
HAL Id: hal-02324315
https://hal.science/hal-02324315v1

Submitted on 1 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Charge injection phenomena at the metal/dielectric
interface investigated by Kelvin probe force microscopy

Florian Mortreuil, Christina Villeneuve-Faure, Laurent Boudou, Kremena
Makasheva, G. Teyssedre

To cite this version:
Florian Mortreuil, Christina Villeneuve-Faure, Laurent Boudou, Kremena Makasheva, G. Teysse-
dre. Charge injection phenomena at the metal/dielectric interface investigated by Kelvin probe
force microscopy. Journal of Physics D: Applied Physics, 2017, 50 (17), pp.175302. �10.1088/1361-
6463/aa665e�. �hal-02324315�

https://hal.science/hal-02324315v1
https://hal.archives-ouvertes.fr


1 
 

Charge injection phenomena at metal/dielectric interface investigated by Kelvin Probe Force 

Microscopy 

F. Mortreuil, C. Villeneuve-Faure,
*
 L. Boudou, K. Makasheva, G. Teyssedre 

LAPLACE (Laboratoire Plasma et Conversion d’Energie), Université de Toulouse,  

CNRS, INPT, UPS, Bat 3R3, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France 

* christina.villeneuve@laplace.univ-tlse.fr 

Abstract 

The understanding of charge injection mechanism at metal/dielectric interface is crucial in many 

applications. A direct probe of such phenomenon requires a charge measurement method whose 

spatial resolution is compatible with the characteristic scale of phenomena occurring after injection, 

like charge trapping, and with the geometry of samples under investigation. In this paper, charge 

injection at metal/dielectric interface and their motion in silicon nitride layer under tunable electric 

field are probed at nanoscale using a technique derived from Atomic Force Microscopy. This was 

achieved by realizing embedded lateral electrode structures and using surface potential measurement 

by Kelvin Probe Force Microscopy (KPFM) to provide voltage, field and charge profiles close to the 

metal/dielectric interface during and after biasing the electrodes. The influence of electric field 

enhancement at the interface due to the electrode geometry was accounted for. Electron and hole 

mobility was estimated from surface potential profiles obtained under polarization. Charge dynamic 

was investigated during depolarization steps. 

Keywords: KPFM, Thin dielectric layer, Lateral electrodes, Charge injection, Metal/dielectric 

interface  

1. Introduction 

An important property of insulating materials is their ability to accumulate charges under electrical 

stress. Even though this effect is useful for some applications, charge injection and accumulation in 

dielectric layers remain the main cause of failure in many devices. Therefore, knowledge of the space 

charge amount and its distribution in the dielectric layer is crucial to improve understanding on charge 

generation and storage mechanisms. Various space charge probing techniques were developed during 

the past decades, based on charge perturbation by acoustic or thermal excitation [1, 2] (Pulse 

ElectroAcoustic method, Pressure Induced Pulse Wave Propagation method, Laser Intensity 

Modulation Method, etc.). However, due to their low spatial resolution, around few micrometers [3, 

4], they fail to provide direct charge distribution in thin dielectric layers (thickness less than few 

microns) [5, 6]. Electrical modes like Electrostatic Force Microscopy (EFM) [7, 8] and Kelvin Probe 
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Force Microscopy (KPFM) [9, 10] were derived from Atomic Force Microscopy to overcome this 

drawback. These methods were extensively used to study thin dielectric films and manage to reach 

atomic resolution for KPFM in non-contact mode under vacuum [11, 12]. Focusing on charge 

retention in thin dielectrics, these techniques provide results about carriers dynamic at nanoscale [5, 

13-15] but up to now they fail to measure space charge distribution in three dimensions [13],
 
with 

notable lack of information about the in-depth charge distribution.  

A way to probe charge injection phenomena at the metal/dielectric interface is to use buried lateral 

electrodes. Under this configuration, the in-depth issue becomes a lateral one. Buried electrodes were 

already used to investigate charge transport in organic semiconductor using EFM [16, 17] or KPFM 

[18], mainly combining with current measurements [17, 18]. The obtained results on organic 

semiconductors, although promising, show strong dependence on the film morphology or on the step 

at the electrodes [16], which makes the interpretation tricky. Combining buried lateral electrodes to 

inject charges in thin dielectric layers and KPFM for resulting surface potential measurements, is a 

quite new and challenging approach. Indeed, to obtain space charge distribution close to the interfaces 

with resolution of the order of tens of nanometers, and to follow their dynamical behavior with and 

without applied electric field, surface and interfaces control are crucial. To improve the lateral 

resolution, a flat surface (small roughness and no step) and a small lift height are needed.  

In this contribution, we report on the development of lateral electrode structures to probe charge 

injection phenomena at metal/dielectric interface and charge motion in dielectric layers by using 

KPFM measurements. Knowledge of space charge distribution at local scale is necessary to 

understand mechanisms occurring at the metal/dielectric interfaces which were up to now investigated 

only by using microscale techniques [20, 21]. The obtained results should have strong impact on the 

interface characterization and modelling. The first part is dedicated to the description of experimental 

conditions for sample processing and KPFM measurements. The following part presents procedure to 

compute the electric field distribution in the dielectric layer and the used methodology to extract 

electric charge density from surface potential measurements. The last part is dedicated to the results 

and discussion in terms of charges density profile and charges mobility estimation. 

2. Experiments 

The samples are composed of buried lateral electrodes with different inter-electrode distances (from 

5µm to 40µm) as represented in top- and cross-view on figures 1.a. and 1.b., respectively. The 

investigated dielectric layers are of silicon nitride (SiNx), processed by Plasma Enhanced Chemical 

Vapor Deposition [22]. 300nm-thick SiNx layers were deposited on low resistivity silicon wafers. 

Aluminum electrodes were buried by lift-off process. A 2.5µm-thick N-LOF photoresist was deposited 

on the SiNx layer surface and patterned by photolithography. Then, the SiNx was chemically etched to 

a depth of 70nm and filled in by aluminum. This two steps process ensures an intimate metal/dielectric 
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contact and small surface roughness. Contact quality was controlled through observations of the cross-

section of the resulting structure by using Scanning Electron Microscopy (SEM). Finally, a 5nm SiNx 

passivation-layer was deposited to cover the embedded electrodes in order to prevent from discharge 

issues between electrodes and AFM tip. The resulting surface is flat enough (less than 5nm-step 

between the electrode and the dielectric layer) to avoid topography artefacts on the KPFM 

measurement. Figure 1.c. represents a top-view of the final structure as observed by SEM.  

  

Figure 1. Sample schematic structure in (a) top- and (b) cross-view. (c) SEM top-view image of 

buried lateral electrodes separated by a distance of 10µm. 

KPFM surface potential was measured in Amplitude Modulation mode with a Bruker Multimode 8 

set-up using Pt-coated silicon tip in lift mode. We used the common dual-pass mode as scanning 

method for KPFM measurements [23]. As the sample surface roughness is small (less than 5nm) a 

small lift of only 10nm was used to minimize parasitic capacitance effect and improve lateral 

resolution. The cantilever was maintained parallel to the electrode to minimize its contribution. All 

measurements were performed under dry N2 atmosphere after sample conditioning for 4 min at 120°C 

to remove the water layer adsorbed on the surface (in this case the adhesion force is measured close to 

zero). The electric field was induced by applying bias voltage between the electrodes. This bias can be 

symmetric ±V0 (i.e. potential difference V = 2V0) or asymmetric V0 with respect to the ground. 

Surface potential measurements were performed just after polarization and during the depolarization 

phase. 

3. Computing the electric field distribution and the charge profiles 

3.1. Electric field distribution 

To provide an accurate estimate of the electrical stress in the structure during charging, a Finite 

Element Model (FEM) was developed in two dimensions using COMSOL Multiphysics [24]. The 

resulting model represents the sample structure described above (figure 1.b.), surrounded by an air box 

of dimensions large enough to avoid edge effects. The relative dielectric permittivity of the silicon 

nitride layer was taken r = 7.5 which applies for 1 kHz and 23°C. The dielectric layer was supposed 

initially free from charges. The silicon substrate backside was set to ground as in the experiment. The 

Poisson's equation was solved in air and in the dielectric layer to determine the electric field 
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distribution. Meshing was adapted to the layer dimensions. It was refined in the two dielectric layers 

(studied layer and the passivating one) and at the metal/dielectric and air/dielectric interfaces. 

Figure 2 represents the potential and electric field distributions, on the dielectric surface for an inter-

electrode distance of 10µm and a symmetric V bias of 20V. Contrary to a plane-plane configuration, 

the potential varies non-linearly between the electrodes due to their small thickness (70nm) compared 

to their lateral dimension (few hundreds of µm). This implies a strong electric field enhancement close 

to the metal/dielectric interfaces. The influence of this field enhancement on charge injection 

mechanism is further investigated. To provide quantitative figures, two important values of the electric 

field are defined, as shown on figure 2: (1) Em is the electric field far from electrodes, i.e. in the middle 

of the dielectric and (2) Ei is the electric field in the region of enhancement, i.e. close to the electrodes. 
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Figure 2. Potential and electric field profiles at applied symmetric V = 20V between two electrodes 

separated by 10µm.  

3.2. Charge density profile 

The simplest hypothesis for determining the charge density profile from the measured KPFM profile 

consists in assuming that the scanned potential actually corresponds to the inter-electrode potential 

distribution. To a first approximation, this appears as reasonable hypothesis given the fact that the lift 

distance and the tip apex are small in respect to the inter-electrode distance. More sophisticated FEM 

modelling has confirmed the validity of the approximation [25]. From the surface potential VS(x) 

measured by AM-KPFM, charge density ρ(x) has been extracted resolving the Poisson's equation: 

 
2

0 2

S

r

d V
x

dx
    ,      (1) 

where ε0 is the vacuum permittivity, εr is the SiNx relative permittivity (εr=7.5) and x is the lateral 

position. Contrary to K. Faliya et al. [26] no smoothing treatment was applied. The derivation step dx 

was fixed to 160nm whereas KPFM measurement step was 39nm (512 points over 20µm) to minimize 

noise effect on derivation process. 
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4. Results and discussion 

Figure 3.a represents SiNx surface topography with 3nm roughness and less than 5nm-step between 

dielectric and electrode. Maintaining such small step between dielectric and passivated-electrode is 

crucial to avoid crosstalk between topography and surface potential map [27, 28]. Before polarization, 

the surface potential is flat with no contrast between dielectric and passivated electrodes, and taken as 

reference potential. Consequently, no correlation is observed between topography and potential map 

owing to the small topography variation of the surface. This aspect is crucial to guarantee accurate 

measurements at the metal/dielectric interface. Figure 3.b represents the surface potential map 

measured, at the same time as topography (figure 3.a), after applying -10V on one of the electrodes for 

1 hour, the inter-electrode distance being 10µm. The surface potential of the dielectric layer (figure 

3.b) is modified by the amount of charges which were injected and stored. According to Sadewasser et 

al. [27], as the surface potential modification appears far from the step (at 2µm in figure 3.c.), its 

shape should not be modified by the step height. Moreover, note that the observed surface topography 

heterogeneities (arrow on figure 3.a.) are not correlated with the potential patterns (figure 3.b). On 

figures 3.a and 3.b the dielectric/metal interface appears smooth. Potential profiles which were 

extracted from the potential map (figure 3.b.) along three different lines are plotted in figure 3.c. One 

finds two peaks, a positive one close to anode and a negative one close to cathode, ascribed to the 

injection of holes and electrons, respectively. Comparing the potential profiles depicted in figure 3.c. a 

variation of 16% of potential maximum and Full-Width at Half Maximum (FWHM) of the peak is 

observed.  
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Figure 3. (a) Topography and (b) Surface potential measured simultaneously by AM-KPFM in lift 

mode after −10𝑉/0𝑉 applied for 1h on electrodes separated by 10µm. (c) Surface potential profiles 

along different lines of the potential map.  

4.1. Injection 

Figure 4.a. represents surface potential profiles measured for different symmetric bias applied to 

electrodes separated by 10µm. Surface potential was acquired after bias removal. When the applied 

potential is increased, the surface potential is modified mainly in amplitude and in some cases in 

position. The charge density profile was estimated from the surface potential measurements for each 
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polarization configuration after using equation (1). Charge profiles, depicted on figure 4.b., emphasize 

that negative charges are trapped close to the cathode and positive charges are trapped close to the 

anode. Moreover, related image charges are revealed over each electrode. These profiles provide 

interesting information: (i) charges remain close to the electrodes (distance less than 2µm from the 

electrode) even for long injection time and (ii) no significant amount of charges is measured in the 

middle of the inter-electrode space. This should be related to the electric field enhancement close to 

interfaces, whereas the electric field in the middle of the inter-electrode space remains constant and 

low (cf. figure 2). The motion of charges is an important process to analyze. However, due to the noise 

produced by the two-steps derivation of the potential, it is quite difficult to estimate changes in time of 

the peak maximum. Besides, more work is needed to develop an accurate space charge profile 

computing method. As potential and density profiles are related by the Poisson's equation, and in order 

to limit noise effects, we use the change in position of the potential peaks to estimate the charge cloud 

motion, hence the charges mobility. Such reasoning is supported by the fact that the measured 

potential is relatively flat in the middle of the inter-electrode space, meaning that the field there is 

small. Under these conditions, the two trapped charge clouds can be considered as independent; the 

mutual influence appears to be small. As highlighted on figure 2, the electric field enhancement occurs 

close to the interfaces because of the electrodes geometry. By changing the applied bias and/or the 

inter-electrode distance, it is possible to act in different ways on the mean electric field between the 

electrodes (driving the charge transport) and on the field at the electrodes (controlling the charge 

injection). Results on the field values and voltage peak are summarized in Table 1. 
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Figure 4. Influence of 180min-polarization bias on (a) surface potential profile measured by KPFM 

and (b) resulting charges profile. Cathode to the left; anode to the right during polarization.  

Comparison of the 1
st
 and the 3

rd
 rows in Table 1 shows that by acting on the inter-electrodes distance 

the field at the electrode (injecting field Ei) can be modulated keeping the same field in the middle of 

the sample. From the resulting potential profiles, it can be deduced that the magnitude of both peaks 

(negative and positive) increases substantially when the interface field is increased. Higher amount of 
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charges is obtained for 20µm inter-electrode distance (maximum at 40C/m
3
) compared to 10µm inter-

electrode distance (maximum at 25C/m
3
). This feature confirms that the potential builds up due to 

charges generated by injection at both electrodes. 

Table 1. Influence of the electric field in the middle of the sample and field enhancement at the 

interfaces on the maximum potential and the FWHM of both peaks. Error bars are calculated 

considering 16% variation. 

Inter-

electrode 

distance 

(µm) 

Symmetric 

bias 

difference V 

(V) 

Computed electric field Positive peak Negative peak 

in the 

middle Em 

(10
5
V/m) 

at the 

interface Ei 

(10
7
V/m) 

Maximum 

potential VS 

(V) 

FWHM  

 

(µm) 

Maximum 

potential VS 

(V) 

FWHM  

 

(µm) 

10 10 5.9 1.58 0.44±0.07 2.9 -0.45±0.07 3.0 

20 14 4.13 1.58 0.33±0.05 2.9 -0.36±0.05 3.0 

20 20 5.9 2.12 0.77±0.12 3.0 -0.6±0.1 2.6 

 

The position of maximum potential was estimated for each peak at the beginning ( 30s) and at the end 

(180min) of the polarization step. The velocity of the charge cloud was calculated from the shift in 

position of the potential peak: 4nm/min for holes and 6nm/min for electrons with an uncertainty of 7% 

on the shift estimation which leads to an incertitude of 0.4nm/min for electrons velocity and 

0.3nm/min for holes velocity. Using the so-obtained velocity and the mean electric field (i.e. electric 

field far from interfaces) the determined value of the mobility of electrons is ≈ 1.2×10
-11

 cm
2
V

-1
s

-1
 and 

the one for holes is 0.8×10
-11

 cm
2
V

-1
s

-1
. The obtained value for mobility of electrons is of the same 

order of magnitude as the one reported for organic dielectric materials like polyethylene [29]. It is 

much smaller compared to the value deduced for thermal SiO2 (≈ 10
-9

 cm
2
V

-1
s

-1
) [30] using EFM data 

on similar structures as those presented in this work. Estimates of mobility in insulations can differ for 

many reasons: (i) structural characteristics and chemical composition (SiO2 vs SiNx), and the related 

elaboration process; (ii) procedure used to inject charges: in Ref. 30 the charges were injected or 

deposited on the dielectric surface under higher fields using an AFM tip, compared to the present 

study with buried planar electrodes; (iii) conduction mechanism involved: if charges are deposited on 

the surface, their drift can be provided through surface states. Their apparent mobility is then higher 

than the one in the material bulk. Also, depending on whether the charges are thermalized or not 

during measurements, their mobility can be considerably different. For example Mott et al. [31] 

estimated the band mobility for electrons in SiO2 to 20 cm
2
V

-1
s

-1
, which is ten orders of magnitude 

larger than the associated one to hopping between trap sites by Lambert et al. [30]; (iv) dependence of 

carrier mobility on the driving electric field.  

Considering the results in Table 1 and charge profiles (figure 4.b.), the maximum potential or charge 

density is the same for both peaks, meaning that electrons and holes have nearly the same injection 
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rate. The energy diagram for an Al/SiNx interface predicts energy barrier of around 2.1eV for electrons 

and 2.9eV for holes [32]. Therefore, electrons should be injected more easily than holes.  

Moreover, charges of both signs are detected after application of an interface field of only 10kV/mm 

(obtained for V of 5V with an inter-electrode distance of 5µm). The barrier to injection is decreased 

by only 0.1eV with such field and is still too high to be overcome at room temperature. Consequently, 

charges would be injected in interface traps with energy levels in the band gap: the relatively low 

estimated mobility is consistent with transport through trap states.  

4.2. Decay 

After 180min polarization step, the voltage profile was monitored for several hours with the electrodes 

being at floating potential. The evolution of the potential profile is reported on figure 5.a. Decrease of 

the maximum potential, slight peak broadening, and peak shift towards the dielectric bulk are observed 

for a short time (less than 30min). The amplitude of the negative peak decreases following an 

exponential-like law. About 30% of the measured initial potential value remains even after 8h of 

discharge. For the positive peak, the voltage drop is much slower, by only 30% after 8h. This 

dynamical behavior is comparable to the one obtained for microscale contact charging in SiNx 

dielectrics in case of dissipation in the volume [21, 33]. As previously, the charge density profile was 

extracted from surface potential measurement using equation (1) and depicted on figure 5.b. As for the 

potential profile, the charge density evolution with time after polarization emphasizes that the charge 

distribution broadens, moves slightly away from the electrode and substantially decreases in 

amplitude. 

The charge displacement velocity was estimated to around 1nm/min for electrons and holes from the 

change in position of positive and negative peaks. This velocity is smaller than the one measured 

during the polarization step owing to the fact that charges move under the effect of their own electric 

field which is smaller than the one applied during charging. 
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Figure 5. Evolution of (a) potential profile and (b) related charge density profile with time after 

polarization step (180min at V =20V) on lateral electrodes separated by 15µm.  
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5. Conclusion 

The proposed method for characterization of charging phenomena of insulators by using embedded 

electrodes offers several advantages over surface charge deposition using AFM tip in the sense that the 

field near the electrode is better controlled, less divergent, and with the absence of triple point (air-

metal-dielectric). Injection processes and transport in the bulk can be directly probed without the 

problem of surface dissipation of the charge and possible impact of surrounding atmosphere. 

Estimations of charges mobility were obtained considering shift in the potential curve. Critical points 

for further development of the method are the robustness of the model used to extract charge profiles 

and the spatial resolution: as such, potential curves integrate the response; proper modelling and 

derivation are necessary to reach ultimate charge localization and to estimate accurately charge density 

profile identifying artefacts. Such approaches are currently under way.   
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