





### Integrative Model of Rhodanine Derivatives as Tauaggregation inhibitors in AD

ligand-based (QSAR) and structure-based (docking, MD) approaches

Fabrice Leclerc & Yoanna Álvarez Ginarte

### Hallmarks for Alzheimer's Disease

#### **Amyloid/Tau pathways**



#### Formation of amyloid plaques

Cleavage of the amyloid precursor protein (APP) by  $\beta$ - and  $\gamma$ -secretase leads to formation of amyloid plagues in the intercellular space.





#### Formation of neurofibrillary tangles Misfolding of tau proteins leads to microtubule

amyloid precursor protein and tau tangle formation.

**Amyloid fibrils** AB(1–42) and tau build various fibril structures that differ in number, orientation, and structure of strands.



**Cross-ß sheet structure, amyloid state** Both tau and AB(1–42) have a similar overall tertiary protein structure.

#### Pospich & Raunser, Science, 2017.

### Molecular Basis of Alzheimer's Disease



Graham et al., Ann Rev Med, 2017.

#### Conformational Polymorphism of Tau Aggregates



### Molecular Polymorphism of Tau aggregates: PHF6/PHF6\*



Smit et al., J. Phys. Chem, 2016.

# Variant Polymorphism of Tau aggregates: PHF6 wt/mutant



Seidler et al., Nat. Chem., 2017.

## Induced Polymorphism of Tau aggregates: PHF6-ligands



Landau *et al*., PLoS Biol., 2011.

### Multiplicity of Ligand Binding sites in Tau Protofibrils



Murugan et al., ACS Chem. Neurosci., 2018.

### Integrative Modeling of Tau anti-aggregation agents

- QSAR modeling
  - inference of molecular properties associated with activity (IC50)
  - inference of molecular properties associated with cytotoxicity (Log (LDH%))
- Docking calculations
  - binding modes of more active/less active compounds on PHF8 dimers
  - rebuilding of PHF8 tetramers from dimers of PHF8 docked complexes
- MD simulations
  - docking poses as initial configurations for simulations
  - evaluation of binding modes and stoichiometry (compound/PHF6 tetramer)

### Rhodanines as rau antiaggregation agents



dissolution of PHFs (EM)

10<sup>2</sup>

Bulic et al., Angew. Chem. Int. Ed., 2007.

### QSAR Study of Rhodanines: activity & cytotoxicity

**Table 1:** Compound structures,  $IC_{50}$  and  $DC_{50}$  values, PHF inhibition in cells, and cytotoxicity.

| Entry | Compd | R <sup>3 [a]</sup> | R <sup>4 [a]</sup>           | IC <sub>50</sub> [µм] <sup>[b]</sup> | DC <sub>50</sub> [µм] <sup>[b]</sup> | Inhibition in<br>cells <sup>[c]</sup> [%] |
|-------|-------|--------------------|------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|
| 1     | 1     | HO HO              | S <sup>2<sup>2</sup></sup> O | 0.82                                 | 0.10                                 | 20.40±5.37                                |
| 2     | 4     | EtO                | S <sup>2</sup> CI            | 4.36                                 | 1.80                                 | n.d.                                      |
| 3     | 14    | H<br>N<br>N        | SSC O                        | 0.67                                 | 0.94                                 | $70.47 \pm 4.49$                          |
| 4     | 49    | HN<br>N<br>Ssr     | SSC O                        | 1.09                                 | 0.80                                 | n.d.                                      |
| 5     | 16    | HO                 | SSC O                        | 0.47                                 | 0.30                                 | 21.55±13.82                               |
| 6     | 23    | HO                 | SSC O                        | 1.22                                 | 1.04                                 | n.d.                                      |
| • • • |       |                    |                              |                                      |                                      |                                           |
| 16    | 17    | H<br>N<br>N<br>N   |                              | 0.54                                 | 0.39                                 | 62.67±4.08                                |
| 17    | 19    | HO HO              |                              | 0.17                                 | 0.13                                 | 16.49±4.38                                |

46 compounds

Bulic et al., Angew. Chem. Int. Ed., 2007.

Pickhardt et al., Angew. Curr. Alzheimer Res., 2017.

## QSAR model of Rhodanine derivatives





 $pIC50 = -1.14MR + 45.43HOMO + 0.14\mu - 3.24q4 + 16.58$ 

n=35; R<sup>2</sup>= 0.81; s=0.33; F=15.99; q<sup>2</sup> =0.60; p<0.01 **Test set:** n=9; R<sup>2</sup>= 0.60; s=0.57; F=5.86

 global - steric: low value of molar refractivity (**MR**)

- global electronic: high value of HOMO and dipolar moment (µ)
- local electronic: negative charge on C4

## PHF6 Tau dimer and tetramer assemblies



## PHF8 Tau dimer and tetramer assemblies



### Docking of Rhodanine compounds



#### Tetramer "reconstruction" from PHF8 complexes dimer

Y310

**BS1** 

Y310

**BSO** 

# Symmetrical tetramers from PHF8 rebuilt complexes



## PHF8 tetramer complexes with 1:1/2:1 stoichiometries



## PHF8 tetramer complexes with 1:1/2:1 stoichiometries



### MD simulations of PHF8 tetramers complexes



### Metrics for MD analysis

- native contacts
- radius of gyration
- low frequency motions (PCA analysis)
- conformational flexibility (protein alphabet)

# Fraction of native contacts and radius of gyration

- native contacts are calculated for residues whose distance (Å) is smaller than the number specified in 'Distance cutoff' (default: 8Å), and which are at least as many residues apart as the number specified in 'Residue separation' (default: 2).
- mass-weighted radius of gyration of the selected atoms

## PHF8 free tetramer native contacts

**Q** native contacts



# PHF8 free tetramer radius of gyration

radius of gyration



### PHF8 free tetramer low frequency motions

**PCA** analysis







### Protein alphabet and representations



### PHF8 free tetramer



#### PHF8 tetramers conformational flexibility





BS0

BS1+BS1'

28

BS1+BS2

#### PHF8 tetramers native contacts



### PHF8 tetramers radius of gyration



### PHF8 tetramer BS1+BS1' low frequency motions

**PCA** analysis



### PHF8 tetramer BS2 low frequency motions

**PCA** analysis



## PHF8 tetramers binding modes



### PHF8 tetramer BS0



### PHF8 tetramer BS1



### PHF8 tetramer BS2



### PHF8 tetramer BS1'



### PHF8 tetramer BS1+BS1'



### PHF8 tetramer BS1+BS2



### PHF8 tetramer (BS0)<sup>2</sup>



#### PHF8 tetramer (BS0)<sup>2</sup> trajectory



500ns

### Conclusions

- loss of native contacts
- destabilisation of C-terminus
- transitions with increase of radius of gyration
- sizzling motion in anti-parallel dimers
- binding modes with shifting one (parallel) β-strand dimer
- stoichiometry 2:1 may facilitate inter-dimer insertion

### Acknowledgments

#### • Funding

- PHC franco-cubano Carlos J. Finlay Campus France
- Embajada de Francia
- People
  - Dra. Yoanna Álvarez Ginarte (UH)
  - Elena Moreno-Castillo, MSc. student (UH)
  - Alberto Bencomo Martínez, Ph.D. student (CIM-UH)
  - Roy González Alemán, Ph.D. student (UH)
  - Dr. Luis Montero Cabrera (UH)
  - Dra Chryslaine Rodríguez Tanty (CNC)