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a b s t r a c t 

In hydrogeophysics, we need a reliable petrophysical model connecting (non-linearly) the conductivity of a porous material (like a soil) to the conductivity of the 

pore water and the water saturation. Classical models are too simplistic especially at low salinities. The convexity of the electrical conductivity of a porous material 

as a function of the pore water conductivity is due to both a textural effect and the dependence of the specific surface conductivity on salinity. The textural effect 

arises because of a change in the distribution of pore network conductances with salinity. From volume averaging arguments, it is possible to provide a general 

equation for the conductivity of porous materials. This approximation is based on a Padé approximant, connecting low and high salinity asymptotic limits for which 

a rigorous analysis can be made based on four fundamental textural parameters. We discuss the connection between this volume averaging model and empirical 

models as well as with the differential effective medium (DEM) solution for granular media. The DEM captures the non-linear behavior of the conductivity curve 

with only two parameters but it is strictly valid for granular materials only. We compare the models with finite element computations using two three-dimensional 

pore geometries with continuous and discontinuous solid surfaces, respectively. Finally the models are compared to experimental data. 

1

 

t  

m  

w

𝜎  

w  

m  

n  

s  

l  

c  

t  

t  

g  

v  

o  

fi  

r  

k  

T  

A  

a  

c  

c

 

p  

f  

t  

W  

r  

a  

v  

L  

R

𝜎  

 

f  

1  

l  

W  

(  

2  

t  

R  

(  

c  

h

R

A

0

. Introduction 

Seventy six years ago , Archie (1942) developed a simple equation

o interpret resistivity well logs in clean (clay-free) formations. In his

odel, the electrical conductivity of a porous medium 𝜎 (in S m 

− 1 ) is

ritten as 

= 

1 
𝐹 
𝜎𝑤 , (1)

here F = 𝜙− m (dimensionless) describes the (resistivity) electrical for-

ation factor, 𝜙 denotes the connected porosity, and 𝜎w (in S m 

− 1 ) de-

otes the conductivity of the pore water, which depends in turn on the

alinity of the pore water and temperature. The exponent m (dimension-

ess) is called the cementation exponent in the petroleum engineering

ommunity. For a set of spherical particles, m increases with cementa-

ion from 1.1–1.3 for colloidal suspensions and unconsolidated sands

o 1.7–2.1 for consolidated sandstones where the grains are bonded to-

ether by cements (see Friedman, 2005 ). However, the value of m also

aries with grain shape (e.g., Jackson et al., 1978 ) and this terminol-

gy is therefore confusing. The term “Archie porosity exponent ” (or

rst Archie exponent) should be preferred. Note that the power law

elationship between electrical conductivity and porosity was already

nown much before Archie (1942) , see for instance Bruggeman (1935) .

his version of Archie’s law F = 𝜙− m should also not be confused with

rchie’s law written as F = a 𝜙− m (developed later in the 50 s) and usu-

lly used to fit a formation factor / porosity data set in which each point
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orresponds to a distinct sample, all the sample being from the same fa-

ies (e.g., Winsauer, 1952 ). 

Electrical conductivity tomography is a key technique in hydrogeo-

hysics ( Binley et al., 2015 ). Unfortunately, Eq. (1) remains the basis

or the interpretation of resistivity data in a large number of publica-

ions in hydrogeophysics. Back in the 50 s and 60 s (e.g., Patnode and

yllie, 1950 , and Wyllie and Southwick, 1954 ), petroleum engineers

ecognized that a second contribution, called surface conductivity, was

t play, especially in shaly formations. Waxman and Smits (1968) de-

eloped a simple equation written at this point as (see also Cremers and

audelout, 1965, Rhoades et al., 1976, Mualem and Friedman 1991,

evil, 2017a , b ), 

= 

1 
𝐹 
𝜎𝑤 + 𝜎𝑆 . (2)

In Eq. (2) , 𝜎S (S m 

− 1 ) denotes this extra conductivity term called sur-

ace conductivity or surface conductance of the clay (e.g., Cremers et al.,

966 ). The form of Eq. (2) can be traced back to Patnode and Wyl-

ie (1950) and Wyllie and Southwick (1954) . In the seminal model of

axman and Smits (1968) , the surface conductivity is written as 𝜎𝑆 =
 ̂𝐵 𝑄 𝑉 )∕ 𝐹 where �̂� (in the range 2.0 to 4.8 ×10 − 8 m 

2 V 

− 1 s − 1 , Na + , at

5 °C) denotes the apparent mobility for the charge carriers (called coun-

erions) responsible for the surface conductivity (see also discussions in

evil et al., 1998 ). The term Q V (in C m 

− 3 ) denotes an excess of charge

of the counterions) per unit pore volume due to the cation exchange

apacity of the surface of minerals. Clay minerals are characterized by
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Fig. 1. Anatomy of the electrical conductivity curve of a porous body as a func- 

tion of the pore water conductivity. This shows an example of non-linear behav- 

ior between the conductivity data of the porous material and the conductivity 

of the pore water. Data from Shainberg et al. (1980) . 
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trong CEC values, but pure silica is characterized by a reactive mineral

urface responsible for surface conductivity (see Revil et al., 2014 ). The

urface conductivity is due to conduction in the electrical double layer

Stern and diffuse layers) coating the surface of these minerals. 

Although Eq. (2) suggests a linear relationship between the con-

uctivity of the porous body 𝜎 and the pore water conductivity 𝜎w ,

axman and Smits (1968) recognized that, at low salinity, the ac-

ual behavior of 𝜎 is non-linear. They observed that this non-linear be-

avior is especially pronounced for materials characterized by a high

ation exchange capacity (CEC). To account for this observation, Wax-

an and Smits introduced a salinity dependent cation mobility �̂� ( 𝜎𝑤 ) =
̂
 [1 − 0 . 6 exp (− 𝜎𝑤 ∕0 . 013)] (with 𝜎w expressed in S m 

− 1 ). However, this

xplanation is unphysical since the mobility of the cations is not ex-

ected to decrease with decreasing salinity. 

Many errors can be found in the literature regarding the improper

se of electrical conductivity equations. Notably, when Eq. (1) is used

hile Eq. (2) should be applied instead, this results in unphysical values

nd dependencies of Archie’s porosity exponent. For instance, Salem and

hilingarian (1999) observed (erroneously) that this exponent is salin-

ty dependent although it is purely a textural parameter. The list of such

rrors is, unfortunately, very long both in petroleum engineering and in

ydrogeophysics. That said, while Eq. (2) has increasingly been used in

ydrogeophysics, we can wonder how well this equation models fresh-

ater environments because it does not capture the low-salinity non-

inear behavior (e.g. Shainberg et al., 1980 , for soils) - at least not in a

hysically meaningful way. 

In the previous two papers of this series ( Revil, 2017a, b ), we de-

elop a theory of ionic transport in porous media in unsaturated condi-

ions. We kept the theory to the high salinity asymptotic behavior for

hich surface effects are treated as a perturbation of the transport in the

onnected pore space. In this situation, the transport of ions is mostly

ffected by the tortuosity of the bulk pore space. In the present paper,

e show that the tortuosity affecting the transport of the ions changes

ith the salinity. The main goal of the present paper is to demonstrate to

he hydrogeophysical community that beyond Eq. (2) , there is another

ealm worth exploring for freshwater environments. It may be impor-

ant for soils ( Rhoades et al., 1976; Nadler, 1982; 1991; Binley et al.,

015 ), geosynthetic clay liners ( Abuel-Naga and Bouazza, 2016 ), clay

uspensions ( van Olphen, 1957; van Olphen and Waxman, 1958 ), the

eophysical monitoring of CO 2 sequestration ( Al Hagrey, 2012; Börner

t al., 2013 ) and reactive transport modeling ( Day-Lewis et al., 2017 ),

nd the study of gas hydrates and permafrost ( Spangenberg, 2001; Prieg-

itz et al., 2015 ) to cite a few examples. We review knowledge about

he non-linear behavior of electrical conductivity at low salinities (see
98 
or instance Bruggeman, 1935, Wyllie and Southwick, 1954, Bussian,

983, Lima and Sharma, 1990, Schwartz et al., 1989a,b ), starting with a

olume averaging approach to a non-linear conductivity equation valid

or any type of porous materials. Our analysis will start with the works

f Johnson et al. (1986) and Johnson and Sen (1988) . High and low

alinity asymptotic limits can be rigorously derived and tied together

sing a Padé approximant (i.e., a ratio of polynomials). Then, we will

xplore how this equation can be used to explain the Wyllie and South-

ick (1954), Waxman and Smits (1968) , and dual water ( Clavier et al.,

984 ) models. We will also compare the model to the differential ef-

ective medium solution for a pack of spheres coated by an electrical

ouble layer and immersed in “background ” (pore) water (see Bussian,

983, Lima and Sharma, 1990 ). Finally, these models will be compared

ith numerical simulations at the pore scale at saturated and unsatu-

ated conditions. We will also derive new expressions for the conduc-

ivity and new relationships between the models and check how these

odels compare with experimental data. 

. Volume averaging approach 

Fig. 1 shows one example of a non-linear relationship between the

otal electrical and the pore water conductivity. We see that the conduc-

ivity curve is characterized by an isoconductivity point for which the

onductivity of the porous medium is equal to that of the pore water,

 property broadly analyzed in the colloidal science of clay suspensions

e.g., Street, 1963, Cremers and Laudelout, 1965, Shainberg and Levy,

975 ) and porous media ( Bussian, 1983; Lima and Sharma, 1990; Revil

t al., 1998 ). In this section, we summarize the findings regarding the

lectrical conductivity of porous media and especially those from the

riginal works of Johnson et al. (1986) and Johnson and Sen (1988) in

n attempt to explain the non-linear behavior shown in Fig. 1 . We start

y considering two asymptotic limits for the conductivity equation cor-

esponding at high salinities (i.e., higher than the salinity correspond-

ng to the isoconductivity point) and at low salinities (i.e., for salini-

ies much smaller than the salinity corresponding to the isoconductivity

oint). 

.1. The formation factor 

We start our analysis by considering the local conductivity problem

n the absence of an electrical double layer around the solid phase. The

olid phase is insulating. The pore space is filled by an electrolyte of con-

uctivity 𝜎w . The constitutive (local Ohm’s law) and continuity equation

or the current density are given by j = 𝜎w e b in V p, (i.e., in the pore

pace) and ∇ · j = 0 on S (i.e., at the mineral water interface) where

 b = − ∇ 𝜓 b denotes the local electrical field (V m 

− 1 ), and 𝜓 b the local

lectrical potential (in V), j denotes the local current density (A m 

− 2 ).

he subscript “b ” refers to the fact that in this situation, the electrical

eld is governed by the distribution of the bulk conductances ( Bernabé

nd Revil, 1995 ). In the absence of surface conductivity, the conduction

roblem reduces to: 

 

2 𝜓 𝑏 = 0 in 𝑉 𝑝 (3)

̂
 ⋅ 𝐞 𝑏 = 0 on 𝑆 (4)

 𝑏 = 

{ 

ΔΨat 𝑧 = 𝐿 

0 at 𝑧 = 0 (5)

here V p and S denote the pore volume and (specific) interface area

etween the solid and the fluid respectively; L (in m) denotes the length

f the cylindrical representative volume in the direction of the applied

acroscopic electrical field 𝐄 = −(ΔΨ∕ 𝐿 ) ̃𝐳 (in V m 

− 1 ), �̃� denotes the

nit vector in the direction of the electrical field, ΔΨ corresponds to the

ifference of electrical potential between the end-faces of the represen-

ative volume, and �̂� denotes the unit vector normal to the surface of
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Fig. 2. Sketch of the first 3D porous material used to illustrate the conductivity 

problem. a. Geometry with boundary conditions. The material is made of an 

insulating mineral (null conductivity) coated by a conductive electrical double 

layer (conductivity of 1 S m 

− 1 ). The (connected) pore space contains on dead- 

end and one throat. The electrodes A and B are used to inject the current I 

(in A) while all the other boundaries are insulating. The vector n denotes the 

normal unit vector to the external boundaries of the porous body and 𝜓 the 

electrical potential. b. Mesh used for the finite element calculations with Comsol 

Multiphysics of the Ohmic conductivity problem. 
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o  

p  

𝜎

𝜎

𝜎  
he grains. This boundary value problem can be written in terms of a

ormalized electrical potential Γb for a cylindrical representative ele-

entary volume of porous material ( Pride, 1994 ), as follows: 

 

2 Γ𝑏 = 0 in 𝑉 𝑝 (6)

̂
 ⋅ ∇ Γ𝑏 = 0 on 𝑆 (7)

𝑏 ≡
(ΔΨ
𝐿 

)−1 
𝜓 𝑏 = 

{ 

𝐿 at 𝑧 = 𝐿 

0 at 𝑧 = 0 (8) 

In absence of surface conductivity, the formation factor F = 𝜎w / 𝜎 (see

q. (1 )) is obtained by summing up the local Joule dissipation of energy

 Johnson and Sen (1988); Revil and Cathles, 1999 ). The macroscopic

issipation of energy can be written as D 

≡ JE while the local dissipation

f energy is d ≡ je b where J and j denotes the macroscopic and local

urrent densities, respectively. Therefore we have 

 = 

1 
𝑉 ∫𝑉 𝑝 𝑑 ( 𝐞 𝑏 ) 𝑑 𝑉 𝑝 , (9)

(ΔΨ
𝐿 

)2 
= 

1 
𝑉 ∫𝑉 𝑝 𝜎𝑤 

||𝐞 𝑏 ||2 𝑑 𝑉 𝑝 , (10)

1 
𝐹 

= 

(ΔΨ
𝐿 

)−2 1 
𝑉 ∫𝑉 𝑝 

||𝐞 𝑏 ||2 𝑑 𝑉 𝑝 , (11)

1 
𝐹 

= 

1 
𝑉 ∫𝑉 𝑝 

||∇ Γ𝑏 ||2 𝑑 𝑉 𝑝 , (12)

here V is the total volume of the considered representative elementary

olume and where 𝜎w is considered constant over the pore space. This

rinciple is always valid since the macroscopic dissipation of energy at

he scale of a representative elementary volume is the sum of the local

issipations (here limited to the pore space). From Eq. (12) , the inverse

f the formation factor appears to correspond to an effective porosity

the connected porosity, a purely geometrical quantity, is 𝜙 = V p / V ).

or any type of porous material, this effective porosity is built by giving

ome weight to the throats and no weight to dead-ends of pores. This

an be shown for instance for the material sketched in Fig. 2 for which

he numerical simulation is performed at high salinity. The distribution

f the Γb -field is shown in Fig. 3 . This ∇Γb -field is strong in pore throats

nd null in dead-ends ( Section 6 below explains in detail how these com-

utations are performed). This would remain true for any type of pore

etwork, idealized or not. The formation factor goes to infinity as pores

ecome disconnected (and very large near the percolation threshold).

his paper does not focus on the specific physics of electrical conduc-

ion close to percolation. 

.2. High salinity asymptotic limit 

Now we discuss the impact of an electrical double layer, coating the

urface of the grains ( Fig. 4 a), contributing extra surface conductivity

o the porous medium. We introduce ΣS (in S), the specific surface con-

uctivity/conductance of the electrical double layer (in S) (see Fig. 4 ,

nd e.g., van Olphen, 1957, Johnson and Sen, 1988 ), 

𝑆 = ∫
∞

0 

(
𝜎( 𝑥 ) − 𝜎𝑤 

)
𝑑𝑥 , (13)

here 𝜎( x ) denotes the local conductivity in the vicinity of the min-

ral surface / pore water interface (see details in Fig. 4 b). Outside the

lectrical double layer, 𝜎( x ) = 𝜎w where x denotes the local coordinates

ormal to the pore water / solid interface. In the thin double layer as-

umption, the local electrical conductivity distribution is written as 𝜎( x )

 𝜎w + ΣS 𝛿( x ) where 𝛿( x ) denotes the delta function characterizing the

osition of the mineral surface. To obtain the high salinity asymptotic

ehavior of the conductivity, we replace the conductivity of the pore
99 
ater 𝜎w by the local conductivity 𝜎( x ) assuming that in this high salin-

ty limit, the electrical field remains roughly the same. This yields (ΔΨ
𝐿 

)2 
= 

1 
𝑉 ∫𝑉 𝑝 𝜎( 𝑥 ) 

||𝐞 𝑏 ||2 𝑑 𝑉 𝑝 . (14) 

At high salinity, the electrical field is controlled by the distribution

f bulk conductances and we replace the local conductivity by its ex-

ression obtained with the thin double layer assumption, i.e., 𝜎( x ) =
w + ΣS 𝛿( x ). This yields ( Johnson et al., 1986 ), (ΔΨ
𝐿 

)2 
= 

1 
𝑉 ∫𝑉 𝑝 

[
𝜎𝑤 + Σ𝑆 𝛿( 𝑥 ) 

]||𝐞 𝑏 ||2 𝑑 𝑉 𝑝 , (15) 

(ΔΨ
𝐿 

)2 
= 

𝜎𝑤 

𝑉 ∫𝑉 𝑝 
||𝐞 𝑏 ||2 𝑑 𝑉 𝑝 + 

Σ𝑆 
𝑉 ∫𝑉 𝑝 𝛿( 𝑥 ) 

||𝐞 𝑏 ||2 𝑑 𝑉 𝑝 , (16)
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Fig. 3. Normalized potential Γb (unitless) distribution obtained at high salinity 

( 𝜎w = 10 S m 

− 1 ). The local electrical field is very strong in the throat and equal 

to zero in the dead-end. The tortuosity of the conduction path is small. The 

dimensions are in nm. For this material, we obtain Λ= 5.1 nm close to the size 

of the throat. 
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diffuse layer (DL, thickness equal to twice the Debye screening length x d , in m). 

 

e

𝜎  

 

g

 

 

(ΔΨ
𝐿 

)2 
= 

𝜎𝑤 

𝑉 ∫𝑉 𝑝 
||𝐞 𝑏 ||2 𝑑 𝑉 𝑝 + 

Σ𝑆 
𝑉 ∫𝑆 

||𝐞 𝑏 ||2 𝑑𝑆 , (17)

= 

𝜎𝑤 

𝐹 

( 

1 + 

2 
Λ

Σ𝑆 
𝜎𝑤 

+ 𝑂 

( 

2 
Λ

Σ𝑆 
𝜎𝑤 

) 2 
) 

, (18)

sing the Bachmann–Landau notation. From Eqs. (17) and (18) , the

ength scale Λ is defined by ( Johnson et al., 1986 ), 

2 
Λ

= 

∫
𝑆 
||∇ Γ𝑏 ||2 𝑑𝑆 

∫
𝑉 𝑝 

||∇ Γ𝑏 ||2 𝑑 𝑉 𝑝 . (19)

The quantity Λ appears fundamentally as an effective pore radius

f the pore space, which can be eventually related to the permeability

 Johnson et al., 1986; Bernabé and Revil, 1995 ). 

.3. Low salinity asymptotic limit 

There is also a low salinity asymptotic limit of the conductivity prob-

em for which the electrical field e is controlled by the distribution of the

urface conductances. By low salinity, we mean salinities much smaller

han that corresponding to the isoconductivity point. For such values,

he electrical field takes the distribution e S = − ∇ 𝜓 S ( 𝜓 S denotes the lo-

al electrical potential). Again the total Joule dissipation is the sum of

he local contributions ( Eq. (9 )), i.e., (ΔΨ
𝐿 

)2 
= 

𝜎𝑤 

𝑉 ∫𝑉 𝑝 
||𝐞 𝑆 ||2 𝑑 𝑉 𝑝 + 

Σ𝑆 
𝑉 ∫𝑆 

||𝐞 𝑆 ||2 𝑑𝑆 , (20)

= 

𝜎𝑤 

𝑉 ∫𝑉 𝑝 
||∇ Γ𝑆 ||2 𝑑 𝑉 𝑝 + 

Σ𝑆 
𝑉 ∫𝑆 

||∇ Γ𝑆 ||2 𝑑𝑆 , (21)

= 

Σ𝑆 
𝑉 ∫𝑆 

||∇ Γ𝑆 ||2 𝑑𝑆 ⎡ ⎢ ⎢ ⎣ 1 + 

𝜎𝑤 

Σ𝑆 

∫
𝑉 𝑝 

||∇ Γ𝑆 ||2 𝑑 𝑉 𝑝 
∫
𝑆 
||∇ Γ𝑆 ||2 𝑑𝑆 

⎤ ⎥ ⎥ ⎦ , (22)

nd where the normalized low salinity potential ΓS is defined by, 

𝑆 ≡
(ΔΨ)−1 

𝜓 𝑆 . (23)

𝐿 
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From Eq. (22) , the low-salinity asymptotic linear expression of the

lectrical conductivity becomes, 

= 

Σ𝑆 
𝑓 

( 

1 + 

𝜆

2 
𝜎𝑤 

Σ𝑆 
+ 𝑂 

( 

𝜆

2 
𝜎𝑤 

Σ𝑆 

) 2 
) 

. (24)

The two fundamental textural parameters appearing in Eq. (24) are

iven by, 

1 
𝑓 

= 

1 
𝑉 ∫𝑆 

||∇ Γ𝑆 ||2 𝑑𝑆 , (25)

2 
𝜆
= 

∫
𝑆 
||∇ Γ𝑆 ||2 𝑑𝑆 

∫
𝑉 𝑝 

||∇ Γ𝑆 ||2 𝑑 𝑉 𝑝 . (26)
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Fig. 5. Normalized potential ΓS (unitless) obtained at low salinity ( 𝜎w = 0.01 S 

m 

− 1 ). Note that the electrical field is relatively uniform in the electrical double 

layer coating the surface of the solid phase because of its constant thickness. 

Since in this case the double layer has a uniform thickness and is continuous 

along the material, this prevents its polarization. The dimensions are given in 

nm. 
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The new length scale 𝜆 (in m) appears to be a variant of the hy-

raulic radius V p / S weighted by the norm of the electrical field in ab-

ence of conductivity in the bulk pore space while the quantity f (in

) is a variant of the formation factor for surface conduction. For the

aterial sketched in Fig. 2 , the ΓS -field is shown in Fig. 5 . We see that

t appears rather uniform in the electrical double layer coating on the

urface of the solid phase. Note that if the double layer is discontinuous,

 will go to infinity. In this case, the conductivity of the porous medium

oes to zero when the salinity decreases to zero. We will come back on

his point later in Sections 4 and 5 , especially when analyzing another

pscaling method called the differential effective medium theory. 

An application of the Cauchy–Schwartz inequality applied to

qs. (12) and (25) yields ( Revil and Glover, 1997 ) 

 ≥ 

1 
𝜙
, (27)

 ≥ 

𝑉 𝑝 

𝑆 

1 
𝜙
, (28)

here 𝜙= V p / V denotes the (connected) porosity. In connection with

rchie’s law F = 𝜙− m , Eq. (27) implies that m ≥ 1. We can postulate

omething equivalent to an Archie’s law for the surface formation fac-

or f , i.e., f = ( V p / S 𝜙/) p with p ≥ 1. In addition, electrical conduction

inimizes the Joule dissipation of energy ( Revil and Glover, 1997 ) so 

1 
𝑉 ∫𝑆 Σ𝑆 

||𝐞 𝑏 ||2 𝑑𝑆 ≥ 

1 
𝑉 ∫𝑆 Σ𝑆 

||𝐞 𝑆 ||2 𝑑𝑆 , (29)

1 
𝑉 ∫𝑉 𝑝 𝜎𝑤 

||𝐞 𝑆 ||2 𝑑 𝑉 𝑝 ≥ 

1 
𝑉 ∫𝑉 𝑝 𝜎𝑤 

||𝐞 𝑏 ||2 𝑑 𝑉 𝑝 , (30)

nd in turn this yields the following inqualities ( Revil and Glover, 1997 )

𝜆

2 𝑓 
≥ 

1 
𝐹 
, (31)

2 
𝐹 Λ

≥ 

1 
𝑓 
, (32)

≥ Λ. (33)
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Eq. (31) appears as a consequence of Eq. (29) and (30) . Eq. (29) im-

lies that the slope of the 𝜎 = g ( 𝜎w , ΣS ) conductivity curve increases at

ow salinity and Eq. (30) implies that the y -intercept decreases with the

alinity, therefore the curve 𝜎 = g ( 𝜎w , ΣS ) is concave. Another cause of

onvexity for the 𝜎 = g ( 𝜎w , ΣS ) curve (see Fig. 1 ) is coming from the

ependence of ΣS with the salinity as discussed by Revil et al. (1998) .

ypically, we expect ΣS to increase due to sorption of the counterions

n the electrical double layer (see Revil and Florsch, 2010 ). 

.4. Surface and bulk tortuosities 

The bulk tortuosity of a porous material can be defined as (e.g.,

ride, 1994 ), 

𝑏 = 𝐹 𝜙 = 

𝑉 𝑝 

∫
𝑉 𝑝 

||∇ Γ𝑏 ||2 𝑑 𝑉 𝑝 , (34)

( ≥ 1) and where the definition 𝛼b = F 𝜙 is from Wyllie and

ose (1950) . A surface tortuosity can be also defined with respect to

he current flow paths along the interface between the solid phase and

he pore water phase as 

𝑆 = 

𝑆 

∫
𝑆 
||∇ Γ𝑆 ||2 𝑑𝑆 = 𝑓𝜙

𝑆 

𝑉 𝑝 
. (35)

( ≥ 1). These tortuosities are defined as dynamic quantities controlled

y the distribution of the dynamic field Γ (see Johnson et al., 1986,

ride, 1994 ). They are “dynamically ” connected by the current lines

 Johnson et al., 1986 ). In the definition of the tortuosities, the current

ines are locally weighted by the norm of the electrical field and there-

ore tortuosities are not simple geometrical constructs. A new inequality

etween these two tortuosities is discussed in Appendix A. 

.5. Conductivity expression based on a Padé approximant 

The previous high and low-salinity asymptotic limits can be used to

orge a more general equation valid over the whole salinity range and

olution of the Laplace problem. For a Padé approximant (a ratio of

olynomials), we need to find the coefficients of the function g ( x ) (with

 = ΣS / 𝜎w , Dukhin number), called a Padé approximant, such as, 

= 𝜎𝑤 𝑔( 𝑥 ) , (36)

( 𝑥 ) = 

𝑏 + 𝑐𝑥 + 𝑑 𝑥 2 

1 + 𝑎𝑥 
, (37)

nd satisfying, 

= 𝜎𝑤 

[ 
1 
𝐹 

+ 

2 
Λ𝐹 

𝑥 + 𝑂 

( 2 
Λ
𝑥 

)2 ] 
, (38) 

= 𝜎𝑤 

[ 
𝜆

2 𝑓 
+ 

1 
𝑓 
𝑥 + 𝑂 

(
𝜆

2 
1 
𝑥 

)2 ] 
, (39) 

t high (2 x / Λ = 2 ΣS / 𝜎w Λ≪ 1) and low (2 x / 𝜆 = 2 ΣS / 𝜎w 𝜆 ≫ 1) salinities,

espectively. We have F = [ g (0)] − 1 . Eq. (37) is chosen as being the sim-

lest Padé approximant (i.e., with the lowest order polynomials) leading

o the asymptotic linear relationships (38) and (39) . Indeed, expanding

q. (37) to its asymptotic limits yields the following results (Appendix

) 

 = 

2 
Λ

𝜆𝐹 

2 𝑓 − 1 
, (40)

 = 

2 
Λ

𝐹 − 

2 𝑓 
𝜆

, (41)

 = 1∕ 𝐹 , (42)
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 = 𝑎 ∕ 𝑓. (43)

When interpreting conductivity data collected at different salinities,

e fit the coefficient a, b, c , and d . Then we need to invert Eqs. (40) –(43)

o get the fundamental textural parameters of interest. This yields 

= 2∕( 𝑐∕ 𝑏 − 𝑎 ) , (44)

= 2 𝑐∕ 𝑑, (45)

 = 1∕ 𝑏, (46)

 = 𝑎 ∕ 𝑑. (47)

Note also that the isoconductivity point corresponds to the condi-

ions 𝜎 = 𝜎w , thus to g ( x ) = 1. This yields in turn the following second-

rder equation dx 2 + ( c − a ) x + b − 1 = 0 and the positive root of this

quation can be easily determined to fulfill the condition. 

A very clear physical meaning of Eq. (37) , i.e., the general conduc-

ivity equation forged with the Padé approximant, can be given now as

ollow. First Eq. (37) is rewritten as, 

( 𝑥 ) = 

𝑥 

𝐴𝑥 + 𝐵 
+ 𝐶𝑥 + 𝐷, (48)

here the four textural parameters are defined as 

 = 

1 
𝜆

2 𝑓 − 

1 
𝐹 

, (49)

 = 

1 
2 
Λ𝐹 − 

1 
𝑓 

, (50)

 = 

1 
𝑓 
, (51)

 = 

1 
𝐹 
. (52)

Under this form, Eqs. (48) –(52) exhibit some form of symmetry. Us-

ng Eq. (36) together with x = ΣS / 𝜎w , we can write the conductivity of

he porous material as 

= 

Σ𝑆 𝜎𝑤 
𝐴 Σ𝑆 + 𝐵 𝜎𝑤 

+ 𝐶 Σ𝑆 + 𝐷 𝜎𝑤 . (53)

ntroducing the conductivity of the grains as 

𝑠𝑠 = 

1 
𝑚 

2 
Λ𝐹 

Σ𝑆 , (54)

a rigorous demonstration for this equation will be given below in

ection 4 ) into Eq. (53) yields, 

= 

𝜎𝑠𝑠 𝜎𝑤 

𝐴 𝜎𝑆 + 𝐵 ′𝜎𝑤 
+ 𝐶 ′𝜎𝑠𝑠 + 𝐷 𝜎𝑤 , (55)

ith B ′ = 2 B /( m ΛF ) and C ′ = C ( m ΛF /2). In this form, the conductivity

odel corresponding to Eq. (55) has exactly the same structure than the

odel developed by Wyllie and Southwick (1954) (see also Sauer et al.,

955 ) for which A, B ’, C ’ and D were just unspecified textural proper-

ies (see also Lima et al., 2010 , their Eq. 1 ). The model of Wyllie and

outhwick (1954) assumes three electrical resistances working in par-

llel. They are (1) a resistance consisting of grains in electrical contact

ith each other; (2) a resistance consisting of the pore water located in

he connected pore space; and (3) a resistance consisting of grains and

ore water in series with each other (a complete discussion can also be

ound in Bussian, 1983 ). Our approach represents the first unification

f the empirical model of Wyllie and Southwick with the model derived

ith the volume-averaging technique. 
102 
. Connection with other empirical models 

Here our goal is to show the connections between the previous model

nd empirical models such as the dual water model and the Waxman

nd Smits model. The dual water concept was originally proposed by

lavier et al. (1984) to emphasize the volume occupied by the electrical

ouble layer in the expression of the surface conductivity of a porous

aterial. In other words, the bulk conductivity and the surface conduc-

ivity should be associated with the volume fraction of porosity to which

hey correspond (double layer water and far water in the terminology

f Clavier et al., 1984 , also abusively called bound water and free water

n a number of papers). The dual water concept introduced in this paper

s coming directly from the expression of the specific surface conductiv-

ty, see Eq. (13) . Integrating Eq. (13) over the thickness of the electrical

ouble layer, we can break the specific surface conductivity into two

erms, 

𝑆 = 𝑄 𝑆 𝐵 − 𝜎𝑤 𝑥 𝑠 , (56)

here Q S and x s denote the surface charge density of the electrical dou-

le layer (Stern and diffuse layers) and its thickness, respectively. Ac-

ording to et al. (2017a, b, c), the effective mobility B can be written as,

 = 𝛽𝑆 (+) 𝑓 𝑄 + 𝛽(+) (1 − 𝑓 𝑄 ) , (54)

here 𝛽𝑆 (+) and 𝛽(+) denote the mobility of the counterions in the Stern

nd diffuse layers, respectively (we expect 𝛽𝑆 (+) < 𝛽(+) since the Stern

ayer is much more packed than the diffuse layer and the degrees of

reedom are smaller). Therefore B is a composite of the mobility of the

ounterions in the Stern and diffuse layers weighted by the relative frac-

ions of the counterions in these two layers ( Revil et al., 2017c ).The

uantities f Q and (1 − f Q ) represent the fractions of charge carriers in

he Stern later and diffuse layer, respectively. The quantity f Q is called

he partition coefficient. Typically we have B = 1.49 ×10 − 8 m 

2 s − 1 V 

− 1 .

ith a charge density Q S = 5 charges nm 

− 2 (0.81 C m 

− 2 ), this yields a

alue of ΣS ≈ Q S B = 1.2 ×10 − 8 S. A charge density Q S = 2 charges nm 

− 2 

0.32 C m 

− 2 ) yields a value of ΣS ≈ Q S B = 5 ×10 − 9 S. 

At high salinity, the thickness of the double layer would reduce to

he thickness of the Stern layer ( Clavier et al., 1984 ). The quantities 

 𝑆 𝑓 𝑄 = 𝑒 Γ𝑆 (+) , (58)

 𝑆 (1 − 𝑓 𝑄 ) = 𝑒 Γ𝑑 (+) , (59)

enote the charge density in the Stern and diffuse layers, respectively

nd Γ𝑆 (+) and Γ𝑑 (+) denote the surface charge density of the counterions

n the Stern and diffuse layers, respectively. A complete electrochemical

nalysis of this problem is out of the scope of the present paper. 

Now we can introduce Eq. (56) into the high salinity asymptotic

quation (see Eq. (18) ), 

= 

1 
𝐹 

[ 
𝜎𝑤 + 

2 𝑥 𝑠 
Λ

( 

𝑄 𝑆 𝐵 

𝑥 𝑠 
− 𝜎𝑤 

) 

+ ... 

] 
, (60)

= 

1 
𝐹 

[ 
𝜎𝑤 

( 

1 − 

2 𝑥 𝑠 
Λ

) 

+ 

2 
Λ
𝑄 𝑆 𝐵 + ... 

] 
, (61)

= 

(
1 − 

2 𝑥 𝑠 
Λ

)
𝐹 

⎡ ⎢ ⎢ ⎢ ⎣ 𝜎𝑤 + 

2 𝑥 𝑠 
Λ

𝑄 𝑆 𝐵 (
1 − 

2 𝑥 𝑠 
Λ

) + ... 

⎤ ⎥ ⎥ ⎥ ⎦ , (62)

nd we can introduce apparent textural quantities as 

= 

1 
𝐹 𝑎 

[ 
𝜎𝑤 + 

2 
Λ𝑎 
𝑄 𝑆 𝐵 + ... 

] 
, (63)

here an apparent formation factor and an apparent pore size can be

efined as 

 𝑎 = 

𝐹 (
1 − 

2 𝑥 𝑠 
Λ

) , (64)
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Λ

) 

= Λ − 2 𝑥 𝑠 , (65)

We observe therefore the appearance of a dual water correction term

1 − 2 x s / Λ) in the definition of the apparent formation factor and appar-

nt effective pore size. This correction term is however slightly distinct

rom the dual water correction term developed by Clavier et al. (1984) ,

hich is based on the relative volume of the double layer with respect

o the entire pore space volume. We will come back on this point later.

n our case, what matters is the relative size of the double layer with re-

pect to the effective pore size (which is actually a measure of the size of

he throats of the porous material, see Johnson et al., 1986; Bernabé and

evil, 1995 ). The quanties F a and Λa correspond to the formation factor

nd apparent effective pore size obtained if the double layer would be

xcluded from the pore space. They are also the quantities that can be

aken from the high salinity asymptotic curve at high salinities. 

To demonstrate the connection between the previous model and the

ual water and the Waxman and Smits models, we first start with a

elationship between the length scale Λ and the surface area per pore

olume. Following Johnson et al. (1986) , we have, 

2 
Λ

= − 

𝑑 ln 𝐹 
𝑑 ln 𝜙

𝑆 

𝑉 𝑝 
. (66)

We can empirically relate F to 𝜙 using Archie’s law (see

rchie, 1942 ), i.e., F = 𝜙− m where m denotes the porosity exponent

s mentioned above. Therefore Eq. (66) can be written as, 

2 
Λ

≈ 𝑚 

𝑆 

𝑉 𝑝 
. (67)

Starting with the high salinity approximation, Eq. (18) , and using

q. (67) we have 

= 

1 
𝐹 

[ 
𝜎𝑤 + 𝑚 

𝑆 

𝑉 𝑝 

(
𝑄 𝑆 𝐵 − 𝜎𝑤 𝑥 𝑠 

)] 
. (68)

The next approximation is in the relationship between the specific

urface conductivity and the excess of charge Q V or the cation exchange

apacity (CEC, expressed in C kg − 1 or sometimes in mMol equivalent

harge per gram of solid phase). The relationship between the charge per

nit volume and the charge per unit surface area is given by Q V = Q S S / V p 

or the total volumetric charge density. The surface charge density Q S is

oughly equivalent to 3 elementary charge per nm 

2 ( ∼0.48 C m 

− 2 , see

evil et al. 2017a, b ). The total volumetric charge density Q V is writ-

en as a function of the cation exchange capacity as (e.g., Waxman and

mits, 1968 ), 

 𝑉 = 𝜌𝑔 

( 

1 − 𝜙

𝜙

) 

CEC , (69)

nd it follows, 

= 

1 
𝐹 

[ 
𝜎𝑤 

( 

1 − 𝑚 

𝑆 

𝑉 𝑝 
𝑥 𝑠 

) 

+ 𝑚 𝑄 𝑉 𝐵 

] 
, (70)

= 

( 

1 − 𝑚 

𝑆 

𝑉 𝑝 
𝑥 𝑠 

) 

𝐹 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝜎𝑤 + 

𝑚 𝑄 𝑉 𝐵 ( 

1 − 𝑚 

𝑆 

𝑉 𝑝 
𝑥 𝑠 

) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
. (71)

Following Clavier et al. (1984) , we introduce the following quantity

𝑄 

𝑄 = 

𝑚 𝑥 𝑠 

𝑄 𝑆 

, (72)

𝑄 𝑄 𝑉 = 𝑚 𝑥 𝑠 
𝑆 

𝑉 𝑝 
. (73)

In the dual water layer model, the quantity 𝜐𝑄 𝑄 𝑉 denotes the volume

raction of the pore space occupied by the electrical double layer. Using
103 
qs. (71) –(73) , we obtain the dual water equation derived empirically

y Clavier et al. (1968) 

= 

(
1 − 𝜐𝑄 𝑄 𝑉 

)
𝐹 

[ 

𝜎𝑤 + 

𝑄 𝑉 �̂� (
1 − 𝜐𝑄 𝑄 𝑉 

)] 

. (74) 

ith �̂� = 𝑚𝐵. In the paper of Clavier et al. (1968), the quantity (1 −
𝑄 𝑄 𝑉 ) is replaced by (1 − 𝛼𝜐𝑄 𝑄 𝑉 ) with 𝛼 denotes the ratio between the

ouble layer thickness (diffuse plus Stern layers) to the thickness of the

tern layer. We have 𝛼 = 1 at high salinities and 𝛼 > 1 at low salinities.

his salinity effect can explain some of the curvature observed at low

alinities. In absence of dual water correction, this equation resumes to

he high salinity asymptotic limit of the Waxman and Smits (1968) equa-

ion: 

= 

1 
𝐹 

[
𝜎𝑤 + 𝑚𝐵 𝑄 𝑉 

]
, (75) 

here m can be eventually encapsulated into an apparent mobility �̂� =
𝐵. Typically we have B = 1.49 ×10 − 8 m 

2 s − 1 V 

− 1 and then, taking m

 2 yields �̂� ≈ 3 × 10 −8 m 

2 s −1 V 

−1 consistent with the values given in

axman and Smits (1968) . 

. Use of the differential effective medium theory 

We consider now a particular class of porous media made of insulat-

ng grains entirely immersed in the background pore water. This means

hat the grains do not touch anymore and that the double layers are

ot interconnected. The solution of the differential effective medium

cheme yields the following expression for the electrical conductivity of

he material ( Bruggeman, 1935; Hanai. 1960a,b, Sen et al., 1981 and

ppendix C), 

= 𝜎
𝑤 
𝜙𝑚 

( 1 − 𝜎
𝑠𝑠 
∕ 𝜎
𝑤 

1 − 𝜎
𝑠𝑠 
∕ 𝜎

) 𝑚 

. (76) 

hich reduces to Eq. (1) with F = 𝜙− m in absence of grain conductivity,

.e., for 𝜎
𝑠𝑠 

= 0 ( Bussian, 1983; Lima and Sharma, 1990 ). In saturated

onditions and above the so-called isoconductivity point characterized

i.e., for 𝜎
𝑤 
≥ 𝜎

𝑠𝑠 
), Eq. (76) has the following closed-form solution ( Revil

t al., 1998; Revil 2000 ), 

≈
𝜎𝑤 

𝐹 

[ 
𝐹 X + 

1 
2 
(1 − X) 

( 

1 − X + 

√ 

( 1 − X ) 2 + 4 𝐹 X 

) ] 
, (77) 

here F = 𝜙− m denotes the formation factor and the Dukhin number

dimensionless) is defined by Revil et al. (1998) , 

 ≡ 𝜎𝑠𝑠 

𝜎𝑤 
. (78) 

A high salinity asymptotic limit can be obtained directly from

q. (76) using Newton binomial expansion ( Bussian, 1983 ) 

= 

1 
𝐹 
𝜎𝑤 

[
1 + 𝑚 ( 𝐹 − 1 ) 𝑋 + 𝑂 ( 𝑋 ) 2 

]
(79) 

r alternatively, 

≈
𝜎𝑤 

𝐹 
+ 𝑚 

(
1 1 
𝐹 

)
𝜎𝑠𝑠 (80) 

Note that usually (except for colloidal suspensions) F ≫ 1 (i.e.,

(1 − 1/ F ) ≈ 1). From Eq. (80) , it is also clear that the surface conductiv-

ty in Eq. (2) is given by 𝜎S ≈ m 𝜎ss . A comparison with the high salinity

symptotic limit obtained using the volume averaging approach reveals

 simple relationship between the two scaling factors x and X , 

𝑋 = 

2 
Λ𝐹 

𝑥. (81)

From this relationship, we can connect the conductivity of the grains

nd the specific surface conductivity ΣS (used in Section 2.5 above) 

𝑠𝑠 = 

1 2 Σ𝑆 . (82) 
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Using the expression of Λ as a function of the surface per pore volume

atio and the expression of the specific surface conductance Σ S , we have

𝑠𝑠 = 

1 
𝐹 

𝑆 

𝑉 𝑝 

(
𝑄 𝑆 𝐵 − 𝜎𝑤 𝑥 𝑠 

)
, (83)

𝑠𝑠 = 

1 
𝐹 

( 

𝑄 𝑉 𝐵 − 

𝑆 

𝑉 𝑝 
𝑥 𝑠 𝜎𝑤 

) 

. (84)

This completes the work of Bussian (1983) by providing an explicit

elationship between the conductivity of the solid phase and the cation

xchange capacity, which was not achieved in his paper. Neglecting the

orrection term (i.e., the second term in the parenthesis of Eq. (84) ), the

onductivity of the grains is given by 

𝑠𝑠 ≈
1 
𝐹 𝜙

( 1 − 𝜙) 𝐵 𝜌𝑔 CEC . (85)

f the grains are round, we have F 𝜙 ≈ 3/2 (i.e., the tortuosity required

or the flow lines to go around a sphere) and for small porosities (say

maller than 30%) we have therefore 

𝑠𝑠 ≈
2 
3 
𝐵 𝜌𝑔 CEC . (86)

This equation makes a lot of sense since it is equivalent of having

he charge of the double layer divided by the volume of grain times the

obility of the counterions. 

Note that for X = 1 (isoconductivity point), Eqs. (76) or (77) yields,

(X = 1) = 𝜎𝑤 = 𝜎𝑠𝑠 . (87)

In other words, the isoconductivity point is characterized by an

quality between the conductivity of the medium filled with pore water

nd the conductivity of the solid phase coated by the electrical dou-

le layer. From Eq. (81) , the isoconductivity point can also be written

s a condition between the pore water conductivity and the specific

urface conductivity and corresponds therefore to the condition 𝜎w =
 ΣS /( m ΛF ). Below the isoconductivity point (i.e., 𝜎

𝑤 
≤ 𝜎

𝑠𝑠 
), Eq. (76) can

e also be written as (Appendix C), 

= 𝜎
𝑤 
𝜙

𝑚 

1− 𝑚 

( 1 − 𝜎
𝑤 
∕ 𝜎
𝑠𝑠 

1 − 𝜎∕ 𝜎
𝑠𝑠 

) 

𝑚 

1− 𝑚 
. (88)

The low-salinity equation for the electrical conductivity is

 Revil, 2000 ), 

≈
𝜎𝑤 

𝑔 

[ 
𝑔X + 

1 
2 
(1 − X) 

( 

1 − X + 

√ 

( 1 − X ) 2 + 4 𝑔X 

) ] 
, (89)

ith a low salinity formation factor g = 𝜙m /(1 − m ) = F 1/( m − 1) ≥ 1 (with

 = 2, g = F ). When surface conductivity dominates, we obtain 

lim 

 ≫1 
𝜎 = 𝑔 𝜎𝑤 

[
1 + 𝑂( X 

−1 ) 
]
, (90)

lim 

 ≫1 

( 1 
𝜎

)
= 

1 
𝑔 𝜎𝑤 

[
1 + 

𝑚 

𝑚 − 1 
( 𝑔 − 1) 1 

X 

+ 𝑂( X 

−2 ) 
]
, (91)

here Eq. (91) can also be obtained directly from Eq. (88) using New-

on binomial expansion ( Lima and Sharma, 1990 ). From Eq. (90) , we see

hat the conductivity of the porous material decreases linearly with the

onductivity of the pore water at very low salinities down to zero (very

igh Dukhin number X). Indeed in the differential effective medium the-

ry, the grains are not touching each other so if the conductivity of the

ater phase is going to zero, the conductivity of the material is also

oing to zero. We connect now the low salinity asymptotic limit with

he one obtained by the volume averaging approach, see Eq. (2) . This

ields, 

 𝑓, 𝜆) → +∞, (92)

𝜆

2 𝑓 
= 𝑔 = 𝜙

𝑚 

1− 𝑚 . (93)

b  

104 
The condition f →+∞ is directly obtained by combining

qs. (91) and (25) while the condition 𝜆→+∞ is obtained from

he inequality 𝜆 ≥ 2 f / F with F finite. The result ( f , 𝜆) →+∞ is not

urprising and appears as a direct consequence of the fact that the

rains (with their double layer) are not touching each other in this

odel. At low salinities, the conductivity 𝜎ss = ΣS /( mf ) should therefore

o to zero. In other words the grains appear as insulators. In a real

orous medium, however, the diffuse layers overlap and the grains

re therefore in electrical contact with one another, implying that the

ifferential effective medium theory is not correct at very low salinities

ince in a real porous material. 

. Effect of saturation 

We write s w 

the saturation of a second immiscible fluid phase acting

s an insulator (e.g. air or a non-wetting oil). The conductivity equa-

ions should be consistent with Archie’s second law and the fact that the

harge per unit volume should scale as 

 𝑉 → 𝑄 𝑉 ∕ 𝑠 𝑤 , (94)

e.g., Waxman and Smits, 1968 ). This yields the following change of

ariables, 

1 
𝐹 

→
1 
𝐹 
𝑠 𝑤 

𝑛 , (95)

→ Λ𝑠 𝑤 . (96)

At the opposite, the surface formation factor f should be indepen-

ent of the saturation since it does not involve any integrals over the

ore volume. A similar analysis can be done for the differential effec-

ive medium approach. This yields, 

= 

𝜎𝑤 

𝐹 
𝑠 𝑤 

𝑛 
[
𝐹 𝑠 𝑤 

− 𝑛 X( 𝑠 𝑤 ) + 

1 
2 
(1 − X( 𝑠 𝑤 )) ( 

1 − X( 𝑠 𝑤 ) + 

√ (
1 − X( 𝑠 𝑤 ) 

)2 + 4 𝐹 𝑠 𝑤 − 𝑛 X( 𝑠 𝑤 ) 
) ] 

(97) 

here the Dukhin number is given by 

( 𝑠 𝑤 ) = 

1 
𝑚 

2 
∧( 𝑠 𝑤 ) 𝐹 ( 𝑠 𝑤 ) 

( 

∑
𝑆 

𝜎𝑤 

) 

, (98)

( 𝑠 𝑤 ) = 𝑠 𝑛 −1 
𝑤 

X . (99)

This formulation is consistent with the work done by Greve et al.

2013) who analyzed a large database of experimental data at partial

aturations to conclude that the Dukhin number should scaled according

o Eq. (99) . 

. Comparison with experiments 

.1. Numerical experiments 

We follow here some recent pore level modeling approaches to deter-

ine the electrical conductivity of porous media (e.g., Torskaya et al.,

014; Shabro et al., 2014 ). In the present case, we use a synthetic porous

aterial to illustrate the conductivity behavior in saturated and unsatu-

ated conditions. The computations are made with Comsol Multiphysics

sing the finite element method. The simulations are aimed to repre-

ent a pure Ohmic conductivity experiment with no polarization of the

aterial. We solve the local problem corresponding to ∇ · [ 𝜎( x ) ∇ 𝜓] =
 with the boundary conditions given by Eqs. (4) and (5) and where

( x ) is the local electrical conductivity. The local electrical conductiv-

ty is piecewise constant. Indeed, it is constant in the bulk pore space

 𝜎( x ) = 𝜎w , conductivity of the pore water) outside the electrical dou-

le layer and it is constant in the layer coating the surface of the grains

nd representing the electrical double layer 𝜎( x ) = 𝜎s . We use insulating

oundary conditions on the external surfaces except for the position of
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Fig. 6. Simulation of the conductivity of the porous material as a function of the pore water conductivity for the first synthetic case. This synthetic dataset shows 

a high salinity asymptotic linear behavior and a non-linear behavior at low salinities. The shape of the curve is explained by textural effect and the change of the 

tortuosity with the distribution of the conductive paths when the salinity decreases. The isoconductivity point is characterized by the condition 𝜎w = 2 ΣS /( m ΛF ). 

Fig. 7. Best fit in a log space of the Padé approximant (non-linear model) used 

to represent the conductivity of the porous material shown in Fig. 2 as a function 

of the pore water conductivity for a restricted range of salinity. Note that a fit 

done in a linear-linear space between the conductivity of the material versus the 

conductivity of the pore water does not provide correct estimates of the model 

parameters. With the exception of 𝜆, the other three textural parameters are 

rather well-estimated. We check that 𝜆 ≥ Λ and 𝜆 ≥ 2 f / F . 

t  

(

 

t  

o  

o  

T

Fig. 8. Cross-section of the porous material shown in Fig. 2 showing the distri- 

bution of the normalized potential Γ (unitless) obtained though finite element 

simulations at a pore water conductivity of 𝜎w = 10 S m 

− 1 and saturation s w 
= 0.9086. The spheres shown in the pore space represents insulating gas bub- 

bles. We consider that the gas bubbles are excluded from the dead-end and the 

electrical double layer. The electrical field remains strong in the throat. 

(

d  

T  

p

o

 

h  

d  
he electrodes A and B used to inject and retrieve the electrical current

 Fig. 2 ). 

The investigated porous medium corresponds to a micro-porous ma-

erial such as clay-rich soils with a throat, a dead-end, and the surface

f the grains coated by an electrical double layer ( Fig. 2 a). The length

f this porous body is 60 𝜇m, its height 40 nm, and its thickness 30 nm.

he mesh contains 85,016 quadratic elements ( Fig. 2 b). Its porosity 𝜙
105 
pore volume divided by the total volume) is 0.332. The ratio S / V p 

etermined from the microgeometry shown in Fig. 2 a is 0.2704 nm 

− 1 .

herefore the hydraulic radius V p / S is on the order of 3.7 nm. The solid

hase is coated by a layer of thickness x s = 1 nm with a conductivity 𝜎s 

f 1 S m 

− 1 (therefore Σs = 10 − 9 S). 

The distribution of the normalized electrical potential Γ is shown at

igh salinity in Fig. 3 and at low-salinity in Fig. 5 . We observe that the

istributions of the equipotentials are completely different in the two
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Fig. 9. Finite element simulations of the electrical conductivity of the porous 

material as a function of the pore water conductivity for different value of the 

pore water saturations. The lines are just guides for the eyes. 

Fig. 10. Finite element simulations of the electrical conductivity of the porous 

material as a function of the pore water conductivity for different value of the 

pore water saturations. The lines correspond to the best fit of the Padé approx- 

imant. 
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h  

t  

t  

h  

1

 

(  

p  

i  

t  
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Fig. 11. High and low salinity formation factors ( F and f ) as a function of the 

water saturation for the synthetic model shown in Fig. 2 . The simulations con- 

firm that f is independent of the saturation while F can be replaced by a second 

Archie’s law with a saturation exponent n . The lower figure allows checking 

that the property 2/( F Λ) ≥ 1/ f (the filled squares correspond to the low salinity 

formation factor) is always respected at all the saturations. 

𝜆  

l  

t  

Λ  

g  
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o  

f  

2  

e  

o  

4  

t  

p

 

f  
ases. We see clearly that the conduction paths are vastly different at

igh and low salinities while in the model developed by Pride (1994) ,

his is not the case indicating a serious flaw in his model. We performed

he simulations for a set of 12 pore water conductivities 𝜎w covering the

igh and low salinity ranges 𝜎w = 0, 10 − 5 , 10 − 4 , 10 − 3 , 10 − 2 , 10 − 1 , 0.5,

, 2, 6, 8, and 10 S m 

− 1 while 𝜎s = 1 S m 

− 1 (constant). 

From their definitions in terms of integral equations (see Eqs. (12) ,

19) , (25) , and (26) ), we determined the values of the four petrophysical

arameters of interest using the potential distributions Γb and ΓS shown

n Figs. 3 and 5 . We obtain F = 5.0 (from Eq. (12) ) and therefore the bulk

ortuosity is 𝛼b = F 𝜙 = 1.7. The pore size length Λ is 4.9 nm (from Eq.

19) ), the low-salinity formation factor is f = 31 nm (from Eq. (25) ) and
106 
= 113 nm integrating over the whole pore space including the double

ayer with Eq. (26) . This yields therefore a surface tortuosity 𝛼s = 2.8,

herefore higher (as expected) than the bulk tortuosity. The pore sizes

is comparable to the pore size of the throat which is 4 nm from the

eometry shown in Fig. 2 . The cementation exponent m in Archie’s law

 = 𝜙− m is 1.46, which is obtained from F and 𝜙 using m = -ln F /ln 𝜙.

ote that we can check the validity of Eq. (67) , Λ = (2/ m ) V p / S . Indeed,

aking m = 1.46, V p / S = 3.7 nm we obtain Λ = 5.1 nm with Eq. (67) ,

lose to the value provided above (4.9 nm) from the integral Eq. (19) . 

The conductivity curve is shown in Figs. 6 and 7 . This curve is clearly

haracterized by a high salinity asymptotic limit as predicted by the the-

ry. From the slope and the y -intercept and using Eq. (40) , the apparent

ormation factor is F a = 8.4 while the apparent effective pore size Λa =
.9 nm. From Eq. (65) , we have Λ = Λa + 2 x s and therefore using this

quation with Λa = 2.9 nm (from the data shown in Fig. 6 ), the value

f x s = 1 nm (thickness of the electrical double layer), we obtain Λ =
.9 nm. This value is consistent with the value determined above from

he integral Eq. (19) , showing again the self-consistency of the model

roposed in this paper. 

From this value of Λ = 4.9 nm, we can compute the value of the

ormation factor F using Eq. (64) i.e., F = F (1 − 2 x / Λ). This yields F
a s 
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Fig. 12. High and low salinity characteristic length scales ( Λ and 𝜆) as a func- 

tion of the water saturation for the synthetic model shown in Fig. 2 . The textural 

parameters are determined by fitting the Padé approximant to the synthetic data 

obtained by finite element modeling. The simulations confirm that Λ scales ap- 

proximately with the saturation while 𝜆 is difficult to determine accurately and 

close to the value given at saturation from its integral form (113 nm). We also 

check the property 𝜆 > Λ. 
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i
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Fig. 13. Granular material idealized as sphere pack and finite-element mesh. 

The current is injected between the two end-faces of the cylinder while an insu- 

lating boundary condition is applied on the side boundary. 
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a  

F

s

i

b

 5.0. This value is again consistent with the values determined from

he integral equation ( Eq. (12 ), see discussion above). The same type of

nalysis can be done for the low salinity asymptotic limit. If we consider

he case for which the conductivity of the pore water is zero, 𝜎 = Q S B / f ,

e obtain f = 31 nm. The slope of the trend at low salinities is 1.8018

determined over the three last salinities). Since the slope is ( 𝜆− 2 x s )/2 f ,

his yields 𝜆 = 113 nm. Therefore the dual water correction is vanish-

ngly small at low salinities. In Fig. 7 , we also fit the data with the Padé

pproximant. We obtain F a = 8.1 (close to the value obtained with the
ig. 14. Distribution of the normalized electrical potential for a cross-section of th

alinity case. In both cases, the current is injected and retrieved from the upper an

nsulating boundaries. The grains are insulating but coated by a conductive shell (

ecoming independent of the conductivity of this shell. 

107 
igh salinity asymptotic limit), Λa = 3.4 nm (close to the value obtained

ith the high salinity asymptotic limit), f = 30 nm and 𝜆 = 62 nm. 

We perform now finite element modeling at partial saturations.

hese finite element simulations are performed by adding insulating

pheres in the pore space to simulate the presence of gas bubbles. An

xample of the Γ-potential distribution is shown in Fig. 8 . Simulations

ere performed at the following gas saturations: [0, 0.011, 0.023, 0.069,

.091, 0.113, 0.217, 0.241, 0.443, 0.656]. Examples of conductivity

urves at different saturations are shown in Figs. 9 (linear-linear space)

nd 10 (log space). The curves shown in Fig. 9 looks like the type of
e 3D cyclindrical core sample shown in Fig. 13 . a. High salinity case. b. Low 

d lower sides of the granular material. The left and right sides correspond to 

here of conductivity 1 S m 

− 1 ). Note that at low salinity, the conductivity is 
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Fig. 15. Conductivity curves for the second synthetic case corresponding to a 

granular porous material with the insulating grains having a conductive shell of 

1 S m 

− 1 and 20 S m 

− 1 , respectively. The plain lines correspond to the fit obtained 

with the differential effective medium theory (DEM) using a least square fitting 

technique. In the first case (double layer conductivity of 1 S m 

− 1 ), we obtain 

F = 1.285 ± 0.001 and 𝜎ss = 0.30 ± 0.02 S m 

− 1 ( R 2 = 1.0). In the second case (dou- 

ble layer conductivity of 20 S m 

− 1 ), we obtain F = 1.46 ± 0.04 and 𝜎ss = 7.8 ± 0.3 

S m 

− 1 ( R 2 = 0.9997). 
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Fig. 16. Conductivity curve for a soil sample. a. Best fit in a log space of the 

Padé approximant used to represent the conductivity of a soil sample (sandy 

clay) as a function of the pore water conductivity. Three out of four textural 

parameters present strong uncertainties in their determination. We check that 

the properties 𝜆 ≥ Λ and 𝜆 ≥ 2 f / F are obeyed. b. Best fit in a log space of the 

analytical solution of the differential effective medium theory\used to represent 

the conductivity of a soil sample (sandy clay) as a function of the pore water 

conductivity. The property 𝜎ss = 𝜎S / m with 𝜎S = 0.77 S m 

− 1 yields m = 2.26. Using 

a formation factor F = 8.80 this yields a porosity of 0.35. The measured porosity 

is 𝜙 = 0.522. 

t  

(

(  

c  

o  

T  

t  

6

 

c  

s  
urve for soils at partial saturations presented by Rhoades et al. (1989) .

ike in Fig. 7 , we fit all the data using the Padé approximant Eqs.

36) and (37) . The two formation factors F and f are plotted as a func-

ion of the saturation in Fig. 11 where we also demonstrate that the

nequality 2/( F Λ) ≥ 1/ f (see Eq. (32) for the saturated case) is obeyed at

ll the saturations. The apparent formation factor scales with saturation

ccording to the second Archie’s law (see Eq. (95) with n = 1.63). The

ormation factor 𝜙 is independent of the saturation as expected form its

ntegral formulation. 

In Fig. 12 , we show how the two length scales 𝜆 and Λ change with

he saturation (note that the inequality corresponding to Eq. (33) ), i.e.,

≥ Λ is also always respected). The length Λ scales approximately with

he saturation (see Eq. (13) ) while 𝜆 has a more complicated dependence

ith the saturation but its value is around 113 nm, close to the value at

aturation determined above. 

The goal of the last numerical experiment is to numerically test

he differential effective medium theory in fully saturated conditions

 Fig. 13 ). We performed a finite element simulation for an assemblage

f grains coated by an electrical double layer with an intrinsic conduc-

ivity of 1 S m 

− 1 and 20 S m 

− 1 (to observe the effect of the surface

onductivity on the curvature). The pore water is changed using the fol-

owing range of pore water conductivities [10 − 4 , 10 − 3 , 10 − 2 , 10 − 1 , 0.5,

.0, 2.0, 6.0, 8, 10, and 15 S m 

− 1 ]. The dimension of the cylindrical

ynthetic sample is 30 μm (radius) by 60 μm ( Fig. 13 ). The number of

nite element mesh for the simulation is 152,032 ( Fig. 13 ) and we check

hat the potential distributions obtained at high and low salinities (see

ig. 14 ) are mesh-independent. The grains are represented by spheres

ith a radius of 5 μm while the thickness of the double layer is 1 μm.

here are 55 grains in the simulation and the resulting porosity is 0.830.

e have S / V p = 0.123 𝜇m 

− 1 (using the surface of the 55 grains divided

y the pore volume). 

We start with the analysis of the two conductivity curves shown in

ig. 15 . First the conductivity of the porous material goes to zero when

he conductivity of the pore water goes to zero as expected. The dif-

erential effective medium theory is able to represent the conductivity

urves obtained by solving Laplace equation. When the conductivity of
108 
he shell is 1.0 S m 

− 1 , we obtain a formation factor of F = 1.285 ± 0.001

therefore m = 1.35) and a grain conductivity of 𝜎ss = 0.30 ± 0.02 S m 

− 1 

 R 

2 = 1.0). At low pore water conductivity (not shown here) the two

onductivity curves superimposes, which means that the conductivity

f the porous material is independent of the conductivity of the grains.

he explanation of this behavior is provided in Fig. 14 where it is shown

hat at low pore water salinities, the conduction paths avoid the grains.

.2. Laboratory experiments 

We now show how the equations discussed in the previous sections

an be applied to real data. We first use a soil sample from the recent

tudy of Revil et al. (2017b) . This sample is a sandy clay (Sample AE).
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Fig. 17. Best fit in a log space of the Padé approximant and differential effective 

medium theory used to represent the conductivity of a shaly sand (sample #26 

from Waxman and Smits, 1968 ). The clay fraction of this sandstone is 100% 

Montmorillonite. Since its porosity is 0.229, the cementation exponent m is 2.54. 

For the first case, we use a specific surface conductivity ΣS = 1 × 10 − 8 S. We 

check that 𝜆 ≥ Λ and 𝜆 ≥ 2 f / F . 
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he conductivity curve is shown in a log-log space in Fig. 16 . We use the

adé approximant to fit the data and we obtain Λ = 1.7 nm, F = 10.6,

 = 71 nm, and 𝜆 = 65 nm. As we can see, some of the model parame-

ers are poorly determined. We use a specific surface conductivity ΣS =
 ×10 − 8 S based on the study of Revil and Skold (2011) . As expected

or a granular material, the values of f and 𝜆 are very large with respect

o Λ. 

In Fig. 16 , we also use the differential effective medium approach

o fit the data. Like the Padé approximant, the model is able to fit the

ata very well but with two parameters only (the formation factor and

he grain conductivity) instead of four parameters. This indicates the

sefulness of the differential effective medium approach in capturing

he non-linearity of the conductivity data. We have performed a linear

t of the high salinity data in a linear-linear space using Eq. (2 ) (fit

ot shown here). We obtain F = 9.75 ± 0.10 and 𝜎S = 0.77 ± 0.02 S m 

− 1 

R 

2 = 0.9999). Using this surface conductivity, the length scale Λ is given
109 
y Λ = 2 ΣS /( F 𝜎S ) = 2.7 nm using ΣS = 1 ×10 − 8 S relatively consistent

ith the result derived in Fig. 16 a ( Λ = 1.7 nm). 

The second sample we investigate is sample #26 from the collection

f Waxman and Smits (1968) . This is a shaly sand with a porosity 𝜙 of

.229. We obtain F = 42.4 and Λ = 2.4 nm. The cementation exponent

 is therefore m = -ln F / ln 𝜙 = 2.54. Taking Λ = (2/ m ) V p / S with Λ =
.4 nm, we have V p / S = 3.1 nm (and therefore with V p / S 𝜙 = 13.5 nm,

e can check that f ≥ V p / S 𝜙). The data are fitted in Fig. 17 with both

he Padé approximant and the differential effective medium theory. Both

odels are able to fit the data but again the differential effective medium

heory is able to fit the data with only two parameters, which makes it

ttractive for field applications in hydrogeophysics. 

. Conclusions 

We have reviewed a conductivity model that can be derived from

olume-averaging arguments and we have connected this model to var-

ous empirical and semi-empirical conductivity models broadly used in

he literature. At very low salinities (i.e., for freshwater environments),

t is important to capture the non-linearity of the conductivity curve

o interpret electrical resistivity data in field conditions. The following

onclusions have been reached. 

1) We have shown that the use of a Padé approximant can be used

to build a non-linear conductivity model from rigorously defined

asymptotic behaviors at low and high salinities. Furthermore, we

have shown for the first time that this Padé-based model is equiv-

alent to the non-linear empirical model developed by Wyllie and

Southwick (1954) , which assumes three electrical resistances form-

ing a network. They are (1) a resistance consisting of grains in electri-

cal contact with each other. (2) a resistance parallel to the previous

one and consisting of the pore water located in the connected pore

space, and (3) a resistance consisting of grains and pore water in se-

ries with each other. All the four textural coefficients entering this

model are now perfectly identified with respect to four fundamental

textural properties of porous bodies. The non-linearity is important

for materials characterized by small pore sizes and high cation ex-

change capacities such as smectite-rich soils and bentonite. 

2) The dual water model is an empirical model initially proposed by

Clavier et al. (1984) to emphasize the volume fractions occupied

by the electrical double layer and free-pore water in the expression

of the electrical conductivity of a porous material. The dual water

model can be explained from the definition of the specific surface

conductivity at the pore water / mineral interface, which should only

accounts for the excess conductivity above the pore water conductiv-

ity. For low-porosity materials characterized by small sizes of their

pore throats, this correction is important and cannot be neglected.

This type of materials is also the one characterized by high CEC and

strong non-linearity in the conductivity versus pore water conduc-

tivity curve. 

3) We have also connected the Padé-based conductivity model to

the differential effective medium conductivity solution of a gran-

ular medium. For granular media, the differential effective medium

model is probably the best model to capture the non-linear behav-

ior with only two materials properties (instead of four for the Padé-

based conductivity model). The conductivity of the grains in this

mode can be rigorously connected to the CEC. 

4) For all the conductivity models, the effect of saturation can be ac-

counted for. Having data at various saturations can be important to

get further constraints regarding the four textural parameters enter-

ing the general conductivity equation. 

5) A comparison between the Padé-based conductivity model and nu-

merical simulations allows to better understand the characteristics

of the electrical conductivity curve and to evaluate the different ap-

proximations made in the various models. The Padé-based conduc-

tivity model and the differential effective medium-based model can
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replicate the non-linear behavior of the conductivity curve observed

in both the numerical models and in the experimental data. 
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ppendix A. Surface and bulk tortuosities 

We have already introduced two tortuosities, one for the bulk pore

pace at high salinities and one at low salinity for conduction in the

lectrical double layer. We investigate the inequality between these two

ortuosities. We start with the inequality, 

2 
𝐹 Λ

≥ 

1 
𝑓 
, (A1)

 ≤ 

2 𝑓 
Λ
, (A2)

𝛼𝑏 

𝜙
≤ 

2 𝑓 
Λ
, (A3)

here we have used the relationship between the bulk tortuosity and

he formation factor F = 𝛼b / 𝜙. In addition, we have 2/ Λ ≈ mS / V p . This

ields, 

𝛼𝑏 

𝜙
≤ 𝑚 𝑓 

𝑆 

𝑉 𝑝 
. (A4)

Finally the surface tortuosity is defined as 𝛼S = f 𝜙S / V p . This leads to

𝑏 ≤ 𝑚 𝛼𝑆 . (A5)

ppendix B. Asymptotic limits 

Using the expression of the Padé approximant, we have 

lim 

2 
Λ 𝑥≪ 1 

𝑔 ( 𝑥 ) = 𝑏 + ( 𝑐 − 𝑎𝑏 ) 𝑥 + 𝑂 

( 2 
Λ
𝑥 

)2 
, (B1)

lim 

2 
𝜆
𝑥≫1 

𝑔 ( 𝑥 ) = 

𝑐 

𝑎 
+ 

𝑑 

𝑎 
𝑥 + 𝑂 

(
𝜆

2 
1 
𝑥 

)2 
, (B2)

hich can be compared to Eqs. (38) and (39) . Using the identifications,

e obtain 

 = 

1 
𝐹 
, (B3)

 − 𝑎𝑏 = 

2 
𝐹 Λ

, (B4)

𝑐 

𝑎 
= 

𝜆

2 𝑓 
, (B5)

𝑑 

𝑎 
= 

1 
𝑓 
. (B6)

n turn this yields the expressions obtained in the main text. 
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ppendix C. Differential effective medium theory 

The solution of the upscaling procedure using the differential effec-

ive medium theory can be written as (e.g., Sen et al., 1981 ), 

𝜎 − 𝜎
𝑠𝑠 

𝜎
𝑤 
− 𝜎

𝑠𝑠 

( 

𝜎
𝑤 

𝜎

) 𝐷 

= 𝜙, (C1)

here D = 1 – 1/ m is called the depolarization factor (e.g.,

ussian, 1983 ). Eq. (C1) can easily be written as, 

= 𝜎
𝑤 
𝜙

𝑚 

1− 𝑚 

( 1 − 𝜎
𝑤 
∕ 𝜎
𝑠𝑠 

1 − 𝜎∕ 𝜎
𝑠𝑠 

) 

𝑚 

1− 𝑚 
, (C2)

hich is used in the main text to define the low salinity asymptotic limit

f the conductivity equation for granular materials. To find the other

ormula, we need to proceed as follows. First we rewrite Eq. (C1) as, 

 

𝜎

𝜎
𝑤 

) ( 1 − 𝜎
𝑠𝑠 
∕ 𝜎

1 − 𝜎
𝑠𝑠 
∕ 𝜎
𝑤 

) ( 

𝜎
𝑤 

𝜎

) 𝐷 

= 𝜙, (C3)

 1 − 𝜎
𝑠𝑠 
∕ 𝜎

1 − 𝜎
𝑠𝑠 
∕ 𝜎
𝑤 

) ( 

𝜎
𝑤 

𝜎

) 𝐷−1 
= 𝜙, (C4)

ith D - 1 = – 1/ m . In turn this yields, 

= 𝜎
𝑤 
𝜙𝑚 

( 1 − 𝜎
𝑠𝑠 
∕ 𝜎
𝑤 

1 − 𝜎
𝑠𝑠 
∕ 𝜎

) 𝑚 

. (C5)

Eqs. (C2) and ( C4 ) are therefore equivalent. 
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