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1Sorbonne Universités, UPMC Univ Paris 06, CNRS, EPHE, UMR 7619 Metis, 4 place Jussieu, 75005 Paris, France. E-mail: alexis.maineult@upmc.fr
2Univ. Grenoble Alpes, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
3Univ. Savoie Mont Blanc, ISTerre, 73000 Chambery, France

Accepted 2017 October 31. Received 2017 October 30; in original form 2017 April 21

S U M M A R Y
We implement a procedure to simulate the drainage and imbibition in random, 2-D, square
networks. We compute the resistivity index, the relative permeability and the characteristic
lengths of a correlated network at various saturation states, under the assumption that the
surface conductivity can be neglected. These parameters exhibit a hysteretic behaviour. Then,
we calculate the spectral induced polarization (SIP) response of the medium, under the as-
sumption that the electrical impedance of each tube follows a local Warburg conductivity
model, with identical DC conductivity and chargeability for all the tubes. We evidence that the
shape of the SIP spectra depends on the saturation state. The analysis of the evolution of the
macroscopic Cole–Cole parameters of the spectra in function of the saturation also behaves
hysteretically, except for the Cole–Cole exponent. We also observe a power-law relationship
between the macroscopic DC conductivity and time constant and the relative permeability. We
also show that the frequency peak of the phase spectra is directly related to the characteristic
length and to the relative permeability, underlining the potential interest of SIP measurements
for the estimation of the permeability of unsaturated media.

Key words: Electrical properties; Permeability and porosity; Hydrogeophysics; Numerical
modelling.

1 I N T RO D U C T I O N

Geophysical methods are now commonly used to characterize the
hydrological state of the subsurface, for instance to localize aquifers
(e.g. Vereecken et al. 2006; Hubbard & Linde 2011; Binley et al.
2015) and to determine their hydraulic conductivity and storage
coefficient distributions (e.g. Soueid Ahmed et al. 2016a,b). Elec-
trical resistivity tomography provides some information regarding
the architecture of the subsurface (e.g. Binley & Kemna 2005;
Johnson et al. 2010) and this method is sensitive to the water con-
tent, temperature, salinity and cation exchange capacity (Shainberg
et al. 1980; Sen et al. 1981). To date, one remaining challenge for
field hydrogeophysicists is to be able to estimate, in a reliable way,
the saturation state of the medium and its permeability at partial sat-
uration, which are parameters of importance for the characterization
of the vadose zone (Doussan & Ruy 2009).

In the past decade, the induced polarization (IP) method has
shown its potential to estimate the permeability in saturated con-
ditions (Slater & Lesmes 2002; Tong et al. 2004; Binley et al.
2005; Hördt et al. 2007; Weller et al. 2010; Attwa & Günther
2013; Slater et al. 2014; Revil et al. 2015). Laboratory studies have
also evidenced that some characteristics of the IP response are di-

rectly modified when the saturation is changed (e.g. Titov et al.
2004; Cosenza et al. 2007; Jougnot et al. 2010; Breede et al. 2011;
Schmutz et al. 2012).

The spectral induced polarization (SIP) method consists in in-
jecting a sinusoidal electrical current I = I0 sin(ωt) (ω is the pul-
sation frequency and t the time) in the medium with two injection
electrodes, and simultaneously measuring the resulting electrical
potential �V between two measurement electrodes. The complex
conductivity spectrum is obtained by repeating the measurement
for different frequencies and is given by

σ ∗ (ω) = 1

G

I ∗ (ω)

�V ∗ (ω)
= 1

G

|I ∗ (ω)|
|�V ∗ (ω)| e−iϕ(ω) = σ (ω) e−iϕ(ω) (1)

where the superscript ∗ denotes a complex quantity. Here σ ∗ stands
for complex conductivity, σ for the conductivity amplitude, ϕ for the
phase, G for the geometrical factor determined from the electrode
locations and the boundary conditions and i for the pure imaginary
number. The method of random tube networks has long been applied
to study the permeability and the formation factor (e.g. Kirkpatrick
1973; Koplik 1981; David et al. 1990; David 1993; Bernabé 1995).
Recently, Maineult et al. (2017) used the method to study the up-
scaling of the SIP response, from pore scale to sample scale and
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Figure 1. Scheme of a 2-D square tube network for the computation of the
macroscopic complex conductivity (CC), apparent formation factor (AFF)
and apparent hydraulic permeability (AHP). There are no outflowing fluxes
on the lateral faces (nodes x = 1 and x = Nx). The inward condition (nodes
y = 1) is a potential equal to V0eiω t for CC, and 1 for AFF and AHP. The
outward condition (nodes y = Ny) is a potential equal to 0 in the three cases.

to analyse the relationship between the pore size distribution and
the dispersion shown by the complex conductivity spectra. Briefly,
a sinusoidal current is applied between the two end-faces of a 2-D
square network (Fig. 1), made of a set of connected capillaries
with identical length but different radius (Figs 2a and b). The con-
servation law for the complex electrical current (Kirchhoff 1845)
can be written at each node. Knowing the complex impedance of
each tube, this produces a linear system whose resolution gives
the complex electrical potential at each node. From the electri-
cal potential and the tube impedances, the macroscopic current
entering in or exiting from the system (note that they are equal)
can be deduced. The complex conductivity is then computed using

eq. (1) (G is equal to 1 in this case). To summarize, this methodol-
ogy allows the macroscopic impedance of a set of local impedances
to be calculated (Fig. 2c). In this paper, we apply the same method-
ology to study the effect of a desaturation process (i.e. drainage)
and then a resaturation process (i.e. imbibition) on the macroscopic
SIP response of the network.

2 M E T H O D

We consider the 100 × 100 (i.e. 19 800 tubes) network of Fig. 2(a),
for which the logarithm of the pore radius distribution r is normally
distributed, with a mean radius of 10 µm and a standard deviation
of 0.4942. All tubes have the same length l. The medium is corre-
lated, with a Hurst exponent (related to the fractal dimension of the
medium, e.g. Turcotte 1997) of 0.9, and an isotropic characteristic
length scale of 1. It corresponds to the correlated medium used in
Maineult et al. (2017, their fig. 5). In the present work, we con-
sider the effect of partial saturation on the upscaled SIP response.
By applying the Young–Laplace equation, it is possible to relate an
equivalent radius req (in m) that drains at a specific matric potential
by (e.g. Jurin 1717)

h = 2γ cos θ

ρwgreq
, (2)

where h is the matric potential (in m), γ is the surface tension
of water (0.0727 N m−1 at 20 ◦C), θ is the contact angle (often
considered to be 0◦, which yields cos θ = 1, see Bear 1972), ρw is the
water density (in kg m–3), and g is the gravitational acceleration (in
m s–2). This approach is traditionally used in soil science, when using
simplified geometries to study the effect of water saturation upon
effective properties: for hydrodynamic properties (e.g. Jury et al.
1991; Or & Tuller 1999; Guarracino 2007), hysteresis (e.g. Soldi
et al. 2017), electrical conductivity (e.g. Niu et al. 2015) or self-
potential (e.g. Packard 1953; Jougnot et al. 2012). However, given
that the geometry of the porous medium is here known, we applied
specific desaturation and resaturation processes that are described
below and in Fig. 3. The hysteretic nature of the soil–water retention
curve yields to different water content at a given matric potential
during desaturation or resaturation of porous media (e.g. Mualem
1973). This hysteresis can be explained by different physical effects
such as pore throats (‘ink-bottle’ effect), entrapped air, and possible
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Figure 2. (a) 100 × 100 studied correlated network used in this study (the decimal logarithm of the radii is normally distributed, with a mean radius of 10 µm
and a standard deviation of 0.4942, a Hurst exponent of 0.9, and a characteristic scale Lc of 1), (b) associated radius distribution, and (c) macroscopic complex
conductivity response of the network (for a Warburg model with a DC conductivity of 10 mS m–1, a chargeability of 0.1, and a diffusion coefficient of 10–11

m2 s–1). See Maineult et al. (2017) for more details.
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Empty [resp. fill] the largest [resp smallest] tubes (radius rmax,1 [resp. rmin,1])
connected to the bottom line (y = 1) of the network, i = j = 1

Set of desaturated
[resp. saturated]

tubes Si,j

Extract the vicinity
of Si,j: Vi,j

Is there any tube of radius
larger [resp. smaller] than

rmax,i [resp. rmin,i] in Vi,j ?

yes

no

Empty [resp. fill] in Vi,j the tubes
of radius larger [resp. smaller]

than rmax,i [resp rmin,i]; j = j+1

i = i + 1
Consider the vicinity 

of Si-1,Ni: Vi,0 = Vi-1,Ni

Is Vi,0 empty?

yes

no

End of desaturation
[resp. saturation]

Empty [resp. fill] the largest
[resp. smallest] tubes (of radius

rmax,i [resp. rmin,i]) in Vi,0; j = 1

Consider the network with all its
tubes saturated [resp. desaturated]

Figure 3. Diagram explaining the saturation and desaturation (grey words) of the network.

changes in the contact angle of advancing or receding meniscus
(see Pham et al. 2005 for a review). In this study, we consider the
so-called ‘ink-bottle’ effect: that is, parts of the network are not
accessible to air or water entry due the pore size distribution as a
result of eq. (2).

2.1 Desaturation of the tube network

Concerning drainage (desaturation), we consider the network ini-
tially fully saturated with water (Fig. 4a, saturation Sw of 100
per cent). We start the desaturation process from the bottom of
the network (nodes y = 1, Fig. 1), by emptying the largest tubes
(or the largest tube, if there is only one) connected to this face. We
denote their radius rmax,1, and the set of the so emptied tubes S1,1

(step 0). We then consider the vicinity V1,1 of S1,1, that is, the set
of tubes connected to S1,1; we empty the tubes with a radius larger
than or equal to rmax,1 in V1,1, to obtain S1,2 (step 1). We continue the
same process until the number of emptied tubes does not increase
anymore. We note the set of emptied tubes after stabilization S1,N1

(last step). To empty a tube, we just set its radius to 0, so the water

saturation associated to the radius rmax,1 is simply computed at the
end of the last step as:

Sw (rmax,1) =

Nt∑
i=1

r 2
i

	0
(3)

where 	0 is the sum of the squared radii for the complete network
(i.e. at 100 per cent saturation), and Nt the total number of tubes.
Afterwards, we consider the vicinity of S1,N1, that is, V1,N1 = V2,0.
We empty in V2,0 the largest tubes, whose diameter, denoted rmax,2,
is obviously smaller than rmax,1. We repeat the procedure from step 1
to the last step to obtain S2,N2. Finally, the entire process is repeated
until the network is totally emptied.

Different desaturation states are shown in Fig. 4. The desaturated
zone forms clusters, which can appear very suddenly, when zones
with radii largest than rmax,M are connected to emptied tubes with
radius equal to rmax,M. This phenomenon is known as ‘Haines jumps’
(e.g. Haine 1930; DiCarlo et al. 2003; Haas & Revil 2009; Berg
et al. 2013): when the air passes from a pore throat to a wider
pores and displaces water, it generate a sudden drop in capillary
pressure (see also Fig. 6, on which the drops are clearly visible).



Drainage and imbibition on tube network 1401

(a) 100 % (b) 91.86 % (c) 76.62 %

(d) 43.37 % (e) 30.06 % (f) 18.00 %

Figure 4. Example of saturation states during drainage. The largest radii are desaturated first (i.e. they are set to 0), starting from the bottom of the network
(i.e. nodes y = 1, see Fig. 1). The colour scale is the same as in Fig. 2(a).

Also, there is a critical saturation for which two opposite end-faces
are disconnected (i.e. there is no continuous path for the wetting
phase between them)—in this case, 30.06 per cent in the transversal
direction (between faces x = 1 and x = 100, see Fig. 1), and 18
per cent in the longitudinal direction (between faces y = 1 and
y = 100). This difference is due to the fact that the desaturation
process occurs along the longitudinal direction.

Finally, note that we continue the drainage process until Sw = 0,
that is to say we do not consider water trapping in the tubes (their
local saturation is 1 or 0), or in disconnected clusters of tubes. The
desaturation process that we consider here is therefore similar to
what we could obtain by putting the end-face y = 1 under vacuum.

2.2 Saturation of the tube network

For the imbibition (saturation), we start from a network with all its
radii set to 0. Again, we start the saturation process from the bottom
of the network (nodes y = 1, Fig. 1). We open the smallest tubes (or
the smallest tube, if there is only one) connected to this face—We
denote their radius rmin,1, and the set of opened tubes is expressed
as S1,1 (step 0). Considering the vicinity V1,1 of S1,1, we open the
tubes with a radius smaller or equal to rmin,1 in V1,1, to obtain S1,2

(step 1). As for drainage, we continue the process until the set of
opened tubes stabilizes (last step). The water saturation associated to
rmin,1 is also computed using eq. (3). Then, considering the vicinity
V2,0 = V1,N1, we opened in it the smallest tubes, of diameter rmin,2

(which is larger than rmin,1), and repeat the procedure from step
1 to the last step, and so on, until the network is totally opened
and thus fully saturated. Note that we do not consider air trapping
here: the saturation process is similar to what we could obtain by
putting the end face y = 1 under high fluid pressure or by first
saturating the medium with gas that is easy to dissolve in the water,
as it is often done in soil physics. Examples of saturation states are
shown in Fig. 5. Again, there is a critical saturation for which the

opposite end-faces connect: around 8.38 per cent in the longitudinal
direction, and 13 per cent for the transversal direction.

2.3 Relative permeability, resistivity index
and characteristic lengths

As pore network modelling is a well-known method (see for instance
Kirkpatrick 1973; Koplik 1981; David et al. 1990; David 1993;
Bernabé 1995), we just give in the appendix a summary of the
approach. Using it, we compute: (i) the relative permeability kr of the
medium (the permeability at partial saturation being given by krk,
with k the permeability at full saturation), (ii) the resistivity index
RI, defined as the ratio of the electrical resistivity of the medium at
partial saturation divided by the resistivity at full saturation (Archie
1942)—note that we have neglected the surface conductivity in
computations, that is, only the conductivity of the fluid is taken
into account, and (iii) The characteristic lengths 
h (hydraulic)
and 
e (electrical) (in m; Johnson et al. 1986; Schwartz et al.
1989; Bernabé & Revil 1995), which can be seen as effective pore
radii, and which are widely used parameters in petrophysics to link
electrical conductivity and permeability (e.g. Schwartz et al. 1989;
Bernabé & Revil 1995). In an electrical conductivity experiment,
the length scale 
e denotes an effective pore radius weighted by
the norm of the normalized electrical field in absence of surface
conductivity (i.e. weighted by the local electrical field normalized
by the applied electrical field in absence of surface conductivity,
e.g. Avellaneda & Torquato 1991, and references therein).

2.4 Computation of the SIP spectra

To compute the SIP spectra of the networks at different saturation
states, we used exactly the same approach as Maineult et al. (2017),
and we modify the numerical scheme to account for tubes hav-
ing radius equal to 0 (i.e. local impedance equal to 0). The local
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(a) 7.41 % (b) 8.38 % (c) 13.00 %

(d) 30.00 % (e) 50.01 % (f) 100 %

Figure 5. Example of saturation states during imbibition. The smallest radii are saturated first (i.e. all the radii where set to 0 at the initial state, and they are
progressively set to their true value), starting from the bottom of the network (i.e. nodes y = 1, see Fig. 1). The colour scale is the same as in Fig. 2(a).

impedance of each tube of radius r non equal to 0 is given by a
Warburg resistivity model written here in its complex conductivity
form (Revil et al. 2014b; Niu & Revil 2016):

σl∗ = σ0,l

(
1 + ml

1 − ml

(
1 − 1

1 + (iωτl )
1/2

))
(4)

with

τl = r 2

2Dl
. (5)

Note that this model is equivalent to a Warburg conductivity model
using the relationship found in Tarasov & Titov (2013) between
such functions. The rational for a Warburg mode has been ex-
plored in details in Revil et al. (2014b) and Niu & Revil (2016)
and will not be repeated here. The conductivity σ 0,l denotes the
DC conductivity (in S m–1), ml is the chargeability (dimensionless,
comprised between 0 and 1), equal to (σ∞,l − σ 0,l)/σ∞,l where
σ∞,l is the limit of σ l

∗ for infinite frequency, τ l is the time constant
(in s), and Dl is the diffusion coefficient of the counterions (Revil
et al. 2012; Niu & Revil 2016). When a tube has a radius equal to
0 (desaturated state), we obtain σ l

∗ = 0 by imposing σ 0,l = 0. As
done by Maineult et al. (2017), we simplify the problem by impos-
ing σ 0,l = 0.01 S m–1, ml = 0.1 and log10(Dl) = –11 for all tubes
with non-zero radius.

Once all the local impedances are attributed, we compute the
complex conductivity spectra. Then we fit them with a macroscopic
Pelton model in conductivity, which expresses the bulk (macro-
scopic) complex conductivity as

σ ∗
bulk = σ0

(
1 + m

1 − m

(
1 − 1

1 + (iωτ )c

))
(6)

where σ 0, m, τ and c are the macroscopic Cole–Cole parameters,
the Cole–Cole exponent c being comprised between 0 and 1.
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Figure 6. Representation of the matric potential h in function of the sat-
uration Sw . The hysteretic behaviour is well evidenced. Note that during
drainage, the sudden connection of tube clusters triggers significant jumps
in the saturation state. The black lines correspond to the Van Genuchten
model obtained from independent fitting of the drainage and imbibition data
(see Table 1).

3 R E S U LT S

3.1 Relative permeability, resistivity index
and characteristic lengths

The matric potential h (computed using eq. 2 for all radii) as a func-
tion of the saturation Sw exhibits a hysteretic behaviour (Fig. 6) as
observed in real media (e.g. Mualem 1973; Pham et al. 2005). Hys-
teresis is also observed for the relative permeability (Fig. 7a), even
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Figure 7. Evolution of the relative permeability kr (a), of the resistivity
index RI (b) and of the hydraulic and electrical characteristic lengths 
h and

e (c) as a function of the saturation of the network. All quantities behave
hysteretically, except the relative permeability in the transversal direction
(i.e. between nodes x = 1 and x = Nx, see Fig. 1).

though the hysteretic behaviour is less marked when the relative
permeability is measured in the transversal direction. The relative
permeability decreases with saturation, with the values computed
during imbibition always larger than during drainage. Concerning
the resistivity index (Fig. 7b), it increases with decreasing satura-
tion, with the values computed during drainage larger than during
imbibition. Moreover the measurements in the transversal and longi-
tudinal direction are relatively close one to each other for saturation
below 0.3. The hysteretic behaviour of the resistivity index com-
puted along the longitudinal direction is very similar to those of the
resistivity measurements reported by Knight (1991) for sandstone
samples. We also observe a hysteretic behaviour of the character-
istic lengths (Fig. 7c). Interestingly, the relationship between the
characteristic lengths and the relative permeability seem to have
two regimes (Fig. 8): for relative permeabilities lower than 0.002,
the characteristic lengths do not vary with kr; for larger values, we

hydraulic, drainage
hydraulic, imbibition
electrical, drainage
electrical, imbibition

y = 8.3814 x 0.1532  (r 
2 = 0.9970)

y = 5.2829 x 0.1550  (r 
2 = 0.9787)
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7
8

Λ
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µm
)

Figure 8. Evolution of the hydraulic and electrical characteristic lengths 
h

and 
e in function of the relative permeability kr.

can observe a power-law relationship 
 = 
(Sw = 1)kr
β with an

exponent β around 0.154.

3.2 SIP spectra

We observe a marked decrease of the amplitude of the complex
resistivity during drainage, in both longitudinal and transversal di-
rections (Figs 9a and c). With decreasing saturation, the phase spec-
trum tends to sharpen; its peak frequency (i.e. the frequency asso-
ciated with the maximum value of the phase) moves towards higher
frequencies, and its amplitude increases (Figs 9b and d). During
imbibition (Fig. 10), the spectra follow the opposite behaviour, that
is, an increase for the amplitude of the complex resistivity, a broad-
ening of the phase curve, with a decrease of the peak frequency and
a decrease of the phase amplitude.

All the SIP curves can be fitted by a Pelton model in conductivity
(eq. 6), with very good fit. It is thus possible to draw the evolution of
the model parameters with saturation, that is, the DC conductivity
σ 0 (Fig. 11a), the chargeability m (Fig. 11b), the decimal logarithm
of the time constant τ (Fig. 11c) and the Cole–Cole exponent c
(Fig. 11d). All of them exhibit a hysteretic behaviour with respect
to the saturation, in both longitudinal and transversal direction, even
though it is less marked for the Cole–Cole exponent.

4 D I S C U S S I O N

4.1 Hydrodynamic

Concerning the evolution of the matric potential, we fit these two
curves using van Genuchten’s (1980) model (Fig. 6):

h = − 1

α

[(
S

− 1
mVG

w

)
− 1

] 1
nVG

. (7)

Note that, in order to be able to fit the imbibition curve, it was
necessary to decouple the two textural parameters as mVG �= 1 –
nVG

–1. In order to be consistent we optimized the three parameters
α (in m–1), mVG, nVG for both the drainage and imbibition curves,
the best fit parameters are presented in Table 1. As expected from
the literature, at a given saturation, the matric potential obtained
during the drainage is higher than the one during the imbibition
(e.g. Mualem 1984, his fig. 1). This results in a lower value of the
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Figure 11. Evolution of the macroscopic Cole–Cole parameters: (a) DC conductivity σ 0, (b) chargeability m, (c) time constant τ and (d) Cole–Cole exponent
c in function of the saturation Sw , obtained by fitting the macroscopic complex resistivity spectra (Figs 9 and 10). All parameters exhibit a hysteretic behaviour,
even though it is less clear for c.

Table 1. Best fit values obtained for the Van
Genuchten model displayed in Fig. 6. The
Root Mean Square Error is computed using

RMSE =
√

1
N

∑N
i=1 [log10(hpredicted

i ) − log10(hmeasured
i )]

2
.

Model parameter Drainage Imbibition

α (m) 1.048 0.768
mVG (–) 0.373 2.769
nVG (–) 7.083 1.7141
RMSE∗ (m) 0.0709 0.0832

optimized α parameter for the imbibition curve than for the drainage
one (Table 1).

The resistivity index denotes the ratio between the resistivity at
full saturation divided by the resistivity at a given saturation Sw . We
model the evolution of the resistivity index using second Archie’s
law (1942) neglecting in the present study the effect of surface
conductivity. This yields:

RI = 1

Sn
w

. (8)

We find that the saturation exponent n is equal to 4 for drainage and
to 2.5 for imbibition (Fig. 12a). Although n = 4 is fairly high and
surprising for a natural porous medium (generally expected around
2 ± 0.5 in water wet rocks, see Archie 1942 or Glover 2015),
it could be linked to electrical tortuosity in 2-D media. Indeed,
Jougnot et al. (2016) obtained the same value while monitoring
the electrical conductivity of a 2-D synthetic medium submitted to
various drainage procedures.

We observe a hysteresis in the relative permeability (Fig. 7a).
This is apparently in contradiction with models, which predict that

the kr(Sw) is non-hysteretic (e.g. Soldi et al. 2017), and with mea-
surements (e.g. Topp & Miller 1966; Van Genuchten 1980; Mualem
1986). However, for saturations above 40 per cent, simulations show
that the transversal section available for transport is more reduced
during drainage than during imbibition (Fig. 13, for saturation of
80 per cent), making the permeability also more reduced during
drainage. In other words, since the geometry of the desaturated
clusters are very different during drainage and imbibition, the flow
paths are not similar, and so the resulting permeability. Note here
that we were not able to fit the relative permeability curve versus sat-
uration with classical models (in particular Brooks & Corey 1964;
van Genuchten 1980). The only very good fit was obtained for the
longitudinal drainage (for both Brooks & Corey (1964) and van
Genuchten (1980) models, see below). For the three other curves,
the best fit models were not able to reproduce them for the saturation
range comprised between 0.6 and 0.95, as the relative permeabilities
do not follow the expected power-law function.

4.2 SIP spectra

The evolution of the SIP spectra with saturation (Figs 9 and 10) is
very similar to those reported by Breede et al. (2011) and Breede
(2012). Indeed, Breede et al. (2011) showed a decrease of the con-
ductivity amplitude spectra with decreasing saturation for unconsol-
idated sand with negligible surface conductivity (around 5 µS cm–1).
Titov et al. (2004) also reported such a behaviour. Breede
et al. (2011) and Breede (2012) also reported that the peak fre-
quency slightly increased, the spectra are sharpened, and the maxi-
mum value of the phase increased with decreasing saturation. Also,
on sandstone samples, Ulrich & Slater (2004) reported an increase
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Figure 12. (a) Modelling of the resistivity index RI using RI = S−n
w for lon-

gitudinal measurements. The saturation exponent is equal to 4 for drainage
and 2.5 for imbibition. Prediction of relative permeability kr with Brooks
& Corey (1964) model (eq. 10) using λ value determined using eq. (11)
(continuous lines), and from best fit of eq. 10 (dotted lines), for (b) drainage
and (c) imbibition.

of the phase at 1 Hz with decreasing saturation during drainage, and
a decrease with increasing saturation during imbibition. Finally,
Binley et al. (2005) observed an increase of the peak frequency
with decreasing saturation on unsaturated consolidated sandstone
samples. However, they did not observe a systematic increase in the
maximum value of the phase, neither the sharpening of the spectra.

Concerning the Cole–Cole parameters, Titov et al. (2004) re-
ported a decrease of the conductivity σ 0 with decreasing saturation
for quartz–water–air mixtures, as we observe too (Fig. 11c). For the
chargeability, Breede et al. (2011) reported a decrease with increas-
ing saturation for sand. Also for sand, Titov et al. (2004) observed
an increase of the chargeability for saturation increasing between 0
and 0.1 and a decrease for saturation increasing between 0.1 and 1.
Revil et al. (2012) reported a similar behaviour, with an increase of
the chargeability for saturation below 0.1 and a decrease for satura-
tion above 0.1. In fact, this seems to be the opposite of what we get
(Fig. 11b), in particular for drainage. For imbibition, we have such
a behaviour, but with a change in slope at a saturation of 0.8, not

0.1

         1

10

100

1000

R
adius (µm

)

Drainage (81.22 %)

Imbibition (80.01 %)

Figure 13. Network at about 80 per cent of saturation for (top) drainage
and (bottom) imbibition.

0.1. Concerning the time constant τ , Breede et al. (2011), as well
as Revil et al. (2012) observed an increase of the time constant τ

with increasing saturation, as we do (Fig. 11c).

4.3 Link between SIP response and saturation
and permeability

Revil et al. (2014a) proposed new relationships to relate directly
the electrical conductivity as a function of the saturation to relative
permeability kr(Sw) through the use of the characteristic length 
.
They suggested that 
(Sw) = 
(Sw = 1) Sw , which yield to his
model A:

kr = S2+n
w , (9)

where n is the saturation exponent as defined by Archie (1942;
eq. 8). By comparing eq. (9) to the Brooks & Corey (1964) model:

kr (Sw) = S
2
λ +3
w , (10)

where λ is a textural parameter. Combining eqs (9) and (10) yields:

λ = 2

n − 1
, (11)

hence relating directly electrical (n) and hydraulic (λ) petrophysi-
cal parameters. By applying this to our data, where the saturation
exponent n is equal to 4 and 2.5 for the drainage and imbibition re-
spectively, gives λ equal to 0.667 and 1.333. Comparison between
these predictions and best fit λ values (from eq. 10, λ = 0.653
and 2.633, respectively) are plotted on Figs 12(b) and (c) and re-
ported in Table 2. Overall, these predictions of relative permeability
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Table 2. Predicted and best fit values to describe the relative permeability
function using eqs (10) and (11).

Saturation exponent, n Predicted λ Best fit λ

Drainage 4 0.667 0.653
Imbibition 2.5 1.333 2.633

curve from electrical conductivity measurements are fairly good but
would need to be checked on other realizations of synthetic porous
media.

The relationship between the Cole–Cole DC conductivity σ 0 and
the relative permeability appears to be a power law, with an early
regime (kr < 0.01) and a late one, for both drainage and imbibition
(Fig. 14a). A similar behaviour was reported by Breede (2012) on
SIP measurements on pure sand and sand–clay mixtures. For the
imbibition and longitudinal measurements, we obtain the relations
σ 0 = 52.056 kr

0.6472 in the early regime, and σ 0 = 9.9404 kr
0.3039

in the late one (Fig. 14b). Concerning the evolution of the time
constant τ with respect to kr, it is also a power law (Fig. 14c), but it
seems that there is only one regime, except for the imbibition with
measurements in the longitudinal direction (Fig. 14d). In this case,
we find τ = 2.9498 kr

0.1283 in the early regime, and τ = 4.9139
kr

0.2392. This behaviour is very similar to what Breede (2012) mea-
sured (see her fig. 4.8): she obtained exponents in of the same
order of magnitude (between 0.07 and 0.18). Finally, Binley et al.
(2005) also reported a linear relationship between the time constant
and the longitudinal hydraulic conductivity measured on sandstone
samples, with exponent of 0.26 (their fig. 11).

The Cole–Cole exponent c seems to decrease linearly with in-
creasing saturation (Fig. 15), meaning that the value of c may be
a proxy for the saturation state, even though the coefficient of the
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0.48
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y = -0.0955 x + 0.4725 (r 2 = 0.9966)

Figure 15. Evolution of the Cole–Cole exponent c in function of the sat-
uration Sw during imbibition (longitudinal measurement). The relation is
quasi linear, meaning that the saturation state could be deduced from c, even
though the slope is rather small.

slope is weak. One can notice that when decreasing saturation, the
width of the radius distribution becomes narrower, that is, less het-
erogeneous. Therefore the macroscopic value of c tends towards
the local value of cl, a behaviour also reported by Maineult et al.
(2017).

The characteristic lengths 
h and 
e decrease with increasing
peak frequency fpeak (the frequency for which the amplitude of the
SIP phase spectrum is maximal), that is, with decreasing saturation
(Fig. 16). The relationship between these quantities seems to be
power laws, with an exponent of about −0.68. More interestingly,
the peak frequency is related to the relative permeability also by a
power law with an exponent of –0.185 (Fig. 17). It means that SIP

10-1

100

101

σ
0(

m
S

 m
-1
)

10-4 10-3 10-2 10-1 100

1

2

3

4
5
6

τ

kr

(a)

(c)

y =
 52.056 x 

0.6472

(r 
2 = 0.9895)

y = 9.9404 x 0.3039

(r 
2 = 0.9940)

y = 2.9498 x 0.1283

(r 
2 = 0.9745) y =

 4.9139 x 
0.2392

(r 
2 = 0.9995)

(b)

(d)

drainage, longitudinal measurement
drainage, transversal measurement
imbibition, longitudinal measurement
imbibition, transversal measurement

10-4 10-3 10-2 10-1 100

Figure 14. Evolution of the (a,b) DC conductivity σ 0 and (c,d) time constant τ in function of the relative permeability kr. In (b) and (d), only data for
longitudinal measurements during imbibition are considered.
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Figure 17. Evolution of the peak frequency fpeak in function of the relative
permeability kr (longitudinal measurements).

measurements could give access directly to the relative permeability,
or, at least, that measured variations of the peak frequency due to
saturation changes can provide information about the associated
variations of the relative permeability.

Obviously, only one simulation is not sufficient to draw general
conclusions. That is the reason why we carried out similar calcula-
tions on four supplementary networks. In all cases, the behaviour of
the relative permeability, the resistivity index and the characteristic
lengths in function of the saturation was similar to the behaviour ob-
served on the primary network (Fig. 7). The complex conductivity
spectra (Figs 9 and 10) were also similar, as well as the behaviour
of the Cole–Cole parameters in function of the saturation (Fig. 11).
Concerning the relationships between the DC conductivity and the
relative permeability, the previously described trend (Figs 14a and
b) is confirmed, with two power-law regimes (Fig. 18a). Similarly,
for the relationships between the time constant and the relative per-
meability, the previously described trend (Figs 14c and d) seems to
be also verified by the five simulations (Fig. 18b). The linear trend
between the Cole–Cole exponent and the saturation (Fig. 15) is also
observed (Fig. 18c). Regarding the power-law relationship between
the characteristic lengths and the relative permeability (Fig. 8), it
seems that in the general case it extends to the whole range of rela-
tive permeability (Fig. 19a). Finally, the power-law regime between
the characteristic lengths and the peak-frequency (Fig. 16) can be
generalized (Fig. 19b), as well as the power-law regime between the
peak frequency and the relative permeability (Figs 17 and 19c).
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Figure 18. Results from five network simulations during imbibition. Evo-
lution of the (a) DC conductivity σ 0 and (b) time constant τ in function of
the relative permeability kr, and (c) evolution of the Cole–Cole exponent c
in function of the saturation Sw .

Even though the representation of a porous medium by a cor-
related 2-D square network is a very strong approximation, the
simulations that we performed reproduced some behaviours previ-
ously reported by Breede (2012) on sands for instance, in particular
the evolution of the DC conductivity and the time constant with
the relative permeability. They also showed the potential interest of
SIP measurements during drainage and imbibition to estimate some
hydraulic parameters such as relative permeability from SIP param-
eters (in particular the peak frequency). Further works imply the
extension of the method to 3-D networks, for which the saturation
and desaturation pathways should be somehow different, and also
to test other types of mesh, since the transport properties of a net-
work can depend on its topology (e.g. Bernabé et al. 2003). Finally,
an experimental validation of the relationships that we deduced is
highly advisable.
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5 C O N C LU S I O N S

We are able to simulate saturation and desaturation processes in 2-D
square networks, and to calculate the associated resistivity index,
relative permeability, characteristic lengths and SIP spectra (under
the assumption that the parameters σ 0,l, ml and Dl are the same for
all tubes, as done by Maineult et al. (2017), and that the surface con-
ductivity can be neglected). The behaviour of SIP spectra is globally
in agreement with what was previously reported in the literature.
In particular, for the phase spectra, there is an increase of the peak
frequency with decreasing saturation. We also evidenced that the
resistivity index, the relative permeability, the characteristic lengths
and the macroscopic Cole–Cole parameters, except the Cole–Cole
exponent c, present a hysteretic behaviour. We also show that the
frequency peak is directly related to the characteristic lengths and
to the relative permeability, meaning that permeability should be
accessible from SIP phase spectra. As reported in the literature, we

observe that the DC conductivity σ 0 and the time constant τ are
related to the apparent permeability with a power law, meaning,
here again, that quantitative information about the permeability can
be deduced from Cole–Cole parameters. Finally, the Cole–Cole ex-
ponent is a quasi linear function of saturation. The computational
exercise that we performed therefore evidences the interest of the
SIP method for the study of the non-saturated medium and their
evolution with water saturation. Further works implies the exten-
sion to 3-D networks, the trapping of water in desaturated pores to
account for the residual, irreducible saturation, as well as including
the surface conductivity in the model.
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A P P E N D I X : R E L AT I V E P E R M E A B I L I T Y,
R E S I S T I V I T Y I N D E X A N D
C H A R A C T E R I S T I C L E N G T H S

We consider the network, saturated or not. The hydraulic flux Fp→q

through a tube linking two nodes p and q writes

Fp→q = πrp→q
4

8η

Pp − Pq

l
= gh

p→q

(
Pp − Pq

)
, (A1)

where rp→q is the radius of the tube and l its length, gh is the hy-
draulic conductance, η the dynamic viscosity, and P the hydraulic
pressure. To eliminate the length l, we introduce the modified hy-
draulic flux �h

p→q:

�h
p→q = Fp→ql = πrp→q

4

8η

(
Pp −Pq

) = γ h
p→q

(
Pp −Pq

)
. (A2)

Neglecting the surface conductivity, the electrical flux Jp→q,
taken writes:

Jp→q = σwπrp→q
2 Vp − Vq

l
= ge

p→q

(
Vp − Vq

)
, (A3)

where σw is the electrical conductivity of the saturating fluid, V the
electrical potential and ge the electrical conductance. To eliminate
l and the fluid conductivity σw , we use the modified electrical flux
�e

p→q:

�e
p→q = Jp→q

l

σw

=πrp→q
2
(
Vp −Vq

)=γ e
p→q

(
Vp −Vq

)
. (A4)

At any node inside the square network (Fig. 1), Kirchhoff’s law
(1845) writes

Zx,y−1→x,y + Zx−1,y→x,y + Zx+1,y→x,y + Zx,y+1→x,y = 0, (A5)

with Z equal to F or J respectively. Using eq. (A1) or (A3), this
leads to

ax,y−1→x,y Xx,y−1 + ax−1,y→x,y Xx−1,y

− (
ax,y−1→x,y + ax−1,y→x,y + ax+1,y→x,y + ax,y+1→x,y

)
Xx,y

+ ax+1,y→x,y Xx+1,y + ax,y+1→x,y Xx,y+1 = 0, (A6)

with a = r4 and X = P for the hydraulic case, and a = r2 et X = V
for the electrical case. For the nodes on the border of the network,
eq. (A6) is easily modified to take into account the boundary con-
ditions as described in Fig. 1. A linear system is obtained; the NxNy

unknowns are the hydraulic pressure or electrical potential at the
nodes of the network. Once this system is solved, the modified
fluxes can be computed using eqs (A2) and (A4). We used a QR
decomposition to invert the matrix, which works even though the

matrix is singular (for instance, when the four tubes connected to a
given nodes are equal to zero).

The ‘apparent’ permeability of the network is then computed
using Darcy’s law:

kapp = ηQL

S |�P| = η

l2

Ny − 1

Nx − 1

�h
	out/in

|�P| , (A7)

where L is the length of the network along the flow direction (i.e.
y-direction), S the transversal section, and the total out-flowing and
in-flowing modified fluxes are given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�h
	out =

Nx −1∑
x=1

�h
x,Ny−1→x,Ny

�h
	in =

Nx −1∑
x=1

�h
x,1→x,2

. (A8)

For a fully saturated network (Sw = 1), kapp is equal to the true
permeability of the medium, denoted k. For unsaturated medium,
it is convenient to introduce the relative permeability kr, comprised
and 0 and 1. It is defined as

kapp (Sw) = kr (Sw) k (A9)

Therefore, introducing eq. (A7) into eq. (A9), the relative perme-
ability is computed by

kr (Sw) = �h
	out/in (Sw)

�h
	out/in (Sw = 1)

(A10)

The ‘apparent’ formation factor of the network is computed using

1

Fapp
= σr

σw

= 1

σw

J L

S |�V | = 1

l2

Ny − 1

Nx − 1

�e
	out/in

|�V | (A11)

It is here convenient to introduce the resistivity index RI, defined
by

RI = ρ (Sw)

ρ (Sw = 1)
, (A12)

where ρ is the true resistivity of the medium. Replacing the resistiv-
ity by the conductivity, introducing the definition of the formation
factor and using eq. (A11), RI is computed by

RI = �e
	out/in (Sw = 1)

�e
	out/in (Sw)

(A13)

Finally, we computed the two characteristic lengths (the first one,

h, is based on the hydraulic potential, and the second one, 
e, on
the electrical potential), as defined in Schwartz et al. (1989) using
the formula given in Bernabé & Revil (1995):


h =

Nt∑
i=1

r 2
i |�Pi |2

Nt∑
i=1

ri |�Pi |2
(A14)

and


e =

Nt∑
i=1

r 2
i |�Vi |2

Nt∑
i=1

ri |�Vi |2
, (A15)

where �Pi (resp. �Vi) is the hydraulic pressure (resp. electrical
potential) difference between the two end nodes of the ith tube.
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