5 metabolites: 
Ace-Suc-Asp-Form-PrP 

0.859 1 0.429 0.383 1+4 

10 metabolites: 
Ace-Suc-Asp-Form-PrP-Thr-
Lys-Glu-Leu-Pro 

0.971 0.982 0.612 0.546 1+3 

20 metabolites 0.998 0.991 0.744 0.64 1+7 
aOther abbreviations : Glu: Glutamate, Leu: Leucine, Pro : Proline 
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Figure 1.  

 

 

  

-0.4 -0.2 0 0.2 0.4

PC1 (42.2%)

Shigella

E. coli lac(+)

E. coli lac(-)

Shigella

E. coli lac(+)

a.

b. c.

-0.2

0

0.2

P
C

2
 (

1
3
.6

%
)

-0.2

0

0.2

P
C

2
 (

1
4
.5

%
)

-0.4 -0.2 0 0.2 0.4

PC1 (42.8%)

9 8 7 6 5 4 3 2 1 0
1H Chemical Shift (ppm)

w
a
te

r 
(r

e
s
id

u
a
l)

T
S

P

a
c
e
ta

te

fo
rm

a
te

h
is

ti
d
in

e

p
h
e
n
y
la

la
n
in

e

ty
ro

s
in

e

fu
m

a
ra

te

la
c
to

s
e

la
c
to

s
e

th
re

o
n
in

e
p
y
ro

g
lu

ta
m

a
te

p
ro

li
n
e

a
s
p
a
rt

a
te

g
lu

ta
m

a
te

v
a
li
n
e

g
ly

c
in

e

p
ro

li
n
e

a
rg

ig
n
in

e

ly
s
in

e

a
s
p
a
rt

a
te

m
e
th

io
n
in

e

p
y
ro

g
lu

ta
m

a
te

s
u
c
c
in

a
te

g
lu

ta
m

a
te m

e
th

io
n
in

e
p
ro

p
io

n
a
te

g
lu

ta
m

a
te

ly
s
in

e

le
u
c
in

e

a
la

n
in

e

th
re

o
n
in

e

e
th

a
n
o
l

v
a
li
n
e

le
u
c
in

e

is
o
le

u
c
in

e

g
ly

c
o
g
e
n

p
h
e
n
y
la

la
n
in

e



 20 

Figure 2. 
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Figure 3.  
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