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3D geostatistical inversion of induced polarization data and its application
to coal seam fires

Abdellahi Soueid Ahmed1, André Revil1, Abdel Jardani2, and Rujun Chen2

ABSTRACT

We applied the principal component geostatistical approach
(PCGA) to the inversion of time-domain induced polarization
data in terms of resistivity and chargeability distributions. The
PCGA presents two major advantages over standard methods:
(1) It avoids the storage of the usually large covariance matrix,
which contains the geostatistical information, by factorizing it in a
product of low-rank matrices. (2) It does not assemble the Jaco-
bian matrix per se. We determine the robustness of this approach
with three examples. We first reconstruct the electrical conduc-
tivity and chargeability fields of two synthetic models generated
using the geostatistical software Stanford Geostatistical Modeling
Software. The PCGA approach performs better than the Tikho-
nov-based regularization approach when the true fields are very
heterogeneous and the amount of data is limited. The third exam-
ple is devoted to a field study over the former Lewis coal mine

in Colorado (USA). We perform a 3D localization of the burning
front of this coal seam fire by applying our geostatistical inverse
methodology to a time-domain induced-polarization data set. In
this case, the horizontal components of the semivariogram are
determined from a self-potential map and the correlation length
scale for the vertical component is determined from the known
thickness of the coal bed. The tomogram presents a high normal-
ized chargeability associated with the burning front. We evaluate
the high normalized chargeability of the burning front in terms of
the physical mechanism associated with the cation exchange
capacity of the coal and the effect of temperature. This demon-
strates the potential of the geostatistical inversion and its suitabil-
ity for inverting geophysical data, especially when the data
density is sparse. In the case of coal seam fires, we determine
the suitability of the induced polarization method to localize
the burning front and the effect of temperature on the normalized
chargeability.

INTRODUCTION

Galvanometric induced polarization is a geophysical method used
to image the ability of rocks to reversibly store electrical charges
at low frequencies (<1 kHz). This property is characterized by a
material property called chargeability (between 0 for nonpolarizable
media and 1 for perfectly polarizable media; see Seigel, 1949, 1959).
Induced polarization can also be obtained through induction-
based electromagnetic methods such as time-domain electromag-
netics (TDEM) (see Marchant et al., 2013, 2014; Macnae, 2015,
2016). Although induced-polarization effects have been known for a
long time (Schlumberger, 1920), the method started to be extensively
used only 40 years ago, mostly for mineral exploration (Van Voorhis

et al., 1973; Pelton et al., 1978; Oldenburg et al., 1997). In fact, com-
pared with other geophysical methods, induced polarization is par-
ticularly suitable for detecting disseminated ores due to their
strong polarizations (Wong, 1979; Gurin et al., 2013; Marchant et al.,
2013, 2014; Revil et al., 2017b, 2017c).
Nowadays, the range of induced polarization applications has re-

markably broadened and covers, for instance, the tracking of contam-
inants plumes (Barker, 1990; Kemna et al., 2004; Sogade et al.,
2006), landfill mapping (Leroux et al., 2010; Dahlin and Leroux,
2012; Gazoty et al., 2012), oil and gas exploration (Spies, 1983; Carl-
son and Zonge, 1996), monitoring of damage in porous rocks (Co-
senza et al., 2016), and permeability characterization (Attwa and
Günther, 2013; Revil et al., 2015b; Joseph et al., 2016) just to cite
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a few examples. This is a consequence of the huge progress that has
been made in terms of induced-polarization instrumentation (King-
man et al., 2007; Zimmermann et al., 2008; Xi et al., 2014) and
processing as well as the inversion of the full waveform data (Olsson
et al., 2016). In addition, our understanding of the background phys-
ics explaining induced-polarization phenomena has improved thanks
to the recent development of petrophysical models such as the dy-
namic Stern layer model for porous media with no metallic particles
(Rosen and Saville, 1991; Rosen et al., 1993; Revil and Florsch,
2010; Revil, 2012, 2013) and models based on redox phenomena
and boundary polarization effects for dispersed metallic particles
in porous media (Wong, 1979; Revil et al., 2015b, 2017b, 2017c).
However, traditional electrical induced-polarization inversion ap-

proaches (Loke and Barker, 1995, 1996; Binley and Kemna, 2005;
Karaoulis et al., 2011) remain geostatistically deficient. Geologic for-
mations are either not randomly built structures or are smooth. There-
fore, classic regularization approaches may then omit important
information on the spatial heterogeneity of the subsurface. Despite
being widely used in the realm of hydrogeology, geostatistically
based inversion approaches are still underused in geophysics. For in-
stance, Maurer and Holliger (1998)use some statistical properties to
build model covariance functions for constraining inverse problems.
Linde et al. (2006) improve the characterization of a sandstone aqui-
fer in the UK, by jointly inverting electrical resistivity tomography
(ERT) and ground-penetrating radar data using stochastic-based regu-
larization operators for geostatistical models. Yeh et al. (2002) devel-
oped a geostatistical approach based on a sequential linear estimator
for ERT, whereas Johnson et al. (2012) use semivariogram constraints
to carry out geostatistical inversion for electrical resistivity tomogra-
phy. That said, the aforementioned algorithms were not based on the
quasilinear geostatistical approach nor were they designed for reduc-
ing the dimensionality of large-scale problems. In the same vein, we
propose using a geostatistical inverse scheme based on a method
called the quasilinear geostatistical approach (QLGA), to invert
3D time-domain induced-polarization data.
The QLGA method, introduced by Kitanidis (1995), uses geo-

statistical information as prior information and then updates the
parameter estimates using a linearization of the forward operator
response. QLGA has been mostly developed and used in hydraulic
tomography (HT) for which hydraulic conductivity and specific
storage are imaged using pumping tests (e.g., Cirpka and Kitanidis,
2000; Pollock and Cirpka, 2012; Cardiff et al., 2012, 2013; Soueid
Ahmed et al., 2014, 2015, 2016; Bakhos et al., 2014). Recently, a
large-scale variant of QGLA, called the principal component geo-
statistical approach (PCGA), has been introduced by Kitanidis and
Lee (2014) (see also Lee and Kitanidis, 2014). Kitanidis and Lee
(2015) study in an unpublished work the computational benefits of
using PCGA for ERT. With respect to computational efficiency,
PCGA has the advantage of being matrix free; this means that it
does not implicitly evaluate the Jacobian matrix, it only computes
its products with other matrices or vectors. Although this is not spe-
cific to the PCGA itself (other methods such as nonlinear conjugate
gradients [NLCG] also do not require evaluation of the Jacobian
matrix), this significantly reduces the computational burden. In fact,
in classical deterministic algorithms, computing the Jacobian matrix
is the computationally heaviest step in the inversion process. An-
other major advantage of PCGA over conventional QLGA is that
it decomposes the prior covariance matrix (which contains the prior
geostatistical information) into a product of low-rank matrices. In

other words, the large prior covariance matrix is replaced by a trun-
cated matrix, which still contains the major information about the
medium but is significantly smaller than the full initial matrix. This
leads to consequent memory savings that will be discussed below.
The properties of the variogram (sill and correlation lengths) used

for computing the covariance matrix must be known. Quantifying
the uncertainties related to the geostatistical model is out of the
scope of the current work. That said, there are several published
studies exploring this issue. Essentially, these properties can be es-
timated from our prior knowledge of the subsurface structures, for
instance, using geologic cross sections or estimated by fitting an
experimental variogram to a theoretical one. Another approach con-
sists of considering these properties as unknowns and estimating
them during the inversion process (Kitanidis, 1995; Cardiff et al.,
2012). The latter method is computationally very heavy and in many
cases infeasible in 3D large-scale applications. However, some
efforts have been recently made to accelerate the computation of
uncertainty quantification in geostatistical inverse problems (e.g.,
Saibaba, 2013; Saibaba and Kitanidis, 2015). In the present work,
we estimate the variogram properties using experimental variograms
and geologic information as well.
The main goal of the present work is to develop a robust geo-

statistical inversion approach for time-domain induced-polarization
data and to apply it to coal seam fires. We seek to reconstruct the 3D
electrical resistivity and chargeability fields by inverting the appar-
ent resistivities and apparent chargeabilities data usually collected at
the ground surface and/or in boreholes. The inversion is carried out
using the PCGA framework described above. Three case studies are
examined to illustrate the effectiveness of our methodology. The
first case corresponds to a moderately heterogeneous 3D synthetic
test in which the true electrical resistivity and chargeability distri-
butions are inverted and compared with the true fields. We also per-
form the inversion of the same fields using first-order derivative
smoothing operators as constraints. In the second case, we show on
a more heterogeneous synthetic model that the geostatistical inver-
sion approach is more efficient than the classical Tikhonov-based
regularization approach when the data density is limited. The third
case considers field data collected during a 3D induced polarization
field survey conducted over the former Lewis coal seam mine in
Colorado (USA). The coal seam is still burning until today, and our
goal is to perform a 3D inversion of the resistivity and chargeability
data to localize the burning front and to understand the underlying
mechanism of the anomalies.

THEORY

The 3D electrical potential field generated during a current
injection in a heterogeneous isotropic medium is described by a
Poisson’s equation as

∇ · ðσ∞∇ΨÞ þ Iδðx − x0Þδðy − y0Þδðz − z0Þ ¼ 0; (1)

where σ∞ ðin Sm−1Þ denotes the instantaneous electrical conductivity
field (see Figure 1a); ΨðinVÞ is the electrical potential generated by
the injection of the current IðinAÞ; δ is the Dirac distribution; x, y,
and z represent the space locations; and x0, y0, and z0 are the spatial
coordinates of the current sources locations. The instantaneous con-
ductivity is the conductivity of the material when induction effects
have vanished but, still, all the charge carriers are mobile. This is by
opposition to the steady-state conductivity σ0 ¼ ð1 − ηÞσ∞ where η
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denotes the dimensionless chargeability. This reduction (σ0 ≤ σ∞)
occurs because the polarization of the material implies that some
charge carriers are blocked at low frequencies and do not participate
anymore to the conduction process.
Equation 1 is subject to the following boundary conditions:

Ψ ¼ α on Γ1; (2)

σ∞∇Ψ · n ¼ β on Γ2; (3)

with Γ1 ∪ Γ2 ¼ ∂Ω where ∂Ω denotes the simulation domain boun-
daries, n denotes the outward unit vector normal to Γ2. In the case of
α ¼ 0 and β ¼ 0, equations 2 and 3 correspond to homogeneous
Dirichlet and homogeneous Neumann boundary conditions, respec-
tively. Far from the bipole of current injection/retrieval (performed
on electrodes A and B), a zero potential boundary condition is ap-
plied at infinity and insulating boundary conditions are applied at
the ground surface. Once equation 1 is solved, one can compute the
apparent resistivity through

ρa ¼ K
ΔΨ
I

; (4)

where K is the geometric factor accounting for the position of the
electrodes, the topography, and the boundary conditions of the
problem, ΔΨ is the potential difference between two measuring
(voltage) electrodes M and N, and I denotes the current injected in
A and retrieved at position B. Furthermore, equation 1 can be seen
as a nonlinear mapping operator Fð:Þ associating the electrical
potential Ψσ∞ to the instantaneous conductivity field σ∞:

Ψσ∞ ¼ Fðσ∞Þ: (5)

This potential Ψσ∞ is instantaneously recorded when the current
injection is turned on.
We come back now to the nature of the polarization. Porous ma-

terials are characterized by their ability to reversibly store electrical
charges. This charge storage is associated with the polarization of
the electrical double layer coating the mineral grains and the adja-
cent pore water (Vinegar and Waxman, 1984; Revil et al., 2015c).
For disseminated metallic grains, the polarization can be associated
with the accumulation of the charge carriers at the boundary of
the grains (Wong, 1979; Revil et al., 2015a, 2015c). This ability
is characterized by a material property called chargeability η (with
0 ≤ η ≤ 1) and the existence of a phase lag between the current and
the phase in frequency-domain induced polarization. To forward-
model the chargeability, we follow an idea originally developed
by Seigel (1959) and later taken up by various authors (Labrecque,
1991; Oldenburg and Li, 1994). The chargeability is taken into
account by perturbing the electrical conductivity field during a cur-
rent injection. In terms of numerical modeling, this means that the
forward modeling of the time-domain effects is carried out just by
solving two electrical resistivity direct current forward problems, one
with the effective electrical conductivity distribution and the other with
the same distribution but perturbed with the chargeability distribution.
Indeed, considering that the ground is chargeable, we introduce char-
geability effects by solving equation 1 using σ0 ¼ σ∞ð1 − ηÞ as the
input conductivity model, η being the intrinsic chargeability, which is
unitless but generally expressed inmV∕V. The difference between the

instantaneous conductivity and the DC conductivity is explained in
Figure 1 for an insulating grain coated by an electrical double layer.
The existence of the polarization allows for recording a voltage

distribution defined as

Ψσ0 ¼ Fðσ0Þ: (6)

This voltage corresponds to the voltage measured between M and
N after a long current injection. Similarly, an apparent chargeability
can be computed as (e.g., Li and Oldenburg, 2003)

ηa ¼
Ψσ∞ − Ψσ0

Ψσ∞

¼ Fðσ∞Þ − Fðσ0Þ
Fðσ∞Þ

: (7)

Therefore, modeling the time-domain induced polarization re-
quires solving equation 1 twice with different electrical resistivity
distributions (Seigel, 1959). It is important to mention here that
equation 7 may lead to numerical instabilities if Fðσ∞Þ ≈ Fðσ0Þ.
Therefore, it is crucial to have a highly accurate forward response
to minimize these errors as much as possible.
In time-domain induced-polarization surveys, we generally com-

pute the partial chargeability expressed in milliseconds and defined
as

ηtj;tjþ1
¼ 1

ψσ

Z
tjþ1

tj

ΨðtÞdt; (8)

where ηtj;tjþ1
denotes the partial chargeability measured during the

time window ½tj; tjþ1� and ΨðtÞ is the decaying voltage, measured
just after the current is shut off.
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Figure 1. Difference between the instantaneous conductivity σ∞
and the DC conductivity σ0 for a silica grain coated by an electrical
double layer (a) Right after the application of the primary electrical
field E0, all the ionic charge carriers are mobile through the process
of electromigration. The instantaneous conductivity is σ∞. (b) If the
primary electrical field is applied for a long time (DC condition), the
conductivity is σ0 ¼ σ∞ð1 −MÞ, where M stands for the charge-
ability of the material (dimensionless). Some of the charge carriers
(those of the Stern layer, i.e., the inner part of the double layer) are
now blocked at the edge of the grain in the direction of the applied
electrical field. As a result, the conductivity of the material is re-
duced. This conductivity reduction also characterizes the polariza-
tion of the grain.
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Likewise, partial chargeability can be expressed in mV∕V as
(Florsch et al., 2011)

ηti;tiþ1
¼ 1

ψσðtjþ1 − tjÞ
Z

tjþ1

tj

ΨðtÞdt: (9)

Partial chargeability can be related to the intrinsic chargeability η
through the approximation relation (e.g., Florsch et al., 2011):

ηti;tiþ1
≈ ηðtjþ1 − tjÞ: (10)

Note that this approximation is in principle strictly valid only
under the condition that tj; tjþ1 ≪ τ0, where τ0ðsÞ is the time con-
stant (τ0 basically refers to the time needed for a polarized material
to go back to its initial equilibrium state).

GEOSTATISTICAL INVERSION APPROACH

In this section, we present the inversion methodology used to in-
vert the induced-polarization data with the goal to retrieve the elec-
trical resistivity and chargeability spatial distributions. As a matter
of fact, when dealing with time-domain induced polarization, two
strategies can be used for inverting such distributions: (1) We first
estimate the electrical resistivity, and then we use the resistivity
tomogram for the inversion of the chargeability. (2) We perform
simultaneous inversion of both parameters iteration by iteration.
The first strategy is easier to compute and provides higher accuracy
if the electrical resistivity is well estimated. In the current work, we
opt for the first strategy using the PCGAmethod (Kitanidis and Lee,
2014; Lee and Kitanidis, 2014).
As stated before, the major difficulty in solving inverse problems

lies in the nonuniqueness of the solution. Different strategies can be
adopted to address this issue. The majority of inverse algorithms
used in geophysics inversion use regularization via smoothing con-
straints to obtain the optimal estimated parameters model. However,
this strategy leads to oversmoothed parameter models that, although
they fit the measured data, do not necessarily preserve the features
and magnitudes of the true model. An interesting alternative is the
use of geostatistical-based inversion approaches that attack the issue
of the nonuniqueness from a different perspective by using the
geostatistical properties of the medium as constraints for guiding
the inversion. The degree of heterogeneity of a medium can be de-
scribed by a variogram. The main advantage of geostatistical inver-
sion methods over traditional inversion ones is the incorporation of
such “geostatistical behavior” in the inverse framework by casting
this geostatistical information into a prior spatial covariance matrix.
Giving this valuable a priori information helps obtainingmore geologi-
cally meaningful estimated parameters fields. Because in geophysical
applications the dimensionality of the inverse problem usually needs to
be high to obtain satisfactory resolution of the inverted models, we opt
for a large-scale geostatistical method (the PCGA).
As mentioned above, the PCGA has several advantages. It does

not necessitate the evaluation of the Jacobian matrix. Instead, it only
computes its products. As a direct consequence, this significantly
reduces the computational time when we are dealing with large
datasets and high number of unknowns resulting in very large
Jacobian matrices that are heavy to assemble and store. Moreover,
the PCGA reduces the dimensionality of our inverse problem by
factorizing the prior covariance matrix in a product of low-rank

matrices. In addition, the PCGA offers the possibility of computing
uncertainty maps of the estimated parameters in a computationally
economic way. All the aforementioned points make the PCGA an
appealing inversion approach especially for geophysical applica-
tions. In conventional QGLA, we seek to solve the following min-
imization problem whose solution corresponds to the best inverted
model:

min
p

LðpÞ; (11)

with

LðpÞ ¼ 1

2
ðd − FðpÞÞTV−1ðd − FðpÞÞ

þ 1

2
ðp − XβÞTQ−1ðp − XβÞ; (12)

where L denotes the objective function; p is the m × 1 parameter
vector, whether the electrical resistivity ρ or the chargeability η; d is
the n × 1 observed data vector, whether apparent electrical conduc-
tivities or apparent chargeabilities; Fð:Þ is the forward operator; V is
the n × n data covariance matrix;X is anm × np matrix, where np is
the number of physical parameters to be estimated; β is the drift
coefficient; andQ denotes them ×m prior spatial covariance matrix
that is represented by a variogram. As we can see, L is composed of
two terms: The first one handles the data misfit, and the second one
assures, through imposing constraints, that the inverted model re-
flects the heterogeneities of the field. One of the major ideas that
underlies the PCGA is the factorization of the covariance matrix Q
in a product of low-rank matrices. For instance, using an eigen-
decomposition factorization yields:

Q ≈QK ¼ PKΛKPT
K ¼

XK
i¼1

uiuTi ; (13)

ui ¼
ffiffiffiffiffiffiffi
jλij

p
Pi; (14)

where K is the truncation order, QK is the K × K truncated covari-
ance matrix, ΛK is the K × K diagonal matrix of the first K largest
eigenvalues of Q, PK is the K ×m matrix of the corresponding ei-
genvectors ui, and λi is the ith eigenvalue of QK . Therefore, instead
of working with the large matrix Q, we replace it by its low-rank
approximation, which leads to significant storage savings because
K ≪ m. In light of this, it is important to realize that the leading
information in the matrix Q is covered by the largest eigenvalues;
therefore, we can obtain very satisfactory tomography results by
replacing Q with QK , provided that we choose a reasonable value
of K. The choice of an optimal truncation order K is a crucial point
for having good tomography results. Examining the spectrum of Q
helps determining the optimal truncation order K. In fact, the rel-
ative error of the low-rank approximation is given by

ε ¼ kQ −QKk
kQk ¼ λKþ1

λ1
; (15)

where λKþ1 is theK þ 1th eigenvalue ofQ and λ1 is the largest eigen-
value ofQ. Therefore, one can chooseK so that ε is sufficiently small.
In our case, the eigenvalues decay is very fast so moderate values of
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K are sufficient for capturing the leading information of the eigen-
space of Q.
It follows that a more computationally appealing version of the

objective function L (equation 12) can be written as (Kitanidis and
Lee, 2014)

LðpÞ ¼ 1

2
ðd − FðpÞÞTV−1ðd − FðpÞÞ þ 1

2
pTPKΛ−1

K PT
Kp:

(16)

The solution of the minimization problem 11 can be found using
an iterative process in which the current optimal parameter model in
each iteration is given by (Kitanidis and Lee, 2014)

piþ1 ¼ Aðd − FðpiÞ þ JipiÞ; (17)

where pi is the current best model estimate at iteration i, Ji is the
Jacobian matrix at iteration i, given by Ji ¼ ∂FðpÞ∕∂pjp¼pi, A is
obtained by solving the following linear system:

�
JiQJTi þ V JiX
ðJiXÞT 0

��
AT

B

�
¼

�
JiQ
XT

�
: (18)

As stated before, a key point of the PCGA resides in the fact that
the Jacobian matrix J is never computed; instead, its products are
computed as

JXi ≈
1

δ
½Fðpþ δXiÞ − FðpÞ�; (19)

where Xi denotes the ith column of X and δ is the finite-differences
step. The choice of δ is important. It must not be too small, to avoid
numerical instabilities, and it must not be too large, to maintain the
high accuracy of the finite-differences approximation. In the present
paper, we empirically choose δ ¼ 0.001, yet other ways of choosing

δ are discussed in Lee and Kitanidis (2014). The product JQ is
computed by

JQ ≈ JQK; (20)

JQ ≈ J
XK
i¼1

uiuTi ; (21)

JQ ≈
XK
i¼1

ðJuiÞuTi ; (22)

JQ ≈
XK
i¼1

ςiuTi ; (23)

where

ςi ¼ Jui ¼
1

δ
½Fðpþ δuiÞ − FðpÞ�: (24)

The remaining term in equation 18 can be approximated as fol-
lows:

JQJT ≈ JQKJT; (25)

JQJT ≈
XK
i¼1

ðJuiÞðJuiÞT; (26)

Table 1. Summary of the synthetic case study and Lewis fire case study simulation parameters.

Property Synthetic case study Lewis fire case study

Dimension 3D 3D

Simulation domain 162 m × 20 m × 30 m 162 m × 20 m × 30 m

Number of unknowns 48,000 48,000

Number of measurements 620 for ERT, 620 for chargeability tomography 629 for ERT, 629 for chargeability tomography

Number of iterations 6 for PCGA, 8 for GN 6 for PCGA, 8 for GN

Number of profiles 5 5

Number of electrodes 32 per profile 32 per profile

Electrical resistivity variogram γðhÞ ¼ 0.91

�
1 − exp

�
−
�

h
9.61

�
2
��

γðhÞ ¼ 0.003

�
1 − exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
hx
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�
2

þ
�
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50

�
2

þ
�

hz
5

�
2

s ��

Chargeability variogram γðhÞ ¼ 0.12

�
1 − exp

�
−
�

h
15.47

�
2
��

Truncation order 30 for test 1and 100 for test 2 30

The symbols ρ and η denote the electrical resistivity and the chargeability, respectively.
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Figure 2. True synthetic distributions. (a) Synthetic electrical conductivity distribution for test 1. (b) Synthetic intrinsic chargeability dis-
tribution for test 1. (c) Synthetic electrical conductivity distribution for test 2. (d) Synthetic intrinsic chargeability distribution for test 2.
These fields were generated using the geostatistical software SGEMS. They are used as true parameter fields for the first case study. During
the inversion process, these fields are assumed to be unknown and we estimate their spatial distributions using the PCGA and GN methods.

Figure 3. Covariance matrix and variograms used in test 2. (a) Leading eigenvalues of the covariance matrix used for the inversion of the
electrical conductivity. (b) Experimental and theoretical variograms used for the electrical conductivity tomography. The experimental vario-
gram is fitted to an exponential one, using a least-squares minimization.
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JQJT ≈
XK
i¼1

ςiςTi : (27)

The matrix products from equations 19–22 require K þ 3 for-
ward runs per iteration, whereas a classical inversion approach will
require mþ 1 forward runs if performed with the perturbation
method and nþ 1 with the adjoint-state method. Therefore, the use
of the PCGA indeed leads to significant computational savings.
Once the objective function has decreased and the changes in its
values became moderate through the iterative algorithm process, we
consider that convergence has been reached and the iterative process
can be stopped.
The algorithm of the PCGA is summarized below (Lee and

Kitanidis, 2014):

Figure 4. Tomography results of test 1 using the PCGA. (a) Estimated electrical conductivity field tomogram. (b) Scatterplot of the true
electrical conductivity field against the estimated one. (c) Estimated chargeability field tomogram. (d) Scatterplot of the true chargeability
field against the estimated one.

1. Compute the low-rank approximation Q.

2. Compute the Hi products: JiQK; JiXi; JiQKJTi .

3. Solve the linear system�
JiQJTi þ V JiX
ðJiXÞT 0

��
AT

B

�
¼

�
JiQ
XT

�
:

4. Update the solution pi

piþ1 ¼ Aðd − FðpiÞ þ JipiÞ:

5. Repeat steps 2 to 4, until the convergence criteria are met.
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BENCHMARK TESTS

We first benchmark our method using two synthetic cases. First,
we generate an electrical conductivity field and a chargeability field.
Then, we simulate the acquisition of a field survey by computing the
apparent conductivities and chargeability data that would be mea-
sured on a given set of electrodes. These synthetic data are contami-
nated with noise. The last step is to invert them using the algorithm
proposed above to determine the distribution of the conductivity and
chargeability fields and compare them with the true fields (bench-
mark procedure). In addition, we invert the same noise-contaminated
apparent conductivity and chargeability synthetic data using the tradi-
tional Gauss-Newton (GN) method with a regularization done via
first-order derivative smoothing.
We assign Neumann’s boundary conditions (equation 3) at the

ground surface to account for the insulating boundary condition
at this interface. During the forward modeling, the region of interest
is embedded into a much larger domain to account for the fact that,
in reality, the measurements take place over a half-space, and homo-
geneous Dirichlet’s boundary conditions (equation 2) are assigned
to the remaining boundaries; therefore, they are far enough from the
area of interest (the same will be done for the field case study de-
scribed later).
Our synthetic target region covers a volume of

162 m × 20 m × 30 m. The synthetic induced-polarization measure-
ments are collected on five profiles. Each profile is characterized by
32 equally spaced electrodes. The electrodes lateral spacing is 1 m,
and the profiles are separated by 4 m. We use a Wenner-α protocol
resulting in 620 apparent conductivity and 620 apparent chargeability
measurements. The simulation domain is discretized into 48,000
cells. We assign to each cell constant electrical conductivity and char-
geability values, and we start the inversion of the parameters with
homogeneous fields, corresponding to the geometric mean of the ap-
parent conductivity and chargeability. Although some authors choose
the apparent resistivity or chargeability pseudosections as initial mod-
els, our preference was launching the inversion with more neutral,
blank homogeneous models corresponding to the geometric mean
of the apparent parameter fields.
We used the geostatistical software SGEMS (Deutsch and

Journel, 1992) to generate the synthetic electrical conductivity and
chargeability fields of the two synthetic models (Figure 2). The

fields of the first test case are moderately heterogeneous, whereas
those of the second one are more heterogeneous. All these fields
were generated using exponential variograms whose properties are
reported in Table 1. The properties of the variograms are considered
to be unknown and are estimated using an experimental variogram
that is fitted to a theoretical one (Figure 3b). The synthetic data have
been contaminated with an artificial Gaussian random noise (2% of
the mean of data).
The forward modeling defined by equations 1–3 is realized using

the finite-element software COMSOLMultiphysics 5.3. To get high
accuracy of the forward calculations, the finite-element mesh is re-
fined around the electrodes whereas a coarser mesh is used for the
larger buffer domain. We have checked that the result of the forward
modeling is independent of the mesh (the same will be done for the
case study below). For all simulations, the eigenvalues decay was so
fast that the leading information contained in the covariance matri-
ces is given by the largest eigenvalues (see Figure 3a). Therefore, a
small K can be enough to obtain the tomograms of the inverted fields
that have a satisfactory resolution. In our case, we used K ¼ 25 for
the first synthetic case and K ¼ 100 for the second synthetic case.
The relative errors λKþ1∕λ1 associated to the electrical conductivity
and chargeability covariance matrices, respectively, are 0.0046 and
0.0041 for the first synthetic case study and 3.1456 × 10−4 and
6.7054 × 10−4 for the second synthetic case study.
We start by discussing the results of the first synthetic test case.

We first use the PCGA to invert the apparent conductivity data to
image the 3D spatial heterogeneities of the electrical conductivity
field. The inverted model is represented in Figure 4a. We can ob-
serve that the anomalies are well-recovered. The field root-mean-
square (rms) error is very low (see Table 2): The plot of the true
field against the estimated one clearly shows a linear trend (see
Figure 4b), and the R2 coefficients are very high (R2 ¼ 0.802).
The estimated chargeability field reflects in a satisfactory way the
main heterogeneities of the true chargeability field. The shapes and
magnitudes of the anomalies are reasonably retrieved as well. The
rms exhibits a quite low uncertainty rate: 0.0153, proving that the
inversion approach successfully reconstructed the fields. For com-
parison purposes (see Figure 5), we show the results obtained using
the traditional GN method.
We notice that the GN results are satisfactory as well, especially for

the electrical conductivity field, which has roughly the sameR2ð0.79Þ
as for the one reconstructed using the PCGA. The rms is even lower
for the GN method (0.24 S:m−1) than it is for the PCGA method
(0.40 S:m−1). The chargeability field anomalies are, however,
slightly better reconstructed using the PCGA (compare Figures 4c
and 5c). The rms values are almost the same for both methods:
0.0153 for PCGA and 0.0159 for GN. The R2 are higher for the
PCGA: 0.52 and 0.39 for GN. For this synthetic test, the PCGA
and GN performed similarly in terms of the resolution of the inverted
tomograms. Regarding the computational times, the PCGA performs
better than GN.
We now consider the second synthetic test. We recall that this test

has the same geometry and electrodes configuration as the first syn-
thetic test. That said, the level of heterogeneity is higher to show
which technique would be able to recover the parameter fields under
the restriction of having a limited amount of data. Figure 6a and 6c
shows the inverted electrical conductivity and chargeability fields
obtained using the PCGA approach. The main features of these
two fields (resistivity and chargeability) are well-recovered in terms

Table 2. Root-mean-square (rms) errors of the synthetic and
Lewis fire case studies.

Parameter Test 1 Test 2 Lewis fire

GA GN GA GN GA GN

σa 0.02 0.011 0.012 0.08 0.149 0.146

ηa 0.01 0.009 0.011 0.018 0.0142 0.42

σ 0.40 0.24 0.20 0.27 — —
η 0.015 0.01 0.06 0.03 — —

The quantity ηa denotes the apparent chargeability, σa denotes the apparent electrical
conductivity, σ denotes the electrical resistivity (in ohm-m), and η denotes the chargeability
(comprised between 0 and 1, dimensionless). The rms is based on the square root of the
summation of the residuals. In other words, for an observed value z, rms ¼ ð1∕nzÞ
ðPnz

i¼1ðzi − ẑiÞ2Þ1∕2, in which, nz denotes the number of elements in z and ẑ is the
vector of predicted values of z. All the conductivity rms values are expressed in S:m−1.
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of delineation and magnitude. The scatterplots of the true fields
against the estimated ones follow a linear trend (Figure 6b and
6d). The results obtained with the GN approach are shown in Fig-
ure 7. The inverted tomograms are oversmooth and do not properly
recover the spatial features of the true fields. In addition, the scat-
terplots do not exhibit a linear trend. The R2 values (see Table 3) are
much greater for the PCGA approach. We underline that despite the
low resolution of its tomograms, the GN still fairly reproduce the
data (apparent conductivity: rms ¼ 0.08 S:m−1, R2 ¼ 0.85; appar-
ent chargeability: rms ¼ 0.018, R2 ¼ 0.95). The obtained tomo-
gram is, however, too smooth and displays a lower resolution
than the one obtained with PCGA approach. The major features
of the two fields are not well-recovered with the GN approach. This
shows the aforementioned inherent difficulty in addressing the issue

of nonuniqueness of the inverse problem and brings out the ration-
ale for using a more robust inversion approach, such as PCGA, that
gives estimated models that not only fit the observed data but also
reflect some additional information regarding the level of hetero-
geneity of the subsurface.
The purpose of this synthetic test is not to question the efficiency

of the widely used GN method. We just underline the fact that when
we only have a limited number of measurements, introducing geo-
statistical constraints helps in guiding the inverse algorithm toward
more physically meaningful models, by avoiding oversmoothing
across the features. Undoubtedly, if we increase the number of
induced-polarization measurements, the conventional GN method
may provide better results. But again, this brings out the rationale
for using geostatistical methods when we do not have enough

Figure 5. Tomography results of test 1 using the GN method. (a) Estimated electrical conductivity field tomogram. (b) Scatterplot of the true
electrical conductivity field against the estimated one. (c) Estimated chargeability field tomogram. (d) Scatterplot of the true chargeability field
against the estimated one.
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data to adequately constrain the inverse problem. From these two
synthetic tests, we were also able to show the computational effi-
ciency of PCGA over the conventional GN method. Despite that for
the GN inversion we speeded up the computations of the Jacobian
matrix using the adjoint method instead of the perturbation method,
the PCGA computational times remain smaller than the GN ones
(see Table 5). This better clarifies our claims about the computa-
tional efficiency of the PCGA approach.

LABORATORY EXPERIMENT

As in our field application, we will work on the induced polari-
zation response of burning coal, we first perform a laboratory ex-
periment to support the feasibility of the induced polarization

method to delineate coal seam fire fronts. With this goal in mind,
we perform a laboratory spectral induced-polarization experiment
using coal powder (grain size of ∼1 mm). The experiments are per-
formed with the ZEL-SIP04-V02 impedance meter developed by
Egon Zimmermann at the Central Laboratory for Electronics,
ZEL, the Forschungszentrum Julich (see Zimmermann et al., 2007,
2008). The sample holder (see Revil and Skold, 2011) is put in a
plastic bag immersed in a thermostatic bath (KISS K6 from Huber,
dimensions 210×400×546mm, heating capacity 2 kW, bath
volume 4.5 L). The temperature of this bath is controlled with a
precision of 0.1°C and is using glycol as the heat-carrying fluid.
At each temperature, we let enough time pass (>30minutes) for the
system to stabilize. A check of the temperature stabilization is done
through repeated in-phase conductivity measurements. The sample

Figure 6. Tomography results of test 2 using the PCGA. (a) Estimated electrical conductivity field tomogram. (b) Scatterplot of the true
electrical conductivity field against the estimated one. (c) Estimated chargeability field tomogram. (d) Scatterplot of the true chargeability
field against the estimated one.
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is first saturated under vacuum with tap water with conductivity of
0.0715 S∕m at 25°C. The voltage used in the experiment is 1 V. The
complex conductivity spectra are shown in Figure 8. The in-phase
and quadrature conductivities (at 10 Hz), the normalized chargeabil-
ity, (computed as the difference of the in-phase conductivity
between 0.1 Hz and 10 kHz), and the phase are shown as a function
of the temperature in Figures 9 and 10.
To fit the data, we use an Arrhenius equation:

σ 0ðTÞ ¼ σ 0
o exp

�
−
ER
a

RT

�
; (31)

σ″ðTÞ ¼ σ″o exp

�
−
EI
a

RT

�
; (32)

where T and T0 are expressed in degrees Kelvin (K) (T0 ¼ 298 K),
σ 0
o and σ 0 0

o are two constants having the dimension of a conductivity,
and ER

a and EI
a denote the activation energy associated with the real

(in-phase) and imaginary components of the complex conductivity
of the coal. The fit is shown in Figures 8 and 9 for the in-phase
conductivity, the quadrature conductivity, and the normalized char-
geability. The in-phase and quadrature conductivities have roughly
the same activation energy (Figure 8). This value (approximately
15 kJ∕Mol) is similar to the activation energy of the viscosity of the
bulk pore water indicating that the conduction and polarization
processes are related to the mobility of ionic charge carriers and
their accumulation at the grain scale. Indeed, the viscosity and ionic
mobility (alternatively the diffusion coefficients) are related to each
other by the Einstein–Smoluchowski relationship.

Figure 7. Tomography results of test 2 using the GN method. (a) Estimated electrical conductivity field tomogram. (b) Scatterplot of the true
electrical conductivity field against the estimated one. (c) Estimated chargeability field tomogram. (d) Scatterplot of the true chargeability field
against the estimated one.
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It should be remembered that coal is characterized by a high cat-
ion exchange capacity (Wong et al., 1996). The results indicate that
the normalized chargeability increases substantially with tempera-
ture. Hydrated coal in the vicinity of the burning front of the coal
seam is therefore expected to be characterized by high values of the
normalized chargeability. This implies that induced polarization is
expected to be a pertinent method to localize the burning front of
coal seams. This will be shown in the next section.

FIELD APPLICATION

Description of the case study

We now apply the PCGA algorithm to a case study of a coal seam
fire. Our test site corresponds to the Lewis coal seam fire located
northeast of the intersection of Highway 170 (Marshall Road) and
Cherryvale Road, south of Boulder, Colorado (USA). The Lewis

mine was operated by the Peerless Coal Company from 1914 to
1942 (Rodriguez, 1983). The coal seam fire has been active for more
than 50 years and is still ongoing. The coal seam fire is located in the
Gorham subbituminous coal formation (2–4 m thick, Figure 11a),

Table 3. Data and parameters coefficients of determination
(R2) values of the synthetic and Lewis fire study cases.

Data Parameters

Test 1 Test 2 Lewis Test 1 Test 2

GA GN GA GN GA GN GA GN GA GN

σ or σa 0.99 0.99 0.98 0.85 0.7 0.8 0.80 0.79 0.62 0.12

η or ηa 0.93 0.93 0.98 0.95 0.2 0.0193 0.52 0.39 0.30 0.07

The quantity ηa denotes the apparent chargeability, σa denotes the apparent electrical
conductivity, σ denotes the electrical resistivity (in ohm-m), and η denotes the
chargeability (composed between 0 and 1, dimensionless).In case of data, R2 is
computed for σa and ηa . When considering the parameters, R2 is computed from
the estimated and true fields.

Table 5. Computational times (in h) for the synthetic case
studies. Each duration represents the total computational
time required for performing the corresponding tomography.
All simulations were performed on a small workstation
equipped with 32-core 2.1–3 GHz processors, 128 GB RAM
and with no parallelization for the inverse problem.

Test 1 Test 2 Lewis fire

GA GN GA GN GA GN

σ — Tomography 2.9 42.4 7.4 42.4 3.4 22.9

η — Tomography 2.7 41.3 7.3 41.1 2.7 11.5

Table 4. Time domain induced polarization setup.

Amplitude of injected current 100 mA

Injection duration 1.6 s

Number of windows 10

Window duration 0.1 s

10°C
20°C
30°C
40°C
50°C
60°C
70°C
80°C
90°C

Frequency (in Hz)

Frequency (in Hz)

Q
ua

dr
at

ur
e 

co
nd

uc
tiv

ity
 (

S/
m

)
In

-p
ha

se
 c

on
du

ct
iv

ity
 (

S/
m

)
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Figure 8. Complex conductivity spectra of a granular coal in tap
water for the temperature range 10°C–90°C. Note the increase of
the in-phase and quadrature conductivities with the temperature.
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215.7 0.2kJ/Mol(R 0.999)R

aE = ± =

213.9 0.4kJ/Mol(R 0.996)I
aE = ± =

Quadrature conductivity 

Figure 9. In-phase and quadrature conductivity at 10 Hz as a func-
tion of the temperature (in °C). The plain lines correspond to a fit of
the experimental data with Arrhenius’s law. The activation energies
for the in-phase and quadrature conductivities are similar to the ac-
tivation energy of the viscosity of water. This is expected because
the mobility of the ions and counterions is related to the viscosity of
water.
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lying roughly at a depth of 10–15 m. The formation dips 4° and is
located above the Laramie Formation (Rushworth et al., 1989).
To better localize the coal seam fire, we performed a series of

time-domain induced-polarization measurements. The induced-
polarization measurements were performed on five parallel profiles
(see Figures 11b and 12a) with spacing of 5 m. A total of 32 stainless
steel electrodes (5 m spacing between the electrodes along the pro-
file) connected to an ABEM SAS4000 resistivity meter were used
for each profile. AWenner-α configuration was used to collect 629
apparent resistivities, for which a current of 100 mA is injected be-
tween the current electrodes A and B and the voltage is measured
between the M and N potential electrodes, which are located be-
tween the [A, B] current electrodes (Wenner array).
For the chargeabilities, the primary current was injected for 1.6 s.

The decay of the secondary voltage over time is measured over 10
windows of 0.1 s each (10 partial chargeabilities are measured; see
Figure 12 and Table 4). We use a dead time of 400 ms after the
shutdown of the primary current. In the laboratory with small ca-
bles, we observed electromagnetic inductive and capacitive cou-
pling effects for a dead time of 35 ms (Mao and Revil, 2016,
their Figure 15). For field experiments, depending on the length
of the cables, Kemna et al. (2012) recommend a dead time of
200–400 ms if the same cables are used for the current injection
and voltage measurements to avoid capacitive and inductive effects.
To give an idea about the chargeability data, we plot in Figure 12b
the evolution of the partial chargeabilities over time for two quadru-
poles [A, B, M, N] on profile 1.
The data standard deviations are used to build the data covariance

matrix (diagonal matrix with the inverse of the standard deviations in
its diagonal). The apparent resistivities range from 8.9 to 1267 ohm-m
and have a mean value of 148 ohm-m. The apparent chargeabilities
range from 0.19 to 237.94 mVV−1 and have amean of 51.9 mVV−1.

Determination of the semivariogram

We need to deal with the issue of characterizing a variogram that
will geostatistically guide the inversion by providing physically

meaningful constraints. In practice, when we do not have any prior
information about the field, we can consider that the parameters are
known at some few discrete spatial locations (e.g., through borehole
data). Then a weighted least-squares minimization is used to esti-
mate the parameters of an experimental variogram that best fits
these data. Nevertheless, it may be sometimes quite challenging to
collect samples at different depths. In this case, it is judicious to
derive the experimental variogram from a parameter that gives di-
rect information on the parameter that we want to estimate. For in-
stance, in our case, we used the self-potential (SP) data to estimate
an experimental variogram for the conductivity and chargeability
fields. Because the SP field is related to the presence of the burning
front (through a thermoelectric effect), it can be used to infer stat-
istical information on its spatial structures at least in the horizontal
plane. The idea of using theoretical variograms to fit experimental
ones is not new in geosciences (e.g., Deutsch and Journel, 1992;
Goovaerts, 1997; Kitanidis, 1997; Webster and Oliver, 2001; Min-
sasny and McBratney, 2005). Several types of variograms can be
used to fit the data (e.g., linear, exponential, Gaussian spherical).
We found that an exponential variogram best described the behavior
of our SP data. The variogram that we used is defined as follows:
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chargeability data can be fitted by Arrhenius’s law (plain line) with
an activation energy of 15.1� 1.4 kJ∕Mol (R2 ¼ 0.96).
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Figure 11. Geologic cross section and map of the Lewis coal mine
(from Revil et al., 2013). (a) Position of the Gorham coal seam.
(b) Map of the former Lewis coal mine. The five lines (P1–P5) re-
present the profiles used for acquiring resistivity and time-domain
induced-polarization measurements in order image the electrical re-
sistivity and chargeability fields. Ref represents the reference for the
self-potential survey discussed later in the paper (see Figure 14).
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γðhÞ ¼ σ2
�
1 − exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
hx
lx

�
2

þ
�
hy
ly

�
2

þ
�
hz
lz

�
2

s ��
;

(28)

where h ¼ ðhx; hy; hzÞ is the 3D direction vector and lx, ly, and lz
are the correlations lengths in the x-, y-, and z-directions. The esti-
mated values of σ2; lx; ly, and lz are reported in Table 1.

Result of the inversion and interpretation

We seek to invert the field data using the PCGA approach. Our
field is discretized into 48,000 unknown cells, the truncation order
K ¼ 30, and the theoretical variograms used for the electrical resis-
tivity and the chargeability models are exponential. A complete de-
scription of the inversion parameters is reported in Table 1. We use
the geometric mean of the apparent electrical resistivities as the
starting initial resistivity model.
In this case, we used K ¼ 30. The relative errors λKþ1∕λ1 associ-

ated to the electrical resistivity and chargeability covariance matrices
are 0.0033 and 0.02. The inverted electrical resistivity tomogram is
shown in Figure 13. It shows the presence of a very low resistivity
anomaly ≈ 1.6 ohm-m, which has a depth starting from approxi-
mately 13 m above the ground surface and extends from x ¼ 50 m

to x ¼ 70 m. Duba (1977) states that coked coal can have a very low

resistivity (<1 ohm-m), which can suggest that the conductive body
that we are seeing in our 3D resistivity tomography potentially
corresponds to the burning region. In addition, the reports of the in-
spections made by the Colorado Geological Survey (CGS) and the
Colorado Inactive Mine Reclamation Program (CIMRP) in 1984
and 1988 are in accordance with the location of the imaged anomaly.
We now use the electrical resistivity field illustrated in Figure 13

to compute the apparent chargeabilities using equation 7. The initial
chargeability model that we used for running the inversion is given
by

η0 ¼
ηn
σ
; (29)

where σ is the electrical conductivity and ηn is the normalized char-
geability. The inversion process remains unchanged, and the best
intrinsic chargeability model obtained after five iterations of the
inverse algorithm is represented in Figure 13c. It shows a region
with a chargeability of approximately 0.15 coinciding with the area
where we observed the low resistivity body and that is plausibly the
burning region.
We combine the resistivity and chargeability data through a nor-

malized burning front index (BFI) (dimensionless), which is noth-
ing else that the normalized chargeability is itself normalized to its
highest value:

BFI ¼
�

η

ηmax

��
σ

σmax

�
; (30)

where σ denotes the electrical conductivity, σmax

is the highest value of the of the conductivity
field, η is the intrinsic chargeability, and ηmax is
the highest value of the chargeability field. The
normalized burning front index is between 0 and
1 and is presented in Figure 13e. It clearly exhib-
its an area of high values corresponding to the
position of the target, which is the burning region
in our case. It shows that the anomaly starts at a
depth of approximately 13 m (located in the coal
seam formation); the position of this anomaly
is consistent with the self-potential anomaly of
thermoelectric origin recorded at the ground sur-
face (see Figure 14). Therefore, the BFI com-
bined the information from electrical resistivity
with the one obtained from the chargeability to
better diagnose, identify, and delineate the loca-
tion of the coal seam fire.
For comparison purposes, we also performed

the inversion of the field data using the GN
method. The results of this inversion are illustrated
in Figure 13. As one can see, the GN method
fairly reproduces the main heterogeneities of
the resistivity field (Figure 13b). That said, the
anomaly associated to the burning coal stretches
down and is not constrained to the coal layer as
obtained with the PCGA. The chargeability field
is globally similar to the one obtained with the
PCGA, but it seems to have slightly lower mag-
nitude values (Figure 13d). Although the BFI
clearly reveals the presence of an anomaly related

Figure 12. Simulation domain and data. (a) 3D representation of the simulation domain.
(b) Example of chargeability decays on two quadrupoles. The region of interest repre-
sents a 3D volume of 162 × 20 × 30 m, the five profiles used for collecting induced
polarization measurements are, respectively, located at y ¼ 0, 5, 10, 15, and 20 m
and are composed of 32 electrodes each.
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to burning coal (Figure 13f), the delineation and the magnitudes of
the BFI are questionable. In fact, the GN tends to oversmooth the
anomaly and to make it extend outside the coal formation. These re-
sults would be probably much better if more measurements were
available to better constrain the inverse problem. The normalized
chargeability defined by equation 30 is also normalized with respect
to its maximum value to get an index between 0 and 1. For porous
rocks without metallic particles, the normalized chargeability is con-

trolled by the cation exchange capacity of the material (the charge of
the surface per unit mass of grains) and a mobility of the charge car-
riers (for soils, see Revil et al., 2017a). Coal is characterized by a high
cation exchange capacity, as mentioned previously. Therefore, coal is
expected to be associated with a high normalized chargeability. Be-
cause the normalized chargeability increases linearly with tempera-
ture as discussed above (see also Revil et al., 2017a), we expect that
burning coal is associated with a high normalized chargeability.

Figure 13. Field data results. (a) Inverted 3D electrical conductivity spatial distribution obtained with PCGA. (b) Inverted 3D electrical con-
ductivity spatial distribution obtained with GN. (c) Inverted 3D chargeability field obtained with PCGA. (d) Inverted 3D chargeability field
obtained with GN. (e) PCGA BFI field. (f) GN BFI field. For the PCGA and GN tomograms, the electrical conductivity tomogram shows a
region of very low resistivity, which plausibly coincides with the localization of the burning front. That said, PCGA better delineates this
anomaly because it vertically restricts it to the coal layer, whereas GN tends to oversmooth this anomaly. The chargeability is high for the coal
seam and the burning front of the coal seam. This is why the anomalous chargeability distribution is broader than for the resistivity. The 3D BFI
determination shows the area of high probability of the presence of the coal fire. This area seemingly starts at a depth of approximately 13 m
and extends although the simulation domain from x ¼ 50 m to x ¼ 70 m. This result is consistent with the self-potential map shown in
Figure 14.

Geostatistical inversion of IP data E147

D
ow

nl
oa

de
d 

05
/1

0/
18

 to
 2

18
.2

01
.1

14
.1

31
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



CONCLUSION

We used a geostatistical inversion approach called the principal
component geostatistical approach (PCGA) to invert time-domain
induced-polarization data. The major advantages of this technique
include (1) the reduction of the dimensionality of the inverse prob-
lem by factorizing the prior covariance matrix as a product of low-
rank matrices and (2) avoiding the direct assembling of the Jacobian
matrix. These two points make the PCGA an appealing technique
from a computational point of view. Three case studies have been
investigated. In the first two cases, we successfully recovered the spa-
tial heterogeneities of the electrical conductivity and intrinsic charge-
ability fields of a 3D synthetic model. We compared our inverse
methodology to the conventional Gauss-Newton (GN) method,
which uses the first-order derivatives as smoothing constraints, and

we showed that using the geostatistical constraints can improve
reconstruction accuracy. In third case, we invert the electrical
resistivity and chargeability for a field survey performed over the
Lewis coal seam in Colorado. A burning front index combining
the chargeability and electrical resistivity tomograms derived from
our algorithm provides a 3D image of the burning front. Laboratory
experiments performed at lower temperatures (up to 90°C) support
the results of such tomography. This algorithm and methodology
could be applied to other problems such as CO2 sequestration to im-
age the evolution of the CO2 plume. We expect also to apply this
methodology to the full-waveform inversion of time-domain in-
duced-polarization data.
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Figure 14. Self-potential map. The position of the reference is shown
in Figure 5. The five profiles used for the induced polarization survey
are denoted P1, P2, P3, P4, and P5, whereas the triangles denote the
locations of the 160 electrodes. Each profile is 5 m apart from the
other, and the electrodes interspace is 5 m. We observe in the middle
of the domain, a negative self-potential anomaly (approximately
−50 mV) of which position is consistent with the high BFI values
retrieved from our 3D tomograms (see Figure 13). This negative
anomaly is likely associated with a thermoelectric effect (see Revil
et al., 2016).
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