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Abstract 

 

There is evidence that attentional control mechanisms in humans can be boosted in 

performance contexts involving the presence of other human agents, compared with isolation. 

This phenomenon was investigated here with the presence of artificial agents, that is, 

humanoid robots in the context of the well-known Stroop task requiring attentional control 

for successful performance. We expected and found beneficial effects of robotic presence 

(compared with isolation) on standard Stroop performance and response conflict resolution (a 

specific component of Stroop performance) exclusively when robotic presence triggered 

anthropomorphic inferences based on prior verbal interactions with the robot (a social robot 

condition contrasted with the presence of the same robot without any prior interactions). 

Participants' anthropomorphic inferences about the social robot actually mediated its 

influence on attentional control, indicating the social nature of this influence. These findings 

provide further reasons to pay special attention to human-robot interactions and open new 

avenues of research in social robotics. 

 

 

Key-words: Social facilitation; Anthropomorphized robots; Human robot interaction; 

Cognitive control; Stroop task  
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1 Introduction 

Humanoid robots might become more and more present in the most ordinary contexts 

of millions people worldwide, a plausible projection given the increasing attention of social 

robotics to the cognitive, interactive, and affective skills of robots designed to live with 

humans [1, 2]. While tremendous progress has been made in this area, the influence that the 

mere presence of humanoid robots may have on human cognition itself remains poorly 

understood. There is evidence both in adults [3] and children [4] that the presence of a 

humanoid robot can lead to similar effects as human presence in terms of feelings [5] and 

task performance [3, 4]. However, these pioneering efforts overlooked both the attentional 

processes and anthropomorphic inferences (the attribution of human characteristics to non-

human animals or machines) that may be involved in the influence of robotic presence. Here, 

we take advantage of research on human presence and attention and argue that the presence 

of humanoid robots—even passive—may affect attentional processes as fundamental as 

conflict resolution in the Stroop task, at least when the robot being present is 

anthropomorphized to some extent. 

1.1 Brief review of earlier research on social presence effects 

Evidence accumulated for more than a century in experimental social psychology 

show a tendency for humans and nonhuman animals to perform differently on a myriad of 

motor and cognitive tasks when in the presence of conspecifics—other members of the same 

species—than when alone. Following Triplett’s [6] pioneering efforts on what is referred to 

as social facilitation/impairment (SFI) effects (for reviews see [7, 8, 9]), many researchers 

tried to make sense of seemingly contradictory results: whatever the species examined, the 

presence of conspecifics sometimes facilitates and sometimes impairs task performance. 

Zajonc [10]was the first to notice that the presence of observers or coactors typically 
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facilitates performance on easy or well-learned tasks, and impairs performance on difficult or 

poorly-learned tasks. Based on the Hull-Spence behaviorist theory of learning, conditioning, 

and motivation (well accepted in the 50s and 60s) [11], Zajonc suggested that the mere 

presence of conspecifics increases arousal and, thereby, the frequency of dominant (habitual) 

responses. According to Hull-Spence, the energization of dominant responses indeed 

improves performance in well-learned tasks where, by definition, correct responses are 

dominant, and deteriorates it in poorly-learned tasks where errors are the most likely 

responses. Zajonc’s view of SFI effects found support in many studies using very different 

species, whose dominant responses—whether correct or incorrect—increased under social 

presence, compared with isolation. However, although Zajonc’s classic view remains the 

most common interpretation of SFI effects (see also [12] for a motivational account close to 

Zajonc’s solution), there is evidence that these effects also involve attentional mechanisms, at 

least in humans (e.g., [13-19]) and non-human primates [20, 21].  

Thirty years ago, Baron’s [13] distraction/conflict theory suggested the first 

integrative attentional view of SFI effects. The key idea is that social presence, when it is 

distracting or diverts attention away from the focal task, can create attentional conflict, a form 

of response conflict regarding what attentional response one should make (paying attention to 

the focal task vs. the person present). This conflict, in turn, may threaten the organism with 

cognitive overload and, ultimately, cause a restriction in attention focus. Ironically, attention 

focusing may produce just the task effects associated with the energization of dominant 

responses: facilitation of performance (by screening out nonessential stimuli) when the task is 

simple or requires attention to a small number of central cues, and impairment of 

performance (by neglecting certain crucial stimuli) when the task is more complex or 

demands attention to a wide range of cues.  

One strategy for differentiating the two hypotheses (attention focusing vs. dominant 
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response) is to use poorly-learned tasks that involve only a few key stimuli [13]. In this 

context, the attention focusing hypothesis predicts social facilitation whereas the dominant-

response hypothesis predicts social impairment. To this end, Huguet et al. [16] used the well-

known Stroop task [22, 23] requiring individuals to identify the color in which a word is 

printed, ignoring the word itself. Because of the automaticity of word reading [23, 24], 

identification times are consistently longer for color-incongruent words (the word “BLUE” in 

green ink) than for color-neutral items (“DESK” in green ink), a phenomenon typically 

referred to as standard Stroop interference. This interference indicates how difficult the 

control of attention can be when faced with competing, conflictual automatic activations. To 

the extent that word reading is the dominant tendency in Stroop’s paradigm, Zajonc's [10] 

solution predicts that social presence should increase Stroop interference. In contrast, if social 

presence leads to a restriction in attention focus, it should reduce Stroop interference (by 

focusing more exclusively on the letter color cues). Huguet et al. [16] provided first evidence 

that Stroop interference is reduced in contexts involving the presence of other human agents, 

either as observers or coactors [16, 25], compared with when participants perform the Stroop 

task alone. Reduced Stroop interference under social presence circumstances have since been 

replicated (e.g., [26–28], and its underlying mechanisms clarified, especially regarding which 

component of the interference is impacted.  

Recent studies have shown that Stroop interference is indeed a composite rather than 

unitary phenomenon, reflecting multiple processes and involving different types of conflicts: 

task conflict, semantic conflict, and response conflict (see [24, 29–32]). Task conflict is 

thought to arise because the individual’s attention is drawn by the irrelevant (i.e., word 

reading) activation instead of being fully focused on the relevant (i.e., color identification) 

task, leading the two processes to compete (e.g.,  [30, 31, 32]). Semantic conflict is thought to 

occur because the meaning of the word dimension and that of the color dimension are 
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simultaneously activated. Since they both corresponds to colors, the meaning activated by the 

irrelevant word dimension interferes with the meaning activated by the relevant color 

dimension, creating a delay in processing (e.g., [24, 28-30]). Response conflict is thought to 

arise because the incorrect (pre) motor response activated by the word dimension interferes 

with the correct (pre-)motor response activated by the color dimension [24, 30, 31]. This 

distinction is crucial to determine which of these three conflicts (task conflict, semantic 

conflict, or response conflict) is influenced by social presence.  

Augustinova and Ferrand [26] showed that social presence does not prevent semantic 

processing per se (word reading does occur), but boosts the control of attention at the later 

stage of response competition reflecting a reduction of response conflict specifically (for a 

similar conclusion see also [28]). Thus, there is evidence that Stroop performance is 

facilitated in the presence of others, a phenomenon reflecting a reduction of response conflict 

rather than task conflict or semantic conflict. Finally, although Baron’s [13] 

distraction/conflict theory assimilated attention focusing to an automatic response in case of 

attentional conflict, more recent findings suggest that it may also reflect improved cognitive 

control under the presence of others. Sharma et al. [28], for example, showed that reduced 

Stroop interference in social presence is prevented by using short response-to-stimulus 

intervals that are thought to reduce cognitive control processes. This is also consistent with 

the more general view that successful Stroop performance relies on executive attention, 

especially the deployment of top-down inhibitory control to refrain word reading to the 

benefit of color identification. All these findings do not necessarily invalidate Zajonc’s [10] 

classic theory, but indicate that attentional mechanisms also matter in SFI effects.  
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1.2 The present research 

 

In the present research, we used an extended semantic version of the Stroop task to 

specify which component of Stroop performance is influenced by robotic presence. This 

version allowed the measurement of all type of cognitive conflicts underlying Stroop 

interference (task conflict, semantic conflict, response conflict, as described earlier in this 

paper). This extended version comprised color-incongruent words (e.g., the word BLUE in 

green ink, i.e., BLUEgreen), color associated incongruent words (e.g., SKYgreen), color-neutral 

words (e.g., DOGgreen) and color-neutral letter-strings (e.g., XXXgreen). The inclusion of color-

neutral letter-strings (e.g., XXXgreen) allows the separation of task conflict from the two other 

conflicts: a significant difference in mean response time between color-neutral words and 

color-neutral letter-strings (e.g., DOGgreen ‒ XXXgreen) reflects differences in activation of the 

irrelevant reading task set (Task conflict per se). The inclusion of color associated 

incongruent words (e.g., SKYgreen) allows the separation of semantic conflict from the two 

other conflicts: a significant difference in mean response between color associated 

incongruent words and color-neutral words (e.g., SKYgreen ‒ DOGgreen) solely reflects the 

semantic conflict (with no response conflict). Finally, the standard color-incongruent words 

(e.g., BLUEgreen) allow a separation of response conflict from the two other conflicts: a 

significant difference in mean response between standard color-incongruent words and color 

associated incongruent words (e.g., BLUEgreen ‒ SKYgreen) solely reflects the response conflict 

occurring at the level of response processing (response conflict per se). 

In addition, we used a design which maximized anthropomorphic inferences in only 

one of two robotic conditions: a robot presence condition preceded by a verbal interaction 

with the robot (social robot condition) versus the presence of the same robot without any 

prior interaction (non-social robot condition). This strategy made it possible to determine 
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whether the beneficial effects of social robotic presence, if any, reflect the action of strictly 

mechanical distraction or more sophisticated, social-cognitive processes involving 

anthropomorphic inferences. We expected these beneficial effects to occur on Stroop 

performance exclusively in the social robot condition (maximizing anthropomorphic 

inferences), compared to when individuals perform the Stroop task alone or in presence of a 

non-anthropomorphized robot. When the robot is thought to have human characteristics, we 

reasoned, its presence may produce exactly the same effects as human presence [16, 26, 28]: 

Under this social robotic condition, the robot’s presence should cause a reduction of standard 

Stroop interference and a better resolution of response conflict specifically, compared to 

when the Stroop task is performed in isolation or in presence of a non-anthropomorphized 

robot. 

 

2 Method 

 

2.1 Participants 

Participants were 118 young adults (Mage = 19.24 years, SD = 1.32, 110 females and 8 

males) with normal (or corrected-to-normal) vision (39 in the Alone condition, 40 in the Non-

Social Robot condition, and 39 in the Social Robot condition). Sample size was determined—

as recommended by Tabachnick and Fidell [33]—on the basis of the desired power (.80), 

alpha level (.05), number of groups (three in the main analysis), and anticipated effect size 

based on human presence effects (using between-subjects design) in Stroop’s paradigm (η²p 
 

=.10; [16]). Using G*Power 3.1 [34], the minimum required sample size was calculated as 

90. 
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2.2 Procedure 

Participants performed the standard Stroop task twice (Session 1, Session 2). Each 

participant therefore was his/her own control for Stroop performance, which allowed to 

control for inter-individual differences on the Stroop task [35]. First (Session 1), participants 

performed the task alone (the experimenter left the room) then (Session 2) either alone or in 

presence of a robot (the experimenter left the room in all conditions). The robot was a 1-

meter Meccanoid
G15KS

 humanoid, as we assumed that even robots with a basic humanoid 

appearance can be anthropomorphized [36], at least under certain circumstances (see below). 

A 3-minutes break was inserted between the two Stroop sessions during which participants 

were randomly assigned to one of three conditions (Figure 1).  In the « non-social robot » 

condition (n = 40), participants were asked to give their opinion on the appearance of a 

physically present but passive robot as a means to provide data for unrelated projects with 

roboticists. In the « social robot » condition (n = 39), participants were asked to interact 

verbally with the same robot that was (unbeknownst to them) animated at distance by a 

human operator using two smartphones for the control of the robot’s gestures and speech (by 

selecting pre-established conversational scripts) in a coherent way (“Wizard of Oz 

paradigm”, [37]). This condition encouraged anthropomorphic inferences (see pre-test on 

anthropomorphic inferences below). The interaction always followed the same pre-

established script (Table 1), the operator having only to choose when to launch a given 

sequence. In the « alone » condition (n = 39), participants described a picture of a landscape, 

a task that occupied them the same amount of time as participants in the other two conditions.  
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Fig. 1 The design of the experiment was a 2 (Stroop task session 1, Stroop task session 2), x 4 

(Type of stimuli) x  3 (Performance context: Alone, presence of a non-social robot vs. social 

robot) 

 

Table 1 Verbal script used in the experiment 

Speaker Speech and behavior (into brackets) 

Experimenter Marvin, wake up! 

Robot Hello operator 

Experimenter Hello 

Robot 

Ah, I see there's a new person with you. Hello, my name is Marvin, 

and you, what's your name? 

 

(Robot turns towards the experimenter, then towards the subject) 

Participant … 

Robot  Nice to meet you, how are you doing today? 

 

(Robot lifts arms slightly while moving  head) 

Participant … 

Robot 

I am rather in a good mood today and I think I still have many people 

to meet 

 

(Robot nodding right side on the *I'm in a good mood * then gesture 

of the right hand and head centered on *I still have many people to 

meet*) 

Participants performed the 
Stroop task systematically alone 

(Session 1) 

Alone condition: 
Participants described a 

picture (landscape) 

Non-Social Robot 
condition: Participants 

described the robot 

Social Robot Condition: 
Participants interacted 
verbally with the robot 

Participants again 
performed the Stroop 
task alone (Session 2) 

Participants performed again the 
Stroop task in the passive presence of 

the robot (Session 2) 

Before Session 2, 
participants were randomly 

assigned to one of three 
conditions 
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Robot I'm curious, what are you doing in life? 

 

(Robot lifts arms slightly while moving your head) 

Participant … 

Robot I am a kind of assistant 

 

(Robot shakes the arms) 

 

And what are you listening to as music? 

 

(Robot raises the right forearm) 

Participant … 

Robot I do not have much data on it. Can you tell me more? 

 

(Robot lifts arms slightly while moving head) 

Participant … 

Robot Okay 

 

(Robot lifts arms slightly while moving head) 

 

I love discovering new things 

 

For example, people sent me music by email 

 

(Robot raises the left arm) 

 

Ah, I think the time we had for discussion is over. Could you call the 

operator? 

 

(Robot raises the right arm) 

Experimenter The experimenter returns to the experimental room 

Robot It was nice to talk with you 

 

(Robot raises arms slightly and pull them down) 

Experimenter Marvin, switch to silent mode please 

Robot Okay, understood 

  (Robot turns his head towards the experimenter) 

  Speaker Supplementary speech 

Robot sorry I did not understand 

Robot my email is marvin.psycho@gmail.com 

 

After the 3-min break, all participants again performed the Stroop task either alone (as 

before) or in presence of the non-social robot versus social robot. In the two robotic presence 

conditions, the robot was positioned in front of participants (to their right on the edge of their 

peripheral vision; see Figure 2) and watched them 60% of the time by turning the head 

according to a pre-established script (for a similar procedure with human presence, see [16]). 

The robot was piloted by two smartphones connected in Bluetooth. Movements were 

controlled by a Motorola Moto G 4G. Sounds were controlled by a LG optimus 2x connected 

to a JBL speaker. Both smartphones were powered by Android. Voices have been designed 
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with Voxal by NCH Software using the Pixie voice module. A hidden control camera was 

used to ensure a good control over movements and responses for the Wizard of Oz paradigm. 

 

 

Fig. 2 Experimental setting. 

2.2.1 Stroop task 

 EPrime 2.1 (Psychology Software Tools, Pittsburgh) running on a PC (Dell Precision) 

was used for Stroop stimulus presentation and data collection. The participants were seated 

approximately 50 cm from a 17-inch Dell color monitor. Their task was to identify the color 

of the letter-strings presented on the screen as quickly and accurately as possible while 

ignoring their meanings. To this end, the participants were instructed to fixate the white cross 

(“+”), which appeared in the center of the (black) screen for 500 ms. The cross was then 

replaced by a letter-string that continued to be displayed until the participant responded (or 

until 3500 ms had elapsed). After this response, a new stimulus appeared on the screen, again 

Operator’s room 

Voice control 

Experimenter’s room 

Robot 

Control Camera 

Participant 

30° 

60 cm 

. 

3.65 m 

3
 m

 

 

Movement  

control 
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replacing the fixation point and beginning the next trial. The response-stimulus interval was 1 

s [28]. The participants responded using a keyboard placed on a table between the participant 

and the monitor. The keys were labeled with colored stickers, with key “1” representing red, 

key “2” representing green, key “3” representing “blue” and key “4” representing “yellow”. 

Before the beginning of the experimental block in the first Stroop session, the participants 

practiced learning which key on the keyboard represented each color (key-matching practice 

trials). In these 128 practice trials, strings of asterisks presented in the four colors (e.g., ***, 

***) were used (instead of the experimental stimuli, see above). 

In order to assess the respective contribution of the different conflicts (task conflict, 

semantic conflict, and response conflict) involved in overall Stroop interference, four types of 

stimuli were used: standard color-incongruent words (e.g., BLUE in green), associated color-

incongruent words (e.g., SKY in green), color-neutral words (e.g, DOG in green), and color-

neutral letter strings (e.g., XXX in green; see [30] for presentation parameters). The different 

conflicts were computed as follows [30]: task conflict (RTs for color-neutral words minus  

RTs for color-neutral letter strings), semantic conflict (RTs for associated color-incongruent 

words minus RTs for color-neutral words), response conflict (RTs for standard color-

incongruent words minus RTs for associated color-incongruent words), standard Stroop 

interference (RTs for standard color-incongruent words minus RTs for color-neutral words).  

2.2.2 Attitudes toward robots 

At the end of the experiment, participants in the two robot presence conditions 

completed Nomura, Kanda and Suzuki’s [38] scale measuring negative attitudes toward 

robots, hereafter referred to as NARS scale. The NARS scale was made of three constructs: 

social/future implications (e.g., “I feel that if I depend on robots too much, something bad 

might happen”); emotional attitudes (e.g., “I would feel uneasy if robots really had emotions); 
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and actual interactions (e.g., I would feel very nervous just standing in front of a robot). For 

each dimension, participants rated whether they agreed or disagreed (from 1 to 5).   

2.2.3 Anthropomorphic inferences 

Participants also filled out the humanness scale based on Haslam’s ([18]; see 

Appendix 1) dehumanization taxonomy made of four dimensions: human uniqueness (e.g., 

moral sensibility), animalistic dehumanization (e.g., irrationality), human nature (e.g., 

interpersonal warmth), and mechanistic dehumanization (e.g., inertness). Again, for each 

dimension, participants rated whether they agreed or disagreed (from 1 to 5) to attribute 

related characteristics to the robot being present. We conducted a pretest with 35 participants 

to evaluate the degree of anthropomorphism associated with the robot after either the verbal 

human-robot interaction designed for the experiment (social robot condition) or a simple 

observation of that same robot (non-social robot condition). The results showed a difference 

on mechanical dehumanization, F(1,34) = 7.78, p = .008, η²p = .193, and human nature, 

F(1,34) = 11.59, p = .002, η²p = .261: Participants attributed less mechanical traits and more 

human nature traits (e.g., interpersonal warmth) to the robot in the social robot condition than 

in the non-social robot condition. No effects were found on animal dehumanization and 

human uniqueness attributions (ps>.1).    

 

3 Results  

  3.1 Stroop data                               

Data processing. The data from two participants were discarded because they 

responded randomly (around 50% of accurate responses) in at least one Stroop session. The 

results obtained from the remaining participants are summarized in Table 2 (presented in 

Appendix 2). Errors occurred on 1.6% of the trials and were analysed independently (see 

Appendix 3 for the full analysis of error rates). Correct trials with a reaction time (RT) lower 
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or higher than 3 standard deviations per condition for each participant were considered 

outliers and then removed from RT analyses, which corresponded to 403 trials (1.27% of the 

trials). This filtering procedure has the advantage of taking out extreme values without 

affecting the data of one condition or of one participant in particular.  

 

 

Analysis. We conducted a repeated measure Analysis of Variance (ANOVA) 

including Sessions (1 and 2), Type of conflict (standard Stroop interference, task conflict, 

semantic conflict, response conflict) as within factors (see also [26, 39]), and Performance 

context (Alone, Non-social robot, and Social robot) as between factor. This analysis revealed 

a significant Session x Type of conflict x Performance context interaction, F(2,115) = 6.14, p 

= .003, η²p = .10 (see Figure 3A and 3D). For the sake of simplicity, Figure 3 (panels A to D) 

shows this interaction in terms of performance improvement from Session 1 to Session 2 on 

standard Stroop interference and each Type of conflict in each Performance context. This 

pattern was examined for standard Stroop interference (A) and each type of conflict (B, C, D) 

taken separately using two orthogonal contrasts according to our expectations: Alone versus 

Non-social robot condition; Social-robot condition versus Alone and Non-social robot 

conditions averaged. Consistent with our expectations, the first contrast was not significant, 

that is, the presence of the non-social robot did not make any difference compared with 

isolation : (A) t(115) = .86, p = .389, η²p = .01; (B) t(115) = .88, p = .379, η²p = .02), (C) 

t(115) = -.05, p = .964, η²p < .01; (D) t(115) = -.38, p = .705, η²p < .01. The second contrast 

proved significant exactly as expected: standard Stroop performance and resolution of 

response conflict improved from Session 1 to Session 2 in the presence of the social robot 

more than in the two other conditions averaged (A) F(2,115) = 7.00, p = .001, η²p = .12; (B) 

F(2,115) = 3.37, p = .038, η²p = .06. This effect was not found on semantic conflict, (C) 

F(2,115) = 1.01, p = .368, η²p < .01, and task conflict, (D) F(2,115) = 1.07, p = .347, η²p = .01. 
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As also indicated on Table 2 (bottom; see Appendix 2), performance improvement was 

significant only in the presence of the social robot (ps <. 001 for standard Stroop interference 

and response conflict), with large effect sizes. Thus, although both standard Stroop 

interference and response conflict were significant in the three performance contexts in both 

sessions (all ps≤.001, see Table 2 in Appendix 2), only the presence of the social-robot 

reduced them significantly in Session 2 relative to Session 1. The presence of the non-social 

robot left standard Stroop interference and all types of conflicts unchanged, compared to 

when participants worked alone.  
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Fig. 3 Standard Stroop interference at baseline minus standard Stroop interference in 

experimental session (Alone, Non-Social Robot, Social Robot): the higher the positive value, 

the higher performance improvement in the Stroop Task from baseline (Session 1) to 

experimental session (Session 2). Error bars represent ±1 standard error. *p<.05 

 

3.2 Attitudes toward robots 

 The data related to NARS and humanness scales were examined using MANOVAs 

(one for each scale) with their different constructs entered simultaneously as DVs, and the 
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two robot presence conditions (social vs. non-social robots) as independent variable. The two 

Robot presence conditions did not differ on the three constructs of the NARS scale, 

indicating that there were no more negative attitudes in one condition than in the other: actual 

interactions, F(1, 77) = .67, p = .416, 95% CI  [-.32 ; .42], η²p = .001; emotional attitudes, 

F(1, 77) = -.44, p = .51, 95% CI  [-.30 ; .60], η²p = .006; or social/future implications F(1, 77) 

= 1.401, p = .24, 95% CI [-.16 ; .62], η²p = .018. Interestingly, the reduction of standard 

Stroop interference in the social robot condition, compared to the non-social robot condition, 

remained significant when controlling for participants’ NARS data, F(1, 74) = 5.599, p = 

.021, 95%CI  [5.33 ; 62.14], η²p = .07. 

3.3 Anthropomorphic inferences  

On the humanness scale, the two robot conditions differed significantly from each 

other, multivariate F(4, 74) = 3.18, p = .018, η²p=.15. As expected, participants in the social 

robot condition attributed more human nature characteristics (e.g. interpersonal warmth) 

(univariate F(1, 77) = 5.04, p = .028, 95% CI  [-3.20 ; -.19], η²p = .06) and less mechanical 

features (e.g. e.g., inertness) to the social robot than participants in the non-social robot 

condition (univariate F(1, 77) = 6.84; p = .011; 95% CI  [.71 ; 5.21], η²p = .082). Both groups 

did not differ regarding the two other constructs: human uniqueness, univariate F(1, 77) = 

2.71; p = .104; 95% CI  [-3.70 ; .35], η²p = .034; animalistic dehumanization, univariate F(1, 

77) = .48; p = .489; 95% CI  [-2.77 ; 1.34], η²p = .006. 

3.4 Mediation analyses  

We tested whether the effects found on anthropomorphic inferences mediated the 

impact of robotic presence on standard Stroop performance using the PROCESS plugin in 

SPSS. Not surprisingly, this analysis (see Figure 4A for the whole mediational pattern) 

showed that participants attributed less mechanical traits, (a1) t(77) = -2.96, p = .011, 95% CI 

[-5.21, -.71], and more human nature traits, (a2) t(77) = 2.25, p = .028, 95% CI [.19, 3.20] to 



18 

the social robot than to the non-social robot. Mechanistic dehumanization was not predictive 

of standard Stroop performance improvement, (b1) t(77) = .813, p = .419, 95% CI [-1.56, 

3.20]. More importantly, the direct effect of robotic presence (social robot vs. non-social 

robot) on standard Stroop performance improvement was no longer significant when 

controlling for mechanistic dehumanization and human nature attributions, indicating a 

complete mediation by anthropomorphic inferences. This effect of robotic presence was fully 

mediated by the attribution of human nature traits to the social robot, (c’) t(77) = -1.48, p = 

.144, 95% CI [-46.18, 6.85], (b2) t(77) = -3.50, p < .001, 95% CI [-10.87, -2.98]; a mediation 

representing more than half, κ
2 

= 11.74, 95% CI [-27.01, -1.03] of the total effect size 

explained by the model, κ
2 

= 14.91, 95% CI [-33.54, -.78]. 

The same mediation analysis conducted on response conflict specifically, (c),  (with 

a1, a2 equal to the previous mediation) revealed quite similar findings (see Figure 4B). 

Controlling for the effect of mechanistic dehumanization and human nature attributions, the 

direct effect of robotic presence on response conflict improvement was no longer significant. 

This effect was mediated by the attribution of human nature traits to the social robot, (c’) 

t(77) = -.308, p = .759, 95% CI [-30.30, 22.17], (b2) t(77) = -4.45, p = .05, 95% CI [-8.35, -

.54]. The mediating role of mechanistic dehumanization also proved significant (b1) t(77) = 

2.68, p = .001, 95% CI [.89, 6.11]. These two human nature and mechanistic  
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mediations represented, κ
2 

= 7.53, 95% CI [-20.59, .71] and κ
2 

= 10.35, 95% CI [-26.68, -

1.41] of the total effect size explained by the model, κ
2 

= 17.88, 95% CI [-35.02, -5.48].  

 

 

 

Fig. 4 Mediation of the robotic presence effect on standard Stroop performance improvement 

(A) and response conflict improvement (B) by anthropomorphic inferences. 

 

4 Discussion 

There is evidence that attentional mechanisms such as attention focusing can be 

boosted in performance contexts involving the presence of other human agents, either as 

observers or coactors [13]. Performance on the Stroop task, requiring the deployment of 
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inhibitory control to focus on letter-color cues at the expense of word meaning, is indeed 

typically better under these social circumstances, relative to isolation (e.g., [16, 26, 28]). 

Here, we used an extended version of the Stroop task to specify which component of standard 

Stroop performance is influenced in the presence of humanoid robots, assuming that this 

presence may influence response conflict specifically, as does human presence. Perhaps more 

importantly, we also used a design maximizing anthropomorphic inferences in only one of 

two robotic conditions—a robot presence condition preceded by a verbal interaction with the 

robot (social robot condition) versus the presence of the same robot without any prior verbal 

interaction (non-social robot condition). This strategy made it possible to determine whether 

the beneficial effects of social robotic presence in the Stroop task, if any, reflect the action of 

strictly mechanical distraction or more sophisticated, social-cognitive processes involving 

anthropomorphic inferences. The present findings increase our understanding of robotic 

presence effects in a number of important ways.  

They indeed show that anthropomorphic inferences are needed for the facilitation of 

Stroop performance to occur in presence of a humanoid robot. Again, the passive presence of 

the non-social robot during the Stroop task did not influence performance (neither standard 

Stroop interference nor the different types of conflicts), compared with when participants 

worked in isolation. This passive presence caused a reduction of Stroop interference and 

response conflict exclusively (as expected) when it was preceded by a verbal interaction with 

the robot being present, which also caused anthropomorphic inferences to occur. Taken 

together, these findings run counter a purely mechanistic, non-social approach reducing the 

effects caused by the presence of humanoid robots on attention to the action of physical or 

noise distraction.  

Of particular interest here, whether social presence effects involving the presence of 

human agents can or cannot be reduced to mechanical distraction has long been debated (for 
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a review, see [13]). As noted earlier in this paper, there is evidence that, when the focal task 

is attention demanding, noise or other mechanical (non-social) sources of distraction can 

induce a conflict between paying attention to the focal task versus the distractor. This conflict 

may threaten the organism with cognitive overload and, ultimately, cause a restriction in the 

range of cue utilization (e.g., [13]), a restriction which can be sufficient for a performance 

facilitation to occur in the Stroop task (by focusing more exclusively on the color letter cues 

than on incongruent words). According to this approach, however, both the presence of a 

social robot as well as non-social robot—whose appearance and presence during task 

performance were strictly identical in both conditions—should have led to better Stroop 

performance, compared with isolation. Instead, Stroop performance improved exclusively in 

the social robot condition, in which anthropomorphic inferences about the robot being present 

were also more likely compared with the non-social robot condition (which did not differ 

from isolation on Stroop performance). Of course, we cannot exclude the possibility that 

anthropomorphic inferences about the social robot made its passive presence during Stroop 

performance more distracting, compared with the presence of its non-social counterpart. 

However, even this possibility implies not to reduce the beneficial effects of the social robot 

to the action of a mechanical (nonsocial) source of distraction. This more basic form of non-

social distraction does not seem to operate at all in our research, otherwise the presence of the 

non-social robot would have also lead to better Stroop performance, compared with isolation, 

eventually to a lesser extent relative to the social robot condition. This is not what happened.  

Further evidence that the effects caused by the presence of the social robot on Stroop 

performance are truly social can be found in the mediation analyses. These analyses 

examined whether participants’ anthropomorphic inferences about the robot mediated (vs. 

simply covaried with) the effects of robotic presence on standard Stroop performance and 

response conflict. In both cases, the direct effect of social robotic presence was not significant 
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when controlling for anthropomorphic inferences, indicating their mediating role. This 

mediating role of anthropomorphic inferences can reasonably be taken as evidence that the 

effects of social robotic presence on attention were indeed social by nature and therefore 

cannot be trivialized or reduced to the action of any other nonsocial sources of distraction.  

 This conclusion is also strengthened by the fact that the presence of the social robot 

had the same impact on Stroop performance as in earlier research with human presence. 

Social robotic presence indeed reduced—rather than increased—standard Stroop interference 

and also improved the resolution of response conflict, specifically (no effects on semantic and 

task conflicts). This performance pattern extends the relevance of the attentional view of 

social facilitation from humans to social robots. According to this view (described earlier in 

this paper), social facilitation phenomena—at least in humans and nonhuman primates— 

should not be restricted to the energization of dominant responses [10]. Instead, considering 

that social presence can also boost attention focusing, even when this process requires the 

deployment of inhibitory control (as in Stroop’s paradigm), this attentional view leads to a 

more complex picture. This picture is even more complex when considering that the 

deployment of top-down inhibitory control can also be impaired rather than facilitated in 

contexts where the presence of others represents a potential threat to be monitored [15, 20], 

with negative consequences on learning and other complex tasks relying heavily on executive 

control resources.  

Spatola et al. [40] provided preliminary evidence that Stroop performance can also be 

facilitated-rather than impaired—in the presence of a « bad robot » responding with 

contempt, and lack of empathy, and producing negative evaluations about human 

intelligence. However, whether this bad robot was really threatening, or on the contrary 

challenging, remains unclear (this robot was associated with feelings of discomfort but this 

does not necessarily mean that participants felt threatened by its presence). Spatola et al.’s 
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[40] research also left open two important questions. Because of limitations in the type of 

Stroop stimuli that were used, the locus or type of Stroop conflict (task conflict, semantic 

conflict, response conflict) impacted by robotic presence remained unspecified. Second, 

because of its design, Spatola et al.’s [40] research could not specify the exact role of 

anthropomorphic inferences in the influence of social robotic presence on Stroop 

performance. By demonstrating that this presence can influence Stroop performance as does 

human presence—facilitating standard Stroop performance and resolution of response 

conflict specifically— and that this influence is mediated by anthropomorphic inferences, the 

present findings represent interesting advances.  

Finally, the present research has its own limitations. It indicates that social robotic 

presence can boost attention focusing even when this process requires the deployment of 

inhibitory control, but this conclusion is limited to the Stroop task. Future research should 

clarify whether this finding can be replicated with a variety of tasks in which successful 

performance requires the deployment of executive resources. Likewise, special attention 

should be paid to the boundary conditions of the beneficial effects found in the present 

research. Given earlier findings on executive control in humans and nonhuman primates 

faced with the presence of potentially threatening others [15, 20], these beneficial effects 

seem unlikely in contexts where social robots are themselves perceived—rightly or 

wrongly—as threatening. Of course, robots designed to live with us are not designed to be 

threatening, but their impact on attentional mechanisms and behavior in general may strongly 

depends on what people come to believe (anthropomorphic inferences) about them. This is a 

critical issue for future research in social robotics. As in human-human interactions, a broad 

range of elements, internal or external to interpersonal relationships, can impact how people 

perceive and judge robots. A lot of works remain to be done in this area. For now, in line with 

the Computers Are Social Actors theory [41], our research supports the proposal that people 
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may understand and relate to machines as to fellow creatures. Humans indeed tend to apply 

the same social scripts (specifying actions to produce in various social situations [42]) in 

human-robots interactions as in human-human interactions [43]. This tendency may be 

strengthened by the physical presence of the artificial agent and its humanoid shape as this 

shape provides more social cues to the observer [44, 45]. The more a robot is human-like, the 

less interaction should be needed to energize anthropomorphism and thus social presence 

effects [43, 44]. The relative adequacy between the advanced technological shape and the 

level of perceived capacities of a robot could also play an important role [46]. If the 

expectations induced by the appearance of the robot in terms of capacities are not fulfilled, it 

may result in disappointment, and less anthropomorphic attributions [47]. In this context, the 

fact that the presence of social robots can impact processes as fundamental as attentional 

control adds further reasons to pay special attention to the psychological, sociological, and 

philosophical impact of human-robotic interactions.  
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Appendix 1 

For each following proposition, please note your level of agreement on the scale by 

surrounding the corresponding number (1 to 7). 1 = Strongly disagree, 7 = Strongly agree. 

There are neither good nor bad answers, only your personal opinion interests us. This 

questionnaire and its answers will remain totally anonymous. 

 

These traits are associated to the robot: 

 

Civilized 1 2 3 4 5 6 7 

        

Refined 1 2 3 4 5 6 7 

        

Moral 1 2 3 4 5 6 7 

        

Rational 1 2 3 4 5 6 7 

        

Mature 1 2 3 4 5 6 7 

        

Lack of culture 1 2 3 4 5 6 7 

        

Coarse 1 2 3 4 5 6 7 

        

Amoral 1 2 3 4 5 6 7 

        

Irrational 1 2 3 4 5 6 7 

        

Childlike 1 2 3 4 5 6 7 

        

Emotional  1 2 3 4 5 6 7 

        

Warm 1 2 3 4 5 6 7 

        

Cognitively open 1 2 3 4 5 6 7 

        

Autonomous 1 2 3 4 5 6 7 

        

Deep 1 2 3 4 5 6 7 

        

Insensible 1 2 3 4 5 6 7 

        

Cold 1 2 3 4 5 6 7 

        

Psychorigid 1 2 3 4 5 6 7 
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Passive 1 2 3 4 5 6 7 

        

Superficial 1 2 3 4 5 6 7 
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Appendix 2 

Table 2 
Mean correct response times (in milliseconds), standard deviations (in parentheses) and error 

rates as a function of the Type of stimuli, Stroop session, and Performance context 

 

    
Performance context 

  
  Alone Non-social Robot Social Robot  

    Session 1 Session 2 Session 1 Session 2 Session 1 Session 2 

Standard color-incongruent 

774 748 783 782 808 768 

(125) (104) (133) (107) (117) (101) 

1.6 0.8 2.03 1.25 1.49 1.28 

Associated color-incongruent 

734 713 742 756 744 743 

(84) (83) (115) (112) (87) (88) 

1.23 1.5 1.88 1.46 1.28 1.5 

Color-neutral words 

731 709 742 755 736 745 

(87) (81) (102) (114) (89) (89) 

1.17 1.30 2.24 1.98 1.23 1.63 

Color-neutral letter strings 

726 709 734 748 740 740 

(81) (84) (96) (107) (84) (86) 

1.98 1.22 2.13 1.93 1.44 1.44 

Standard Stroop 
interference 

F statistic F(1, 38)=15.78 F(1, 38)=22.62 F(1, 39)=24.62 F(1, 39)=15.83 F(1, 38)=62.05 F(1, 38)=13.66 

P value p<.001 p<.001 p<.001 p<.001 p<.001 p<.001 

Effect size η²p=.29 η²p=.37 η²p=.39 η²p=.29 η²p=.62 η²p=.26  

Standard Stroop 
interference evolution 

between sessions 

F statistic F(1, 38)=.33 F(1, 39)=2.09 F(1, 38)=32.17 

P value p=.569 p=.156 p<.001 

Effect size η²p<.01 η²p=.06 η²p=.46 

Response conflict 

F statistic F(1, 38)=13.61 F(1, 38)=15.36 F(1, 39)=22.34 F(1, 39)=15.67 F(1, 38)=52.96 F(1, 38)=19.50 

P value p=.001 p<.001 p<.001 p<.001 p<.001 p<.001 

Effect size η²p=.26 η²p=.29 η²p=.36 η²p=.29 η²p=.58 η²p=.34 

Response conflict 
evolution between 

sessions 

F statistic F(1, 38)=.37 F(1, 39)=2.67 F(1, 38)=17.94 

P value p=.545 p=,110 p<.001 

Effect size η²p=.01 η²p=.06 η²p=.32 

Semantic conflict 

F statistic F(1, 38)=.39 F(1, 38)=1.04 F(1, 39)=.004 F(1, 39)=.031 F(1, 38)=4.03 F(1, 38)=.35 

P value p=.536 p=.315 p=.950 p=.862 p=.052 p=.557 

Effect size η²p=.01 η²p=.03 η²p<.01 η²p<.01 η²p=.10 η²p=.01 

Semantic conflict 
evolution between 

sessions 

F statistic F(1, 38)=.03 F(1, 39)=.03 F(1, 38)=3.31 

P value p=.861 p=.868 p=.077 

Effect size η²p<.01 η²p<.01 η²p=.08 

Task conflict 

F statistic F(1, 38)=.66 F(1, 38)=.01 F(1, 39)=2.93 F(1, 39)=.78 F(1, 38)=.83 F(1, 38)=.67 

P value p=.422 p=.926 p=.095 p=.383 p=.369 p=.418 

Effect size η²p=.02 η²p<.01 η²p=.07 η²p=.02 η²p=.02 η²p=.02 

Task conflict evolution F statistic F(1, 38)=.52 F(1, 39)=.02 F(1, 38)=2.00 
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between sessions P value p=.476 p=.892 p=.166 

Effect size η²p=.01 η²p<.01 η²p=.05 
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Appendix 3 

Error rates 

We conducted the same repeated measure analysis as before (RTs) on error rates (see 

Table 2 in Appendix 2 for error rates). No interaction effects were found either on Session x 

Type of conflict x Performance context interaction, F(2,115) = .20, p = .816, η²p < .01, the 

Session x Type of conflict, F(2,115) = .20, p = .659, η²p < .01, the Session x Performance 

context, F(2,115) = 1.78, p = .173, η²p = .03 and the Type of conflict x Performance context 

interactions, F(2,115) = .41, p = .667, η²p < .01. Only main effects were significant. 

Participants produced less errors in Session 2 than in Session 1, F(1,115) = 16.60, p < .001, 

η²p = .04. We also found a main effect of the Type of conflict F(3,115) = 51.78, p < .001, η²p 

= .31: While there was no difference between standard Stroop and response conflict, F(1,117) 

= 1.22, p =.272, η²p = .01, and no difference between semantic and task conflicts, F(1,117) = 

.10, p =.751, η²p < .01, the level of interference associated with standard Stroop and response 

conflict averaged was higher than the interference associated with semantic and task conflicts 

averaged, F(1,117) = 83.84, p < .001, η²p = .42. 

 


