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We apply the irreversible event-chain Monte Carlo (ECMC) algorithm to the simulation of dense
all-atom systems with long-range Coulomb interactions. ECMC is event-driven and exactly samples
the Boltzmann distribution. It neither uses time-step approximations nor spatial cutoffs on the range of
the interaction potentials. Most importantly, it need not evaluate the total Coulomb potential and thus
circumvents the major computational bottleneck of traditional approaches. It only requires the deriva-
tives of the two-particle Coulomb potential, for which we discuss mutually consistent choices. ECMC
breaks up the total interaction potential into factors. For particle systems made up of neutral dipolar
molecules, we demonstrate the superior performance of dipole—dipole factors that do not decompose
the Coulomb potential beyond the two-molecule level. We demonstrate that these long-range factors
can nevertheless lead to local lifting schemes, where subsequently moved particles are mostly close
to each other. For the simple point-charge water model with flexible molecules (SPC/Fw), which
combines the long-ranged intermolecular Coulomb potential with hydrogen—oxygen bond-length
vibrations, a flexible hydrogen—oxygen—hydrogen bond angle, and Lennard-Jones oxygen—oxygen
potentials, we break up the potential into factors containing between two and six particles. For this
all-atom liquid-water model, we demonstrate that the computational complexity of ECMC scales very
well with the system size. This is achieved in a pure particle—particle framework, without the interpo-
lating mesh required for the efficient implementation of other modern Coulomb algorithms. Finally,
we discuss prospects and challenges for ECMC and outline several future applications. Published by

® CrossMark
¢

AIP Publishing. https://doi.org/10.1063/1.5036638

I. INTRODUCTION
A. Irreversible Markov processes

Numerical methods are ubiquitous in the natural sciences,
with Markov-chain Monte Carlo (MCMC)! and molecular
dynamics? playing central roles. Markov-chain Monte Carlo
applies to any computational science problem that can be
formulated as an (perhaps fictitious) equilibrium-statistical-
physics system and whose solution requires sampling its
probability distribution. As in physical and chemical sys-
tems, equilibrium within the computational context usually
means that all probability flows vanish. This requirement is
enforced by the detailed-balance condition, an essential ingre-
dient of most Markov-chain Monte Carlo methods and notably
of the Metropolis algorithm.® Monte Carlo algorithms usu-
ally take much time to approach equilibrium* and, once in
equilibrium, to generate independent samples. This is, in part,
due to the fact that detailed balance leads to time-reversible
Markov-chain dynamics, which is diffusive and therefore
slow.

In recent years, a new class of irreversible “event-
chain” Monte Carlo (ECMC) algorithms has been proposed.>-®
ECMC algorithms violate detailed balance but satisfy a weaker
global-balance condition. Configurations at large times sam-
ple the equilibrium distribution, but the asymptotic steady state
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comes with non-vanishing probability flows. In particle sys-
tems with periodic boundary conditions, for example, atoms
may continue to move preferentially in certain directions. In
continuous spin systems, likewise, configurations realize the
equilibrium distribution even though spins rotate in a preferred
way.”~? ECMC moves (displacements of particles, rotations of
spins, etc.) are infinitesimal and persistent: An “active” particle
moves directly from one event to the next, that is, it continues
to move until a proposed move is vetoed by a unique “target”
particle, which in turn becomes the active particle. This pass-
ing of the active-particle label is called a lifting,'®!! and this
concept overcomes the characteristic rejections of randomly
proposed finite moves in the Metropolis algorithm. The ECMC
algorithm was instrumental in the solution of the hard-disk
melting problem, after decades of debate.'>!3 For soft poten-
tials,® it can decorrelate with a smaller dynamical exponent
than the local Metropolis algorithm.”-” Furthermore, in a one-
dimensional particle system, ECMC was demonstrated to mix
on shorter time scales than Markov chains that satisfy detailed
balance.'*1

In ECMC, the traditional Metropolis acceptance criterion
based on the change in potential is replaced by a consen-
sus rule. This is the essence of the factorized Metropolis
filter, which applies to translation-invariant systems with pair-
wise interactions between particles® and, more generally, to

Published by AIP Publishing.
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models whose interactions can be split into sets of indepen-
dent factors.'® The ECMC algorithm does not compute the
total system potential energy. This makes it very appealing
for long-range-interacting systems, where this computation is
costly. For Coulomb systems, ECMC altogether avoids tradi-
tional algorithms for the electrostatic potential,l7 the dominant
computational bottleneck for long-range-interacting models.
Rather, the cell-veto algorithm!® efficiently establishes con-
sensus on the acceptance or the rejection of a proposed move,
even if all particles interact with each other. This is the starting
point for the present work.

Generally, computations in statistical physics fall into
two categories. They either aim at thermodynamic averages
(energy, specific heat, spatial correlation functions, etc.) or
at dynamic properties (time correlations, nucleation barriers,
coarsening, etc.). In principle, the computation of thermody-
namic averages is the realm of Markov-chain Monte Carlo,
whereas the analysis of dynamical behavior calls on molecular
dynamics, as it solves Newton’s equations of motion. Specifi-
cally, however, the field of large-scale all-atom computations
with long-ranged interactions is today dominated by molecu-
lar dynamics for both categories. The dominance of molecular
dynamics is rooted in two facts: First, traditional Monte Carlo
methods usually update just O(1) particles at a time, and the
acceptance/rejection step is then followed by the exact com-
putation of the change in potential. The best currently known
algorithm'® for the change in potential after such a local update
in a Coulomb system is of complexity O(VN) so that one
Monte Carlo sweep (a sequential update of all N particles)
requires O(N*/?) computations. In molecular dynamics, by
contrast, the discretized Newton’s equations update all particle
positions simultaneously, and the necessary computation of the
forces on all particles comes at a cost of O(/N log N), much less
than for a Monte Carlo sweep. Second, Newtonian dynamics
conserves momentum and explores phase space more effi-
ciently than the local Metropolis algorithm. This advantage of
molecular dynamics over Monte Carlo is, for example, brought
out by the different scaling of the velocity auto-correlation
functions in the context of long-time tails.?*-!

The time evolution of molecular dynamics has physical
meaning, but from an algorithmic point of view, it is con-
strained by the requirement that it must implement Newton’s
law. As aresult, there is no additional freedom to accelerate the
exploration of phase space. By contrast, Monte Carlo dynam-
ics is non-physical and only constrained by the global-balance
condition. A well-chosen Monte Carlo dynamics can consid-
erably speed up the sampling of the equilibrium distribution.
Those equilibrium samples may also serve as starting con-
figurations for parallel molecular-dynamics calculations that
give access to high-precision dynamical correlation functions.
Furthermore, if more complex out-of-equilibrium rare-event
physical phenomena (such as protein folding) are of interest,
the time scales of long-time features can be accessed by the
inspection of the rare events produced by parallel simulation on
Noproc processors. Similar to the half-life analysis of radioac-
tive substances composed of large numbers of atoms, a rare
event that takes place on a time scale 7 on a single processor
will then take place on a time scale T/N o 0n one of the N proc
processors.

J. Chem. Phys. 149, 064113 (2018)

In this work, we develop the framework for the appli-
cation of ECMC to classical long-range-interacting all-atom
systems. In particular, we demonstrate efficient ECMC meth-
ods that rigorously sample the canonical ensemble, without
even evaluating the total potential. The factorizations that we
implement with the cell-veto algorithm allow us to move a
single particle from one event to the next in a computer run
time that is independent of the number of point charges in a
system. For a local charge-neutral system (for example, collec-
tions of charge-neutral many-atom molecules), the mean-free
path (the mean distance between events) decreases only log-
arithmically with the number of point charges in the system.
This implies that the computational effort required to move
every particle in a simulation a constant distance scales as only
O(N log N), with no approximation and without the demand-
ing interpolation onto the mesh that is introduced in many
modern electrostatic simulations.

We validate our algorithm through explicit comparisons
with a standard Metropolis algorithm and with molecular-
dynamics simulations, each performed with Ewald sum-
mations. We focus on two conceptual issues. One is the
computation of Coulomb pair-event rates, that is, essentially,
the derivatives of the two-particle Coulomb potential with
respect to the position of the “active” particle. In the sim-
plest version of ECMC, this corresponds to the probability
with which an active particle will stop and induce a lifting
to another particle. The other issue concerns the factorization
schemes of the system potential in which we lump together
different interactions that partially compensate each other
so that the ECMC mean-free path between events is much
increased. We first apply our ECMC algorithm to a pair of
like Coulomb point charges and then to systems of charge-
neutral dipoles in a three-dimensional simulation box with
periodic boundary conditions. We finally demonstrate the per-
fect agreement of thermodynamic observables between ECMC
and conventional Monte Carlo and molecular dynamics for up
to 256 water molecules at the standard density and tempera-
ture. The freedom offered by ECMC in choosing dynamics,
factor decompositions, and lifting schemes leaves ample room
for improvements. We expect it to be widely applicable to
all-atom simulations of charged systems.

B. All-atom molecular simulations

Of great importance in soft-matter research, biological
physics, and related fields, the all-atom approach projects
the full quantum-mechanical many-body system onto the
reduced classical degrees of freedom of the atomic positions.
The projection yields the potential energy as a function of
all the particle positions, and the Monte Carlo method can
then, in principle, be applied directly. Molecular dynamics
also starts from the atomic potential, as the forces in New-
ton’s equations are given by its spatial derivatives. Present-
day parametrized empirical force-field models*>?* further
break up the potentials and make them amenable to practi-
cal computations. For example, separate terms in the potential
typically describe deviations of chemical bonds from their
equilibrium values, with individual contributions for stretch-
ing, bending, and torsion. Likewise, distinct intermolecular
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potentials capture longer-ranged features of the interactions;
for example, dispersion forces, hard-core repulsions, and long-
ranged charge—charge and dipolar interactions. The all-atom
reduction from quantum mechanics to a classical interacting
system is approximate and not uniquely defined. Various force-
field models are used in a number of code bases,?*?> which are
also implemented in other prominent codes.”~2® The param-
eters in each force-field model are optimized to reproduce
thermodynamic and structural features over a reduced range of
temperatures and pressures. Different potential functions coex-
isteven for the description of simple molecules such as water.>’
We use in this work an all-atom potential for water that fea-
tures two-body bond stretching, three-body bending as well as
long-ranged Coulomb interactions, and a Lennard-Jones (LJ)
potential.*°

Modern codes generally compute the long-ranged
Coulomb potential through variants of the Ewald algorithm
applied to a discretized analog of the continuous position
space. The Fourier contribution to the potential is evaluated
by first interpolating each point charge to multiple points on
a mesh and then solving the Poisson equation via fast Fourier
transform, which, combined, is of complexity O(N log N)
per computation of the potential energy. Numerous formu-
lations of this algorithm have been developed starting with
the particle—particle—particle-mesh method.?! More recent
generations combine the particle—mesh philosophy with the
Ewald formula, to create the particle—-mesh—Ewald method>?
together with many variants*3=3> which, together, remain the
workhorse of modern simulation codes. The charge interpo-
lation onto the mesh generally presents the main computa-
tional workload. These methods use intricate strategies to
maintain a high level of accuracy. Mesh interpolation leads
to very large self-energy artifacts which have to be sub-
tracted with great care in order not to modify the physical
interactions.

Alternative approaches exist for the computation of the
Coulomb potential and the electrostatic forces on particles.
The hierarchical multipole-moment expansion,® for example,
expands the interactions of a particle with all the other par-
ticles in terms of spherical harmonics, and therefore avoids
Fourier transforms and mesh interpolations. However, the
expansion converges only with high orders of the multipole
moments so that one molecular-dynamics time step, although
it is of complexity O(N), comes with a prohibitive prefac-
tor. Local algorithms that propagate electric fields rather than
solve the Poisson equation also bypass the fast Fourier trans-
form.>’° This is an advantage in architectures where the
Fourier transform involves large-scale non-local information
transfers. In these algorithms, the complexity of a single-
particle update is O(1) but the use of a background mesh
to discretize the electrostatic degrees of freedom again leads
to costly interpolations from the continuum charges to the
discrete space.**! In contrast to well-established methods,
ECMC is directly formulated in continuous space, and its
successful implementation only relies on translational invari-
ance on all length scales. In essence, ECMC requires no
discretization of the simulation box, and the total Coulomb
potential and forces may remain unknown throughout the
simulation.

J. Chem. Phys. 149, 064113 (2018)

All-atom molecular-dynamics simulations must take into
account a variety of time scales and lengths. Indeed, the
high-precision time integration of intramolecular spring forces
requires a discretization time in the femtosecond range. The
physics associated with the much longer time scales that one
wishes to study include density fluctuations (which relax on the
picosecond time scale), Debye-layer equilibration (nanosec-
onds), and conformation changes (milliseconds). At the same
time, the precise rendering of dielectric and screening proper-
ties requires high-quality computations, and the long-ranged
nature of the interaction calls for large system sizes in order
to overcome finite-size effects. In order to efficiently man-
age both the stiffness (the presence of many relevant time
scales) and long-ranged potentials, interactions are often bro-
ken up and sophisticated multiple time-step algorithms are
implemented.*>*3 Use of a thermostat** is crucial in order
to counteract a drift of the system energy and to connect
the potential-energy surface with the system temperature. The
ECMC algorithm considers the same potentials as its competi-
tors, but it is fundamentally event-driven.* This is exceptional
in the presence of continuous potentials, whereas the event-
driven formulation for hard-sphere’ or for stepped potentials*®
finds its correspondence in event-driven molecular-dynamics
algorithms.*’*® In the absence of discrete-time approxima-
tions, the exact Boltzmann distribution is sampled at any
given temperature. This renders the thermostat unnecessary.
In our application, the triggering of events remains well bal-
anced between intramolecular, short-range intermolecular, and
long-ranged intermolecular Coulomb events.

The remainder of this work is split into two parts. Part I
corresponds to Sec. II, where we review recent advances in
ECMC. We present the literature in a consistent mathematical
language, which provides a unified framework for the appli-
cation of ECMC to Coulomb systems. In Part II (Secs. III-V),
we apply this framework to all-atom computations of various
systems with Coulomb interactions. We demonstrate both the
convergence to the Boltzmann distribution and the algorith-
mic scaling discussed in Sec. I A. The precise comparison
of computer run time with established molecular-dynamics
and Monte Carlo algorithms is, however, not presented in this
work.

Il. ECMC ALGORITHM

ECMC?>? is an irreversible continuous-time Markov pro-
cess: Its moves are thus infinitesimal. Analogously, Newton’s
differential equations are of course also defined in continuous
time. The molecular-dynamics algorithms that solve Newton’s
equations must be time-discretized for all systems except for
hard spheres? or for stepwise constant potentials.*”*® By con-
trast, in ECMC, discretization is generally avoided through the
event-driven approach. In the present section, we discuss the
essential issues of the algorithm’s setup and implementation
as well as its complexity.

A. Factors, factorized Metropolis filter

In ECMC, the interactions in an N-particle system are
split into a finite or infinite set of factors M = (Iy;, Ty)
€ P({1,...,N}) x T, where P is the power set of the indices
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(comprising all indices, pairs of indices, triplets, etc), and T
is a set of interaction types. We refer to I as the index set of

the factor and to T’ as its type. The total potential U, which

is a function of all particle positions {ry, ..., ry}, is written as

a sum over factor potentials Uy,

oy = > Un({riziely)), (D

MeM

U({I‘],...

where Uy only depends on the factor indices Iy and is
of type Ty. In Eq. (1), the set M = {M : Uy # 0}
c P({1,...,N}) x T only contains factors that have a non-
zero contribution for some values of the positions. In a
system with only pair interactions, a non-zero factor may
be ({i,j}, pair). The corresponding factor potential would
then be U(j), pain(ri, I;), and the total potential in Eq. (1)
then becomes U = ¥;; Uiy, pain)(Ti, T;j), which is normally
written as U = i <j Upair(r;, T)).

In this work, we use more general factorizations. The
Lennard-Jones factor, that we write as ({i,j}, LJ), has a factor

potential
o 12 o 6
Ui i ) =k —_ -1—1 1, 2
o () ”[(mﬂ) (|rij|)} ®

where r;; = r; — r; is the shortest separation vector from par-
ticle i to particle j, possibly corrected for periodic boundary
conditions. The Lennard-Jones factor “LJ” in Eq. (2) may be
replaced by two types, namely, the type LJ¢ (describing the
1/Ir,'jl6 part of the Lennard-Jones interaction) and the type
LJ1» (describing its 1/Ir;|'? part).® For two indices i and j,
this yields two factors, namely, ({i,;}, LJ¢) and ({i,j}, LI2).
Likewise, the bending energy in a water molecule with par-
ticles i, j, k will correspond to a factor index Iy, = {i,],k}
and to a factor type given by the specific function chosen
for this interaction. A similar approach was introduced for
modeling neighboring beads in a polymer.'¢ In Secs. IV B
and V, we consider factors that lump together all of the
Coulomb interactions between the four particles comprising
two distinct dipoles and even between the six particles of
two water molecules, respectively. The factor corresponding
to the latter case is given by ({i,J, k, [, m, n}, Coulomb). (For
simplicity of notation, we do not differentiate in this work
the Coulomb types for two, four, and six particles.) As men-
tioned, the set of factors can be infinite,'® even for finite N.
As an example, in a finite periodic system, one can view
the three-dimensional Coulomb interaction between particles
i and j as a sum of interactions between i and each periodic
copy of j indexed by an image index n € Z>. For the case
of the above two-water-molecule Coulomb interaction, we
would then have M = ({i,J, k, [, m,n}, Coulomby). The type
set 7 would then contain all of the separate-image Coulomb
interactions,

{Coulomb, :n € Z3 7, 3)

where the set of Coulomb types may be a proper or an
improper subset of 7. We will treat such factor types in
Sec. I1I.

Given the potential factorization enforced by Eq. (1),
the Boltzmann weight n(c) = exp[—BU(c)] of configuration

J. Chem. Phys. 149, 064113 (2018)

¢ = {ry,...,ry} reduces to a product over factor weights
my(en) = exp[—=BUm(em)],

ne) = [ | mmtew) = | [exp[-BUMEew)], @
M M

where ¢y is the factor configuration, that is, the configura-
tion c restricted to the indices of factor M. The traditional
Metropolis filter,' which defines the acceptance probabil-
ity for a move from configuration ¢ to configuration ¢’ in
the Metropolis algorithm, does not factorize in a similar
fashion,

pMet(c — ¢’) =min[l,exp (-BAU)], 5)

, (6)

= min[l, l_[ exp (-BAUy)

M
where AUy = Unm(cy,) — Un(cn) is the factor-potential dif-
ference between factor configurations ¢y and c;,. The recent
factorized Metropolis filter® inverts the order of the product
and the minimization and thus casts the acceptance probabil-
ity of a move into the same factorized form as the Boltzmann
weight,

pit (e > ¢ = nmin[l,exp (-=BAUy)]. @)
M

The factorized filter in Eq. (7) and the Boltzmann weight
are now written as analogous products. Strictly speaking, M
is a generalized index denoting a factor (exp (—B8AUy) or
min[1,exp (—=BAUy)]). It is for simplicity that we refer to M
as a “factor” rather than a “generalized index for the Boltzmann
factor and the filter factor.”

The factorized Metropolis filter satisfies the detailed-
balance condition,

m(p™N e — ¢) = 2PN - o). (8)

This is evident if there is only a single factor [U = U, in Eq. (1)
so that Egs. (5) and (7) are identical] because the Metropolis
algorithm itself is well known to satisfy it,

m(pMc - ') = 2 PM (" > c). ©)

ﬁ\/lel , ‘/—-Ma

¢! —c

If there is more than one factor, me also satisfies detailed

balance because the Boltzmann weight 7 of Eq. (4) and the
factorized Metropolis filter pFat of Eq. (7) factorize (that
is, break up) in exactly the same way and Eq. (7), on the
level of a single factor, is again equivalent to the Metropolis
algorithm.

Applying the Metropolis filter p
to drawing a Boolean random variable,

Met of Eq. (5) is equivalent

if ran(0, 1) < pMe(¢c — ¢"),

else,

“True”

XMet(C N CI) —
“False”

(10)

where “True” means that the move from configuration c to con-
figuration ¢’ is accepted. Similarly, the factorized Metropolis
filter pF°t could be applied by drawing a single Boolean ran-
dom variable with pFat replacing pM°t in Eq. (10). However,
because pFct < pMet, this would yield a less efficient algorithm.
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We rather view the factorized Metropolis filter as a conjunction
of Boolean random variables,

X e— =\ Xulew = ). (D
MeM

Now, XFl(¢c — ¢’) is “True” if the independently drawn
factorwise Booleans X, are all “True”,

“True”  if rany (0, 1) < e PAUM
Xu = (12)

“False” else,

where the uniform random variables rany, (0, 1) are mutually
independent for all M.

The conjunction of Eq. (11) formulates the consensus
principle: In order to be accepted, the move ¢ — ¢’ must be
independently accepted by all factors M. For example, for a
homogeneous N-particle system with pair factors ({i,j}, pair),
the move of a single particle k must be individually accepted
by the factors ({k,j}, pair) V¥j # k.In other words, the move of
particle k must be accepted by all other particles, each through
its individual Metropolis filter.

For a continuously varying potential, the acceptance prob-
ability of a single factor M has the following infinitesimal
limit:

min[1,exp (-BAUy)]| = exp (-BAU},;)

D02,y gdUY,  (13)
where
xt = max(0, x) (14)

is the unit ramp function of a real number x. In this limit, the
factorized Metropolis filter becomes

pFe - ¢y =1- B> [dUnten = ], (15)
M

and the total rejection probability for the move becomes a sum
over factors

1= pFacte o5 ¢7) = ﬂz [dUM(cM — cl'u)r. (16)
M

In ECMC, the infinitesimal limit generally corresponds to
the continuous-time displacement of a particle k at position
rr = (Xk, Yk, 2k) and it is usually along a coordinate axis. Sup-
posing that this displacement is in direction &, the differential
of the factor potential becomes

dUy = Gu x dxx, a7

where

. U,
aua((r; i€ ly)) = 2,

e (k € In) (18)

is the factor derivative with respect to particle k. We then define
the factor event rate with respect to particle k as

amk = Blami]™, (19)
so that each of the terms dU;I becomes
BAUy; = gk dxg. (20)

J. Chem. Phys. 149, 064113 (2018)

The event rate gy ; yields the probability of an event being
triggered by particle k within factor M. The total event
rate

Or({ri,....ra}) = gux({ri 1 i € Iy}) (1)

M=y, Tpr):k€lyy

with respect to a particle k naturally involves only event rates
for factors that contain k in their index set.

B. Lifting and factorization schemes

The lifting concept'® is central to ECMC. It lends per-
sistence to the individual Monte Carlo moves and thereby
allows one to take the zero-displacement limit. It is in this
limit that the sampling of factors becomes unique. We now
describe the implementation of a lifted irreversible Markov
chain for the simulation of pair-interacting particles,® starting
with a single pair. We then generalize'© the method to complex
multi-particle potentials.

In a standard Markov-chain Monte Carlo algorithm, the
rejection of a move of some particle at time s imposes that
the state ¢(s + 1) of the Markov chain at time s + 1 remains
unchanged with respect to the state c(s) at time s. A new
move is then proposed. For a local Monte Carlo algorithm
in a particle system, this new move normally consists in an
independently sampled displacement applied to another ran-
domly chosen particle. In order to converge toward the correct
stationary distribution &, we recall that the Markov chain must
satisfy the global-balance condition,

7"

.Fc = Z Fc”—»c = Z ﬂ(cll)p(cn - C) = 7T(C), (22)

C

meaning that the total flow F. into a configuration ¢ must
equal its Boltzmann weight.** The detailed-balance condition
of Eq. (8) is only a special solution of Eq. (22). In addition
to the global-balance condition, the Markov chain must also
be irreducible and aperiodic. These two conditions are easily
satisfied;* the former guarantees that any configuration will
eventually be visited, while the latter guarantees that the large-
time limit has no hidden periodicities.

In ECMC, any physical configuration c (that is, any set of
particle coordinates) is augmented (or “lifted”!") to include
the so-called lifting variable describing which particle is
“active”,

c={ry,...,ry} - (c,a). (23)

In principle, the Boltzmann weight now depends on a, but,
for simplicity, we require 7[(c, a)] = m(c)/N and absorb the
normalization factor 1/N into the zero of the potential and
omit it in the following.

In ECMC, furthermore, the particle a (the active parti-
cle) remains active for subsequent moves as long as they are
accepted, and the displacement (in the case that we will treat)
is always the same.’® For simplicity of notation, in the fol-
lowing, the displacement 7 is applied in the €, direction for all
moves so that the position r, is updated tor, + n€, for accepted
moves. When a displacement r, — r, + 1€, is rejected by a
target particle ¢, the state of the lifted Markov chain changes
in the augmented space as
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(c,a) = (c, 1), (24)

but the physical configuration ¢ remains unchanged. Liftings
thus replace rejections, and the resulting ECMC algorithm is
rejection-free on the augmented space. The global-balance
condition must be written in terms of the augmented con-
figurations, and the probability flow F.,) into each lifted
configuration (c, a) is then given by the sum of the mass flow
Fioay - thatis, the flow corresponding to a particle displacement
and the lifting flow .T-}‘Cfta) This sum must equal the statistical
weight of (c, a) that, as discussed, equals 7 (c),

Fiea = Fiy + Fity = ) @9
In order to assure irreducibility of the Markov chain, one may
change the direction of motion, most simply by selecting from
the set {é,,&,,&;} in a way that does not need to be random
(see the discussion in Sec. V B). In ECMC, the process in
between two changes of direction is the eponymous “event
chain.” The length ¢ of an event chain (the cumulative sum
of the displacements) and the distribution of £ are essential
parameters for the performance of the algorithm.

To demonstrate that ECMC satisfies the global balance
condition and to study the conditions on the lifting probabil-
ities, we first consider a system of two particles {1,2}. We
may suppose, without restriction, that the active particle is 1
so that, at a given time, the lifted configuration is (c, 1). This
lifted configuration can only be reached from two other lifted
configurations, one that differs in the configuration variable
and the other in the lifting variable (see Fig. 1). The lifted
configurations and the corresponding flows are

(c//7 1)
\fﬁ ) (mass flow)
(c,1)
/g‘;’ﬂ) (lifting flow) .
(c,2)
(<,2)

where ¢ = {r|,r3}, ¢/ = {r; — né,rz}, and ¢’ = {r;,r;
+ né,}. The mass flow of the lifted algorithm from (¢, 1)
to (¢, 1) equals the total Metropolis flow from the non-lifted
configuration ¢’ to c¢. Because of detailed balance, the lat-
ter equals the (non-lifted) Metropolis flow from ¢ to ¢” so
that

Cc—C

Fasy = T, = Bl = mepMie > ). @)
———
see Eq. (9)

The lifting flow in Eq. (26) equals the rejection probabil-
ity of the Metropolis move ¢ — ¢’. Because of translational
invariance (¢’ is a translated version of ¢’), it agrees with
the Metropolis rejection probability of the move back from
ctoc”,

];lift

@) = ”(C)[l -pMic - C')],

= Jr(c)[l - pMet(c - c")]. (28)

J. Chem. Phys. 149, 064113 (2018)

J—_'mass

10 * 1)
(¢,2) 2@ / 1@

o Flen)

FIG. 1. Mass flow [from (¢”, 1)] and lifting flow [from (¢, 2)] into a lifted
configuration (c, 1), corresponding to an accepted and a rejected particle move,
respectively [see Eq. (26)]. The total flow should equal the Boltzmann weight
7t(c) in order to satisfy the global balance condition of Eq. (22).

Fey and ‘Fl(icffl) thus add up to the Boltzmann weight m(c)
and global balance is satisfied. The validity of the lifted algo-
rithm (which only satisfies global balance, but breaks detailed
balance) hinges on the fact that the underlying Metropolis
algorithm satisfies detailed balance and on the translation
invariance of the system.

In the infinitesimal limit, for N particles and a particle-
pair factorized potential, the total probability flow into a lifted
configuration (¢, a) has up to N components, namely, N — 1
lifting flows from (c, k) to (c, a) for k # a and one mass move
from (¢’, a) to (c, a), where ¢’ is again the non-lifted config-
uration with x, replaced by x, — dx. This corresponds to one
lifting flow Fif'(k — a) equivalent to that in Eq. (26) per target
particle k # a and a mass flow that is the infinitesimal analog of
that in Eq. (26). Furthermore, a particle-pair potential may be
further factorized according to multiple factor types T'y;; there
then exist N — 1 lifting flows for each factor M consisting of
two particles (/71 = 2, with I; the index set of M). Of course,
factors that do not contain a in their index set do not contribute
to this flow.

Factors M with more than two particles (/] > 2) can
also be handled within the lifting framework'® because, by
translational invariance, the sum over the factor derivatives
with respect to particle k satisfies

Z 8 Uy ({ri i € Iyy}) = 0. (29)

kely

It is useful to separate the particle indices k € I; of a factor
M into two sets 1;4 (with positive factor derivatives) and I},
(negative factor derivatives) such that

ktely o 0,.Uy >0, 30)

kmely e 0, .Uy <0, 31

where the factor derivatives satisfy

D, Oy Un== ) 8y Uu (32)

k*ely, k=ely,

[see Fig. 2(a)].
The mass flow into a lifted configuration (c, k) with
k* € I, by itself satisfies global balance,

f(rgz;(is) = ﬂM(cu)pAl\;m(c” - C)

= mu(e)ppyi(c = ¢”) = mu(c), (33)
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M v kt kS kF k+ kT ky
e L, G D G
B Q-
Ky L O~
O+ - il NS CDEl O
k3 : T k™ k™ ki ks ki ky ky
1 3
j [In| =2 [In| =3 [In| = |In| = 5, ratio lifting

(a) (b) (c)

(d) (e)

FIG. 2. Factors and lifting schemes. (a) A factor M consisting of 17| = 5 particles split into non-empty sets 1;'4 (particles that increase the factor potential) and
I, [see Eqgs. (30) and (31)]. [(b)—(e)] Lifting schemes. Unit branching y;+_,;- = 1 and ykrﬂkf = l,yk; _- = 1 for a pair-particle factor [(b)] and a three-particle

factor with |7}, | = 1 [(c)], and “ratio” lifting scheme for |1/ | = 3, |I;[| =1 [(d)] and for I/p/] > 3 [(e), see Eq. (40)].

so that there can be no additional lifting moves into
(¢, k*). This implies that lifting moves are always as
(¢, k™) = (c, k™), that is, from an active particle in I;I to a target
particle in [;,. By contrast, the mass flow into the configuration
(c, k™) is smaller than my;(c),
Foiy = mu(ppy (e’ = o)
= m(O)ppy e = )
= my(c)(1 + By Uy d). (34)
——

<0 (see Eq. (31))

The total lifting flow into (c, k~) comes from all lifted
configurations (c, k*) with k* € I,

‘Fi(icf’tk—) = ﬂM(C)ﬁ Z (9xk+ Uy dx'yk+_)k,, (35)

k+ely

where yp+_- is the lifting probability from k* to k~ once
the displacement of k™ has been rejected. In order for global
balance to hold, Egs. (34) and (35) must add up to nr(c) for all
k™ € M~ . Therefore, and for the algorithm to be rejection-free,

one needs'®
VKT € Byt 0y Uy + ) 0y, Uy =0, (36)

S~ it T~
<0 kerely >0

VK el Yy =1 (37)

kel

Equations (36) and (37) can be visualized as |/;;| intervals
of length 9, , Uy placed on the upper row of a two-row table
and of |1;,| intervals of length |0y, Up| on the lower row [see
Figs. 2(b)-2(e)]. The total lengths of the two rows are equal
[see Eq. (32)], and yj+_- is the fraction of the interval k* on
the upper row that lifts into k= on the lower row. Equation (36)
describes a conservation of the interval lengths from the upper
row to the lower row.

For a pair factor (I/y/| = 2), each row has one element
and the lifting is unique [y = yp+—i- = 1; see Fig. 2(b)].
For a three-particle factor (I = 3), if |I],| = 2, again clearly
Yk+—i- = 1 foreach one of the particles k* € I}, [see Fig. 2(c)].
If |I},] = 1 and |I,,| = 2, then Eq. (36) yields the unique
branching probabilities'® from k* to ki and k3,

0. Un

Yok = % Un o |0, Unl, (38)
By, U

Virok; = = 32 Ut o 0y, Unl, (39)

which is readily understood from Fig. 2(d). Analogously, for
factors with Il > 3, the “ratio” lifting corresponds to cut-
ting up each element in the upper row of the table into pieces
of length proportional to the elements in the lower row so
that

axkf UM|
Yit—k- =
Zk*e];d axk- UM’

[see Fig. 2(e)]. For factors with more than three particles
(I > 3), the “ratio” lifting scheme is not unique.'® We will
make use of this freedom, in Secs. IV and V, for factors with
up to six particles corresponding to the atoms of two H,O
molecules.

(40)

C. Event-driven and cell-veto methods

The implementation of ECMC differs notably from that of
the Metropolis algorithm, both because of the continuous-time
nature of the Markov chain, which can be simulated with-
out approximations using the event-driven approach,* and
because of the consensus property, which can be checked in
O(1) operations via the cell-veto method, even for infinite-
ranged interactions.'® (This method can be understood as a
“thinning” of the underlying nonhomogeneous Poisson pro-
cess.’!) The event-driven formulation of ECMC and the effi-
cient establishment of the consensus are explored in the present
section. The intent is to overcome the limitations of time-
driven ECMC which considers a finite move 1€, of the active
particle,

S Ta+ ey, ... ry}. (41)

{ri,....rq,....,v5} > {ry,..

This move is either accepted (and then repeated) or it leads
to a rejection (by a factor M € M containing particle a),
and it gives rise to a lifting (or possibly to multiple simul-
taneous liftings). The complexity of time-driven ECMC is
O({M : a € Iy1}]) per displacement né,. Time-driven ECMC
has a discretization error, as it becomes inconsistent if more
than one factor simultaneously rejects the move in Eq. (41).
The parameter 7 must be small enough for multiple rejec-
tions to be rare. Time-driven ECMC is thus slow, especially
for long-ranged interactions, and inexact. It is useful only for
testing.

The finite-move ECMC can be implemented as an event-
driven, rather than as a time-driven, algorithm,“s’52 and
because all factors are independent, we may consider a sin-
gle one of them. In the above time-driven ECMC, if the move
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in Eq. (41) (the first move, m = 1) is accepted,
another displacement of magnitude 7 is attempted. The /th
move is

{ri,....rg+(-Dnéy,...,ry} > {ry,....r,+iné,,...,ry}.
(42)
After m — 1 acceptances, finally, the mth such move

is rejected (and leads to a lifting). The parameter m is
itself a random variable distributed with a factor-dependent
probability

move m rejected
m—1

—
pulm) = [ [P0 [1-e AU 43)
=1
————
accepted; see Eq. (13)

where AUj (1) is the change AUj, corresponding to the /th
move in Eq. (42). The variable m can be sampled from Eq. (43)
and the move r, — r, + (m — 1)né, accepted in one step.
Although the right-hand side of Eq. (43) gives a probability
distribution for the displacement of the active particle a, it only
depends on the positive increments of the factor potential. In
the continuum limit 7 — 0, the second term on the right-hand
side becomes Bd U;[,I(ra + ny€y), that s, the factor event rate of
Eq. (20), where 1, is the total displacement before a rejection
by factor M takes place. In this limit, the exponent in the first
term on the right-hand side contains the integral of the factor
event rate for the displacement of r, between 0 and 7. This
gives the probability density*

pu(Uyy) = Bexp (=B Uyy).- (44)
In Eq. (44), the exponential distribution is sampled by
BUy, = —log{rany (0, D}, (45)

where

ﬁU/T/](ra + TIMéx)
—————

sampled via Eq. (45)
1M

=/ B0:, Un ({ra +néy, v sk e Iy))] dn.  (46)
(

factor event rate, see Eq. (20)

In other words, ﬂU;j[ is the cumulative event rate of Eq. (20).
Equation (46) is an implicit relation for the limiting dis-
placement 1, at which the rejection takes place as a func-
tion of the sampled value of BUj,. For a two-particle factor
M = ({a,k}, pair), the integration of the pair event rate
in Eq. (46) consists in the replacement of the potential Uy,
by a related potential which is zero at r, and where all
the negative increments are replaced by horizontal lines (see
Fig. 3).

As mentioned, the factors are independent and each con-
cerned factor M provides a value n7),. The next event takes
place at

= mi 47
n MIEIGI}M nm 47

and the factor which realizes this minimum (that is, 1),

argming.,c . 1u. (48)
is the one in which the lifting takes place. For a continuous
potential, this factor is uniquely defined and possible simulta-
neous events, due to finite-precision arithmetic, are too rare to
play a role.

J. Chem. Phys. 149, 064113 (2018)

+
ﬁUAI
-log ran(0, 1)

BUM

0 displacement of r,  TM n

FIG. 3. Event-driven ECMC*® for a two-particle factor M. The integral
of the factor derivative multiplied with 8 equals SUys, whereas the inte-
gral of the event rate (in red) must equal B U, which is sampled from
Eq. (45). The calculation of the displacement 77, from the sampled value of
BU;} = —log ran(0, 1) is indicated by arrows.

The integration of the factor event rate in Eq. (46) can
be tedious if it cannot be cast into an explicit analytical form.
This will, for example, be the case for the Coulomb poten-
tial in the merged-image framework of Sec. III C. In addition,
the inversion of the factor potential [the computation of 7,
in Eq. (46)] can be non-trivial. Finally, this calculation must
in principle be redone for all the factors that contain the
active particle a. For a long-ranged potential, this requires
ON) = O({M € M : i € Iy}|) event-rate integrations
and inversions per event. The cell-veto algorithm,'® by use
of a comparison function, avoids the integration and the inver-
sion of the event rate, and it moreover reduces the overall
complexity of ECMC to O(1) per event.

We again first consider a pair factor ({1, 2}, pair), with 1
being the active particle. The lifted position is (¢, 1) [with
¢ = (ry, ry)] and the displacement is again in direction &,
(as in the situation in Fig. 1). We embed the two particles
in disjoint cells C; and C, (see Fig. 4). The potentials that we
consider here are singular only at r| = r, so that the event rate
for factor M may be bounded by a constant “cell-event” rate
a5 (C1, C),

gm,1(r1,rp) < q;;ll(cl,cz) Vri € Ci, 1 € Cy, (49)

where the right-hand side only depends on the factor type.
This factor-type dependence may take into account separate
cell schemes that could, for example, correspond to Coulomb
interactions between isolated charges, dipole—dipole interac-
tions, or to the Lennard-Jones potential. (We recall that we do
not differentiate the different Coulomb types for 2, 4, 6 parti-
cles to ease notation.) In this work, the condition C; # C; is
adequate to ensure a reasonable value of the cell-event rate. In

other cases,'® one must exclude a local set of cells and treat
(@), (b)
®
2 cell A B C A\
Qc, ary, 3 € o
? , /\ O;
. qm,1 o 3
&
<
0 L 0 displacement n

FIG. 4. Cell-veto algorithm for a two-particle factor M. (a) Active particle 1
in cell C; and target particle 2 in cell C,. (b) The event-rate gp (ry, I2) is
bounded from above by the cell-event rate q;;” (C1,C3), which can be sampled
trivially. A cell event may either be rejected (at point “A”) or confirmed (at
point “B”) as a particle event [see Eq. (50)], while a cell event taking place
outside C; (at point “C”) means that the active particle 1 will advance toward

the cell boundary.
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local neighbors outside the cell-veto framework. Cell-event
rates are easily tabulated in advance of the ECMC computation
proper.

The probability of the event taking place for an infinites-
imal displacement dx equals g1 (r1, r2)dx. Since

qm,1(ri,12)

a5M(C1,Co)
I
<

am.1(r1.12) dx = g5'(Cy, Cy) dx (50)
N ee—

infinitesimal

the event can initially be sampled as a “cell event” with the
constant infinitesimal probability ¢;<!'(C1, C2)dx, before being
confirmed with the finite probability gy.1(ry,2)/ q;;“(c 1.C2)
< 1. We may suppose that the cell event takes place at a lifted
configuration (¢’, 1) with

¢’ = (r1 +né,12), (5D
n(n) = exp|~1455'(C1.C2)] (52)

where 17 can be sampled via
n = ~log[ran(0, D1/g7;, (C1,Ca). (53)

Three outcomes are possible for the sampled values of n
and the subsequent confirmation step. First, the cell event may
correspond to a configuration ¢’ [in Eq. (51)] that is already
outside the active-particle cell (¢’ ¢ Cy). In this case, the move
is (¢, 1) = (¢”, 1), where ¢’ is the configuration intersecting
the trajectory of particle 1 with the boundary of C;. Such a
cell-boundary event moves the particle, but does not trigger a
lifting. Second, the cell event may take place at a configura-
tion ¢’ € C; but fails to be confirmed as an event (because a
uniform random number ran{O, q;;H(C] ,Cz)} > gqup.1(ry,T2))
[see the second term on the right-hand side of Eq. (50)]. In
this case, the move is (¢, 1) — (¢, 1) and no lifting takes
place. Third, a cell event may take place at a position ¢’ € C;
and it is confirmed as an event. This event induces a lifting
(c’, 1) > (c¢’, 2) [see Fig. 4(b)]. In this whole process, the
factor derivative gy is evaluated only when a cell event is
triggered from the exponential distribution in Eq. (52). The
costly integration of the factor event rate in Eq. (46) is thus
avoided.

For an N-particle system, the cell-veto algorithm orga-
nizes the search of the next lifting in O(1) operations. It
suffices to choose a regular grid of cells such that, nor-
mally, only a single particle belongs to each cell. (Exceptional
double-cell occupancies can be handled easily.!®) In this case,
the total event rate with respect to the factor type 7, for
an active particle in C, is bounded by the total cell event
rate,

PCH= Y, asCaC). (54)

cells C,#C,

In a translationally invariant system, the total cell event rate
does not depend on the active cell so that QCT‘;;'(C,Z) = Q‘;j;l,
a constant that is computed before the ECMC simulation
starts from the total number of cells that scales as O(V).
The next cell event is obtained from an exponential dis-
tribution with parameter chil(ca). This event corresponds
to cell C; with probability o q;;ll(Ca,C,), posing a discrete
sampling problem that can be solved in O(1) by Walker’s
algorithm.!8-3
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The cell-veto algorithm samples the Boltzmann distribu-
tion without performing the event-rate integration in Eq. (46).
It requires only O(1) factor-potential evaluations per event in
an N-particle system. As a consequence, the total potential of
Eq. (1) is not updated and the potential remains unknown as
the Markov chain evolves. This is what sets ECMC apart from
traditional simulation approaches.

lll. ECMC COULOMB ALGORITHMS

In a three-dimensional simulation box with periodic
boundary conditions, the Coulomb potential is only condi-
tionally convergent for a charge-neutral system, and it is
infinite for a system with a net charge. Finiteness of the poten-
tial can be recovered in both cases if each point charge is
compensated by a background charge distribution. Tradition-
ally, this is chosen as uniform within the simulation box.!”
The precise association of each background charge with its
point charge is not unique. This leads to different electro-
static boundary conditions, which are linked to the polarization
state of the simulation box. Consistency imposes a distinct
fluctuation theorem!” for each choice of the boundary con-
dition when computing macroscopic physical properties such
as the dielectric constant. Alternatively to the uniform com-
pensating background charge, in ECMC, a line-charge model
was introduced.'® In this model, the background charge dis-
tribution is one-dimensional and the factor derivatives are
absolutely convergent. The potential for different variants
of the line-charge model can be absolutely or conditionally
convergent.

As discussed in Sec. II A, ECMC allows for different
Coulomb factor sets that may influence the convergence prop-
erties of the algorithm, although the steady state is invariably
given by the Boltzmann distribution. Roughly, there are two
inequivalent Coulomb factorizations.'® First, the periodic two-
particle problem can be embedded on a three-dimensional
torus and the potential merged from all the topologically
inequivalent minimal paths between particles [see Fig. 5(a)].
For two particles, {1,2}, this “merged-image” system has a
single factor ({1, 2}, Coulomb). For N particles, this gives the
factor set

{({i,j}, Coulomb) : i <j e {l,...,N}}. (55)

° o o
° o o
®
o o o
0 LI 2L
()

FIG. 5. Periodic two-particle Coulomb system. (a) Toroidal representation
corresponding to a merged-image factor. (b) Line-charge representation. The
target point-charge particle and each of its copies are compensated by line
charges of length 2L. The active particle inside the central simulation box
[0, L)3 is not replicated. (c) Compensating volume-charge representation
corresponding to “tin-foil” boundary conditions.
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In general, the merged-image factors may comprise more than
two particles, but they do not distinguish between the differ-
ent images of a local configuration (for example, an H,O
molecule). Second, we may picture the three-dimensional
periodic system as an infinite number of periodic images of
the simulation box indexed by an integer vector n € Z°.
For two particles already, this “separate-image” system has
an infinite number of factors and for N particles, the factor
set is

{({i,j}, Coulomby) : i <j € {l,...,N},neZ}. (56)

More generally, an individual “separate-image” factor may
describe an image of certain particles inside the simulation
box.

The aim of this section is threefold. First, we present the
tin-foil and the line-charge Coulomb formulations and then
demonstrate that, although the potentials differ, the Coulomb
factor derivatives (that for pair factors yield the pair event rates)
are identical. Second, we discuss two efficient algorithms for
the merged-image Coulomb derivatives of a pair of particles,
one algorithm from the tin-foil perspective and the other sum-
ming up line-charge derivatives. Third, we set up an ECMC
simulation for two particles in a periodic three-dimensional
simulation box in order to validate that the merged-image and
the separate-image factor sets indeed show indistinguishable
equilibrium properties. We then discuss possible applications
for both factorizations.

A. Tin-foil electrostatics within ECMC

The traditional treatment of electrostatic interactions with
periodic boundary conditions is based'” on a large spherical
aggregate of images of the three-dimensional cubic simu-
lation box. The polarization state of the simulation box is
expressed through electrostatic boundary conditions. With
“tin-foil” boundary conditions, the potential of N particles
i € {1,...,N} of charge ¢; (in units where the Coulomb poten-
Fie}l7 between two point charges in free space is U;; = ¢;cj/Ir;l),
is

L&
Uc({ri,....,ea} {c1,. .. en}) = zzci'ﬁ(l’i)+ Useir(@),
in1

(57)
with the electrostatic potential ¢

N
erfc(a|r; +nL|)
wey = Y | 3 T
! j;l J né} |I‘,:,' +nlL|
47'( e_qZ/(4a2)
+B Z Tcos(q~r,~j) , (58)

q+(0,0,0)

where the Fourier-space sum is over q = 2zm/L with m € Z°.
The self-energy contribution Usr(@) is independent of the
particle positions and drops out of our considerations, which
are only concerned with derivatives of the potential. The
left-hand side of Eq. (57) is independent of the convergence
factor @ > 0, which however influences the speed of evalu-
ation of Eq. (58). Direct evaluation of the sums for N point
charges leads to an optimal choice @ ~ N'/%/L, and a scal-
ing in operations O(N3/?). The particle—-mesh Ewald method
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uses an interpolating mesh to approximate the Fourier sum,
leading to O(N log N) operations to evaluate the potential.
In merged-image ECMC, we only use Eq. (58) for N = 2
with @ = O(1/L) and evaluate the derivative of the Coulomb
potential to machine precision with O(1) effort.

We continue, as in Sec. II B, with a two-particle factor
({1,2}, Coulomb). The tin-foil factor derivative is given by

412}, Coulomb),1(T12, {c1, 2}) = Real(r12) + GFour.(T12), (59)

with the real-space derivative Greal,

X124 neL [erfc(a|r12 +nL|)

Greal(r12) = €102 Z

g Irip + 11L|2 [ri2 +nl|

2 2

Zae—uf |1‘12+IIL\
+ , 60
5 (60)

and the Fourier-space derivative groyr.,
_ 4n o0 /(a?)

Grour.(r12) = CICZE Z CIxT Slﬂ(q “T12). (61)

q#0

For two particles and, more generally, for pair factors in an N-
particle system, the merged-image Coulomb pair-event rate,
from Eq. (59), is given by

4((1.2}, Coulomb),1 (Y12, {1, ¢2})

.
= 5[51({1,2], Coulomb),1 (F'12, {61,62})] . (62)

In Secs. IV and V, we will consider dipole—dipole factors
with an index set comprising the four or six particles of two
molecules and the “Coulomb” type corresponding to all the
Coulomb interactions between the two molecules. The factor
potential in this case is the sum over Coulomb pairs within
the factor, and the factor derivatives needed in Eq. (36) are the
sum of a finite number of pairwise Coulomb derivatives as in
Eq. (59). The evaluation of the dipole—dipole factor derivatives
remains of complexity O(1) because the number of elements
in each factor remains finite as N — oo. In ECMC, at most a
single factor has to be evaluated precisely for each move (see
Sec. I C), whereas in traditional MCMC or MD computa-
tions the Coulomb potential in Eq. (57) or its derivatives are
computed for all N particles.

B. Line-charge model

In a large periodically reproduced aggregate of the sim-
ulation box, the sum over the Coulomb derivatives between
a charged active particle and multiple target images (without
neutralizing backgrounds) is ill-defined. However, the com-
pensating uniform volume charge is not the only option to
regularize the sum, as the line-charge model!® and its vari-
ants provide alternatives to tin-foil electrostatics. Here, straight
lines of charges are associated with each copy of the target
particle, and aligned with its direction of motion [in our exam-
ple &, see Fig. 5(b)]. Although the merged-image line-charge
potential, in its simplest version, is itself not absolutely con-
vergent, its factor derivatives are unequivocally defined and
equivalent to those obtained with tin-foil boundary conditions.
By itself, the line charge neutralizes the charge of the target par-
ticle and (because it is centered) also creates an object with zero
dipole moment. Previous work'® used line charges of length
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L. Here, we consider lengths pL with integer p [see Fig. 5(b)].
The line charges are replicated over a cubic lattice indexed
by the lattice vector n. Lines of different images meet [see
Fig. 5(b)]. The Coulomb potential of the line-charge model
naturally differs from the one of the tin-foil model because
the background charge distributions are manifestly different.
However, the merged-image Coulomb derivative of the line-
charge model, relevant to ECMC, is identical to the tin-foil
expression.

Explicitly, the contribution to the Coulomb derivative
from an image n [with n = (0, 0, 0) the original simulation
box] is

x12+nxL

d1,2 lomby),1(r12) = Cc1e§ ——————=
q({1,2}, Coulomby) ( ) {|r12+nL|3

1 1 1
+— - .
pL{Ir+Ln+pé)/2|  |riz +L(n—Péx)/2|]}
(63)

The line charge generates an electrostatic potential at large
separations, r = Ln, which varies with a quadrupolar form.
Thus, in any given direction the Coulomb derivative decays as
1/Irl*. For this reason, the sum over the images of the Coulomb
derivatives of Eq. (63) converges absolutely. The merged-
image Coulomb derivative, in the line-charge formulation, is
thus

tin-foil expression, Eq. (59)

({12}, Coulomb),1 (12, {c1,¢2}) = Z 4({1.2}, Coulomby),1 (T12) -
n

sum over line charges, Eq. (63)

(64)
To show this, we first consider the target particle 2 in the sim-
ulation box and all its images to be surrounded by a cube of
neutralizing charge of volume L3 centered on the particle 2 and
its images. This volume-charge model [see Fig. 5(c)] is closely
connected to the line-charge model [see Fig. 5(b)]. The point
charge and associated volume charge have vanishing charge,
dipole, and quadrupole moments (whereas the line-charge
model, in its simplest form, has a finite quadrupole moment).
We now compare spherical (radius R > L) and cubic aggre-
gates (of side 2R) of target images and study the electrostatic
potential within the central simulation box. In this process, the
active particle is not replicated, and it remains within the sim-
ulation box. Due to the vanishing quadrupole moment of the
volume charges, the difference in the electrostatic potential on
the particle 1 in the spherical and cubic aggregates decreases
at least as fast as 1/R?. However the electrostatic potential in
the center of the spherical aggregate corresponds to a zero-
polarization state which is identical to the tin-foil expression
of Eq. (58).

We now find explicit integral expression for the Coulomb
derivative of an aggregate of line charges and volume charges
and show that the difference is zero in the limit of a large
assembly. We again consider the interaction between an active
particle and the cubic aggregate of the (2K + 1)° copies of
the target particle (the central simulation box and its images).
(The active particle is placed inside the simulation box.) The
Coulomb potential between the active particle and a single
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target particle is

00 3
U12 = 471'C] / d—q eiq‘rlzpz—(g), (65)
—e0 (27)3 lql

where p>(q) is the structure factor of the target particle and
the background. We now sum over the images, separated by
a multiple of the simulation box size L along each axis. This
requires evaluating the sum

K

_ iz Sin[qL(K +1/2)]
DK(qx)—l;(eq - —anain

and analogously for g, and ¢,. With the product

Dk (q) = Dk(gx)Dk(qy)Dk(qz), (67)

this gives the potential of the active particle in the aggregate
of the target particle and its images,

iqrp ,Dz_(q)
lqI?
Equation (66) is the Dirichlet kernel which converges, in

a weak sense, to a sum of S-functions in the limit of
large K,

00 d3 B
Uy = drey /_ i (2;)13 Dr(q)e (68)

21— 2r
Dk(g) —— T mZ‘m 6(% - mf), (69)
and similarly for g, and g,. The width of the central peak
of Dk scales as 1/K for large K. Integrals over sufficiently
well-behaved objects become summations in the limit of
large K,

d®q - 1
/ S @@= 5 S @ a0

q=27m/L

For the volume-charge model, the structure factor is

p2(q) = 02(1 - sinc% sinc% sinc%), (71)
2 2 2
where the first term on the right-hand side describes the
point charge and the product of cardinal sine functions,
sinc(gy) = sin(gy)/gx, etc., the uniform background volume
charge.
From Egs. (68) and (71), the potential of a finite cubic
array of images of the particle 2, with active particle 1,
is

d3 5 eiq~l']2
U = 0162/2—73D1<(Q)_|q|2

L L L
X (1 — sinc q; sincqu sincqu). (72)
For line charges of length pL, we find
. d3q N elqr . pg.L
Uline = ¢1¢, | —D 1 — sinc——|. 73
K 2] 55 Dk(@) PE ( > (73)

The volume-charge model is equivalent to the tin-foil Coulomb
potential. The line-charge model, whose potential is not
absolutely convergent, is nevertheless equivalent for ECMC
because, as we will see, the integrals in Egs. (72) and



064113-12 Faulkner et al.

(73) yield uniquely defined and equivalent Coulomb deriva-
tives for large K. The difference between the two is given
by

. d*q - eid T2
AUy = Uhne _ Uvolumc =cic / D
k = (Ug Kk ) =c1e ) K(Q)—|q|2
X sinc% sinc% sinC% - sincpqu .
2 2 2 2

The Dirichlet kernels imply that the integral in this equation
is dominated by contributions near q = 27rm/L. However, the
function sinc(g;L/2) also has zeros at these same points (except
when ¢; = 0, where the sinc function is equal to one). For
large K, the potential differences is thus dominated by a sum
over gy, q;, with g, = 0. This implies that the potential on
the active particle equals (to within a constant) the tin-foil
potential for motion parallel to the line-charges, but the dif-
ference of potentials is corrugated in the perpendicular y—z
plane. This is a consequence of the fusion of multiple aligned
line charges into a single uniform line when p is integer [see
Fig. 5(b)].
We examine the derivative of AUk to show that the
Coulomb derivatives converge to the same value,
3

d’q - e sin(q - rip)
Oy, AUk = 70 DK(Q)qqulz
L L L L
X (SianXT sincqu sinchT - sincpqzx , (714)

which suppresses the contributions which remained for the
calculation of the potential, due to the factor g, sin(g,x) near
qx =0.
Finally, we consider explicitly the possible divergence at
Iql = 0 in Eq. (74), due to the presence of the term 1/Iq/>. We
expand all the trigonometric functions in the integrand, Alg,
to find
2 2 _ 1) 2_ .2 _ 2 _
9x [(p 9x — 4y qz] Br(@.

Algy —— const X

40 lql?

Even this contribution is thus driven to zero for large K.

We conclude that in a periodic three-dimensional system,

the line-charge model becomes equivalent to the volume-

charge model, and therefore to tin-foil electrostatics. The

line charges must lie parallel to the direction of motion but

can of course be switched at will. In contrast, the volume-

charge model gives the tin-foil Coulomb derivatives in all
directions.

C. Algorithms for Coulomb derivatives

The merged-image Coulomb derivatives are best
computed from the tin-foil expressions of Eq. (62). To accel-
erate the evaluation, we reduce the Fourier-space compo-
nent of Eq. (61) to a sum over non-negative components
(my, my, m;),

Gr(ri2) = Ay sin(/l’l‘z)cos(/l“;'2)cos(/lzlz), (75)
where /l’fz = 2mmyx12/L, and similarly in y and z and
where

16¢|camy 7%|m|?
XyZ = S Ky - 272 (76)
L2|m|22 my.,0FO0mz 0 a“L
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is a position-independent tensor that can be computed before
the simulation starts. In Eq. (75), repeated indices (x, y, z) are
summed over non-negative integers (1, m,, ;).

The merged-image Coulomb derivatives can also be com-
puted from the sum of the line-charge derivatives [see the
right-hand side of Eq. (64)]. Because of the symmetry of
the line charges, the quadrupolar contribution to the deriva-
tive is an odd function of x so that forward and backward
terms cancel, and that the sum converges as 1/K? for large
K. The convergence may be accelerated using Richardson
extrapolation™* (see Fig. 6). Denoting the finite line-charge
sum over the range n € [-K, K]* as Sk and assuming
that A

S K= Seo + ﬁ’ (77)
one may eliminate A as
_ (K +1)Y'Sg41 — KPSk

Sket = (K+1P-Kkv (78)

The sequence (Sg,, — S) then decays as 1/KP*!. The trans-
formation of Eq. (78) can be iterated, each time gaining
one power in the asymptotic behavior of the sequence. The
merged-image line-charge derivatives converge to the tin-
foil expression of Eq. (59), confirming that the two algo-
rithms compute the same object and that individual factors
in the line-charge model may be used to simulate tin-foil
potentials.

As in the line-charge model, one may sum up the asso-
ciated point charges and their compensating volume charges
explicitly, rather than proceeding through Fourier transfor-
mation. However, the analytic formulas are difficult to work
with. A further possibility consists in compensating each point
charge with more than one line charge. Remarkably, four line
charges arranged on a square of side L/ V12 in the y—z plane,
cancel dipole and quadrupole moments in the multipole expan-
sion and lead to an absolutely converging sum for the electro-
static potential. One may also construct more elaborate sheets

-
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FIG. 6. Comparison of the tin-foil expression for the Coulomb factor deriva-
tive and the sum over line charges for a given value of ry, [see Eq. (64)] as a
function of the cutoff K. The 8-fold iterated Richardson extrapolation for the
line-charge expression agrees with the tin-foil expression to within 10~12 for
K ~20.
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FIG. 7. Comparison of the sum of the separate-image event rates Y., SB[7((12), Coulombn),l(rlz)r

Bla1.2), Coutomby,1 (r12) 17
Bcica = 1 throughout.

and volumes of screening charges to cancel higher orders in
the multipole expansion. All of these screening objects pre-
sented here regularize the sum of the pair derivatives over
images and allow for separate-image factor sets [analogous
to Eq. (56); see Sec. III D]. Although the sequence Sk decays
faster, the Coulomb event rate is not reduced by these different
objects.

D. Separate-image ECMC

As we have seen, all the Coulomb interactions in a finite
system with periodic boundary conditions can be image-
merged into a single Coulomb type that sums over all the
inequivalent minimal paths between two points on a torus,
and that correspond to images in the rolled-out representation
of periodic boundary conditions. For two particles 1 and 2, this
is expressed through a single factor M = ({1,2}, Coulomb).
The corresponding factor derivatives can then be computed
with the traditional tin-foil expression [Eq. (59)] or within the
line-charge framework [Eq. (64)]. The choice of one over the
other is a matter of efficiency only (the algorithmic complex-
ity being the same). Each of the formulations suggests other

1.0 {|—— Tin-foil Metropolis
=== Tin-foil merged-image ECMC
'''' Separate-image ECMC
0.8 1
=
%
Z 06
e
L
= 04 {
=
S
0.2 1
0.0 1

0.2 0.3 0.4 0.5 0.6 0.7 0.8
pair separation |rys|
FIG. 8. Cumulative histogram of the pair separation Ir,| for two particles

of equal charge in a periodic three-dimensional simulation box (Bcjc; = 2,

L=1).

(upper row) and the merged-image event rate

(lower row). In all panels rjp = (x12, y12, 212) With (a) z;2 = 0.1, (b) z12 = 0.2, (¢) z12 = 0.3, and (d) z12 = 04. L = 1 and

choices for the interaction types. In the line-charge formula-
tion, the choice of an infinite set of types { Coulomby, : n € Z3}
suggests itself. For two particles 1 and 2, the set of separate-
image factors is {({1,2}, Coulomb,) : n € Z*}. Within
ECMC, these images are statistically independent but only
one of them must be computed precisely for each event.
This is because, as in Sec. II, we can use a variant of the
cell-veto algorithm (supplemented with an asymptotic bound-
ing function'®), in order to sample the relevant image index
n and to then compute the corresponding factor derivative
of M.

Separate-image Coulomb factors generally come with
larger pair event rates, as the contributions from different
images do not compensate (see Fig. 7). On the other hand, eval-
uating a separate-image Coulomb derivative [as in Eq. (63)] to
machine precision requires just a few operations, many fewer
than what is required for its merged-image counterpart. Details
of the separate-image Coulomb factors can influence the effi-
ciency of the algorithm. As an example, the terminal point of
the line charge is a singular point of Eq. (63) and should not
approach another point charge in the system. This motivates
our choice of length 2L (or multiples thereof), as the terminal
point of one line charge then coincides with the position of
an image of the original particle. For the Coulomb potential,
the nonphysical line-charge singularity, confounded with the
singularity of the point charge, no longer disrupts the ECMC
dynamics.

The dynamic behavior of the different factor sets for the
Coulomb problem has not yet been explored in detail. As a first
step, for a system of two like Coulomb charges, merged-image
and separate-image ECMC was validated against the regular
tin-foil Metropolis algorithm (see Fig. 8). All three methods
clearly sample the Boltzmann distribution in the asymptotic
steady state.

IV. DIPOLE-DIPOLE FACTORS

In ECMC, one may tailor the factor sets to the problems
at hand. In electrostatic systems made up of local dipoles,
specific “dipole—dipole” Coulomb factors may thus contain
all the atoms distributed over two molecules that can be
far apart from each other. These factors yield much smaller
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event rates than “particle—particle” pair factors. In addition, a
special “inside-first” lifting scheme can direct most of the lift-
ing flow from the active particle to a target particle situated
on the same molecule. Even for a non-local factor made up
of two distant dipoles, the lifting flow will thus mostly be
between an active particle and a target particle on the same
molecule (the probability of an intramolecular lifting grows
like log N, whereas all the intermolecular liftings remain con-
stant). We expect such a local lifting scheme for extended
factors to show interesting dynamic properties. In the present
section, we explore dipole—dipole factors in a simple model
of charge-neutral two-particle molecules before employing
them, in Sec. V, to a model of liquid water. We expect dipole—
dipole factors and their variants to have useful applications in
ECMC.

Concretely, for a simple model of two-particle dipoles in a
three-dimensional periodic simulation box, the dipole—dipole
factor for the particles {1,2, 3,4} is given by

({1,2,3,4}, Coulomb), (79)

[see Fig. 9(b)], where the corresponding Coulomb factor
potential is

&~

U1,2,3,4), Coulomb)(X1, .. .,T4) =

M-

D Uc(ry, feie)). (80)

i=1 j=3
The factor of Eq. (79) thus comprises the four Coulomb poten-
tials between these particles, using the Coulomb potential of
Eq. (57). The model excludes, as is usual,®® Coulomb inter-
actions within a dipole. For the same four particles, one may
also use the “particle—particle” factors
{({1,3}, Coulomb), ({1,4}, Coulomb)
({2,3}, Coulomb), ({2,4}, Coulomb)}, (81)

with the “particle—particle” factor potential
Uiy, Coutomb) (rij» {cin ¢j}) = Uc(ry, {cinei})  (82)

[see Fig. 9(a)]. We suppose that the particle 1 is active. The
dipole—dipole event rate

Blac1.23.4), Coutomby1]” (83)

then allows the interactions Uc(rj3z) and Uc(ri4) to com-
pensate each other (and to give the event rate correspond-
ing to a point charge interacting with a dipole), while the
particle—particle event rate

Blac13). coutomby.1 17+ BlGci1.4), Coutomby.1] (84)

remains much larger (corresponding to a point charge sepa-
rately interacting with two isolated point charges) because the
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FIG. 9. Model of two-particle dipoles. (a) Particle—particle factor associating
two point charges that belong to different dipoles. (b) “dipole—dipole” factor
comprising four Coulomb interactions.

unit-ramp functions are both non-negative [see Eq. (14)] and
one of them is usually zero.

A. Event-rate scaling for Coulomb factors

We now consider a homogeneous system of dipoles of size
Idl ~ d small compared to the simulation box (see Fig. 10). For
concreteness, we suppose that particle 1 is the active particle.
The event rate, whose scaling with system size we compute
in the present section, is the result of the interaction between
the particle 1 and the distant dimer (in Fig. 9 made up of
particles 3 and 4). As there is no Coulomb interaction between
particles on the same dipole, the position of particle 2 (the
dipole partner of particle 1) does not come into play for the
eventrate. We will see in Sec. IV B that this is no longer true for
the lifting rates, which are influenced both by the distant dimer
and by the local dimer of particle 1, that is, by the position of
particle 2.

The electrostatic potential at a distance r from a point
charge ¢, within the merged-image (tin-foil) formulation in a
box of side L, is given by the scaling form

Yi(r) = %fg(r/L), (85)

which generalizes Coulomb’s law valid in free space. The func-
tion f g(x) is smooth and remains O(1) for all x € [-1/2, 1213,
For separations such that Irl/L < 1, the potential given by

Eq. (85) has the expansion®
1 const 2x|r|?
=c|—+ + +-- . 86
w(r) ck( R R T (86)

The nth-order derivatives of fg(r/L) are also smooth and have
an amplitude which scale as L™". The Coulomb derivative
between an active particle and a particle k, separated by a
vector r € [—-L/2, L/2]3, also has the scaling form

B [
Ba((1,k}, Coulomb),1 = ﬁf (/L) 87)

(d)

FIG. 10. Lifting schemes for a dipole—
dipole factor. (a) Dipole—dipole factor
with four Coulomb interactions. It is
assumed that 8y, Uy > 0, 8y, Uy > 0
and Oy, Uy < 0, d,Uy < 0. (b)
“ratio” lifting, (c) “inside-first” lifting
(d) “outside-first” lifting.
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~1/Jrf?
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Here, we have introduced the characteristic Bjerrum length
Ig = le’13, with e being the elementary charge, the dis-
tance at which the Coulomb interaction equals the thermal
energy and used fEl as a new scaling function, which again
remains O(1). An explicit form for Eq. (87) at small sepa-
rations can be found from Eq. (86). For a constant number
density p of particles within the simulation cell, the mean
total Coulomb event rate per particle, <Qp,p>, is given by the
integral

(Qp—p) = Z<Q(<i,k],cc)ulomb),1> (88)
k#1
I}
= / 2L fia/L) dr
[-L/2.L/273 ||

1
= IgpL / —/3(x)d°x ~ IgpL. (89)

[-1/2,1/2P X

This mean total event rate thus diverges as O(L). The recip-
rocal of <Qp,p> sets the scale for the mean-free path due to
charge—charge interactions, and it is of length scale O(1/L).
The result agrees with the naive free-space argument'® based
on the bare 1/lrl Coulomb interaction. At constant density,
the divergence of Eq. (89) in L ~ N'3 implies that the
active and target particles are often widely separated from
each other. With pair factors, one thus expects a complex-
ity of O(N*/3) for an O(1) displacement of all particles in the
system.

The scaling form of the potential can also be used to deter-
mine the event rate for dipole—dipole factors [as in Fig. 9(b)],
the interaction of point charges with dipoles, or the interaction
of pairs of well-separated dipoles. The potential at a distance
r from a dipole in the periodic box is found from Eq. (85) by
applying the operator (—d-V), with d the dipole moment. Using
again |ldl ~ d implies that the event rate of the dipole—dipole
factor, resulting from the interaction of the active particle 1
with the dipole at a distance r corresponds to a particle—
dipole Coulomb interaction. The dipole—dipole event rate, for
two dipoles separated by a vector r € [-L/2, L/2]? is given
by

. dlg
BG({1,2,3,4}, Coulomb),1 ~ Wf EI (r/L), (90)

where r denotes the vector from the active particle to the
dipole. Equation (90) implies that ECMC with dipole—dipole
factors has a much lower mean total Coulomb event rate
<QCOulomb>’

Igpd
<QCOulomb> =/ B—p3 2(l'/L) d3l‘
-L/2..27 Irl

1
= zde/ — 2x)d’x,  (91)
[=1/2.1/2 1X]

where fE2 is another scaling function. The second integral
in Eq. (91) is weakly divergent near the origin (which sim-
ply means that in ECMC very nearby dipoles have to be
treated individually). Excluding a region of radius O(d/L),
the mean total Coulomb event rate using dipole—dipole factors
is

<QCOulomb> ~ prd lOg(L/d) (92)
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This much reduced total event rate, obtained by limiting the
contributions from large distances, is our main motivation for
using dipole—dipole factors.

The scaling obtained in Eqgs. (90) and (92) is independent
of the specific definition of the dipole model. It only relies
on the use of dipole—dipole factors connecting two charge-
neutral molecules that may be far apart (see Sec. V, where
the dipoles are realized by H,O molecules). The scaling is
also insensitive to the introduction of screening charge distri-
butions, and it holds both for the merged-image and for the
separate-image factor sets. Adapting this factorization frame-
work to systems composed of molecules that behave as approx-
imate higher-order multipoles would further improve the
scaling.

B. Dipole—dipole lifting schemes

We now consider lifting schemes for dipole—dipole fac-
tors, and for concreteness, we consider a four-particle sys-
tem of particles {1,2}, forming a charge-neutral dipole d,
and particles {3,4}, forming an analogous dipole d34. In this
two-dipole system, particle 1, for example, not only inter-
acts with a charge-neutral dipole d34, but is itself inside such
a dipole dj,. Although the Coulomb lifting rate is oblivi-
ous to the position of 2 (as there is no Coulomb interaction
between particles 1 and 2), particle 2 is part of the dipole—
dipole factor, and its position influences the relative lifting
rates.

We obtain the derivatives with respect to particles
1 and 2 for the factor M = ({1,2,3,4}, Coulomb) as

follows:
. |d34] d34]? [d34]
pins = o[ o o ) w0 )| o
d dag|? d
Bl = ZB[_a'|:|§' ‘ 0(—' |5T4| ) +o(—| 234')]- o4

The dominant terms in these two equations are equal in mag-
nitude yet opposite in sign, reflecting that particles 1 and
2 interact with the same distant dipole dz4, are of oppo-
site sign, and close to each other (on the dipole d;). For
the factor derivatives with respect to particles 3 and 4, we
find

2
B = Iy [a||(i1|§| +O(ldul )+(’)(|d12|)], 95)

|r|* L3
. _ldp2] 2 |? |di2]
=[g|— O ol—]]. 96
Paus B["|r|3+ (|r|4)+ (L3)] 00

[For ease of notation, we used here Eq. (86) for small Irl/L
rather than the full scaling form.]

The coefficient a (and analogously for 4) reflects the ori-
entation of d34 with respect to the distance vector between the
two dipoles (see Fig. 10). Remarkably, the factor derivatives of
M with respect to the particles within each dipole (Gas.1 + Gum 2
and G 3 + g 4) cancel at order 1/Irl® and leave a remainder of
1/Irl*. This dipole—dipole compensation to order 1/irl* of the
factor derivatives is a general feature for pairs of local dipoles
(that can be composed of more than two atoms) inside a factor
and occurs in the same manner with the full scaling functions
in the merged-image potential.
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We recall from Eq. (29) that the four factor derivatives
exactly sum up to zero. As illustrated in Sec. II B (see Fig. 2),
the lifting scheme corresponds to arranging the indices k* € I},
on the upper row of a two-row table and the indices k™ € [},
on the lower row. In a factor with large separation Irl, each row
contains one element corresponding to each of the two dipoles
(see Fig. 10).

The “ratio” lifting scheme is as described in Sec. I B. All
elements fall off as O(1/|r|?) [see Eq. (90)], and both rows
contain elements representing each dipole. From Eqgs. (94)
and (96), this leads to comparable proportions of intra- and
inter-molecular liftings. Both rates fall off at the same rate, but
their coefficients are different reflecting the orientations of the
dipoles. The total inter- and intra-dipole lifting rates both scale
as log L [see Fig. 10(b) and Table I].

In the “inside-first” lifting scheme, the elements corre-
sponding to each dipole are aligned with each other. The
two match to order ~1/Irl’. The mismatch in bar length
is O(1/[r[*) in Eqgs. (93) and (94). In the full scaling
picture, the difference in length of the elements can be
computed analogously. Coulomb liftings thus occur mostly
within a dipole, and long-ranged inter-dipole liftings remain
bounded in number for large system sizes [see Fig. 10(c) and
Table I].

Finally, the “outside-first” lifting scheme consists in ver-
tically aligning elements corresponding to different dipoles.
Aligned elements are of length ~lal and ~lal so that intra-
and inter-dipole lifting rates again both fall off as O1/Ir?).
The situation is analogous to the one for the “ratio” lifting,
and the “outside-first” scheme remains strongly non-local [see
Fig. 10(d) and Table I].

In contrast to the above dipole—dipole factors, the
“particle—particle” factor, as argued in Egs. (87) and (89), pro-
duces events which occur at the scale of the simulation box at
a rate which decreases as only 1/Irl%, leading to a total event
rate increasing linearly with L. The lifting flow is between one
dipole and the other, and the intra-dipole lifting rate is zero
(see Table I).

C. Validation of factors and liftings

The dipole—dipole factors and their different lifting
schemes can be checked for consistency for two charge-
neutral dipoles with a short-ranged vibrational intra-dipole
potential, a repulsive potential between oppositely charged

TABLE I. Coulomb lifting rates for two dipoles separated by a distance Irl/L
< 1, together with full integrated rate in simulation box of size L?: One
particle—particle and three dipole—dipole schemes (“ratio,” “outside-first,” and
“inside-first”). gintra: lifting rate to the non-active particle within the active
dipole. ginter: lifting rate to the triggering dipole. (Qintra) and (Qinger) denote
the mean total event rates (using the full scaling form, as in Sec. IV A),
integrated over the simulation box.

(Qinlra) <Qimer>

qintra Yinter

Lifting scheme Lifting

Particle 0 /el 0 L inter-dipole
Ratio 13 1/ logL logL inter + intra
Outside-first 13 /e logL logL inter + intra
Inside-first 1/rl? el logL const inter-dipole
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particles (needed to keep dipoles apart from each other),
and intermolecular Coulomb interactions. With particles num-
bered as in Fig. 9, the model corresponds to a factor
set
{({1,2}, bond), ({3,4}, bond), ({1,4}, rep),
(12,3}, rep), ({1,2,3,4}, Coulomb)}, 97)

with the harmonic bond factor potential,

1 2
Ui j),bond) (Ti5) = Ekb(|rij| - ro) , (98)
with k; > 0, a short-range repulsive potential
1 ro 6
Uy i) = kol —1 99
({t,/},rep)(rtj) ) 2(|rij|) (99)

with k» > 0, and a scalar separation rp, in addi-
tion to the dipole—dipole Coulomb factor potential of
Eq. (80).

The dipole—dipole Coulomb factor differs from the
particle—particle Coulomb factors in the set,

{({1,2}, bond), ({3,4}, bond), ({1,4}, rep),
({2,3}, rep), ({1, 3}, Coulomb), ({1,4}, Coulomb),
({2, 3}, Coulomb), ({2,4}, Coulomb)}, (100)

where the factor potentials corresponding to bond vibrations
and the repulsion between unlike charges are as in Egs. (98) and
(99) and the Coulomb factor potentials are those of Eq. (82).
In addition, since /)| = 2 for each particle-factorized fac-
tor M, we have no freedom in choosing a lifting scheme (see
Sec. IV B).

The “ratio,” “inside-first” and “outside-first” lifting
schemes for the dipole—dipole factor are easily implemented
and compared to the particle—particle lifting scheme. By
construction, they yield identical thermodynamic correla-
tions (see Fig. 11). Although the event rates are fixed
by the decomposition of the total potential into factors,
the different lifting schemes may differ in their dynamical
behavior.

pair separation |ry|

0.0 0.2 0.4 0.6 0.8
1.0 1 merged-image
particle-particle factor
C 081 el
Z B
=
<
= ).6 separate-image
g 0 dipole-dipole factor merged-image
= Lo dipole-dipole factor
o [ry3]; inside-first .
= fmsidet e [rysls ratio
— 0.4 1 [r14]; inside-first .
= == [ry4l; ratio
E - == |ry3|; inside-first
= 0.2 P wues |rual; inside-first
7 ; |r13]; outside-first
00] e s ovtside-ist
0.0 0.2 0.4 0.6 0.8

pair separation |rys

FIG. 11. Cumulative histograms of the distances Irj3l [like charges, see
Fig. 10(a)] and Ir14! [opposite charges, see Fig. 10(a)] for the particle—particle
factor set of Eq. (100) and also for the factor set of Eq. (97) using dipole—
dipole Coulomb factors, using the three lifting schemes of Figs. 10(b)-10(d).
Also separate-image dipole—dipole factors with inside-first lifting. Periodic
cubic simulation box with L = 1, ¢; = +1 point charges, 8 = 1, k; = 400,
k2 =1,and ro =0.1.
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V. LIQUID WATER AND DIPOLE-DIPOLE FACTORS

To explore ECMC in a realistic context, we imple-
ment in this section the simple point-charge water model
with flexible molecules (SPC/Fw), a well-studied all-atom
model for liquid water.*® This model combines the long-
ranged Coulomb potential with hydrogen—oxygen bond-length
vibrations, a flexible hydrogen—oxygen—hydrogen angle, and
a specific oxygen—oxygen interaction of the Lennard-Jones
type. The SPC/Fw model is closely related to one used in
molecular-dynamics simulations of solvated peptides.*

Naturally, each water molecule is charge-neutral and
dipolar so that the dipole—dipole factorization of Sec. IV
applies. This realizes a mean-free path for a single particle
as ~1/log N in the thermodynamic limit (an earlier ECMC
Coulomb algorithm'® had obtained a mean-free path scaling as
~1/N'3).

A. Factors in the SPC/Fw water model

To simulate liquid water with the SPC/Fw potential, we
use the following type set:

{bond, bending, LJ, Coulomb}. (101)

As an example, the factor set for two water molecules, con-
taining particles {1,2,3} and {4, 5, 6}, respectively, [and with
2 and 5 being the oxygens, see Fig. 12(a)] is

{({1,2}, bond), ({2,3}, bond),
({4,5}, bond), ({5,6}, bond), ({2,5}, LI),
({1,2,3}, bending), ({4,5, 6}, bending),

({1,...,6}, Coulomb)}. (102)

This factor set [see Fig. 12(b)] trivially generalizes to more
than two H,O molecules.

In Eq. (102), the “bond” factor potential of Eq. (98)
describes oxygen—hydrogen bond vibrations with the equilib-
rium bond distance ro = 1.012 Aand kp=1059.162 kcal mol ™!
rad—2, that correspond to the SPC/Fw parameters. The “bend-
ing” factor potential describes the fluctuations in the bond
angle within each H,O molecule,

1 2

U{ij k), bending)(Xi, T}, Tg) = Eka(fﬁ{i,j,k} - ¢0) ,
where ¢(13) and ¢(456) denote the internal angle between
the two legs of each H;O molecule (see Fig. 12).
We adopt the SPC/Fw parameters: ¢9 = 113.24° and
ka =75.90 kcal mol~! A=2. The specific Lennard-Jones inter-
action between oxygen atoms corresponds to the “LJ” factor

(a)
${4,5,6}

(1,2,3}

@ @
e
0 O Q/

Q

({1,2,3}, bending) ({2,5}, LJ)
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potential

12 6
o o
Uq25),Ln(rs) = kLJ[(_|r25|) - (_|r25|) ] (103)

where ki ; = 0.62 kcal mol™! and o = 3.165 A are pre-
scribed in the SPC/Fw model. The Lennard-Jones potential
is truncated beyond 9.0 A. This truncation, however, is unnec-
essary if the cell-veto algorithm is used. Finally, the dipole—
dipole “Coulomb” factor potential, in direct generalization of
Eq. (80), is given by

6
= Z Z Uc(ry, {ci, ¢ ).

i=1 j=4
(104)
Here, the Coulomb potential of Eq. (57) is used with the
SPC/Fw parameters ¢y = ¢3 = ¢4 = c¢ = 0.41le and ¢, = c5
= —0.82¢ (with e the elementary charge).

The type set of Eq. (101) is by no means unique. We
could also break up the Lennard-Jones interaction into two
types, corresponding to the two components of the Lennard-
Jones potential (as discussed in Sec. I A). Also, instead
of the merged-image Coulomb type, we could adopt any of
the variants of the separate-image type, resulting in a type
set,

Uqu....6), Coulomb)(X15 - - ., T

{bond, bending, LJ, Coulomb, : n € Z3}.

Finally, it is possible to break up the “bond” and “bending”
factors into Ny,0 — 1 equal terms in order to construct a unique
dipole—dipole factor for each pair of HO molecules in such
a way that the type set only contains a single element. All
these choices are correct, but they may differ in the ease of
implementation and in the speed with which they approach
equilibrium.

B. Intrinsic rotations

Our version of ECMC is formulated in terms of displace-
ments that, for a given event chain, are along one of the
directions {&,, €,,&;}. Each individual event chain can strain
the system, but is unable to rotate it, as the coordinates per-
pendicular to the direction of motion remain unchanged. The
flexible SPC/Fw H,O molecule may itself get strained in a
single event chain. Applying strain subsequently in different
directions is known to be equivalent to a rotation on all lev-
els, and, in particular, on the level of a single molecule. This
guarantees that the algorithm is irreducible and can attain all
of configuration space.

The rotation that is induced through subsequent event
chains in the three directions can be illustrated in an

/,@ FIG. 12. SPC/Fw water model and

; v v ,’: ECMC factors. (a) Two H>, O molecules,

// /:/’;'_,Q /@ with particles {1,2,3} and {4,5,6},

7 /’,f J"j,nl”://’ respectively (2 and 5 being the oxy-
y //,'»—’,7’; i gens). Each of the molecules has a finite
d’" @—‘7'":/ y 7 dipole moment. (b) “bond,” “bending,”

iy “LJ,” and “Coulomb” factors imple-
@*/ menting the SPC/Fw model. Factors

contain between two and six particles.
({1,2,3,4,5,6}, Coulomb)
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ECMC simulation of a single H,O molecule, using only
the intramolecular factor types in Eq. (101). The rota-
tional dynamics of such a single molecule is easily tracked
through the equilibrium autocorrelation function of the
dipole moment d = rp; + ry3 (see Fig. 12), given
by

A(s) =(d(s”) - d(s" +5)) ~ exp(-s/1) fors — oo,

where the variables s and s + s’ denote the ECMC dis-
placement (proportional to the time of the continuous
Markov process). A(s) decays exponentially at large s with
a rate that gives the autocorrelation length A of molecular
orientation.

At temperature 300 K, the cumulative chain length it takes
to rotate the molecule around itself is about one to two orders
of magnitude larger than the H,O molecule itself (see Fig. 13).
In the limit of large chain lengths ¢, the autocorrelation length
of the dipole moment is proportional to £. This simply means
that lengthening an already long chain does not add to the
internal strain of the water molecule, as a local equilibrium is
reached.

The sequence of chain directions need not be random:
The switching of directions merely renders the Markov
chain irreducible, whereas global balance is satisfied for
any infinitesimal move (without the return move necessary
for detailed balance). As a deterministic, cyclic, sequence
e.e.e.e.e, ... avoids repetitions, we find it to decorrelate the
dipole moment faster than a uniform random sampling of
chain directions (see Fig. 13). The rotations of molecules
are thus generated as a byproduct of the switching of event-
chain directions. In practical applications, it remains to be
seen whether the rotations of molecular ensembles decay par-
ticularly slowly. In this case only, the ECMC algorithm will
need to be modified in order to explicitly take into account
rotations.

C. ECMC for liquid water

The SPC/Fw potential is adapted for liquid water at stan-
dard temperature 300 K and density 1 g/cm®. An ECMC
simulation at these conditions is easily set up with factors

14 4
250 ‘..
= ¢ o
o
= 200 o
e o
; o
= 150 o
S 3 ** aaad
= .0‘ AAA
° . 00’. ana?
00 L o janast?
A
g AT aaddast
= 50 ‘AAA“AAM‘A ¢ random ||
A cyclic
0.0 0.1 0.2 0.3 0.4 0.5

chain length ¢ [A]

FIG. 13. Autocorrelation length A for the dipole moment in ECMC of a single
H,0 molecule (fixed chain length ¢) for the cyclic sequence of event-chain
directions (&&,&,&, . ..) and for their random resampling.
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1.0 1 reversible MC
----- ECMC (inside-first)
< 0.8 1
2
=
=
= 0.6 1
=
&
= 04 1
o
o
=
T 02
0.0 1

2 3 4 5 6 7 8
oxygen-oxygen separation |[roo| [A]

FIG. 14. Cumulative histogram of the oxygen—oxygen separation Iropl for
32 H;O molecules at standard density and temperature via conventional
reversible Monte Carlo and ECMC using the factor set of Eq. (102) with the
inside-first lifting scheme. The random choice of directions was used with a
fixed value of £ = 0.5 A. The maximal difference between the two distributions
is smaller than 1073,

(including the dipole—dipole Coulomb factor) as in Eq. (102)
generalized for Ng,0 > 2. The “ratio,” “outside-first,” and
“inside-first” lifting schemes are taken over from the dipole
case discussed in Sec. IV. However, the dipole is now con-
structed from three particles. For a far distant pair of H,O
molecules, the factor derivatives with respect to the hydro-
gen positions are usually of the same sign and of opposite
sign to that of the oxygen. In the notations of Fig. 12 and
using M = ({I,...,6}, Coulomb), we thus have that to
order 1/r3,

Oy, Uy ~ 0, Uy ~ —%GXZUM. (105)
This can again be used in the inside-first lifting scheme to
keep most of the lifting flow inside the molecule of the active
particle. Care must be exercised in these lifting schemes to
arrange the particles in a fixed order that is independent of
which particle is active (it is incorrect to place the active par-
ticle systematically on the left-most position on the upper row
of the table in Fig. 10).

(Qcoutom)
(Qvond)
(Qry)
(Qvending)

+
—A—
——

event rates [A71]
g

[

1 o»

16 32 64 128 256
Nu,o

FIG. 15. Ensemble-averaged total “Coulomb,” “bond,” “LJ,” and “bending”
event rates as a function of the number of H, O molecules. The Coulomb event
rate scales logarithmically. Event rates depend on the choice of factors but are
independent of the lifting scheme.
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For long simulation times, the ECMC algorithm exactly
samples the Boltzmann distribution of this model, and ther-
modynamic observables can be compared with Metropolis
Monte Carlo using the Ewald summation for the Coulomb
potential. This can be verified for the oxygen—oxygen dis-
tances that agree to very high precision, demonstrating that the
irreversible ECMC converges toward the same steady state as
reversible Monte Carlo algorithms (see Fig. 14). To make sure
that equilibrium is reached, the initial configurations were cho-
sen randomly in a very dilute system and slowly compressed
toward the target density.

In the liquid-water simulation for Ny,0 > 2, the factors
M = (I, Ty) belong to four different types (that is, Ty € T
and |7| = 4), into which the ensemble-averaged total event
rate [see Eq. (21)] can be split,

vy = D0 (106)

TeT

1 N
ﬁZ(Qk({l‘h..-
pa

{Qcoulomb) agrees with the definition in Sec. III [see Eq. (91)].
The three local factor types naturally give constant scaling of
their associated mean event rates {(Qpond ), (QLy), and < Qbending>
with system size, whereas {Qcoulomb) clearly features log Ny,0
scaling with the number of H,O molecules (see Fig. 15). The
logarithmic scaling of the total Coulomb event rate validates
the prediction of Eq. (92). The total event rate increases by
5 A~ when Ny, 0 doubles.

Finally we study the lifting flows for the dipole—dipole
factors under the “ratio,” “inside-first,” and ‘“outside-first”
schemes (see Sec. IV B). As discussed in Sec. IV A, the event
rates are independent of the lifting schemes for a given factor
set. However, the probability distributions of the distance Irl
between the active and the target particles are different (see
Fig. 16). First, the peak at the oxygen—hydrogen bond length
corresponding to a lifting within the molecule increases loga-
rithmically with system size. Second, with increasing system
size the distribution of event distances develops a power-
law tail. In both the “ratio” and the “outside-first” lifting
schemes, the tail of the probability distribution decreases as
Irl~!. The “inside-first” scheme decays as Irl=2. These results,
corresponding to the evolution of giper in Irl™> and Irl™#, are
summarized in Table I.

Remarkably, the “inside-first” lifting scheme induces
mostly local lifting flows, even for Coulomb factors that asso-
ciate H,O molecules that are far distant from one another.
Most of the liftings are local and the central peak increases

16()

10*

as log Ni,0. We expect a local lifting to keep the dynam-
ics of the system coherent and to lead to faster convergence
toward equilibrium. It appears also possible to replace the
interaction with far-away H,O molecules by the interaction
with an effective medium (given that the lifting flow remains
local). In the “ratio” and “outside-first” lifting schemes, this
would probably not be possible as the lifting flow toward far-
away dipoles is of the same order of magnitude as the local
flow.

VI. CONCLUSIONS

In this work, we have outlined the ECMC framework for
all-atom computations. Our algorithm advances a single par-
ticle in the presence of long-ranged electrostatic interactions
in O(1) operations, with a mean-free path which decreases as
O(1/1log N). This gives an overall complexity of O(N log N)
to advance N particles, each by O(1). This speed can be
achieved for locally charge-neutral systems, where particles
can be grouped into local dipoles. The algorithm can take into
account the presence of free point charges, and its performance
worsens only gradually with their number. The algorithm is
manifestly translation-invariant and event-driven. It is free of
discretization errors and exactly samples the Boltzmann distri-
bution, without needing a thermostat. Its outstanding property
is that it neither computes total forces nor determines the
system potential.

ECMC breaks with tradition in two ways. First, as a
Markov-chain algorithm, it offers the freedom to choose
among a variety of moves. Our approach of advancing sin-
gle particles may be a first step only. Nevertheless, as we
have shown, it effectively rotates dipoles and flexible water
molecules in three-dimensional space and samples the entire
configuration space. We have explored the great freedom to
choose factors and liftings that suit the problem at hand.
Second, ECMC breaks with tradition in that it is purely
particle—particle: It treats electrostatic interactions between
point charges, but is oblivious to the electrostatic field. This
aspect liberates it from the interpolating mesh that in tradi-
tional particle—particle—particle—-mesh methods approximates
the Coulomb field. Rather, the algorithm is based on the inter-
action of pairs of particles and, more generally, of factors that
may comprise pairs of local dipoles or even more complex
objects.

In this work, we have checked that thermodynamic quan-
tities from ECMC agree with those obtained with methods
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that satisfy detailed balance. As a next step for analyzing
ECMC in all-atom systems, it will be important to study its
relaxation dynamics in detail. This dynamics will certainly
depend on the choice of factors and, for example, for the
case of dipole—dipole factors treated here, on the choice of
liftings. The inside-first lifting scheme yields mostly local
dynamics, and we would expect it to lead to a faster decay
of correlation functions. Besides this, we have discussed that
the length and the probability distribution of the event-chain
parameter ¢ and even the sequence of the directions of the
event-chain can significantly influence the ECMC dynamics
although, as we have verified extensively, the steady state is
always given by the Boltzmann distribution. We would hope
that, in addition to the overall favorable algorithmic scal-
ing, the fast decay of density fluctuations carries over from
short-range-interacting particle and spin systems. The influ-
ence of different factorization and lifting schemes on the
dynamics of ECMC will also have to be understood. From
an algorithmic implementation point of view, we think that
the parallelization of the method>® will have to be dealt with
carefully. ECMC simulations of water will permit standard-
ized comparison of run times with the ones of traditional
molecular-dynamics algorithms. Other applications, such as
solvated peptides*® and polarizable models, appear within
reach.
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