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a b s t r a c t 

Electrically conductive particles, such as pyrites, and surface-charge-bearing nonconductive particles, such as clays, are commonly present in water-bearing subsurface 

formations. Under an external electric field generated by electromagnetic measurement tool, these particles give rise to interfacial polarization (IFP) effects, which 

causes frequency dispersion of effective conductivity and effective permittivity of the mixture containing such particles. The neglect of IFP effects can lead to inaccurate 

estimation of petrophysical properties of formations, especially in clay- and pyrite- rich formations. In this paper, we developed a mechanistic model that couples 

surface-conductance-assisted interfacial polarization (SCAIP) model with perfectly polarized interfacial polarization (PPIP) model to estimate effective conductivity 

and effective permittivity of homogeneous formations containing both nonconductive and conductive particles at various fluids saturations. The model is developed 

based on the Poisson-Nernst-Planck (PNP) equations for a dilute solution in a weak electrical field regime to calculate the dipolarizability of the representative 

volume comprising a single isolated spherical particle in an electrolyte host. Then the effective medium theory is used to determine effective complex conductivity 

of the whole mixture. The result shows that the conductive particles dominate the frequency dispersion of complex conductivity due to IFP effects compared to 

nonconductive particles. 
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. Introduction 

Interfacial polarization phenomena ( Dukhin et al., 1974; Wong,

979; Schmuck and Bazant, 2015 ) influences the migration, accu-

ulation, depletion, and diffusion of charge carriers. If neglected,

nterfacial polarization (IFP) effects will lead to inaccuracy when

stimating petrophysical properties of formations using conventional

esistivity/conductivity/permittivity interpretation methods ( Clavier

t al., 1976; Misra et al., 2016a; Zhao et al., 2016 ). Some of the inter-

retation techniques for the subsurface galvanic resistivity (laterolog),

lectromagnetic (EM) induction and EM dielectric dispersion logs do

ot consider the IFP effects ( Anderson et al., 2007; Corley et al., 2010 ),

hich cause inaccurate estimates for pyrite-rich sedimentary rocks

 Altman et al., 2008 ) and pyrite- and graphite-rich organic source rocks

 Altman et al., 2008 ). Although in the last decade, some papers included

FP effect in EM induction logs ( MacLennan et al., 2013 ), or in dielectric

odel which considers cation exchange capacity ( Revil, 2013 ), there

s still a need to investigate the IFP effect. Recently, for hydrocarbon

olume estimation, Deng et al. (2018) applied spectral induced polar-

zation method to estimate oil saturation in oil-contaminated clayey

oils. Freed et al. (2018) also developed a physics-based model for the

ielectric response that accounts for the IFP effect due to the cation

xchange capacity in low-salinity shaly sands formations. 
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Mechanistic model of the IFP phenomena can improve resistiv-

ty/conductivity/permittivity interpretation in clay- and conductive-

ineral-rich formations. To model the IFP effect of electrically con-

uctive inclusions, Misra et al. (2016b) applied Poisson-Nernst-Planck

PNP) equation. Their model predictions have a good match with lab-

ratory measurements on conductive-mineral-bearing mixtures. More-

ver, several mathematical models have been developed in the fields of

etrology ( Revil et al., 2017 ), geophysics ( Revil, 2012; Placencia-Gómez

nd Slater, 2014 ), biology ( Grosse and Schwan, 1992; Zheng and Wei,

011 ), electrochemistry ( Chu and Bazant, 2006 ) and colloidal science

 Grosse and Barchini, 1992; Grosse et al., 1998 ), all of which facilitate

he study of interfacial polarization effects arising from various mecha-

isms. 

In this paper, we develop a model that couples the interfacial po-

arization of uniformly distributed water-wet nonconductive spherical

rains possessing surface conductance with interfacial polarization of

niformly distributed conductive spherical inclusions in redox-inactive

onditions at various water saturations. The proposed model can be ap-

lied to estimate effective conductivity and effective permittivity of ho-

ogeneous formations containing both conductive and nonconductive

articles at various fluids saturations. 
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Acronyms 

EM electromagnetic 

IFP interfacial polarization 

PDE partial differential equations 

PNP Poisson–Nernst–Planck 

PPIP perfectly polarized interfacial polarization 

PS PPIP-SCAIP 

SCAIP surface-conductance-assisted interfacial polarization 

Symbols 

a characteristic length of inclusion phase (m) 

c charge density variation (1/m 

3 ) 

d net charge density variation (1/m 

3 ) 

D diffusion coefficient of charge carriers (m 

2 /s) 

Δ ( ∇ 

2 ) Laplace’s operator 

e Euler’s number 

e electric field vector 

E 0 amplitude of the electric field (V) 

𝜀 dielectric permittivity (F/m) 

𝜀 0 vacuum permittivity (8.854 ×10 − 12 F/m) 

𝜀 eff effective dielectric permittivity of the mixture (F/m) 

𝜀 r relative permittivity 

f frequency (Hz) 

f ( 𝜔 ) dipolarizability (dipolar field coefficient) 

i square root of − 1 

i n modified spherical Bessel function of the first kind of n th 

order 

I n modified Bessel function of the first kind of n th order 

j current density (A/m 

3 ) 

k B Boltzmann’s constant 

k n modified spherical Bessel function of the second kind of 

n th order 

K n modified Bessel function of the second kind of n th order 

𝜆 surface conductance (S) 

𝜆D Debye screening length (m) 

𝜇 electrical mobility [m 

2 /(V·s)] 

n an integer referring to the order of the standing wave 

solution 

N charge carrier density (1/m 

3 ) 

𝜔 angular frequency of the electric field (rad/s) 

P f net free charge density (C/m 

3 ) 

𝑃 0 
𝑛 

associated Legendre functions of the first kind of n th or- 

der 

𝜑 electrical potential (V) 

𝜙 volume fraction (%) 

q elementary charge (1.6 ×10 − 19 C) 

𝑄 

0 
𝑛 

associated Legendre functions of the second kind of n th 

order 

r radial distance along the normal to the interface (m) 

𝜌 surface charge density (C/m 

2 ) 

s total ion density variation (1/m 

3 ) 

𝜎 electrical conductivity (S/m) 

𝜎∗ complex electrical conductivity (S/m) 

𝜎eff effective electrical conductivity of the mixture (S/m) 

𝜎∗ 
𝑒𝑓𝑓 

effective complex electrical conductivity of the mixture 

(S/m) 

t time (s) 

T absolute temperature (K) 

𝜃 angle between the normal to the interface and the inci- 

dent external electric field (°) 

Z charge number 

Subscripts 

0 at time equal to 0 s 
N  

245 
c clay 

cond conductive particles 

eff effective 

h host medium 

i inclusion phase 

j type of medium/phase 

n an integer referring to the order 

𝑛̂ unit vector 

ncond nonconductive particles 

o oil 

p pyrite 

r relative 

s sand 

Superscripts 

+ positively charged carrier 

− negatively charged carrier 

.1. Interfacial polarization around surface-charge-bearing spherical 

onconductive particles 

Various mixing models have been developed to quantify the effects

f various interfacial polarization phenomena. The model proposed by

chwarz (1962) considers interfacial polarization (IFP) effect around

harged nonconductive particles. It assumes a diffusion of counterion

ayer moving along the surface of the charged particle by calculating the

otential outside the counterion layer as a solution of Laplace’s equation

ather than Poisson’s equation. However, this model fails to account for

ll the bulk diffusion effects. In contrast, Dukhin et al. (1974) concluded

hat the mechanism behind interfacial polarization is the diffusion of

ons in the bulk electrolyte around the particle. They were unable to pro-

ide analytical expressions for IFP effects in terms of various relaxation

arameters due to mathematical complexity caused by non-linearity of

ukhin et al. (1974) equation. This model, called the standard model

n colloidal chemistry, does not consider the existence of a Stern layer

ith mobile ions. Grosse and Foster (1987) developed an analytical so-

ution of IFP effect by developing a simplified model of charged noncon-

uctive spherical particles in bulk electrolyte. In their model, positive

ons from the bulk electrolyte can freely exchange with the positively

harged counterion layer while the negative ions are excluded from the

ounterion layer. This model was generalized in Grosse (1988) by al-

owing arbitrary charge in nonsymmetric electrolytes, assuming finite

urface conductivity and considering the entire frequency spectrum. 

.2. Interfacial polarization around spherical conductive particles 

Garcia et al. (1985) developed a model for conductive spherical par-

icles with insulating shells (for e.g. oxidized surface of pyrite) in a

onductive medium where the diffusive effects play an important role.

rosse and Barchini (1992) improved the previous theory for infinitely

onductive spherical particles in bulk electrolyte by considering ion flow

cross the interface. Moreover, in comparison to dielectric mixture for-

ulas, Tuncer et al. (2001) applied a finite element method on cylinder-

ike conductive inclusion phase to investigate the dielectric relaxation

henomena. Their result shows the two methods match well at low in-

lusion concentrations. However, as the concentration of inclusion in-

reases, mutual interaction of the inclusions becomes significant. 

. Methodology 

.1. Assumptions 

Both the SCAIP model and PPIP model are based on the Poisson-

ernst-Planck (PNP) equations for a dilute solution in a weak electrical
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Fig. 1. Cross-section of a nonconductive spherical inclusion possessing sur- 

face charge surrounded by an ionic host medium. The inclusion is negatively 

charged, surrounded by a positive charged counterion layer, which forms a 

Gouy–Chapman model. Charge carriers in the ionic host medium are cations, 

identified by “+ ” symbol, and anions, identified by “− ” symbol. The direction 

of the externally applied electrical field, e , is identified with a bold arrow next 

to the symbol “e ”. The direction of movement of the charge carriers in the ionic 

host medium is represented by the arrow next to the symbol of the charge car- 

rier. 
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eld regime. By applying the PNP equations, we analyze the EM re-

ponse of a representative volume comprising a single, isolated noncon-

uctive inclusion possessing surface charge or electrically conductive in-

lusion surrounded by an electrolyte-saturated host medium ( Zheng and

ei, 2011 ). To simplify the model, we assume only spherical parti-

les are present in the porous media. Also, the host, inclusion, and

ore-filling fluid are assumed to have homogeneous, isotropic, and non-

ispersive electrical properties. Therefore, the frequency dispersion and

ielectric enhancement predicted by the SCAIP model or PPIP model

olely stems from the SCAIP or PPIP phenomena around the negatively

harged nonconductive or electrically conductive inclusions. We also

ssume all the charge carriers bear unitary charge and both host and

nclusion phases bear binary, symmetric charge carriers. 

.2. Mechanistic model of interfacial polarization due to 

urface-charge-bearing spherical nonconductive particle 

The surface of a nonmetallic (nonconductive) mineral, such as clay,

cquires charges if the mineral is surrounded by electrolytes due to ionic

dsorption, protonation/deprotonation of the hydroxyl groups, and dis-

ociation of other potentially active surface groups, also combinedly re-

erred as surface complexation reactions ( Leroy and Revil, 2004 ). In

his paper, surface-conductance-assisted interfacial polarization (SCAIP)

odel is developed to investigate the interfacial polarization phenom-

na around surface-charge-bearing spherical nonconductive particles.

ig. 1 shows SCAIP phenomena in a representative volume of a dilute

ixture of uniformly distributed surface-charge-bearing nonconductive

pherical inclusions in an electrolyte-saturated host medium, where in-

erfacial polarization is independent of the direction of the externally

pplied electric field due to spherical symmetry. 

The phenomenological basis of interfacial polarization consid-

red in our work builds on the mechanistic descriptions outlined by

rosse (1988) . The negatively charged inclusion, together with its pos-

tive counterion layer, essentially behaves as a conductor of positive

harge carriers, which allows the positive ions in the host medium to

reely exchange with the ions in the counterion layer, and as a non-

onductor of negative charges, which excludes the negative ions from

he counterion layer. 
246 
In the absence of an externally applied electric field, a Gouy–

hapman double layer is assumed around the surface-charge-bearing

onconductive inclusions, where the positive counterion layer is char-

cterized by a finite surface conductivity. We assume the thickness of

ounterion layer is negligible, which is valid when a ≫ 𝜆D , where 𝜆D 

s the Debye screening length and a is the characteristic length of the

nclusion phase. 

.2.1. Development of SCAIP model 

The Poisson–Nernst–Planck (PNP) equation has been used to model

lectromigration and diffusion of ionic charge carriers in electrolytes

 Zheng and Wei, 2011 ) and that due to holes and electrons in semicon-

uctors ( Schmuck and Bazant, 2015 ). It is based on a mean-field ap-

roximation of charge carrier interactions and continuum descriptions

f charge concentration and electrostatic potential. We apply the PNP

quations to model charge dynamics and relaxation in the representa-

ive volume containing only two phases: the host medium, denoted by

ubscript h , and the conductive (to be discussed in the following section)

r nonconductive particles (inclusions), denoted by subscript i . In our

ormulation, the host medium can be assumed as a homogeneous mix-

ure of electrolyte and nonconductive matrix or as a pure electrolyte. At

ime t < 0, it is assumed that there is no external electric field exciting

he representative volume. Initial charge carrier densities at equilibrium

onditions in both the host and inclusion phases are denoted as 𝑁 

± 
0 ,𝑗 ,

here subscript j takes the form of i for the inclusion phase and h for the

ost phase. Starting at time t = 0, the representative volume experiences

 uniform externally applied electric field E = E 0 e 
i 𝜔 t , where E 0 is the am-

litude of the externally applied electric field, i is square root of − 1, 𝜔 is

he angular frequency (rad/s) of the externally applied electric field, and

 is Euler’s number. Note 𝜔 = 2 𝜋f , where f is frequency (Hz). We assume

he negatively charged spherical nonconductive particle is surrounded

y a layer of positively charged, conducting counterion layer, which has

 surface conductance 𝜆 and bears a field-induced surface charge den-

ity 𝜌e i 𝜔 t cos 𝜃, where 𝜃 is the angle between the normal to the interface

nd the incident external electric field. Under a weak field approxima-

ion, charge carrier densities in host and inclusion phases are perturbed

rom their equilibrium conditions near the host-inclusion interfaces,

esulting in a new linearly approximated charge distribution, given

y 

 

± 
𝑗 
( 𝑟, 𝑡, 𝜃) = 𝑁 

± 
0 ,𝑗 + 𝑐 ± 

𝑗 
( 𝑟 ) 𝑒 𝑖𝜔𝑡 cos 𝜃 (1)

uch that |𝑐 ± 
𝑗 
| ≤ 𝑁 

± 
0 ,𝑗 , 𝑐 

± 
𝑗 

is the charge density variation near the host-

nclusion interface in medium j due to the externally applied electric

eld and r is the radial distance along the normal to the interface. Note

hat in this section, for nonconductive inclusion, 𝑐 ± 
𝑖 
( 𝑟 ) = 0 . In addition,

ne assumption is the absence of charge carriers in the nonconductive

nclusion phase, 𝑁 

± 
0 ,𝑖 = 0 . Further, the symbol “+ ” identifies positive-

harge carriers such as holes and cations, while the symbol “− ” identifies

egative-charge carriers such as electrons and anions. 

We assume that the characteristic length a of the inclusions phase is

ar greater than the Debye screening length 𝜆D . Note that 𝜆D is a measure

f induced charge distribution that forms around an inclusion particle

ue to surface charges that exist on the inclusion particle in the absence

f an externally applied electric field. In other words, 𝜆D represents a

olume outside of which surface charges on an inclusion particle are

lectrically screened. The characteristic length a is equal to the radius of

pherical inclusion. Mathematically, 𝜆𝐷 = 

√ 

𝜀 ℎ 𝑘 𝐵 𝑇 ∕( 2 𝑍 

+ 
ℎ 
𝑍 

− 
ℎ 
𝑞 2 𝑁 0 ,ℎ ) ,

here 𝜀 h is dielectric permittivity of the host, k B is Boltzmann’s constant,

 is absolute temperature, 𝑍 

± 
ℎ 

is charge number of positive and negative

harge carriers in the host, and q is the elementary charge. The volume

raction of conductive (for e.g., pyrite) and nonconductive particles (for

.g. clays) is assumed to be in the range of 5 − 15%. Another simplifying

ssumption is that all the charge carriers bear unitary charge and that

oth host and inclusion phases bear binary, symmetric charge carriers.
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n other words, 

 

± 
𝑗 
= 1 , 𝜇+ 

ℎ 
= 𝜇− 

ℎ 
= 𝜇ℎ , 𝜇

+ 
𝑖 
= 𝜇− 

𝑖 
= 𝜇𝑖 , 𝑁 

+ 
0 ,𝑖 = 𝑁 

− 
0 ,𝑖 = 𝑁 0 ,𝑖 , 

𝑁 

+ 
0 ,ℎ = 𝑁 

− 
0 ,ℎ = 𝑁 0 ,ℎ (2) 

here 𝜇± 
𝑗 

is the electrical mobility of positive and negative charge car-

iers in medium j , and 𝑍 

± 
𝑗 

is charge number of positive and negative

harge carriers in medium j . 

The current density of each charge carrier type in the host and inclu-

ion phases is the sum of current density due to drift current and diffu-

ion current. In the absence of generation/recombination reactions, the

ransport equation representing conservation laws for charge-carrying

pecies can be written as 

 

± 
𝑗 
= 𝒋 

± 
𝑗 ,𝑑 𝑟𝑖𝑓 𝑡 

+ 𝒋 
± 
𝑗 ,𝑑 𝑖𝑓 𝑓 𝑢𝑠𝑖𝑜𝑛 

= 𝑞 𝑁 

± 
𝑗 
𝜇𝑗 𝒆 𝑗 ∓ 𝑞 𝐷 

± 
𝑗 
∇ 𝑁 

± 
𝑗 

(3)

here 𝒋 ± 
𝑗 

is the current density of positive and negative charge carriers,

espectively, in medium j , e j is the net electric field vector in medium

 , and 𝐷 

± 
𝑗 

is diffusion coefficient of positive and negative charge carri-

rs, respectively, in medium j . When using the simplifying assumption

or electrical mobility of charge carriers, as mentioned in Eq. (2) , and

instein’s relationship of diffusion coefficient with electrical mobility,

amely D j = ( 𝜇j k B T )/ q , we obtain 

 

+ 
ℎ 
= 𝐷 

− 
ℎ 
= 𝐷 ℎ ; 𝐷 

+ 
𝑖 
= 𝐷 

− 
𝑖 
= 𝐷 𝑖 (4)

By substituting e j = − ∇ 𝜑 j into the low-frequency limit of Maxwell’s

quations (induction neglected) and substituting Eq. (4) into Eq. (3) , we

xpress the charge species conservation condition as 

 

± 
𝑗 
= − 𝑞 𝑁 

± 
𝑗 
𝜇𝑗 ∇ 𝜑 𝑗 ∓ 𝑞 𝐷 𝑗 ∇ 𝑁 

± 
𝑗 

(5)

here 𝜑 j is the electrical potential in medium j . Eq. (5) is Nernst–

lanck’s equation that describes the relationship of the flux of charge-

arrying species to its concentration gradient and that to the applied

lectrical potential gradient in a given medium. Nernst-Planck’s equa-

ion can alternatively be expressed as 

 

± 
𝑗 
= − 𝐷 

± 
𝑗 
𝑁 

± 
𝑗 
∇ 𝜑 

± 
𝑐𝑗 

(6)

here 𝜑 

± 
𝑐𝑗 

= 𝑘 𝐵 𝑇 ln 𝑁 

± 
𝑗 
± 𝑞𝑍 

± 
𝑗 
𝜑 𝑗 is the electrochemical potential of

harge carriers. The continuity equation for charge carrier density based

n mass conservation for each charge carrier type in an incompressible

edium without any convective flow can be written as 

 𝑞 
𝜕𝑁 

± 
𝑗 

𝜕𝑡 
= ∇ ⋅ 𝒋 ± 

𝑗 
(7)

By applying Eqs. (5)–(7) , we obtain 

𝜕𝑁 

+ 
𝑗 

𝜕𝑡 
= ∇ ⋅

(
𝐷 𝑗 ∇ 𝑁 

+ 
𝑗 
+ 𝜇𝑗 𝑁 

+ 
𝑗 
∇ 𝜑 𝑗 

)
(8)

nd 

𝜕𝑁 

− 
𝑗 

𝜕𝑡 
= ∇ ⋅

(
𝐷 𝑗 ∇ 𝑁 

− 
𝑗 
− 𝜇𝑗 𝑁 

− 
𝑗 
∇ 𝜑 𝑗 

)
(9)

The time derivative of Eq. (1) assuming axial symmetry is 

𝜕𝑁 

± 
𝑗 

𝜕𝑡 
= 𝑖𝜔𝑐 ± 

𝑗 
(10)

here 𝑐 ± 
𝑗 
= 𝑐 ± 

𝑗 
( 𝑟, 𝑡, 𝜃) = 𝑐 ± 

𝑗 
( 𝑟 ) 𝑒 𝑖𝜔𝑡 cos 𝜃. We apply Eq. (10) to Eqs. (8) and

 , then we add and subtract Eqs. (8) and (9) to obtain Eqs. (11) and

12) expressed as: 

 𝑖𝑞 𝜔 𝑑 𝑗 = −2 𝑞 𝑁 0 ,𝑗 𝜇𝑗 Δ𝜑 𝑗 − 𝑞 𝐷 𝑗 Δ𝑑 𝑗 (11)

nd 

 𝑖𝑞 𝜔 𝑠 𝑗 = − 𝑞 𝐷 𝑗 Δ𝑠 𝑗 (12)

here 𝑑 𝑗 = 𝑐 + 
𝑗 
− 𝑐 − 

𝑗 
represents net charge density variation, 𝑠 𝑗 = 𝑐 + 

𝑗 
+ 𝑐 − 

𝑗 

epresents total ion density variation, and Δ ( ∇ 

2 ) is Laplace’s operator.

ote d j and s j are finite everywhere in the representative volume, and for
247 
onconductive particles, d i = s i = 0. We obtained Eqs. (11) and (12) by

ssuming d j 𝜇j ≪ 1 and s j 𝜇j ≪ 1 as |𝑐 ± 
𝑗 
| ≤ 𝑁 

± 
0 ,𝑗 . 

Under the influence of an externally applied EM field, the distribu-

ion of charge carriers in both media leads to a time-varying electric po-

ential that is expressed as 𝜑 j ( r,t , 𝜃) = 𝜑 j ( r ) e 
i 𝜔 t cos 𝜃. Using Gauss’s law

nd Eq. (1) , we obtain 

 ⋅
(
𝜀 𝑗 𝒆 𝑗 

)
= 𝑃 𝑓 ,𝑗 = 𝑞 

(
𝑁 

+ 
𝑗 
− 𝑁 

− 
𝑗 

)
= 𝑞 

(
𝑐 + 
𝑗 
− 𝑐 − 

𝑗 

)
= 𝑞 𝑑 𝑗 (13)

here P f,j is the net free charge density in medium j due to charge re-

istribution in the presence of an externally applied EM field, e j , and

 j = 𝜀 r,j 𝜀 0 is the dielectric permittivity of medium j , 𝜀 r,j is the relative

ermittivity of medium j , and 𝜀 0 = 8.854 ×10 − 12 F/m is the vacuum per-

ittivity. Eq. (13) relates the spatial distribution of electric charge to the

ime-varying electric field. Assuming both media are linear, isotropic,

nd homogeneous, and that the electric field can be defined by a scalar

lectrical potential field, 𝜑 j , we obtain 

 ⋅
(
𝜀 𝑗 𝒆 𝑗 

)
= −∇ ⋅

(
𝜀 𝑗 ∇ 𝜑 𝑗 

)
= − 𝜀 𝑗 Δ𝜑 𝑗 (14)

By combining Eqs. (13) and (14) , we obtain an alternate expression

f Poisson’s equation, expressed as 

𝜑 𝑗 = − 

𝑞 𝑑 𝑗 

𝜀 𝑗 
(15) 

Poisson’s equation is applied to describe the electric field in terms of

he electrical potential, the gradient of which governs electromigration

n both media. By substituting Eq. (15) into Eq. (11) , we obtain the

oisson-Nernst-Planck (PNP) equation, given by 

 𝑖𝑞 𝜔 𝑑 𝑗 = 2 𝑞 2 𝑁 0 ,𝑗 𝜇𝑗 𝑑 𝑗 ∕ 𝜀 𝑗 − 𝑞 𝐷 𝑗 Δ𝑑 𝑗 (16)

hich can be re-written as 

𝑑 𝑗 = 

( 

𝑖𝜔 

𝐷 𝑗 

+ 

𝜎𝑗 

𝜀 𝑗 𝐷 𝑗 

) 

𝑑 𝑗 (17) 

here 𝜎j = 2 N 0, j 𝜇j q is the electrical conductivity of medium j . We rewrite

qs. (17) and (12) as 

𝑑 𝑗 = 𝛾𝑗 
2 𝑑 𝑗 (18) 

here 

𝑗 
2 = 

( 

𝑖𝜔 

𝐷 𝑗 

+ 

𝜎𝑗 

𝜀 𝑗 𝐷 𝑗 

) 

(19) 

nd 

𝑠 𝑗 = 𝜉𝑗 
2 𝑠 𝑗 (20) 

here 

𝑗 
2 = 

𝑖𝜔 

𝐷 𝑗 

(21) 

espectively. Eqs. (18) and (20) are Helmholtz partial differential equa-

ions (PDE) which can be solved to obtain distinct analytical expressions

f d j and s j for the host and inclusion phases, respectively. Eq. (18) is

nserted into Eq. (15) to obtain the following Laplace PDE that can be

olved for the electric potential field in the representative volume: 

𝜗 𝑗 = 0 (22) 

here 

 𝑗 = 𝜑 𝑗 + 

(
𝑞 𝑑 𝑗 

)
∕ 
(
𝛾2 
𝑗 
𝜀 𝑗 

)
(23)

.2.2. Solution of Helmholtz PDE 

As mentioned before, for nonconductive inclusions, d i = s i = 0. So,

e’re solving the Helmholtz PDEs to obtain the distinct analytical ex-

ressions of d h and s h for the host phase. A sphere of radius equal to a

xhibits dipolarizability (dipole moment) in the radial direction. Such

n inclusion identifies a grain or vug. In order to compute the dipolar-

zability of the representative volume comprising a spherical inclusion
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(

𝜑 ( 𝑟 = 𝑎 ) = 𝜑 ( 𝑟 = 𝑎 ) (39a) 
n an electrolytic host, Eq. (18) can be expressed in spherical coordi-

ates, assuming azimuthal symmetry, axial symmetry, and a separable

olution ( Young, 2009 ) for d h ( r , 𝜃) = R h ( r ) T h ( 𝜃), as 

1 
𝑅 ℎ 

𝜕 

𝜕𝑟 

( 

𝑟 2 
𝜕 𝑅 ℎ 

𝜕𝑟 

) 

− 𝛾2 
ℎ 
𝑟 2 + 

1 
𝑇 ℎ sin 𝜃

𝜕 

𝜕𝜃

( 

sin 𝜃𝜕 𝑇 ℎ 
𝜕𝜃

) 

= 0 (24)

nd 

1 
sin 𝜃

𝜕 

𝜕𝜃

( 

sin 𝜃𝜕 𝑇 ℎ 
𝜕𝜃

) 

= − 𝑛 ( 𝑛 + 1 ) 𝑇 ℎ (25)

here n is an integer referring to the order of the standing wave solu-

ion. A standing wave solution ( Young, 2009 ) to the above differential

quation is 

 ℎ = 

∞∑
𝑛 =1 

[
𝐴 𝑛,ℎ 𝑃 

0 
𝑛 
( cos 𝜃) + 𝐵 𝑛,ℎ 𝑄 

0 
𝑛 
( cos 𝜃) 

]
(26)

here 𝑃 0 
𝑛 

and 𝑄 

0 
𝑛 

are associated Legendre functions of the first and sec-

nd kind ( Weisstein, 2018a ), respectively, of n th order and A n,h and B n,h 

re unknown complex-valued coefficients of the general solution of the

artial differential Eq. (25) . Substituting Eq. (25) in Eq. (24) , we obtain

𝜕 

𝜕𝑟 

( 

𝑟 2 
𝜕 𝑅 ℎ 

𝜕𝑟 

) 

− 

[
𝛾2 
ℎ 
𝑟 2 + 𝑛 ( 𝑛 + 1 ) 

]
𝑅 ℎ = 0 (27)

A standing wave solution to the above differential equation is 

 ℎ = 

∞∑
𝑛 =1 

[
𝐶 𝑛,ℎ 𝑖 𝑛 

(
𝑟 𝛾ℎ 

)
+ 𝐷 𝑛,ℎ 𝑘 𝑛 

(
𝑟 𝛾ℎ 

)]
(28)

here n is an integer for the standing wave solution ( Young, 2009 ),

 n and k n are the modified spherical Bessel function of the first and

econd kind ( Weisstein, 2018b ), respectively, of n − th order. C n,h and

 n,h are unknown complex-valued coefficients of the general solution

f the partial differential Eq. (27) . i n and k n can be expressed in terms

f modified Bessel function of the first and second kind, respectively,

s 𝑖 𝑛 ( 𝑟 𝛾ℎ ) = 

√ 

𝜋

2 𝑟 𝛾ℎ 
𝐼 
𝑛 + 1 2 

( 𝑟 𝛾ℎ ) and 𝑘 𝑛 ( 𝑟 𝛾ℎ ) = 

√ 

2 
𝜋𝑟 𝛾ℎ 

𝐾 

𝑛 + 1 2 
( 𝑟 𝛾ℎ ) , where 𝐼 

𝑛 + 1 2 
nd 𝐾 

𝑛 + 1 2 
are the modified Bessel function of the first and second kind,

espectively, of ( 𝑛 + 

1 
2 )− th order. In the analytical expression of our

odel, the series is reduced to a single term for n = 1 and B n,h = 0 by

onsidering the following symmetries of the charge density: (1) axial

ymmetry, (2) anti-symmetry with respect to 𝜃, (3) uniformity of the

xternal applied field, and (4) dipolar nature of the externally applied

eld. This simplification is aligned with boundary conditions that can-

ot be satisfied by other values of n . This reduces Eqs. (28) and (26) to

 ℎ = 𝐶 ℎ 𝑖 1 
(
𝑟 𝛾ℎ 

)
+ 𝐷 ℎ 𝑘 1 

(
𝑟 𝛾ℎ 

)
(29)

nd 

 ℎ = 𝐴 ℎ cos 𝜃 (30)

espectively, where C h , D h , and A h and are unknown complex-valued

oefficients of the particular solution obtained from Eqs. (26) and (28) .

he general representation of d h ( r , 𝜃) can now be written, by combining

qs. (29) and (30) , as 

 ℎ ( 𝑟, 𝜃) = 𝐴 ℎ 

[
𝐶 ℎ 𝑖 1 

(
𝑟 𝛾ℎ 

)
+ 𝐷 ℎ 𝑘 1 

(
𝑟 𝛾ℎ 

)]
cos 𝜃 (31)

Using the condition that d h ( r , 𝜃) should be finite at r →∞, we obtain

 particular solution of d h for the host phase that can be represented as

 ℎ ( 𝑟, 𝜃) = 𝐵 ℎ 1 𝑘 1 
(
𝑟 𝛾ℎ 

)
cos 𝜃 (32a)

r 

 ℎ ( 𝑟, 𝜃) = 𝐵 ℎ 1 

[ 

𝑒 − 𝑟 𝛾ℎ 

( 

1 
𝑟 𝛾ℎ 

+ 

1 (
𝑟 𝛾ℎ 

)2 
) ] 

cos 𝜃 (32b)

here B h 1 is unknown complex-valued coefficient of the particular so-

ution in the host medium obtained from Eq. (31) . Note when r →∞,
248 
 h ( r , 𝜃) = 0. Repeat the above procedure, we can obtain a particular so-

ution of s h for the host phase from Eq. (20) that can be represented as

 ℎ ( 𝑟, 𝜃) = 𝐵 ℎ 2 𝑘 1 
(
𝑟 𝜉ℎ 

)
cos 𝜃 (33a)

r 

 ℎ ( 𝑟, 𝜃) = 𝐵 ℎ 2 

[ 

𝑒 − 𝑟 𝜉ℎ 

( 

1 
𝑟 𝜉ℎ 

+ 

1 (
𝑟 𝜉ℎ 

)2 
) ] 

cos 𝜃 (33b)

here B h 2 is unknown complex-valued coefficient of the particular so-

ution in the host medium. 

.2.3. Solution of Laplace PDE 

The Laplacian partial differential equation (PDE) must be solved

o obtain the electric potential field in the representative volume.

ssuming azimuthal symmetry and a separable solution for ϑj ( r , 𝜃,

 ) = R 𝜀 j ( r ) T 𝜀 j ( 𝜃), Eq. (22) can be expressed in spherical coordinates as

𝜗 𝑗 = 

1 
𝑅 𝜀𝑗 

𝜕 

𝜕𝑟 

( 

𝑟 2 
𝜕 𝑅 𝜀𝑗 

𝜕𝑟 

) 

+ 

1 
𝑇 𝜀𝑗 sin 𝜃

𝜕 

𝜕𝜃

( sin 𝜃𝜕 𝑇 𝜀𝑗 
𝜕𝜃

) 

= 0 (34)

Assuming axial symmetry, a general solution ( Hogg, 2001 ) to the

bove PDE can be expressed as 

 𝑗 ( 𝑟, 𝜃) = 

∞∑
𝑛 =0 

[
𝐴 𝑛,𝑗 𝑟 

𝑛 + 𝐶 𝑛,𝑗 𝑟 
− ( 𝑛 +1 ) ][𝐸 𝑛,𝑗 𝑃 

0 
𝑛 
( cos ( 𝑛𝜃) ) + 𝐹 𝑛,𝑗 𝑄 

0 
𝑛 
( sin ( 𝑛𝜃) ) 

]
(35) 

here n is an integer and A n,j , C n,j , E n,j , and F n,j are unknown complex-

alued coefficients of the general solution of the PDE expressed in

q. (34) . For the analytical modeling purposes, we assume n = 1, F n,j = 0,

 0, j = 0 and C 0, j = 0, which ensures that the remaining terms satisfy

he polar angle dependence of the model. Simplified representation of

q. (35) is expressed as 

 𝑗 ( 𝑟, 𝜃) = 

(
𝐴 1 ,𝑗 𝑟 + 𝐶 1 ,𝑗 𝑟 

−2 )𝐸 1 ,𝑗 cos 𝜃 (36a)

hich can be rewritten using Eq. (23) as 

 𝑗 ( 𝑟, 𝜃) = 

(
𝐴 𝑗 𝑟 + 𝐶 𝑗 𝑟 

−2 ) cos 𝜃 − 

𝑞 𝑑 𝑗 ( 𝑟, 𝜃) 

𝛾2 
𝑗 
𝜀 𝑗 

(36b)

Using the condition that d i = 0 and 𝜑 i should be finite when r →0,

e can obtain C i = 0. So, a standing wave representation of Eq. (36b) for

he nonconductive inclusion phase is 

 𝑖 ( 𝑟, 𝜃) = 𝐴 𝑖 𝑟 cos 𝜃 (37)

here A i is unknown complex-valued coefficient of the particular solu-

ion in the nonconductive inclusion phase obtained from Eq. (36b) . Us-

ng the condition when r →∞, d h = 0, we can obtain A h = − E 0 . A standing

ave representation of Eq. (36b) for the host phase, using Eq. (32b) , is

 ℎ ( 𝑟, 𝜃) = 

(
− 𝐸 0 𝑟 + 𝐶 ℎ 𝑟 

−2 ) cos 𝜃 − 

𝑞 𝐵 ℎ 1 

𝛾2 
ℎ 
𝜀 ℎ 

[ 

𝑒 − 𝑟 𝛾ℎ 

( 

1 
𝑟 𝛾ℎ 

+ 

1 (
𝑟 𝛾ℎ 

)2 
) ] 

cos 𝜃

(38) 

here C h is unknown complex-valued coefficient of the particular solu-

ion in the host obtained from Eq. (36b) and E 0 is the amplitude of the

xternally applied electric field. 

.2.4. Boundary conditions 

To obtain an expression for the dipolarizability (dipole moment), we

eed first to identify the boundary conditions ( Grosse, 1988 ): 

a) Continuity of the electric potential at the interface. 
𝑖 ℎ 
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b) Discontinuity of the normal component of the displacement current

at the interface because of the surface charge distribution on the in-

clusion phase. This boundary condition is derived from Gauss’ Law.

𝜀 𝑖 
𝜕 𝜑 𝑖 

𝜕𝑟 

||||𝑟 = 𝑎 − 𝜀 ℎ 
𝜕 𝜑 ℎ 

𝜕𝑟 

||||𝑟 = 𝑎 = 𝜌 cos 𝜃 (39b)

c) Continuity of the surface charge density at the host-inclusion inter-

face qualitatively expressed as: Rate of change of surface charge den-

sity normal drift/conduction current at the interface due to poten-

tial gradient arising from the external electromagnetic field + normal

diffusion current due to concentration gradient in the host media

at the interface + tangential conduction current due to the potential

gradient arising from the surface-charge-bearing inclusion phase. In

other words, this boundary condition shows that the time derivative

of surface charge density in the counterion layer is equal to the sum

of the normal conduction and diffusion current due to potential and

concentration difference, separately, from the host medium and the

tangential conduction current due to potential from the inclusion

phase. 

− 𝑖𝜔𝜌 cos 𝜃 = − 

𝜎ℎ 

2 
𝜕 𝜑 ℎ 

𝜕𝑟 

||||𝑟 = 𝑎 − 𝑞 𝐷 ℎ 

𝜕𝑐 + 
ℎ 

𝜕𝑟 

|||||𝑟 = 𝑎 + 

2 𝜆
𝑎 
𝐴 𝑖 cos 𝜃 (39c)

d) The normal component of the current density of negative ions in

the host medium must vanish at the interface due to the assumption

that the negative ions are excluded from the counterion layer. 

𝒋 − 
ℎ 
= − 

𝜎ℎ 

2 
𝜕 𝜑 ℎ 

𝜕𝑟 

||||𝑟 = 𝑎 + 𝑞 𝐷 ℎ 

𝜕𝑐 − 
ℎ 

𝜕𝑟 

|||||𝑟 = 𝑎 = 0 (39d)

e) Due to the application of the external electric field, we use a simpli-

fying assumption that the relative change of the positive ion density

in the counterion layer (which is assumed to be negligibly thin) and

that in the host medium must be the equal because the positive ions

in the host medium can freely exchange with the ions in the counte-

rion layer. 

𝑐 + 
ℎ 
( 𝑟 = 𝑎, 𝜃) 
𝑁 0 ,ℎ 

= 

𝜌 cos 𝜃
𝜌0 

(39e) 

here 𝜌0 is the initial equilibrium surface change density in the counte-

ion layer and 𝜌 is the net resultant surface charge density in the coun-

erion layer after the application of electric field. 

.2.5. Solution for the Dipolarizability 

Using boundary condition (39a) , Eqs. (37) and (38) can be equated

n the surface of the sphere of radius equal to a . The resulting equation

an be abbreviated as 

 𝐸 0 𝑎 + 

𝐶 ℎ 

𝑎 2 
− 𝐸 ℎ 𝐵 ℎ 1 = 𝐴 𝑖 𝑎 (40a)

here 

 ℎ = 

𝑞 

𝛾2 
ℎ 
𝜀 ℎ 

𝑒 − 𝑎 𝛾ℎ 

[ 

1 
𝑎 𝛾ℎ 

+ 

1 (
𝑎 𝛾ℎ 

)2 
] 

(40b) 

The equation obtained using boundary condition (39b) at the surface

f the sphere can be abbreviated as 

 ℎ 

( 

𝐸 0 + 

2 𝐶 ℎ 

𝑎 3 
− 𝐺 ℎ 𝐵 ℎ 1 

) 

+ 𝜀 𝑖 𝐴 𝑖 = 𝜌 (41a)

here 

 ℎ = 

𝑞 

𝛾ℎ 𝜀 ℎ 
𝑒 − 𝑎 𝛾ℎ 

[ 

1 
𝑎 𝛾ℎ 

+ 

2 (
𝑎 𝛾ℎ 

)2 + 

2 (
𝑎 𝛾ℎ 

)3 
] 

(41b) 

Boundary condition (39c) gives us the following abbreviated equa-

ion: 

𝜔𝜌 = − 

𝜎ℎ 

2 
𝐸 0 − 

𝜎ℎ 𝐶 ℎ 

𝑎 3 
+ 

𝜎ℎ 

2 
𝐺 ℎ 𝐵 ℎ 1 

− 

𝐷 ℎ 
𝛾2 
ℎ 
𝐺 ℎ 𝐵 ℎ 1 𝜀 ℎ − 

𝐷 ℎ 
𝜉2 
ℎ 
𝐿 ℎ 𝐵 ℎ 2 𝜀 ℎ − 

2 𝜆
𝐴 𝑖 (42a) 
2 2 𝑎 
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here 

 ℎ = 

𝑞 

𝜉ℎ 𝜀 ℎ 
𝑒 − 𝑎 𝜉ℎ 

[ 

1 
𝑎 𝜉ℎ 

+ 

2 (
𝑎 𝜉ℎ 

)2 + 

2 (
𝑎 𝜉ℎ 

)3 
] 

(42b) 

Similarly, the equation obtained using boundary condition (39d) can

e abbreviated as 

𝜎ℎ 

2 
𝐸 0 + 

𝜎ℎ 𝐶 ℎ 

𝑎 3 
− 

𝜎ℎ 

2 
𝐺 ℎ 𝐵 ℎ 1 = 

𝐷 ℎ 

2 
𝜉2 
ℎ 
𝐿 ℎ 𝐵 ℎ 2 𝜀 ℎ − 

𝐷 ℎ 

2 
𝛾2 
ℎ 
𝐺 ℎ 𝐵 ℎ 1 𝜀 ℎ (43)

For boundary condition (39e) , we assume the electrical mobilities in

he two regions are the same to re-write this boundary condition as 

 𝑞𝑐 + 
ℎ 
( 𝑟 = 𝑎 ) = 

𝜌𝜎ℎ 

𝜆
(44)

After solving Eqs. (40a) , (41a) , (42a) , (43) and (44) , we obtain the

ipolarizability (dipolar field coefficient) of the representative volume

omprising a spherical nonconductive inclusion in an electrolytic host

s 

 𝑛𝑐𝑜𝑛𝑑 ( 𝜔 ) = 

𝐶 ℎ 

𝐸 0 𝑎 
3 = 

𝑄 ( 𝑅 + 𝐴 ) − 𝑃 

𝑄 ( 𝑅 − 2 𝐴 ) + 2 𝑃 
(45) 

here 

 = 

1 
𝑎 2 

(45a) 

 = 𝛾2 
ℎ 
+ 𝜉2 

ℎ 

𝐺 

𝐻 

+ 

2 𝐺 

𝑎 2 𝐿 

(45b)

 = 

1 
𝑖𝐹 + 1 

[ 

2 − 

𝑎 2 𝜉2 
ℎ 

𝐻 

(
𝐿 

𝑖𝐹 
+ 𝐸 

)
− 

2 𝐸 

𝐿 

] 

(45c) 

 = 

𝑃 

𝑄 

(
𝑖𝐹 𝐸 + 𝐿 

𝑖𝐹 + 1 

)
(45d) 

 = 

𝑎 𝐿 ℎ 

𝐹 ℎ 
, 𝐺 = 

𝑎 𝐺 ℎ 

𝐸 ℎ 

, 𝐿 = 

2 𝜆
𝑎 𝜎ℎ 

, 𝐸 = 

𝜀 𝑖 

𝜀 ℎ 
, 𝐹 = 

𝜔 𝜀 ℎ 

𝜎ℎ 
(45e)

 ℎ = 

𝑞 

𝜉2 
ℎ 
𝜀 ℎ 

𝑒 − 𝑎 𝜉ℎ 

[ 

1 
𝑎 𝜉ℎ 

+ 

1 (
𝑎 𝜉ℎ 

)2 
] 

(45f) 

.3. Mechanistic model of interfacial polarization due to spherical 

onductive particle 

In this paper, perfectly polarized interfacial polarization (PPIP)

odel is applied to investigate interfacial polarization phenomena

round conductive particle. Fig. 2 shows PPIP phenomena in a repre-

entative volume of a dilute mixture of uniformly distributed electrically

onductive spherical inclusions in an electrolyte-saturated host medium,

here interfacial polarization is independent of the direction of the ex-

ernally applied electric field due to spherical symmetry. 

The phenomenological basis of interfacial polarization consid-

red in our work builds on the mechanistic descriptions outlined by

evil et al. (2015) . Charge carriers in conductive minerals have higher

obility compared to ions in porous geomaterials. In the presence of an

xternally applied EM field, charge carriers in the disseminated electri-

ally conductive inclusions migrate faster and accumulate at imperme-

ble interfaces. Consequently, electrically conductive inclusions behave

s dipoles in the presence of an externally applied electric field. Subse-

uently, charge carriers in the host medium migrate and accumulate on

ost-inclusion interfaces under the influence of the externally applied

lectric field and that of the induced charges in conductive inclusions. 

In the absence of an externally applied electric field, a negligible

nitial surface charge is assumed on electrically conductive inclusions.

hus, there is typically a negligible double layer around the surface of

lectrically conductive inclusions, whereby the surface conductance of

 conductive inclusion is negligible. Similar assumptions are made in

lectrochemistry and colloid science with respect to electrochemical re-

axation around metallic surfaces ( Chu and Bazant, 2006 ). Also, we as-

ume absence of redox-active species and neglect the influence of pH of
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Fig. 2. Cross-section of a perfectly polarized conductive spherical inclusion sur- 

rounded by an ionic host medium. Charge carriers in the ionic host medium are 

cations, identified by “+ ” symbol, and anions, identified by “− ” symbol. Charge 

carriers in the conductive spherical inclusion are n- and p-charge carriers, identi- 

fied by symbol “n ” and “p ”, respectively. The direction of the externally applied 

electrical field, e , is identified with a bold arrow next to the symbol “e ”. The di- 

rection of movement of the four different types of charge carriers is represented 

by the arrow next to the symbols of the charge carriers. 
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ore water ( Revil et al., 2015 ). The host and inclusion phases can be

odeled as an electrically conductive, insulating, or dielectric material.

lso, pore-filling fluid can be modeled as electrically conductive (e.g.

rine) or non-conductive material (e.g. oil). 

.3.1. Development of PPIP model 

The development of the PPIP model ( Misra et al., 2016b ) is very

imilar to that of the SCAIP model. For PPIP model development, spon-

aneous initial accumulation of charges is assumed to be absent on the

ost-inclusion interfaces. At time t < 0, electro-neutrality is assumed

hroughout the system. 

.3.2. Solution of Helmholtz PDE 

The above-mentioned Eq. (18) must be solved to obtain an analytical

xpression for d j in the host and inclusion phases around the perfectly

olarized host-inclusion interface of conductive spherical inclusion. Re-

all that 𝑑 𝑗 = 𝑐 + 
𝑗 
− 𝑐 − 

𝑗 
represents net charge density variation, where 𝑐 ± 

𝑗 
is

he charge density variation near the host-inclusion interface in medium

 due to the externally applied electric field. Expression for d h ( r , 𝜃) for

he mixture containing conductive spherical inclusion is the same as that

or the mixture containing nonconductive spherical inclusion. Using the

ondition that d i ( r , 𝜃) should be finite at r →0, we obtain a particular

olution for d i for the mixture containing conductive spherical inclusion

hat can be represented as 

 𝑖 ( 𝑟, 𝜃) = 𝐵 𝑖 𝑖 1 
(
𝑟 𝛾𝑖 

)
cos 𝜃 (46a)

r 

 𝑖 ( 𝑟, 𝜃) = 𝐵 𝑖 

[ 

cos ℎ 
(
𝑟 𝛾𝑖 

)
𝑟 𝛾𝑖 

− 

sin ℎ 
(
𝑟 𝛾𝑖 

)
(
𝑟 𝛾𝑖 

)2 
] 

cos 𝜃 (46b)

here B i is unknown complex-valued coefficient of the particular so-

ution in the inclusion phase obtained from Eq. (31) , substituting the

ubscript h with i . Note when r →0, it is assumed that d i ( r , 𝜃) = 0. 

.3.3. Solution of Laplace PDE 

The above-mentioned Eq. (22) must be solved to obtain the electric

otential field in the representative volume. The expression for 𝜑 h ( r , 𝜃)

or the mixture containing conductive spherical inclusion is the same as

hat for the mixture containing nonconductive spherical inclusion. Using
250 
he condition when r →0, d i = 0 and 𝜑 i should be finite, we can obtain

 i = 0. A standing wave representation of Eq. (36b) for the conductive

nclusion phase, using Eq. (46b) , is 

 𝑖 ( 𝑟, 𝜃) = 𝐴 𝑖 𝑟 cos 𝜃 − 

𝑞 𝐵 𝑖 

𝛾2 
𝑖 
𝜀 𝑖 

[ 

cos ℎ 
(
𝑟 𝛾𝑖 

)
𝑟 𝛾𝑖 

− 

sin ℎ 
(
𝑟 𝛾𝑖 

)
(
𝑟 𝛾𝑖 

)2 
] 

cos 𝜃 (47)

here A i is unknown complex-valued coefficient of the particular solu-

ion in the conductive inclusion phase obtained from Eq. (36b) . 

.3.4. Boundary conditions 

To obtain an expression for the dipolarizability, we need first to iden-

ify the boundary conditions ( Grosse and Foster, 1987 ): 

a) Assuming a zero-intrinsic capacitance of the host-inclusion interface,

the electric potential must be continuous at the interface. 

𝜑 𝑖 ( 𝑟 = 𝑎 ) = 𝜑 ℎ ( 𝑟 = 𝑎 ) (48a)

b) The normal component of the displacement current must be continu-

ous at the interface. This condition corresponds to the fact that there

is no net surface-charge distribution on an electrically conductive in-

clusion phase. 

𝜀 𝑖 
𝜕 𝜑 𝑖 

𝜕𝑟 

||||𝑟 = 𝑎 = 𝜀 ℎ 
𝜕 𝜑 ℎ 

𝜕𝑟 

||||𝑟 = 𝑎 (48b)

c) The normal component of the current density must vanish at the in-

terface for both media. This condition expresses the fact that in the

absence of transport of charge carriers and exchange of charges along

the interface, the diffusive and electro-migrative currents must can-

cel each other at the interface. Our focus is perfectly polarizable or

completely blocking interfaces without Faradic processes, wherein

fluxes of charge carriers must vanish on both sides of the interface.

Note that this boundary condition is used to obtain two equations:

one for the outer volume of the sphere in the host medium, and the

other for the inner volume of the sphere in the inclusion medium. 

𝒋 + 
𝑗 
+ 𝒋 − 

𝑗 
= −2 𝑁 0 ,𝑗 𝑞 𝜇𝑗 

𝜕 𝜑 𝑗 

𝜕𝑟 

|||||𝑟 = 𝑎 − 𝑞 𝐷 𝑗 

𝜕 𝑑 𝑗 

𝜕𝑟 

|||||𝑟 = 𝑎 = 0 ( 𝑗 = ℎ 𝑜𝑟 𝑖 ) (48c)

.3.5. Solution for the dipolarizability 

Using boundary condition (48a) , Eqs. (47) and (38) can be equated

n the surface of the sphere of radius equal to a . The resulting equation

an be abbreviated as 

 𝐸 0 𝑎 + 

𝐶 ℎ 

𝑎 2 
− 𝐸 ℎ 𝐵 ℎ = 𝐴 𝑖 𝑎 − 𝐹 𝑖 𝐵 𝑖 (49a)

here 

 𝑖 = 

𝑞 

𝛾2 
𝑖 
𝜀 𝑖 

[ 

cos ℎ 
(
𝑎 𝛾𝑖 

)
𝑎 𝛾𝑖 

− 

sin ℎ 
(
𝑎 𝛾𝑖 

)
(
𝑎 𝛾𝑖 

)2 
] 

(49b)

The equation obtained using boundary condition (48b) at the surface

f the sphere can be abbreviated as 

 ℎ 

( 

− 𝐸 0 − 

2 𝐶 ℎ 

𝑎 3 
+ 𝐺 ℎ 𝐵 ℎ 

) 

= 𝜀 𝑖 
(
𝐴 𝑖 + 𝐻 𝑖 𝐵 𝑖 

)
(50a)

here 

 𝑖 = 

𝑞 

𝛾𝑖 𝜀 𝑖 

[ 

2 cos ℎ 
(
𝑎 𝛾𝑖 

)
(
𝑎 𝛾𝑖 

)2 − 

sin ℎ 
(
𝑎 𝛾𝑖 

)
𝑎 𝛾𝑖 

− 

2 sin ℎ 
(
𝑎 𝛾𝑖 

)
(
𝑎 𝛾𝑖 

)3 
] 

(50b)

Similarly, the equation obtained using boundary condition (48c) at

he outer surface of the sphere in the host medium can be abbreviated

s 

 ℎ = − 𝑎 3 
( 

𝐸 0 
2 

+ 

𝑖𝜔 𝜀 ℎ 𝐺 ℎ 𝐵 ℎ 

2 𝜎ℎ 

) 

(51)

On the other hand, the equation obtained using boundary condition

48c) at the inner surface of the sphere in the inclusion medium can be

bbreviated as 

 𝑖 = 

𝑖𝜔 𝜀 𝑖 𝐻 𝑖 𝐵 𝑖 

𝜎
(52)
𝑖 
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Solve Eqs. (49a) , (50a) , (51) , and (52) , we obtain the dipolarizabil-

ty (dipolar field coefficient) of the representative volume comprising a

pherical conductive inclusion in an electrolytic host as 

 𝑐𝑜𝑛𝑑 ( 𝜔 ) = 

𝐶 ℎ 

𝐸 0 𝑎 
3 = − 

1 
2 
+ 

3 
2 

𝑖𝜔 [ 
2 
𝑎 

𝜎ℎ 

𝜀 ℎ 

𝐸 ℎ 

𝐺 ℎ 
− 

2 
𝑎 

𝜎∗ 
ℎ 

𝜎∗ 
𝑖 

𝜎𝑖 

𝜀 𝑖 

𝐹 𝑖 

𝐻 𝑖 
+ 𝑖𝜔 

( 

2 𝜎∗ 
ℎ 

𝜎∗ 
𝑖 

+ 1 
) ] (53)

here 𝜎∗ 
ℎ 
= 𝜎ℎ + 𝑖𝜔 𝜀 ℎ is the complex conductivity of the host medium

nd 𝜎∗ 
𝑖 
= 𝜎𝑖 + 𝑖𝜔 𝜀 𝑖 is the complex conductivity of the inclusion phase. 

.4. Mechanistic model of complex conductivity of porous media containing

onconductive and conductive particles at various water saturation 

We aim to develop a mechanistic model to quantify the conductivity

nd permittivity (complex conductivity) of geological mixtures contain-

ng clay particles, conductive minerals, oil and water. This new model

s referred herein as the PPIP-SCAIP (PS) model. To that end, PS model

ccounts for the interfacial polarization (IFP) due to surface conduc-

ance of clays and sands and the IFP due to conductive mineral grains

t various water saturations. PS model development requires two steps:

rst, using PPIP model and SCAIP model to quantify the IFP of the rep-

esentative volume (as described in Sections 2.2 and 2.3 ), followed by

sing effective medium theory to accurately combine the IFP of various

epresentative volumes present in the mixture. 

.4.1. Effective medium theory 

We apply the effective-medium theory to determine the effective

omplex electrical conductivity ( 𝜎∗ 
𝑒𝑓𝑓 

) of the mixture ( Grosse and Bar-

hini, 1992 ) after we obtain the expressions of dipolarizability for

pherical nonconductive and conductive particles surrounded by the

lectrolyte-saturated host medium. For the development of our model,

s stated in the previous sections, PNP equations are first used to ob-

ain dipolarizabilities (dipole moment), which are microscopic electri-

al properties, for the representative volume containing either spherical

onconductive or conductive particle. In the derivations of dipolariz-

bilities, we neglect multipoles effect because their magnitude decreases

ith inverse power of distance ( Sihvola, 2007 ). Monopole effects are

lso neglected since there is zero net charge due to the assumed elec-

roneutrality. The macroscopic electrical properties are then computed

sing effective-medium formulations based on the theory that a ma-

erial composed of a mixture of distinct homogeneous media can be

een as a homogeneous material at a sufficiently large observation scale

 Giordano, 2003 ). 

In this paper, we obtain the effective electrical properties using a

axwell Garnett type effective-medium formulation. To meet the re-

uirements of the formulation, the volume fraction of nonconductive

nd conductive inclusions in the mixture should be less than 20%

 Revil et al., 2015 ). Subsurface water-bearing reservoir rocks have less

han 10% volume fraction of conductive mineral inclusions but the vol-

me fraction of non-conductive particles possessing surface charge (e.g.

lay and sand) can exceed 20%. Moreover, we invoke the PNP equa-

ions in the bulk electrolyte that introduces a decaying length scale,

here the Maxwell Garnett formula may become invalid at even lower

oncentration of inclusion phase ( Hou et al., 2018 ). It is also impor-

ant to mention this formulation used in the calculation neglects the EM

nteraction between the inclusions and other components. Due to the as-

umed dilution of the uniformly distributed inclusion phase, individual

lements of the dispersed phase are assumed to be isolated and not in

ontact with each other. Like other mixing theories, our model includes

he assumption that the magnitude of spatial variations of the electric

eld is smaller than the magnitude of variations in the intrinsic electri-

al properties and geometrical structures. Moreover, all calculations are

erformed using a quasi-static assumption that requires the size of het-

rogeneities to be much smaller than the wavelength of the applied EM

eld ( Cosenza et al., 2009 ). Also, when dealing with a lossy medium,

he skin depth of the EM wave must be considered to avoid strong
251 
ttenuation of the field amplitudes in the conductive heterogeneities.

ost importantly, due to the implementation of the PNP equations, our

ffective-medium formulations unlike other theories ( Giordano, 2003 )

xplicitly accounts for the characteristic lengths of heterogeneities, re-

ulting in a physically consistent way to account for the perturbation

ue to nonconductive or conductive inclusions. 

.4.2. Effective medium theory to quantify the complex conductivity of 

orous media containing spherical nonconductive and conductive particles 

We modified Misra et al. (2016b) effective medium formulation to

odel the complex conductivity response of multiphase mixtures con-

aining spherical nonconductive and conductive particles, which can be

xpressed as 

𝜎∗ 
𝑛̂ ,𝑒𝑓𝑓 

− 𝜎∗ 
ℎ 

𝜎∗ 
𝑛̂ ,𝑒𝑓𝑓 

+ 2 𝜎∗ 
ℎ 

= 𝜙𝑐𝑜𝑛𝑑 𝑓 𝑐𝑜𝑛𝑑 ( 𝜔 ) + 𝜙𝑛𝑐𝑜𝑛𝑑 𝑓 𝑛𝑐𝑜𝑛𝑑 ( 𝜔 ) (54) 

here 𝜎∗ = 𝜎 + i 𝜔𝜀 is a representation of the complex conductivity of a

aterial, 𝜎∗ 
𝑛̂ ,𝑒𝑓𝑓 

is the effective complex conductivity of the geological

ixture directed along the 𝑛̂ unit vector that can be measured with an

xternally applied electric field directed along the 𝑛̂ unit vector and 𝜎∗ 
ℎ 

is

he complex-valued conductivity of the homogenous isotropic host ma-

erial that surrounds the particles. 𝜙cond and 𝜙ncond is the volume fraction

f the conductive and nonconductive inclusion phase in the mixture, re-

pectively. f cond ( 𝜔 ) and f ncond ( 𝜔 ) is the dipolarizability of conductive and

onconductive inclusion phase, respectively, along the direction of 𝑛̂

nit vector, along which the externally applied electric field is directed.

.4.3. PS model to quantify the complex conductivity of porous media 

ontaining spherical nonconductive and conductive particles at various 

ater saturations 

All the discussion above assumes that the pores in the host media

re 100% saturated with the electrolyte. It is desirable to consider the

ondition where oil is present along with the electrolyte in the pores of

he host medium. In this section, we assume that the oil is distributed as

pherical droplets in the mixture and can be treated as nonconductive

pherical inclusion phase with negligible surface charge. Also, we as-

ume that the inclusion phases are predominantly water wet. The model

eveloped above (shown as Eq. (54) ) is further modified for application

t various water saturations, which can be expressed as 

𝜎∗ 
𝑛̂ ,𝑒𝑓𝑓 

− 𝜎∗ 
ℎ 

𝜎∗ 
𝑛̂ ,𝑒𝑓𝑓 

+ 2 𝜎∗ 
ℎ 

= 𝜙𝑐𝑜𝑛𝑑 𝑓 𝑐𝑜𝑛𝑑 ( 𝜔 ) + 𝜙𝑛𝑐𝑜𝑛𝑑 𝑓 𝑛𝑐𝑜𝑛𝑑 ( 𝜔 ) + 𝜙𝑜 𝑓 𝑜 ( 𝜔 ) (55a)

here 𝜙o is the volume fraction of oil in the mixture and f o ( 𝜔 ) is the

ipolarizability of oil, which takes the same form of f ncond ( 𝜔 ) but with

egligible surface charge. 

In this paper, we used the model expressed as 

𝜎∗ 
𝑛̂ ,𝑒𝑓𝑓 

− 𝜎∗ 
ℎ 

𝜎∗ 
𝑛̂ ,𝑒𝑓𝑓 

+ 2 𝜎∗ 
ℎ 

= 𝜙𝑝 𝑓 𝑝 ( 𝜔 ) + 𝜙𝑠 𝑓 𝑠 ( 𝜔 ) + 𝜙𝑐 𝑓 𝑐 ( 𝜔 ) + 𝜙𝑜 𝑓 𝑜 ( 𝜔 ) (55b)

here subscripts p, s, c and o represent pyrite, sand, clay and oil, re-

pectively, to investigate the mixture of pyrite, sand, clay, oil and host

lectrolyte. 

.4.4. Limitations of the PNP equations used to develop the PS model 

A limitation of the PNP equations arises from the omission of the

nite volume effect of charge carriers, mutual interactions and steric

ffects, effects due to transport of ions in confined channels of the pore

ystem, and correlation effects ( Chu and Bazant, 2006 ). Another limi-

ation arises because the model is developed only for symmetric, and

inary charge carriers in both the host and inclusion phases. This as-

umption simplifies the analytical complexity of the PNP formulations.

nother drawback of the PNP formulations is that the analysis is per-

ormed for materials that contain completely dissociated charge carri-

rs at low concentration values. Moreover, in this paper, unlike Chu and

azant (2006) , we only consider the linear response to weak fields where

xact solutions are possible and is closer to the field conditions. 
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Fig. 3. Comparison of the PS model predic- 

tions of (a) 𝜎eff and (b) 𝜀 r,eff of mixtures contain- 

ing nonconductive spherical sand particles and 

various types of clay particles (properties listed 

in Table 1 ) fully saturated with electrolyte of 

𝜀 r,h of 70, 𝜎h of 0.1 S/m, and D h of 10 − 9 m 

2 /s. 

Table 1 

Properties used for generating Fig. 3 , where S1 and S2 

represent sand, and C1, C2, and C3 represent three dif- 

ferent clay types, and the host is an electrolyte of 𝜀 r,h 
of 70, 𝜎h of 0.1 S/m, and D h of 10 − 9 m 

2 /s. Typical 𝜀 r of 

sand and clay ranges from 3 to 5 and 5 to 40, respectively 

( Martinez and Brynes, 2001 ). In this paper, we assume 

𝜀 r of 4 for sand and 8 for clay. 

𝜙i (%) a i (μm) 𝜀 r,i 𝜆 (S) a i / 𝜆

Sand1 (S1) 70 1000 4 10 − 9 10 12 

Sand2 (S2) 80 1000 4 10 − 9 10 12 

Clay1 (C1) 10 100 8 10 − 8 10 10 

Clay2 (C2) 10 10 8 10 − 8 10 9 

Clay3 (C3) 10 100 8 10 − 7 10 9 

Clay4 (C4) 10 1 8 10 − 8 10 8 

Clay5 (C5) 10 100 8 10 − 6 10 8 
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.4.5. Limitations of the PPIP and SCAIP models used to develop the PS 

odel 

We claim that the PPIP model is reliable for studying the EM re-

ponse of mixtures containing uniformly distributed conductive parti-

les of characteristic length ( a ) < 1 mm, conductivity ( 𝜎i ) < 10 5 S/m,

elative permittivity ( 𝜀 r,i ) < 20, relative magnetic permeability equal to

, and volume fraction ( 𝜙i ) < 20% in the frequency range of 100 Hz to

00 MHz. Beyond these limits, the PPIP model predictions will incur sig-

ificant discrepancies with measurements due to the skin effect of the

nclusion phase. The skin effect is primarily governed by the operating

requency and conductivity of the inclusion phase. PPIP model predic-

ions are physically consistent only when the estimated skin depth is an

rder of magnitude larger than the characteristic length of the particles,

here skin depth is defined by the depth from the surface till which an

lternating current flow in the conductive particle. For example, at an

perating frequency of 100 kHz, an inclusion phase of conductivity of

0 3 S/m and 𝜀 r of 10 exhibits a skin depth of 50 mm. Therefore, the PPIP

odel can be used to compute the complex conductivity response of a

eological mixture containing such an inclusion phase at 100 kHz only

hen the characteristic length of the inclusion phase is smaller than

 mm, which is an order of magnitude smaller than the skin depth of

0 mm. 

. Results and discussion 

In this section, the effects of PPIP and SCAIP phenomena on low-

requency (100 Hz) 𝜎eff and high-frequency (1 GHz) 𝜀 r,eff prediction are

valuated. The properties of mixtures used for generating plots are sum-
252 
arized in the corresponding tables, where 𝜙i is the volume fraction of

 specific phase, a i is the characteristic length (radius) of spherical par-

icles, D is diffusion coefficient of charge carriers, 𝜀 r is relative permit-

ivity, 𝜎 is conductivity, and 𝜆 is surface conductance. Property of host

edium and inclusion phase are represented with a subscript of h and

 , respectively. 

.1. PS model sensitivity to the properties of the nonconductive spherical 

articles 

In this section, we investigate the sensitivity of the PS model predic-

ions of 𝜎eff and 𝜀 r,eff to the properties of surface-charge-bearing non-

onductive particles. In Fig. 3 , curves S1 and S2 act as the references.

omparing curves S1 against S2, we conclude that the increase in vol-

me fraction of nonconductive particles like sand grains will decrease

he 𝜎eff and 𝜀 r,eff. Comparing curves S1C4 and S1C5 against S1C1, the

ecrease of the characteristic length or the increase of the surface con-

uctance of clay particles by two orders of magnitude leads to slight

ecrease in the 𝜎eff and increase the 𝜀 r,eff, as shown in Figs. 3 a and 3 b,

espectively. Moreover, for our model, mixture S1C2 and S1C3 gives the

ame prediction value for both 𝜎eff and 𝜀 r,eff because the clay particles

n both mixtures have the same a i / 𝜆 value and the same relative permit-

ivity. It can also be observed that with the variation in frequency there

re negligible dispersion effects on 𝜎eff and 𝜀 r,eff. 

.2. PS model sensitivity to the properties of the conductive spherical 

articles 

The mixtures studied in Fig. 4 contain 70% volume fraction of sand

nd 10% volume fraction of uniformly distributed pyrite. In compari-

on with the reference curve S1, we can conclude that the presence of

onductive particles will increase the 𝜀 r,eff and decrease 𝜎eff at low fre-

uency but will increase 𝜎eff at high frequency. The results show that

 higher relative permittivity or conductivity of conductive inclusions,

ike mixture S1P2 or S1P4, increases 𝜎eff and decreases 𝜀 r,eff of mixture,

hile a mixture with higher diffusion coefficient like S1P3 decreases 𝜎eff

nd increases 𝜀 r,eff. Moreover, for our model, mixtures S1P1 and S1P5

ives the same prediction for both 𝜎eff and 𝜀 r,eff because both mixtures

ave the same 𝜎/ D value and the same 𝜀 r . Mixture S1P2 and S1P4 also

ives the same prediction for both 𝜎eff and 𝜀 r,eff because both mixtures

ave the same 𝜎𝜀 r and D . It is also worth to notice that the variation

n 𝜎eff prediction only occurs for frequency between 1 kHz and 100 kHz,

hile the variation in 𝜀 r,eff prediction only occurs for frequency lower

han about 5 MHz. 
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Fig. 4. Comparison of the PS model predic- 

tions of (a) 𝜎eff and (b) 𝜀 r,eff of mixtures con- 

taining surface-charge-bearing nonconductive 

spherical sand particles and various types of 

conductive spherical pyrite particles (proper- 

ties listed in Table 2 ) fully saturated with elec- 

trolyte of 𝜀 r,h of 70, 𝜎h of 0.1 S/m and D h 

of 10 − 9 m 

2 /s. Characteristic length of pyrite 

and sand particles is assumed to be 200 and 

1000 μm, and the surface conductance 𝜆 of the 

sand is 10 − 9 S. 

Fig. 5. Comparison of the PS model predic- 

tions of (a) 𝜎eff and (b) 𝜀 r,eff of mixtures con- 

taining nonconductive spherical sand particles, 

various types of clay particles, and various 

types of conductive spherical pyrite particles 

(properties listed in Table 3 ) fully saturated 

with electrolyte of 𝜀 r,h of 70, 𝜎h of 0.1 S/m and 

D h of 10 − 9 m 

2 /s. 

Table 2 

Properties used for generating Fig. 4 , where S1 represents sand, P1–P5 repre- 

sent five different pyrite types, and the host is an electrolyte of 𝜀 r,h of 70, 𝜎h 

of 0.1 S/m and D h of 10 − 9 m 

2 /s. 

𝜙i (%) D i (m 

2 /s) 𝜀 r,i 𝜎i (S/m) 𝜎i / D i 𝜎i 𝜀 r,i 

Sand (S1) 70 – 4 – – –

Pyrite1 (P1) 10 5 ×10 − 5 12 500 10 7 6 × 10 3 

Pyrite2 (P2) 10 5 ×10 − 5 24 500 10 7 1.2 × 10 4 

Pyrite3 (P3) 10 10 − 4 12 500 5 × 10 6 6 × 10 3 

Pyrite4 (P4) 10 5 ×10 − 5 12 1000 2 × 10 7 1.2 × 10 4 

Pyrite5 (P5) 10 10 − 4 12 1000 10 7 1.2 × 10 4 

3

s

 

i  

s  

C  

a  

u  

d  

t  

l  

t  

e  

Table 3 

Properties used for generating Fig. 5 , where S1 represents sand, C1 and C2 

represent two different clay types, and P1 and P2 represent two different 

pyrite types. The host is an electrolyte of 𝜀 r,h of 70, 𝜎h of 0.1 S/m, and D h 

of 10 − 9 m 

2 /s. 

𝜙i (%) a i (μm) D i (m 

2 /s) 𝜀 r,i 𝜎i (S/m) 𝜆 (S) 

Sand (S1) 70 1000 – 4 – 10 − 9 

Clay1 (C1) 10 100 – 8 – 10 − 8 

Clay2 (C2) 10 100 – 8 – 10 − 7 

Pyrite1 (P1) 10 200 5 ×10 − 5 12 500 –

Pyrite2 (P2) 10 200 5 ×10 − 5 12 1000 –

t  

m  

t  

c  

f  

T  

w  

l  

h  

q  

W  

t  

p  
.3. PS model sensitivity to the mixture of conductive and nonconductive 

pherical particles 

In this section, the PS model predictions of complex conductiv-

ty for mixtures containing both nonconductive and conductive inclu-

ions/particles are evaluated. The resulting plots are shown as Fig. 5 .

urve S1 act as reference curve representing a clean mixture of sand

nd electrolyte without any clay and pyrite particles. The presence of

niformly distributed surface-charge-bearing nonconductive and con-

uctive inclusion phases will decrease the 𝜎eff to a value lower than

hat of clean formation at low frequency ( Fig. 5 a). This is because at

ow frequency, the charge carriers quickly reach the equilibrium dis-

ribution around the interfaces under the influence of a time-varying

lectric field, so that the polarized conductive and nonconductive par-
253 
icles act as insulators due to the interface that does not allow charge

igration, and hence the reduction in the net electromagnetic energy

ransport. For frequencies over 1 kHz, the 𝜎eff increases as frequency in-

reases, which will become higher than that of the clean mixture if the

requency is high enough. 𝜎eff saturates for frequencies over 100 kHz.

he presence of both nonconductive and conductive inclusion phases

ill increase the 𝜀 r,eff ( Fig. 5 b) because the PPIP and SCAIP phenomena

eads to larger charge accumulation around the interfaces, and hence

igher net electromagnetic energy storage. The 𝜀 r,eff decreases as fre-

uency increases and become stable for frequencies over around 5 MHz.

hen both conductive and nonconductive spherical inclusions exist in

he mixture, the effect of nonconductive inclusions are negligible com-

ared to that of conductive inclusions, which is illustrated by the over-
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Fig. 6. Comparison of the PS model predic- 

tions of (a) 𝜎eff and (b) 𝜀 r,eff of mixtures contain- 

ing spherical sand, clay and pyrite particles of 

various sizes (properties listed in Table 4 ) and 

fully saturated with electrolyte of 𝜀 r,h of 70, 𝜎h 

of 0.1 S/m and D h of 10 − 9 m 

2 /s. 

Fig. 7. Comparison of the PS model predic- 

tions of (a) 𝜎eff and (b) 𝜀 r,eff of mixtures contain- 

ing spherical sand, clay and pyrite particles at 

various volume fractions of the inclusion phase 

( Table 5 ) and fully saturated with electrolyte of 

𝜀 r,h of 70, 𝜎h of 0.1 S/m and D h of 10 − 9 m 

2 /s. 

Table 4 

Properties used for generating Fig. 6 , where S1 represents sand, C1 and C2 

represent two different clay types, and P1 and P2 represent two different 

pyrite types and the host is an electrolyte of 𝜀 r,h of 70, 𝜎h of 0.1 S/m and 

D h of 10 − 9 m 

2 /s. 

𝜙i (%) a i (μm) D i (m 

2 /s) 𝜀 r,i 𝜎i (S/m) 𝜆 (S) 

Sand (S1) 70 1000 – 4 – 10 − 9 

Clay1 (C1) 10 100 – 8 – 10 − 8 

Clay2 (C2) 10 10 – 8 – 10 − 8 

Pyrite1 (P1) 10 200 5 ×10 − 5 12 500 –

Pyrite2 (P2) 10 20 5 ×10 − 5 12 500 –
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Table 5 

Properties used for generating Fig. 7 , where S1 represents sand, C1 and C2 

represent clay with different volume fractions, and P1 and P2 represent 

pyrite with different volume fractions and the host is an electrolyte of 𝜀 r,h 
of 70, 𝜎h of 0.1 S/m and D h of 10 − 9 m 

2 /s. 

𝜙i (%) a i (μm) D i (m 

2 /s) 𝜀 r,i 𝜎i (S/m) 𝜆 (S) 

Sand (S1) 70 1000 – 4 – 10 − 9 

Clay1 (C1) 10 100 – 8 – 10 − 8 

Clay2 (C2) 15 100 – 8 – 10 − 8 

Pyrite1 (P1) 10 200 5 × 10 − 5 12 500 –

Pyrite2 (P2) 15 200 5 × 10 − 5 12 500 –

c

r  

t  

t

3

n

 

t  

S  

c  

b  

q  
ap of S1C1P1 and S1C2P1. In other words, the physical properties of

onductive inclusions dominate the predictions. 

.4. PS model sensitivity to the characteristic lengths of conductive and 

onconductive spherical particles 

In this section, the PS model predictions of complex conductiv-

ty for mixtures containing both nonconductive and conductive inclu-

ions/particles of various sizes are evaluated. The resulting plots are

hown as Fig. 6 . Curve S1 is the reference curve. The characteristic

ength of surface-charge-bearing nonconductive particle seems have lit-

le effect on model predictions when both conductive and nonconduc-

ive particles are present in the mixture (as observed from the over-

ap between S1C1P1 and S1C2P1). For conductive inclusions, a smaller
254 
haracteristic length will shift the frequency dispersion of 𝜎eff and 𝜀 r,eff
esponse to higher frequencies (i.e. shift the curves towards right in both

he plots). Therefore, 𝜎eff reduces and 𝜀 r,eff increases for mixtures con-

aining conductive particles of smaller characteristic lengths. 

.5. PS model sensitivity to the volume fractions of conductive and 

onconductive spherical particles 

The effects of volume fraction of nonconductive and conductive par-

icles are evaluated in this section. Fig. 7 shows the result, where Curve

1 is the reference curve. Comparing S1C1P1, S1C2P1 and S1C1P2

urves in Fig. 7 a, an increase in volume fraction of surface-charge-

earing nonconductive particles increases the magnitude of the fre-

uency dispersion of 𝜎eff due to the increase in the net polarization ef-
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Fig. 8. Comparison of the PS model predictions of (a) 𝜎eff and (b) 𝜀 r,eff of mixtures containing spherical sand, clay and pyrite particles (properties listed in Table 6 ) 

and fully saturated with electrolyte of various conductivity 𝜎h , 𝜀 r,h of 70, and D h of 10 − 9 m 

2 /s. (a), (b), (c) represent 𝜎eff prediction, and (d), (e), (f) represent 𝜀 r,eff
prediction for mixtures fully saturated with 0.05, 0.1, and 1 S/m electrolyte, respectively. 

Fig. 9. Comparison of the PS model predic- 

tions of (a) 𝜎eff and (b) 𝜀 r,eff of mixtures con- 

taining spherical sand, clay and pyrite particles 

partially saturated with electrolyte of 𝜀 r,h of 70, 

𝜎h of 0.1 S/m and D h of 10 − 9 m 

2 /s and contain- 

ing different volume fractions of oil. The prop- 

erties of sand, clay, pyrite and oil are listed in 

Table 7 . O1–O3 represent oil volume fractions 

of 1%, 5% and 8% (which correspond to oil sat- 

uration of 5%, 25% and 40%, respectively, if 

porosity is 20%). 

Table 6 

Properties used for generating Fig. 8 , where S1 represents sand, C1 rep- 

resents clay, and P1 represents pyrite and the host is an electrolyte of 

𝜀 r,h of 70 and D h of 10 − 9 m 

2 /s. 

𝜙i (%) a i (μm) D i (m 

2 /s) 𝜀 r,i 𝜎i (S/m) 𝜆 (S) 

Sand (S1) 70 1000 – 4 – 10 − 9 

Clay (C1) 10 100 – 8 – 10 − 8 

Pyrite (P1) 10 200 5 × 10 − 5 12 500 –
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s  
ect; this appears as a downward shift. On the other hand, an increase

n the volume fraction of conductive particles, causes a steep rise (a

igh rate of increase) in the frequency dispersion of 𝜎eff. For frequen-

ies lower than 1 kHz, 𝜎eff values are constant. Comparison of S1C1P1,

1C2P1 and S1C1P2 curves in Fig. 7 b indicates an increase in the vol-

me fraction of nonconductive particles shifts the frequency dispersion

urve of 𝜀 r,eff to lower values, while an increase in volume fraction of

onductive particles shifts the curve to much larger values. 
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.6. PS model sensitivity to the conductivity of pore-filling electrolyte 

The effects of conductivity of electrolyte are evaluated in this sec-

ion. As for 𝜎eff prediction, we can clearly observe that the increase

f electrolyte conductivity shifts the dispersion to higher frequencies

right shift). The low-frequency dispersion can hardly be observed for

lectrolyte with conductivity value higher than 1 S/m ( Fig. 8 c). When

he electrolyte conductivity is increased by one order of magnitude, the

orresponding 𝜎eff prediction also increases by one order of magnitude,

imilar to Archie’s law. As for 𝜀 r,eff prediction, it can also be concluded

hat 𝜀 r,eff is positively related to the conductivity of electrolyte because

 greater charge carrier concentration in electrolyte leads to greater

harge accumulation around the interface. Moreover, the conductive

articles dominate the prediction of 𝜀 r,eff for frequencies below 5 MHz,

specially with the conductivity of the electrolyte is high. 

.7. PS model sensitivity to volume fractions of oil 

In this paper, we model oil as nonconductive spherical droplets of

pecific size (100 μm) uniformly distributed in the mixture, so the effect
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Table 7 

Properties used for generating Fig. 9 , where S1 represents sand, C1 rep- 

resents clay, and O1–O3 represent different volume fractions of oil. The 

host is an electrolyte of 𝜀 r,h of 70, 𝜎h of 0.1 S/m and D h of 10 − 9 m 

2 /s. 

𝜙i (%) a i (μm) D i (m 

2 /s) 𝜀 r,i 𝜎i (S/m) 𝜆 (S) 

Sand (S1) 70 1000 – 4 – 10 − 9 

Clay (C1) 20 10 – 8 – 10 − 8 

Oil (O1 ∼3) 1, 5, 8 100 – 2 – 10 − 30 
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f increase in oil saturation can be seen as that of increase in the volume

raction of a nonconductive spherical particle with unique properties, as

escribed in Table 7 . Comparing the curves with reference curve S1, we

onclude that the increase in volume fraction of oil will decrease the 𝜎eff

nd 𝜀 r,eff. 

. Conclusions 

We developed a mechanistic model of multi-frequency complex con-

uctivity for a homogeneous porous media containing surface-charge-

earing non-conductive particles (e.g. clays and sand) and conductive

ineral particles (e.g. pyrite) saturated with oil and brine. The model

ccounts for the interfacial polarization (IFP) effects due to the surface

onductance of clays and that due to the conductive particles. 

We studied the IFP effects of clays and conductive minerals on

he effective conductivity ( 𝜎eff) in the frequency range of 100 Hz to

00 kHz and on the effective permittivity ( 𝜀 r,eff) in the frequency range

f 0.5 MHz to 1 GHz. A decrease in size or an increase in the surface con-

uctance of surface-charge-bearing nonconductive particles, referred

erein as clays, uniformly distributed in a porous homogeneous mixture

eads to a slight decrease in the 𝜎eff and an increase in the 𝜀 r,eff. The ef-

ects of clay particles with the same ratio of size to surface conductance

nd the same relative permittivity ( 𝜀 r ) on the complex conductivity of

he mixture are similar. In the frequency windows mentioned above, the

requency dispersion of complex conductivity due to the IFP effects for

lays are negligible compared to conductive particles. 

The presence of conductive particles increases the 𝜀 r,eff and decreases

he 𝜎eff at lower frequencies. A higher relative permittivity or conduc-

ivity of conductive particles increases 𝜎eff and decreases 𝜀 r,eff of mix-

ure, whereas a higher diffusion coefficient of conductive particles de-

reases 𝜎eff and increases 𝜀 r,eff. The effects of conductive particles with

he same ratio of particle conductivity to diffusion coefficient and the

ame 𝜀 r or those with the same value of conductivity times permittiv-

ty and diffusion coefficient on the complex conductivity of the mixture

re similar. For conductive inclusions, a smaller size shifts the frequency

ispersion of 𝜎eff and 𝜀 r,eff response to higher frequencies. Therefore, 𝜎eff

educes and 𝜀 r,eff increases for mixtures containing conductive particles

f smaller characteristic lengths. For the conductive particles studied in

his paper, the frequency dispersion in 𝜎eff occurs for frequency between

 and 100 kHz, whereas the dispersion in 𝜀 r,eff occurs for frequency lower

han about 5 MHz. 

An increase in volume fraction of surface-charge-bearing noncon-

uctive particles increases the magnitude of the frequency dispersion of

eff due to the increase in the net polarization effect; this appears as a

eduction in 𝜎eff. On the other hand, an increase in the volume fraction

f conductive particles, causes a steep rise (a high rate of increase) in

he frequency dispersion of 𝜎eff. An increase in the volume fraction of

onconductive particles shifts the frequency dispersion curve of 𝜀 r,eff to

ower values, while an increase in volume fraction of conductive parti-

les shifts the curve to much larger values. An increase in brine conduc-

ivity shifts the dispersion of 𝜎eff prediction to higher frequencies. When

he brine conductivity is increased by one order of magnitude, the corre-

ponding 𝜎eff prediction also increases by one order of magnitude, simi-

ar to Archie’s law. The low-frequency dispersion can hardly be observed

or electrolyte with conductivity value higher than 1 S/m. 𝜀 r,eff is posi-

ively related to the conductivity of electrolyte because a greater charge
256 
arrier concentration in electrolyte leads to greater charge accumula-

ion around the interface. Moreover, the conductive particles dominate

he prediction of 𝜀 r,eff for frequencies below 5 MHz, especially when the

onductivity of the electrolyte is high. 
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