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A B S T R A C T

Characterization of dense non-aqueous phase liquid (DNAPL) distribution is important to facilitate the decision
of remediation strategies. However, it is still a great challenge to characterize DNAPL source zone architecture
with high resolution due to subsurface heterogeneity and relatively sparse data from traditional hydrogeological
investigations. To overcome difficulties from such sparse data, electrical resistivity tomography (ERT) is in-
troduced to locate DNAPL using time-lapse cross-borehole measurements. Due to the significant impact of
geological heterogeneity on DNAPL source zone architecture, a data assimilation framework based on the
coupled multiphase fluids-ERT model is developed to jointly invert DNAPL saturation and the permeability field
using time-lapse ERT data. To validate the efficiency and performance of this framework, synthetic and la-
boratory experiments are both performed to monitor DNAPL migration and distribution in 3D heterogeneous
sandbox with cross-borehole ERT. Result shows that time-lapse ERT and direct inversion can map the evolution
of the DNAPL plume but loses details regarding the plume morphology due to the over-smoothing caused by
geophysical inversion using an isotropic and homogeneous roughness-based regularization procedure. By con-
trast, the coupled inversion is successful to characterize both the permeability field and the evolution of the
DNAPL plume with a higher resolution. This is because the coupled inversion is able to directly translate raw
geophysical data into hydrologic meaningful information and therefore avoid artifacts caused by direct geo-
physical inversion.

1. Introduction

Dense non-aqueous phase liquid (DNAPL) are prevalent at a large
number of industrialized sites and brownfields throughout the world
(National Research Council, 2005, 2013; Newell et al., 2014). The
variable release history and heterogeneity in the rock texture (affecting
both permeability, capillary pressure, and wettability) make the spatial
distribution of DNAPL in the source zone difficult to predict. After being
released in the environment, DNAPL migrates through the water table
under the influence of gravity and seep into the bottom unconfined
aquifers (Soga, 2004; Orlando and Renzi, 2015). During the migration,
a fraction of the DNAPL remains trapped within the pores as dis-
continuous ganglia, while others may be retained above horizons
characterized by locally low-permeabilities (e.g., clay lenses) resulting
in DNAPL pools (Lenhard et al., 1989; Timothy and Linda, 2000). In
addition, the wettability of DNAPL might change (from non-wetting to

wetting) due to the surfactants produced by the activity of micro-
organism (Ron and Rosenberg, 2001), which may make DNAPL spread
into smaller pores and in the form of thin films (Dwarakanath et al.,
2002). These cause difficulties in cleanup and can contribute to long-
term groundwater contamination for decades to centuries. Although
lots of research about DNAPL source zone were well reported, it pre-
sents a daunting environmental challenge to date.

Characterization of DNAPL source zone in sufficient detail is critical
for long-term monitoring and management decisions for efficient re-
mediation schemes (Koch and Nowak, 2015, 2016; Zheng et al., 2015).
However, DNAPL migration is an unstable process, which is highly
sensitive to subsurface heterogeneity, even tiny changes in porous
medium might result in significantly different migration patterns and
source zone architecture (Ferrari et al., 2015). Spatial structure of hy-
drogeological variables controlling DNAPL distribution, migration, and
accumulation is often on centimeter scale. Remediation involving
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injection/extraction of the DNAPL containment are controlled by the
same variables at the same scales. Thus, it is important to jointly
characterize the DNAPL source zone architecture and the spatial
structure of hydrogeological parameters (such as permeability and ca-
pillary pressure) with high resolution (Morrissey and Grismer, 1999;
Kueper et al., 2014).

Compared with traditional investigation methods (e.g., intrusive
drilling and sampling method), non-invasive geophysical methods
(especially electrical resistivity tomography, ERT) have already been
applied to the monitoring of DNAPL-contaminated sites. This is due to
the low-cost and high sampling density of these non-intrusive method
in characterizing the morphology of contaminant plumes (Chambers
et al., 2010; Naudet et al., 2014; Steelman et al., 2017). Despite these
advances, challenges still exist for practical ERT applications. The first
challenge is related to the limited resolution of ERT by comparison with
the complexity of DNAPL plume structures. The geological hetero-
geneities (e.g., local variations in the clay content) might produce re-
sistivity anomalies, which disturb those caused by the presence of the
DNAPL. With the development of time-lapse measurements, ERT shows
its potential in detecting the migration of the DNAPL at heterogeneous
structures (Chambers et al., 2004; Power et al., 2014; Orlando and
Renzi, 2015; Deng et al., 2017). 4D inversion can be used to offset the
heterogeneity of the background since only the resistivity changes are
imaged (Karaoulis et al., 2011b). The second challenge is that, the
commonly performed ERT survey from the top surface/ground suffers
from a limited detection depth and low vertical resolution (Chambers
et al., 2010). Thus, cross-borehole ERT can be used to solve this pro-
blem at DNAPL-contaminated sites in order to achieve higher vertical
resolutions (Goes and Meekes, 2004; Chambers et al., 2010; Johnson
et al., 2010).

With the time-lapse cross-borehole ERT data sets, two strategies can
be used for instance to invert ERT data into relevant hydrology in-
formation. These strategies correspond to least square difference in-
version approach and coupled hydrogeophysical inversion in which
further a priori hydrogeological information is used in the inverse
problem. In the first set of approaches, ERT apparent resistivity data are
first converted to resistivity distribution through a least-square de-
terministic geophysical inversion method where a cost function is
minimized (LaBrecque and Yang, 2001). This cost function is composed
of a data misfit term and a regularization term where a priori in-
formation regarding the resistivity distribution is used (e.g., geostatis-
tical structures, isotropic or anisotropic smoothness, image guided in-
version, e.g., Zhou et al., 2014). Then, the obtained resistivity is
mapped to hydrological properties (i.e., DNAPL saturation) using ap-
propriate petrophysical relationships (e.g., Archie, 1942; Waxman and
Smits, 1968; Revil et al., 2012). This approach is widely used, due to its
simplicity (Power et al., 2014). However, in its cruder expression
(regularization by isotropic smoothing) it has a limited application to
invert time-lapse changes in DNAPL saturations because the smoothing
may result in loss of resolution and it is not necessarily realistic in this

case in producing physically meaningful resistivity distributions
(Karaoulis et al., 2011a).

In the present study, to overcome the issues discussed above with
traditional least-square inversion technique, we developed a data as-
similation framework based on the coupled multiphase fluids-ERT
model. This approach enables to estimate both the subsurface hetero-
geneity and DNAPL distribution through sequentially incorporating the
time-lapse apparent resistivity measurements. Previous works (Hinnell
et al., 2010; Irving and Singha, 2010; Mboh et al., 2012; Pollock and
Cirpka, 2012; Tran et al., 2014; Camporese et al., 2015) have developed
coupled hydrogeophysical inversion scheme to incorporate the under-
lying physics of the monitored process into the inversion of the geo-
physical data. For instance, Hinnell et al. (2010) and Mboh et al. (2012)
investigated how coupled hydrogeophysical approach could improve
soil hydraulic property estimation. Hinnell et al. (2010) developed a
synthetic infiltration test monitored by the surface-based ERT and the
result showed that petrophysical coupling can reduce parameter errors,
but only if the underlying hydraulic model is a faithful representation of
the hydrologic processes. Mboh et al. (2012) also improved the preci-
sion of parameter estimation from the fusion of inflow measurements
with ERT data. Pollock and Cirpka (2012) performed a real-world la-
boratory salt tracer experiment with ERT and hydraulic head mea-
surements. They recovered the detailed permeability structure using the
mean arrival times of electrical potential perturbations and hydraulic
head measurements. The coupled scheme can be based on either de-
terministic inversion approaches or stochastic ones (e.g., Jardani et al.,
2013). Among the existing strategies, the EnKF (Ensemble Kalman
Filter), which uses an ensemble of realizations to approximate the
statistics of state variables (Evensen, 2009), have been proved to be an
effective assimilating information approach to merge hydrogeological
and geophysical information (Camporese et al., 2015). However, the
application of coupled inversion on real-world DNAPL migration ex-
periments has never been reported to date.

The outline of the paper is as follows. In Section 2, we introduce the
DNAPL sandbox experiment monitored by boreholes equipped with
electrodes used to acquire time-lapse ERT data. Then, we develop a data
assimilation framework based on coupled hydrogeophysical inversion
of ERT and multiphase flow. To test the performance of the proposed
framework, we conduct two cases (synthetic and laboratory experi-
ments in Sections 3 and 4, respectively) in two different situations of
the real-world sites (the complex heterogeneity and the layer hetero-
geneity), respectively. A quantitative comparison between the classical
geophysical approach and the coupled hydrogeophysical inversion
scheme is also discussed in these sections.

Fig. 1. (a) Photo of the experimental apparatus. (b) Overhead photo of the packing process. The unit is centimeter (cm). The black dotted box represents the center
domain which is monitored by ERT.
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2. Methodology

2.1. DNAPL sandbox experiment monitored by time-lapse cross-borehole
ERT

2.1.1. Sandbox setup
The experiment was performed in a 3D plexiglass sandbox

(1m×1m×1m) (Fig. 1a). Only the inner volume of the sandbox is
investigated by ERT (i.e., 0.6 m and 0.2 m in the x and y dimensions,
respectively, and 0.4 m in the vertical dimension and located in the
center of the sandbox), in order to minimize the impact of the boundary
conditions. The distance between the central domain and the boundary
are close to similar 3D sandbox experiments (Seferou et al., 2013;
Power et al., 2014, 2015), where the boundary effect can be safely
neglected.

The DNAPL was injected into the sandbox through a horizontal
injection pipe corresponding to the “contamination source” in Fig. 2a
and b. This pipe corresponds to a 2mm-diameter PTFE tube in which 5
holes (1 mm in diameter) were made for the injection. In this work, we
used hydrofluoroether (HFE-7100) to mimic the behavior of the DNAPL
(Orlando and Renzi, 2015), properties specified in Table 1. Due to the
high resistivity of fresh DNAPL, it is thus feasible for the application of
the ERT detection (Lucius et al., 1992; Johansson et al., 2015). Note
that, however, the presence of biofilm and biodegradation in NAPLs
sites may change the observed resistivity of these plumes from being
resistive to conductive (Atekwana and Atekwana, 2010; Atekwana and
Abdel Aal, 2015). Even if the plumes were considered more conductive
than background groundwater, this would enhance the contrast with
the resistive DNAPL source zone and the ERT method is still useful in
characterizing the DNAPL source zone (Power et al., 2013).

Prior to filling the sandbox, a total of 70 stainless steel electrodes

were installed inside the sandbox in six linear arrays (two horizontal
lines and four vertical boreholes, shown in Fig. 2c and d). The elec-
trodes (2.5 mm in diameter, 10mm in length and only inserted 6mm
into the porous media) were fixed to PTFE tubes (15mm in diameter).
They were placed 4 cm apart both in vertical boreholes and horizontal
lines. The distance between the vertical boreholes was 14 cm (Fig. 2c
and d). For the horizontal lines, the vertical distance between surface
and tunnel arrays was 30 cm, which was conform to the optimum dis-
tance suggested by Simyrdanis et al. (2015). The resistivity measure-
ments were collected with an eight-channels geo-resistivity meter (Su-
perSting R8, Advanced Geoscience Inc). The electrode configuration
used here was bipole-bipole, which was a commonly used array in
cross-borehole measurement (Slater et al., 2002; Seferou et al., 2013).
Cross-borehole measurements were collected along certain combina-
tions between boreholes (A1-A2, B1-B3, B2-B4, in Fig. 2c and d), in
order to reduce the total measuring time.

The porous media used in the sandbox was Accusand silica sands
(20/30, 70/100mesh) obtained from Unimin Corporation (USA), which

Fig. 2. Schematic diagram of the 3D experimental domain showing the coarse sand block (white, not shown) surrounded by the fine sand (dark gray). The red dotted
box represents the central zone where the DNAPL migrate. (a) is front view; (b) is overhead view; (c) is cross section looking north; and (d) is plan view. The unit is
centimeter (cm). Note that A1 and A2 are the horizontal lines (outlined rectangle), B1–B4 are the vertical boreholes (black points). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Fluids properties used in this study.

Properties HFE-7100 TCE Electrolytea

Relative density (g/cm3) 1.5 1.464 1
Relative viscosity (cP) 0.6 0.59 1
Surface tension (mN/m) 13.6 29.3 71.75
Water solubility (mg/L) 12 1100 –
Resistivity (Ω·m) 106b 106c 4.4d

a The electrolyte consists of a 0.013mol/L solution of NaCl.
b Orlando and Renzi (2015).
c Olhoeft (1992).
d Measured data.
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has been used in similar sandbox experiments (Petri et al., 2015). With
these sands, a heterogeneous structure was constructed as explained
below. The 70/100 and 20/30mesh size sands (fine and coarse sand in
Fig. 2a) were used as low-permeability and high-permeability media,
respectively, in order to make DNAPL flow bypass and accumulate
around the fine sand layers. The properties of the sands are provided in
Table 2.

The sandbox was firstly packed with fine sand (70–100mesh) in lifts
of 5 cm to an elevation of 0.70m (0.30m depth from the surface) to
provide a homogeneous background. At this elevation, the bottom
horizontal line and electrodes (i.e., A2 in Fig. 2c) were set at designed
location and carefully filled with fine sand. Then the layered lenses in
the inner volume (Fig. 2a), were accurately packed by four rectangular
aluminum frames, which was constructed the size of each lens, after
that the frame was removed. At the surface, the surface horizontal line
and electrodes (i.e., A1 in Fig. 2c) were installed. In addition, at the top
of the surface horizontal line, a fine grain sand layer (using 100/
140mesh size sands, mean grain size is 0.12mm) with a thickness of
2 cm was set to avoid possible escaping from backflow of DNAPL. After
the packing of sandbox, the dry sand was saturated with slow injection
of electrolyte (363 L, approximately 1 pore volume) from the base of
the sandbox over 2 days, then stood the sandbox for a week to ensure
the sand was entirely filled with electrolyte. The electrolyte consisted of
a 0.013mol/L solution of NaCl with a resistivity of 4.4Ωm at 20 °C.
Noted that the pore fluid used here is quite conductive (4.4Ωm), it is
because the resistivity of the pore fluid in organic contaminant fields is
often lower than 10Ωm. For instance, Steelman et al. (2017) reported
the resistivity of the groundwater in a DNAPL contaminant field ranges
from 1.6 to 10.0Ωm. Revil et al. (2013) reported the resistivity of the
pore fluid in former S-3 ponds contaminant field ranged from 1.0 to
12.5Ωm.

2.1.2. Experimental procedure
Prior to the injection of the DNAPL, the initial state (background)

was recorded by the resistivity meter three times to characterize the
static saturated water conductivity conditions. The average relative
error calculated from these three duplicate measurements is 3%. Later,
the background measurement (the average of these three measure-
ments) was used to produce differential time-lapse images from sub-
sequent surveys. During this experiment, a total volume of 1000ml of
DNAPL (HFE-7100) was injected into the sandbox with a constant rate
of 0.5 ml/min through the injection pipe using a Harvard Apparatus
syringe pump and glass syringe (Sigma-Aldrich Corp., St. Louis,
Missouri, USA). To monitor continuous movement of DNAPL, the in-
jection was maintained during ERT measurement. The ERT data was
collected every 100min until the injection was over (t=2000min). An
additional survey was taken at t=7000min, in order to investigate the
redistribution of DNAPL after injection finished. The acquisition time
for each survey was 16min. During that time, the DNAPL injection
volume is only 8ml (the injection rate is 0.5 ml/min). By contrast, the
total time for DNAPL injection is 2000min (the total volume is
1000ml). Therefore, the NAPL movement can be approximately ne-
glected during the short times required for ERT data acquisition. For
each survey, a total of 1894 apparent resistivity measurements were
recorded. For each measurement, a 10mA current was injected into the
sand and a 0.2 s of the measuring time was chosen to decrease the total

acquisition time. In order to calculate the stacking error for each data,
three stacks were used.

2.2. Direct difference inversion for estimating the DNAPL saturation

2.2.1. Electrical resistivity tomography
The electrical resistivity tomography (ERT) is a geophysical method

which can reconstruct the subsurface resistivity from the injected cur-
rent I and measured voltage V (and thus the apparent resistivity ρa).
ERT consists of the forward model and inversion method.

1. The ERT forward model can predict apparent resistivity value, given
the space-time distribution of bulk electrical conductivity, by sol-
ving the partial differential equation:

⎜ ⎟∇∙⎛
⎝

∇ ⎞
⎠

= −
ρ

V Iδ r1 ( )
(1)

where ρ is the spatial distribution of resistivity in the media, Ω·m. V is
the electric potential value, V. δ is the Dirac delta function, at a point r
represents a single current electrode, idealized as a point source at the
origin with strength I (A).

2. Through the inversion method, the subsurface resistivity is re-
constructed from the apparent resistivities (or resistances). The classical
inversion approach is often considered as a regularized optimization
problem, where the objective function to be minimized can be ex-
pressed as a weighted sum of data misfit and a regularization term. The
objective function can be shown as (Binley and Kemna, 2005):

= ∥ − ∥ + ∥ − ∥ψ αm W d f m W m m( ) [ ( )] ( )d m ref
2 2 (2)

where ∥ − ∥W d f m[ ( )]d
2 denotes a L2-norm-based measure of the data

misfit, ∥ − ∥W m m( )m ref
2 is a stabilizing model objective function, andm

and mref are the vector of estimated and reference resistivity, respec-
tively. d is the vector of measured apparent resistivity data. f m( ) is the
vector of resistivity predicted by the forward model. Wd and Wm are
data and model weighting matrixes, respectively. And α is a regular-
ization parameter.

To better characterize resistivity anomaly caused by DNAPL in-
filtration and get a faster convergence, the sequential inversion method
is used here. It assumes the inverted background data as background
resistivity model (i.e., the reference model mref in Eq. (2)) and inverts
for the differences between the background and time-lapse data sets
(LaBrecque and Yang, 2001).

In this study, both the forward and sequential difference inversion
problems are solved by AGI EarthImager 3D software (AGI, 2010),
which employs the finite difference method for forward modeling and
both root-mean-squared (RMS) error and L2-norm defined as the sum of
the squared weighted data errors to evaluate how good the fit is during
the inversion progress. For geophysical forward and inversion mod-
eling, we use the “Sand Box boundary condition” (no flow boundary
condition) module in AGI EarthImager 3D to simulate the boundary
effect caused by the insulating cuboid sandbox (AGI, 2010).

2.2.2. Estimation of DNAPL saturation and volume
With the inverted resistivity distribution, the distribution of DNAPL

saturation can be estimated through an appropriate petrophysical re-
lationship, which is used to connect the geophysical and hydro-
geological properties of the porous material. A partially saturated
porous material is usually a three-phase composite consisting of a solid
phase, a gas phase and a liquid phase (the electrolyte). The solid phase
(silica sand) is insulating. In this case, the electrical conductivity of the
porous material consists of a bulk conductivity term and a surface
conductivity term which occurs along the pore-water/mineral interface
in the so-called electrical double layer (Revil et al., 2012). For clean
sands which is clay-free, the surface conductivity is so small that can be
safely neglected (Waxman and Smits, 1968; Gelius and Wang, 2008).

Table 2
Properties of the porous media used in the experiment.

Sands 20–30 mesh 70–100 mesh

Mean grain size (mm) 0.73 0.17
Density (g/cm3) 2.56 2.56
Permeability (10−10 m2) 3.02 0.27
Porosity 0.35 0.37
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Therefore, we can use the second Archie equation (Archie, 1942) to
describe the saturation of DNAPL, SN (ERT-based NAPL saturation),
which leads to

⎜ ⎟= −⎛
⎝

⎞
⎠

S
ρ
ρ

1N
t

n
0

1

(3)

where ρ0 is the initial resistivity of the water-saturated sand (back-
ground resistivity), ρt is the ERT measured resistivity of partially satu-
rated medium after the DNAPL infiltration, n is saturation exponent,
appears to be close to n=2.0 for clean sand (clay-free) (Archie, 1942;
Hölz et al., 2015; Liang et al., 2016; Deng et al., 2017). Due to its
simplicity, classical relationships such as Archie equation are still
popular in the estimation of oil saturation (Chambers et al., 2004;
Power et al., 2014).

With the distribution of DNAPL saturation calculated through
Archie equation, the total DNAPL volumes VN can be estimated by:

∑ ∑ ∑= ∙
= = =

V S ϕ x y z( Δ Δ Δ )N
i

nx

j

ny

k

nz

N i j k
1 1 1

, , ,
(4)

where nx, ny, nz are the number of the grids in x, y and z directions;
SN,i,j,k is the estimated DNAPL saturation for certain grid; ϕ is the por-
osity; Δx, Δy and Δz are the length of the grids in x, y and z directions.

2.3. Coupled hydrogeophysical inversion

2.3.1. Coupled multiphase fluids model and forward ERT model
To simulate the resistivity anomaly caused by the presence of

DNAPL contaminant, a coupled model is developed between the mul-
tiphase fluids model, effective medium resistivity model (petrophysical
relationship) and geophysical forward model.

The problem of nonreactive DNAPL infiltration and transportation
in 3D heterogeneous field is solved here via the T2VOC software (Falta
et al., 1995). T2VOC is a numerical simulator for three-phase, three-
component, non-isothermal flow of water, air, and a volatile organic
compound (VOC) in multidimensional heterogeneous porous media.
T2VOC uses a general integral finite difference formulation for multi-
phase, multicomponent mass and energy balance equations known as
MULKOM (Pruess, 1983). The model has been used for numerous stu-
dies of NAPL migration and remediation at the field scale, including in
3D, heterogeneous domains (e.g., Rasmusson and Rasmusson (2009)).
In this work, with the initial distribution of SN (DNAPL saturation) and
k (absolute permeability), we can obtain the real-time distribution of SN
through T2VOC simulator.

Using an appropriate petrophysical relationship, the hydrological
state (e.g., SN) can be transformed into the electrical properties (e.g., ρ,
resistivity). Here again, in absence of clay particles, we can use Archie
law as the appropriate physical law connecting the saturation to re-
sistivity. In presence of clay-rich materials, such a relationship may lead
to errors (Patnode and Wyllie, 1950). To overcome this weakness, an
effective medium algorithm (Berg, 2007) is used to combine sand,
shale, and hydrocarbon components into the Hanai-Bruggeman equa-
tion (Hanai, 1960):

⎜ ⎟ ⎜ ⎟= ⎛
⎝

⎞
⎠

∙⎛
⎝

−
−

⎞
⎠

ϕS
ρ
ρ

ρ ρ
ρ ρw

w

t

t r

w r

m
1

(5)

where ϕ is porosity, Sw is water phase saturation (in water-NAPL two
phase system, Sw=1− SN, SN is NAPL phase saturation), ρw is water
resistivity (continuous phase), ρt is total resistivity of all components, m
is the cementation exponent (the same as used in Archie’s law), ρr is the
resistivity of disperse phase (e.g., the rock and hydrocarbon particles).

Using discrete integration of Eq. (5), the effective medium algorithm
adds tiny, but proportional, amounts of disperse elements into the
disperse component, including clay, sand, and hydrocarbons (Berg,
2007). The mixture resistivity from the current iteration will be the

prior fluid resistivity for the next iteration. We only consider the simple
condition (clean sand) in this work, where the Archie's equation might
be sufficient enough. However, to make it convenient for future ap-
plications in clayey soils, the effective medium algorithm by Berg
(2007) was used in this work, which can work well in both clay-free
sand and conductive matrix (clay-rich materials) (Berg, 2007; Power
et al., 2013).

With the electrical properties (e.g., ρ, resistivity) converted from
petrophysical relationships, the raw geophysical data (apparent re-
sistivity) is obtained through the geophysical forward model as men-
tioned in Section 2.2.1.

2.3.2. Ensemble Kalman filter
In this work, the EnKF (Ensemble Kalman Filter) is used as an in-

version tool to jointly estimate the distribution of DNAPL saturation
and aquifer heterogeneous parameter field (Y, log10- permeability). The
EnKF (Evensen, 2009) is a sequential Monte Carlo method based on the
Bayes’ theorem. It uses an ensemble of realizations to estimate the
statistics of model parameters (e.g., permeability) and state variables
(e.g., DNAPL saturation), with the assumptions that the forward model
is a first-order Markov process and measurement errors are independent
from time to time.

At the initial time t0, Nr realizations of Y (log10- permeability) field
are produced with a prior guess of the geostatistical parameters: mean,
variance and correlation length of Y field. The augmented state vector
can be defined as:

=y p s[ , ]t t t
T (6)

where pt is the state parameter vector (e.g., Y, log10- permeability) at
time t, while st is the state variable vector (e.g., SN, DNAPL saturation).
Ny is the dimension of yt: Ny=Nm+Ns, where Ns is the grid number in
the multiphase flow system and Nm is the number of the parameter that
need to be estimated.

Starting with the same SN0 (the initial DNAPL saturation) for each Y
realization, the multiphase flow is propagated forward to the first
measurement time t1, using the multiphase fluids model. At time t1, the
augmented state vector y1 is updated through this formula:

= + + −−y y C H HC H C d Hy[ ] ( )j i
a

j i
f

i
f T

i
f T

D i j i
f

, ,
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where a refer to model analysis, while f represents model forecast or
initial guess, y j i

f
, is the estimated augmented state vector for realization

j at time ti based on information at ti−1, y j i
a
, is the updated augmented

state vector at ti, and H is the operator which maps model simulation
results to actual measurements, Ci

f is the covariance matrix at time ti,
computed from the ensemble statistics, CDi is the error covariance
matrix of the observations, di is the vector of observations at ti.

Here, EnKF is applied recursively, a methodology known as the
restart EnKF approach (Wen and Chen, 2005; Camporese et al., 2015).
At first, the multiphase flow model is rerun from t0 to ti when the new
measurement data become available. Then the Y (log10- permeability)
values at each measurement time ti is updated through Eq. (7). The
procedure is repeated until the end of assimilation. In this work, update
of SN is not necessary. Because with the updated parameters filed, the
distribution of DNAPL saturation can be obtained by rerunning the
forward model.

2.3.3. Data assimilation framework
Fig. 3 shows the flowchart of the data assimilation framework. At

first, an ensemble of Y (log10- permeability) fields is generated by the
sequential Gaussian simulator in Geostatistical software library (GSLIB)
(Deutsch and Journel, 1998). With the parameters fields, the multi-
phase fluids model is run to get the evolution of DNAPL saturation.
Using an appropriate petrophysical relationship (effective medium al-
gorithm), the distribution of resistivity is converted from DNAPL sa-
turation. Through geophysical forward model, the resistivity is
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transferred to the apparent resistivity data. Later, the EnKF is used to
update parameters (Y, log10-permeability) by assimilating the apparent
resistivity measurements. The procedure is repeated until the end of
assimilation.

3. Synthetic case

3.1. Synthetic case set-up

To compare with the laboratory 3D sandbox experiment, the syn-
thetic case is based on the size of sandbox center domain (red dotted
box in Fig. 2c and, 0.3 m×0.14m×0.3m), which is discretized into
15×7×15=1575 cuboid elements (Fig. 4). Pressure boundary
condition is imposed (P=1.01× 105 Pa) at the top face of the center
domain. In addition, fixed boundary conditions (the volumes of the
boundary cells are so large (1×105m3) that flow in and out of
boundary cells will have negligible effect on pressure in boundary cells)
are set at four sides and the bottom of the center domain for the mul-
tiphase fluids model. The reference Y field (representing the perme-
ability field here) (Fig. 4a) is generated by sequential Gaussian simu-
lator in GSLIB with mean < Y>=−9.55 log10(m2), standard
deviation σY=0.35 log10(m2), correlation lengths Ix=0.075m,
Iy=0.035m, Iz=0.075m and the exponential covariance function.
Similarly, the initial realizations of the Y are also generated by GSLIB
(Table 3). The realization size is taken as 500.

In the synthetic case, we assume that there are no contaminants at
the initial stage t0= 0min. The DNAPL is uniformly injected in a
contaminant source zone (Fig. 4b) of dimensions 3.6×10−4 m3

(x=−0.1–0.08m, y=−0.06–0.04m, z=−0.06 to −0.04m) with a
content rate of 5.625ml/min until t=200min. In this study, we focus
on characterizing the DNAPL source zone architecture and therefore,
assume that the source location is known as prior information. The
DNAPL plume migration is simulated using the trichloroethylene (TCE)

properties specified in Table 1, because it is a typical substance of or-
ganic contaminated sites (Rothmel et al., 1998; National Research
Council, 2005). Parker’s model (Parker and Lenhard, 1987) of Pc–S and
Stone’s model (Stone, 1970) of kr–S are chosen to simulate DNAPL
migration. Table 4 summarizes the model parameters employed for
simulation. Because this work is focused on the estimation of hetero-
geneous permeability, other parameters (e.g., parameters of the petro-
physical relationship and capillary pressure function) are assumed to be
deterministic for the synthetic case.

The electrode array here (Fig. 4b) is the same as the sandbox ex-
periment in Section 2. With the known electrode array and the re-
ference Y distribution, we can obtain the reference apparent resistivity
data through the coupled multiphase fluids-ERT model. Adding Gaus-
sian noise (relative error is 3%) to the reference, the apparent resistivity
measurement is acquired. The ERT measurement is acquired every
20min, from t=20min to t=200min. Therefore, there are a total of
ten ERT measurement vectors (each vector includes 1894 apparent
resistivity data) available for the inversion.

3.2. Direct difference inversion

Through the geophysical inversion model in Section 2.2.1, the time-
lapse ERT data is transferred to dynamic resistivity distribution,

Fig. 3. Flowchart illustrating the data assimilation framework. Note that SN denotes the saturation of the DNAPL, Y represents log- permeability.

Fig. 4. The conceptual model of the synthetic experiment: (a) reference log10-permeability (log k) field; (b) sketch of the electrode arrays. The plain lines represent
for the electrode arrays. The blue frame denotes the center domain used to simulate the migration of DNAPLs. The remaining volume of the tank is filled with a fine
sand, which can hardly be infiltrated by the DNAPL. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Table 3
Prior statistics of parameter field in numerical experiment.

<Y> σY Ix Iy Iz

Reference −9.55 0.35 0.0375 0.0175 0.0375
Numerical experiment −9.21 0.35 0.0375 0.0175 0.0375

Note that< Y >and σY are the mean and standard deviation of the log k (i.e.,
log10 permeability) field, respectively. Ix, Iy, Iz represent the correlation lengths
in x, y and z directions.
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respectively. Based on the resistivity difference between the back-
ground and subsequent data sets, the DNAPL distribution is calculated
from Eq. (3). Fig. 5a and b shows the estimated DNAPL distribution by
traditional direct difference inversion. Compared with the reference
(Fig. 5d and e), direct inversion can roughly reconstruct the distribution
of DNAPL saturation. However, direct inversion result demonstrates
that the DNAPL accumulates at the top (Fig. 5a and b), which are dif-
ferent from the reference distribution (Fig. 5d and e). It is mainly be-
cause a cruder regularization by isotropic smoothing may result in loss
of resolution and the isotropic smoothing is not realistic in this situation
in producing physically meaningful resistivity and DNAPL distributions
(see discussion in Karaoulis et al., 2011a). By producing a smoother
result, this approach fails to accurately depict the fine architecture of
the DNAPL plume.

3.3. Coupled hydrogeophysical inversion

Reference distribution, ensemble mean of the initial realizations and
estimated distribution by coupled hydrogeophysical inversion for Y
(log10 k) and corresponded DNAPL saturation for synthetic case are
shown in Fig. 5c–k. It demonstrates that the initial guess of the Y fields
(Fig. 5f) does not show any decent features. However, the Y distribution
estimated by coupled hydrogeophysical inversion (Fig. 5i) becomes
very similar to the reference (Fig. 5c). Based on the Y distribution, the
DNAPL saturation distribution is calculated through multiphase fluids
model. It is clear that the initial field (Fig. 5g and h) can’t recover the
reference distribution of SN (Fig. 5d and e), while it is preferably re-
flected by coupled hydrogeophysical inversion (Fig. 5j and k).

To quantitatively analyze the performance of the coupled hydro-
geophysical inversion, the root mean square error (RMSE) is used as a
criterion to demonstrate the agreement between the estimated and re-
ference distribution of Y and SN:

∑= −
=

RMSE
N

Y Y1 ( )Y
g i

N

t a
1

2
g

(8)

∑= −
=

RMSE
N

S S1 ( )S
g i

N

t a
1

2
g

(9)

where Ng is the number of grids, Yt and Ya represent the reference and

the estimated (ensemble mean) Y (log10-permeability) distribution. St
represents the reference SN distribution at t=80 and 120min, and Sa
stands for the estimated SN distribution computed by running the
multiphase fluids model with the finally retrieved Y distribution.

Another measure of the goodness of the results is the ensemble
spread (ES), which represents the estimated uncertainty based on the
ensembles:
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where VAR(Yi) is the ensemble variance of the log k at each grid. If the
EnKF estimates the uncertainty of the state properly, the ES should be
close to the RMSE.

Temporal evolutions of RMSE between estimated and reference field
are shown in Fig. 6a. It indicates the agreement between the ensemble
mean and reference Y distribution improves progressively as assimila-
tion goes on. In addition, from the sixth to tenth step, the RMSE curses
drop slower than former period. It demonstrates the measurement data
from steady stages is less worthy for assimilation (Chen and Zhang
(2006)), for the DNAPL have already reached the bottom of the center
domain at the sixth step (t=120min).

In order to assess the uncertainty of the estimated parameters, the
temporal evolutions of the ensemble spread are shown in Fig. 6b. At the
end of the assimilation, the ES becomes close to the RMSE, demon-
strating that the ensemble variance provides a relatively realistic
measure of the uncertainty associated with using the ensemble mean
field to represent the reference field. To further quantify the spatial
distribution of the uncertainty, slices of the ensemble standard devia-
tion of the log k field are shown in Fig. 7. It can be noted that the
uncertainty is relatively low in the bottom zone (Fig. 7) where the
DNAPL accumulated (Fig. 5e). Goodness of the estimation depends on
the amount of information given by the observations. There is a large
increment of the DNAPL saturation in the bottom zone (Fig. 5). Thus,
the observation around is worthier for the estimation and therefore a
lower ensemble standard deviation.

Regarding the comparison between the direct and coupled hydro-
geophysical inversion result, the direction inversion loses detail in-
formation about the fine architecture of the DNAPL plume and lead to
overestimation of the DNAPL contaminated area (Fig. 5a and b).
However, coupled hydrogeophysical inversion can produce an accurate
estimation by directly assimilating the apparent resistivity measure-
ments (Fig. 5i–k). In order to make a quantitative comparison, the
RMSES (t=80 and 120min) of direct and coupled hydrogeophysical
inversion is depicted in Fig. 8. It shows the SN distribution is re-
constructed much better by the Y distribution estimated through the
coupled hydrogeophysical inversion (0.055 versus 0.097 at
t=120min). Fig. 9 shows scatterplots of true versus estimated values
for initial field, coupled hydrogeophysical inversion and direct inver-
sion, for log k and SN, respectively. It can be noted that there is a sig-
nificant scattering around the 45-degree line for the estimated and re-
ference SN pairs of the direct inversion (Fig. 9e and h). The scatterplots
also demonstrate the overestimation of the DNAPL contaminated area
by direct inversion, where many ensembles are higher than the 45-
degree line (Fig. 9e and h). By contrast, the SN values estimated by the
coupled inversion match the reference fairly well (Fig. 9d and g).

There are mainly two reasons for the superiority of the coupled
hydrogeophysical inversion. For one thing, the DNAPL source zone
architecture is highly sensitive to subsurface heterogeneity. This influ-
ence is neglected in direct inversion, while it is considered in coupled
hydrogeophysical inversion by jointly estimating the subsurface het-
erogeneity and DNAPL distribution. For another, raw geophysical data
(apparent resistivity) is converted to hydrologic state through the tra-
ditional geophysical inversion and Archie equation in the direct in-
version. However, in its cruder expression (regularization by isotropic
smoothing) it has limited applications to invert time-lapse changes in

Table 4
Model parameters for the synthetic case.

Parameter Value Comments

Hydrogeological parameters
Sand porosity 0.32a Petrophysical relationship
Cementation exponent 1.5b Petrophysical relationship
Sand resistivity (Ω·m) 1000c Petrophysical relationship
TCE resistivity (Ω·m) 1.0×106d Petrophysical relationship
Water resistivity (Ω·m) 6.5a Petrophysical relationship

Relative permeability function
Water residual saturation Swr 0.1e kr-S formulation
NAPL residual saturation Snr 0.12e kr-S formulation
Gas residual saturation Sgr 0 kr-S formulation
Fitting coefficients n′ 3 kr-S formulation

Capillary pressure function
Residual liquid saturation Slr 0f Pc-S formulation
van Genuchten n″ 1.84f Pc-S formulation
van Genuchten αgn (m−1) 10f Pc-S formulation
van Genuchten αnw (m−1) 11f Pc-S formulation

a Power et al. (2013).
b Berg (2007).
c Loke (2001).
d Olhoeft (1992).
e Schroth et al. (1996).
f Pruess and Battistelli (2002).
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Fig. 5. Direct inversion result, reference distribution, ensemble mean of the initial realizations and coupled hydrogeophysical inversion result after assimilation for
log k (log10-permeability) and corresponded DNAPL saturation, respectively, for the synthetic case. A threshold value of SN=0.15 is applied for figures for vi-
sualization purpose.

Fig. 6. Evolutions of RMSE (root mean square error) between estimated and reference field (a), and ES (ensemble spread) (b) for log k (log10-permeability), for the
synthetic case.
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DNAPL saturations because the smoothing is not realistic in producing
physically meaningful resistivity distributions. The coupled hydro-
geophysical inversion, which is able to directly translate raw geophy-
sical data into hydrologic state and therefore avoid the artifacts and
over-smoothing caused by smoothness constrain and regularization
approach (Binley et al., 2015), can produce a more accurate estimation.

The synthetic case demonstrates both the direct and coupled hy-
drogeophysical inversion can roughly characterize the DNAPL mor-
phology. However, the direct inversion might lose detail information
about the fine architecture of the DNAPL plume and overestimate of the
contaminated area. On the other hand, the coupled inversion could
reproduce a more accurate estimation of the DNAPL source zone ar-
chitecture, because raw geophysical data is directly converted into
hydrologic properties in the coupled inversion, which avoid the over-
smoothing and aircrafts caused by smoothness constrain.

4. Laboratory sandbox experiment

To evaluate the efficiency of the framework, the proposed data as-
similation is applied below to a laboratory sandbox experiment.

4.1. Direct difference inversion

With the background and subsequent resistivity obtained from

geophysical inversion, the distribution of DNAPL saturation (Fig. 10) is
mapped through Eq. (3). In order to distinguish DNAPL plumes from
background media, threshold values (SN=0.01 for Fig. 10a–d and
SN=0.1 for Fig. 10e–h, determined by trial and error) are applied to
the tomography. To illustrate the real-time monitoring responses from
the sandbox experimental measurements, eight time-steps were chosen:
t1= 100min, t2= 200min, t3= 300min, t4= 400min, t5= 800min,
t6= 1200min, t7= 2000min (the injection is finished) and
t8= 7000min.

Fig. 10 demonstrates that time-lapse ERT data and direct difference
inversion method can roughly locate the position of the plumes and
depict the temporal evolutions of its general shape. Fig. 10a indicates
that DNAPL plumes bypass the first low-permeability layer and accu-
mulate on the second layer at t1= 100min. From t2= 200min to
t4= 400min, DNAPL plumes gradually infiltrate through high-perme-
ability materials (coarse sand) at the second layer and migrate to the
third layer (Fig. 10b–d). To depict the major DNAPL plume, a larger
threshold (SN=0.1) is applied to Fig. 10e–h. From t5= 800min
(Fig. 10e) to t7= 2000min (Fig. 10g), DNAPL accumulates on the third
layer by degree. At the last time step t8= 7000min (Fig. 10h), the
image shows no significant difference with t7= 2000min, which in-
dicates the redistribution of DNAPL is not obvious after the injection is
finished at t7= 2000min.

In order to quantitatively verify the efficiency of ERT and direct
inversion, the full-field DNAPL volumes is estimated by Eq. (4). Fig. 11
shows the estimated DNAPL volumes plotted against the true injected
volumes. The result demonstrates that the estimated volumes roughly
fit the actual volumes line, which validates the feasibility of ERT and
direct inversion method. It can be observed that the estimated volumes
are very close to the reference at early stage (V=0–200ml). And an
overestimation is noted at middle stage (V=300–400ml), which is
probably caused by the overestimated DNAPL contaminated area. At
later stage (V=800–1000ml), DNAPL volumes are underestimated,
probably due to the over-smoothing in geophysical inversion.

Although the direct inversion can roughly characterize the DNAPL
morphology, it might lose detail information about the DNAPL plumes.
In addition, the estimated DNAPL contaminated area is more extensive
than expected, for a part of DNAPL plumes spreads into the low-per-
meability layer in Fig. 10. There are mainly three reasons responsible
for this. First, in cross-borehole ERT survey, the measurement sensi-
tivity will be high close to the boreholes and will be low mid-way be-
tween the boreholes. In this work, the limited spatial resolution may
lead to the failure of characterizing the fine architecture of the DNAPL.
It suggests that survey design optimization is needed to improve the
spatial resolution of ERT measurement (Loke et al., 2014). Second, the
traditional geophysical inversion of this study is based on smoothness
constrain and regularization approach which have been widely used to
address problems of ill-posedness and non-uniqueness (Binley et al.,
2015). This approach often leads to smoothed image of resistivity.
Therefore, it may not work well when sharp contrasts in resistivity exist
(de Groot-Hedlin and Constable, 2004). To reduce over-smoothing,
Karaoulis et al. (2014) proposes transforming the space and time con-
straints to be active, meaning that the regularization parameters are
distributed rather than being uniform for the entire model. Therefore,
the prior information can be incorporated into the inversion scheme in
a natural way. Third, ERT data errors and geophysical forward model
errors have significant impact on geoelectrical inversion (Binley, 2015).
Biased noise level may result in either under-fitting (fail to fully extract
the valuable data) or over-fitting (develop the incorrect subsurface
geoelectrical structure) in the inversion. Hence, it is important to
properly assess the error levels and consider such error levels in the
inversion. For instance, Tso et al. (2017) recommends collecting re-
ciprocal data to quantify the data error, although special care should be
taken to avoid electrode charge-up effects. In this work, we assumed the
noise level (measurement error) is 3% in general (calculated from the
three duplicate background surveys). Maybe it leads to slight under-

Fig. 7. Slices of the ensemble standard deviation of the log k field at the end of
the assimilation for the synthetic case.

Fig. 8. The RMSES (root mean square error of the SN field at t=80 and
120min) of direct and coupled hydrogeophysical inversion between estimated
and real SN field for the laboratory sandbox experiment.
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fitting, and therefore, overestimation of the DNAPL plumes.

4.2. Coupled hydrogeophysical inversion

Based on the coupled hydrogeophysical inversion, model para-
meters and the DNAPL distribution are jointly inversed through as-
similating time-lapse ERT data from the laboratory sandbox experi-
ment. First, we analyze the sensitivity of ten parameters: permeability
(k), porosity (ϕ), parameters in relative permeability function (water
residual saturation Swr, NAPL residual saturation Snr, gas residual sa-
turation Sgr, fitting coefficients n′) and capillary pressure function (re-
sidual liquid saturation Slr, van Genuchten n″, van Genuchten αgn, van
Genuchten αnw). The results show that five of them are highly sensitive
to the DNAPL migration, including k, ϕ, Snr, n′ and αnw. Therefore, these
parameters will be estimated in the coupled inversion.

To help constrain the coupled inversion, we use the heterogeneous
structure (the spatial distribution of the coarse and fine sand) estimated
from the background resistivity image as the known prior information.
Fig. 12a shows the background resistivity distribution from direct

inversion, the low resistive anomalies at the top is caused by high water
content near surface. Note that the background image efficiently ex-
plores the lithological structure (the red dotted line in Fig. 12a).
Through previous column experiments, we find the bulk resistivity of
the fine sand is approximately 13–18Ωm. Therefore, we assume the
zone whose resistivity is lower than 18Ωm as fine sand. Then, the prior
heterogeneous structure (Fig. 12b) is derived from the background
image (Fig. 12a). This heterogeneity structure can roughly reflect the
reference lithological structure, but it loses some detail information and
it is slightly different from the reference (Fig. 12b and c). With the help
of the prior heterogeneity structure, the dimension of the unknown
estimated set of parameters drops down to ten (five parameters for
coarse and fine sand).

For this laboratory sandbox experiment, the grid discretization,
boundary conditions and other parameters (such as cementation ex-
ponent and residual liquid saturation), are kept the same as the syn-
thetic case (Table 4). Here, we focus on characterizing the DNAPL
source zone architecture and therefore, assume that the location of the
contamination source (Fig. 2) is known. After the laboratory

Fig. 9. Scatterplots of true versus estimated values for initial field (first column), coupled hydrogeophysical inversion result at the end of assimilation (second
column) and direct inversion result (third column), for ensemble mean log k (i.e., log10 permeability) (a–b) and DNAPL saturation (c–h), respectively, for the
synthetic case.
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experiment, the absolute permeability and porosity of coarse and fine
sand are measured, which are considered as reference parameters in the
inversion. In order to generate the initial parameters ensembles, an
artificial Gaussian noise is added to the biased parameters mean value
with a certain standard deviation (Table 5). The ensemble size is taken
as 500. The total simulation time is kept the same as the sandbox ex-
periment (2000min), which is equally divided into ten assimilation-
steps. Hence, there are a total of ten ERT measurement vectors (each
vector includes 1894 apparent resistivity data) available in the inver-
sion. The error of resistivity measurement is assumed as 3%, which is
calculated from the three duplicate background surveys.

Fig. 13 shows the temporal evolutions of the estimated parameters
in the laboratory sandbox experiment. As can be seen, the estimated
parameters gradually converge to the reference. As assimilation goes
on, the agreement between the estimated Y (log k) of coarse sand and
the reference improves greatly. At the end of the assimilation, it be-
comes very close to the reference (Fig. 13a). Nevertheless, the estimated
Y of fine sand is unsatisfactory (Fig. 13a). Because DNAPL can hardly

infiltrate into the fine sand, the distribution of the DNAPL saturation
and the corresponding ERT data can’t reflect the permeability of the
fine sand. Fig. 12b shows the estimated porosity of coarse and fine sand
approximately converges to the reference. The estimated parameters of
the relative permeability and capillary pressure function (Snr, n′, αnw) is
in agreement with other researches about multiphase fluids simulation
and experiment (Mercer and Cohen, 1990; Wilkins et al., 1995; Erning
et al., 2012; Al-Raoush, 2014; Robert et al., 2017).

In order to assess the uncertainty of the estimated results, evolutions
of the ensemble spread are shown in Fig. 14. If the uncertainty is es-
timated properly, the ES should be close to the deviation between the
measured and the estimated values. As can be seen in Fig. 14a and b, at
the end of the assimilation, the ensemble spread roughly matches the
deviation line, although it slightly overestimates the uncertainty of the
fine sand. Noted that, for all these parameters, the ensemble spread of
the coarse sand is lower than the fine sand, which means the estimated
parameters for coarse sand is more credible.

Fig. 15 exhibits the reference field, ensemble mean of the initial

Fig. 10. The distribution of DNAPL saturation estimated through direct difference inversion of time-lapse ERT-measured data (stereograms and slices). The slices are
at y= 0.04m (the red dotted box in Fig. 10a). The black rectangles in slices represent the low-permeability lenses (fine sand). Data acquired after DNAPL injection:
(a) 100min; (b) 200min; (c) 300min; (d) 400min; (e) 800min; (f) 1200min; (g) 2000min; (h) 7000min. A threshold value of SN=0.01 is applied for figures (a–d)
for visualization purpose. For figure (e–h), the corresponding threshold is SN=0.1. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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realizations and estimated field at the end of the assimilation for log k
and corresponded DNAPL saturation distribution, respectively. In order
to distinguish the DNAPL saturation distribution at different stage
(t=400min and t=1200min), different color scale and threshold
values (SN=0.01 for Fig. 15d–g and SN=0.1 for Fig. 15h–k) are ap-
plied to the tomography. Noted that it is quite difficult to acquire a real
DNAPL distribution in such 3D sandbox experiment. Therefore, in this
work, based on the measured parameters values (permeability and
porosity), the estimated parameters values (Snr, n′, αnw) from coupled
inversion, the actual lithological structure and boundary condition, we
developed a T2VOC model to simulate the actual DNAPL migration and
distribution. Although the simulation results (Fig. 15 d and h) may
slightly deviate from the true field, it can represent the “true” (re-
ference) DNAPL distribution to a certain extent. Fig. 15a and b shows
that there is a significant mismatch between the reference and initial Y
(log k) values. However, the Y values estimated by the coupled inver-
sion become closer to the reference (Fig. 15c). With the retrieved
parameters, the DNAPL distribution can be better delineated (Fig. 15f
and j). In contrast, with the initial parameters, the DNAPL migrates
more slowly, due to the biased permeability value (Fig. 15e and i).

To quantitatively analyze the performance of the coupled hydro-
geophysical inversion, temporal evolutions of RMSE between the

estimated SN and the reference SN (represented by the T2VOC simula-
tion with the actual parameters, t=1200min) is depicted in Fig. 16. It
shows the estimated parameters can successfully reflect the distribution
of DNAPL and the agreement between the reference and estimated SN
field is increasing.

Compared with direct difference inversion (Fig. 15g and k), coupled
hydrogeophysical inversion provides better recovery of the DNAPL
source zone architecture (Fig. 15f and j). At t=400 and 1200min, the
contaminant area estimated by direct inversion is more extensive than
expected (Fig. 15g and k). While it is constrained in the high- perme-
ability zone (coarse sand) in the coupled inversion (Fig. 15f and j).
However, more information is needed in the coupled inverse problem to
reduce its non-uniqueness. For the laboratory sandbox experiment, the
lithological structure (the spatial distribution of the coarse and fine
sand), the petrophysical relationship parameters (e.g., the cementation
exponent) and the location of the DNAPL leakage source are assumed as
the known prior information for the coupled inversion. Researches
demonstrate that with biased prior information of the parameter field
and inaccurate petrophysical relationship, the coupled inversion might
result in filter inbreeding and convergence on the wrong solution
(Camporese et al. 2015; Brunetti and Linde (2018)). Therefore, to help
constrain the coupled inversion, multiple types of data (e.g., induced
polarization data and well-logged data) should be incorporated in the
future.

Although the laboratory sandbox experiment is a simple inversion
problem in which only ten parameters are estimated, this framework
can be easily applied to realistic scenarios where the subsurface het-
erogeneity and DNAPL source zone architecture are more complicated.

5. Conclusions

We have performed synthetic and laboratory sandbox experiments
to model the infiltration of DNAPLs in a heterogeneous porous material

Fig. 11. Comparison of total DNAPL volumes calculated by ERT monitoring
versus the actual injected volumes. The solid line represents the 1:1 perfect fit
for reference purpose.

Fig. 12. (a) The background resistivity image estimated from the direct inversion. The red dotted area represents the zone whose resistivity is lower than 18Ω·m. (b)
The lithological structure estimated from the background image. (c) The actual lithological structure, where the coarse sand block (white, not shown) is surrounded
by the fine sand (dark gray). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 5
Numerical model parameters for the real-world sandbox case.

log k (m2) Porosity Snr n′ αnw (m−1)

Measured Coarse sand −9.52 0.35
Fine sand −10.56 0.37

Initial Coarse sand (mean) −10.17 0.25 0.08 3.5 20
σ 0.24 0.2 0.05 0.5 2
Fine sand (mean) −10.78 0.35 0.15 2.5 5
σ 0.24 0.2 0.05 0.5 2

Estimated Coarse sand (mean) −9.54 0.33 0.06 2.85 16.4
Fine sand (mean) −10.7 0.36 0.19 2.63 9.2

Note that log k represents log10 (permeability); σ represents the standard de-
viation of the parameters realizations.
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characterized different grain sizes. These infiltrations were monitored
by time-lapse cross-borehole ERT measurements. We proposed a cou-
pled hydrogeophysical inversion scheme to jointly estimate the DNAPL
source zone architecture and heterogeneous permeability field by as-
similating time-lapse cross-borehole ERT data using the ensemble
Kalman filter (EnKF) approach. To demonstrate the performance of the
coupled inversion with respect to the classical deterministic ERT in-
version approach, we apply these two techniques to the synthetic and
laboratory experiments with DNAPL infiltrating of 3D sandbox. The
results show that time-lapse ERT and the classical time-lapse inversion

can locate the morphology of the DNAPL plume with some uncertainty.
That said, the classical ERT inversion approach misses detailed in-
formation about the discontinuous ganglia of the DNAPL plume and
lead to an overestimation of the contaminated area. The coupled in-
version is able to accurately reproduce both the DNAPL source zone
architecture and the heterogeneous permeability field. This improve-
ment occurs because the coupled inversion directly converts raw geo-
physical data into hydrologic properties, therefore, alleviating over-
smoothing caused by the traditional geophysical inversion.

The synthetic and laboratory experiments demonstrate the ability of

Fig. 13. Evolutions of the estimated parameter values for the real-world sandbox case: (a–f) represent the estimated and reference (or measured) log k, porosity, Snr,
fitting coefficient n′ and the van Genuchten coefficient αnw of coarse and fine sand. The dotted lines donate the measured values (a–b), and the reference values used
in T2VOC simulation (c–e), respectively.

Fig. 14. Evolutions of the ES (ensemble spread) of the parameter ensembles for the real-world sandbox case: (a) log k, (b) ϕ, (c) Snr, (d) fitting coefficient n′, (e) the
van Genuchten coefficient αnw. The orange and blue dotted lines in (a) and (b) represent the deviations between the estimated and the measured parameters, for fine
sand and coarse sand, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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time-lapse electrical resistivity data and the coupled hydrogeophysical
inversion to accurately characterize the subsurface heterogeneity and
DNAPL distribution over time. However, there are still situations where
the coupled inversion should be taken into account (i.e., the back-
ground ERT data and boreholes might not be available) and further
studies in this field are necessary (i.e., the petrophysics influenced by
the NAPL configuration and biodegradation). In the future, a combi-
nation of various types of geophysical data (including induced polar-
ization data and ground penetrating radar) together with hydro-
geochemical data (i.e., downgradient aqueous-phase concentration)
will be considered to help better constrain this type of problem.
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