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Abstract

Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st 

century. To anticipate and mitigate biodiversity loss, models are needed that reliably project 

species’ range dynamics and extinction risks. Recently, several new approaches to model range 

dynamics have been developed to supplement correlative species distribution models (SDMs), but 

applications clearly lag behind model development. Indeed, no comparative analysis has been 

performed to evaluate their performance.

Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of 

varying complexity including classical SDMs, SDMs coupled with simple dispersal or more 

complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based 

dynamic range model (DRM). We specifically test the effects of demographic and community 

processes on model predictive performance. Under current climate, DRMs performed best, 

although only marginally. Under climate change, predictive performance varied considerably, with 
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no clear winners. Yet, all range dynamic models improved predictions under climate change 

substantially compared to purely correlative SDMs, and the population dynamic models also 

predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated 

with more complex demographic and community processes, simple SDM hybrids including only 

dispersal often proved most reliable. Finally, we found that structural decisions during model 

building can have great impact on model accuracy, but prior system knowledge on important 

processes can reduce these uncertainties considerably.

Our results reassure the clear merit in using dynamic approaches for modelling species’ response 

to climate change but also emphasise several needs for further model and data improvement. We 

propose and discuss perspectives for improving range projections through combination of multiple 

models and for making these approaches operational for large numbers of species.

Keywords

climate change; species distribution models; demographic models; dispersal; virtual ecologist 
approach; simulated data; prediction; population viability

Introduction

As climate change advances in its threat to biodiversity worldwide, reliable predictions of 

range dynamics are needed to anticipate and mitigate potential impacts (Bellard et al., 2012, 

Pereira et al., 2010), and we have seen an upsurge of related methods and applications in 

recent years (Lurgi et al., 2015, Normand et al., 2014).

Range shifts are complex ecological processes driven by population dynamics and dispersal. 

These processes are co-determined by a plethora of other factors including changes to the 

abiotic and biotic environment (Sexton et al., 2009). Adequately representing these 

interacting processes in an operational model and collecting data for reliably estimating the 

many parameters of such complex models is a formidable challenge even for a single species 

(Ehrlén & Morris, 2015) let alone for complex ecosystems. Older models relied on highly 

simplified conceptualizations where the abiotic environment is the essential driver of 

climate-induced range shifts ignoring any demographic processes involved in range shifts. 

These so-called species distribution models (SDM; Guisan & Thuiller, 2005, Guisan & 

Zimmermann, 2000) have reached high popularity for providing biodiversity scenarios under 

climate change, owing to the strong simplification of the represented processes and their 

relative ease to use. However, their use for climate change projections has been discussed 

controversially (Dormann et al., 2012, Thuiller et al., 2013) because SDMs assume that 

observed species’ distributions are not affected by dispersal limitations (Svenning et al., 
2008) or source-sink dynamics (Holt et al., 2005), and ignore complex transient dynamics 

during range shifting (Lawler et al., 2013, Zurell et al., 2009).

To address these issues, more mechanistic approaches of modelling range dynamics have 

been advocated (Gallien et al., 2010, Thuiller et al., 2008) and several frameworks have been 

developed (or revived) (Ehrlén & Morris, 2015, Lurgi et al., 2015, Pereira et al., 2010). 

While all of them attempt to overcome the limitations associated with SDMs, their ability to 
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improve projections for species’ range dynamics has never been compared systematically. 

The lack of such evaluation is likely due to the difficulty to get appropriate benchmark data, 

consisting of information on distribution, abundance and demography. Such complex 

datasets are rare and benchmarking may be hampered if not all processes occurring in these 

ecosystems are fully understood (Cheaib et al., 2012). We propose to conduct benchmarking 

of new methods for modelling range dynamics using simulated community data, which 

allows controlling all relevant ecological processes driving species distribution and track 

transient dynamics in space and time (“virtual ecologist approach”, Zurell et al., 2010).

We compare five generic modelling frameworks for predicting range dynamics capable of 

(fast) calibration for any single species (Fig. 1). The choice of models was guided by our 

objectives to include frameworks that are representative of current approaches for predicting 

actual abundance (Ehrlén & Morris, 2015), that differ in their underlying assumptions and in 

the complexity of data and process detail needed to parameterise them, and for which we 

could find proficient users to run the simulations for our study to assure a fair comparison. 

Due to a lack of common terminology, we refer to all five models (including SDMs) as 

range models and to those models that explicitly consider dynamic processes of range shifts 

(dispersal, population dynamics) as range dynamic models (Fig. 1). A subset of these 

models relies on SDMs to predict habitat suitability and infer demographic rates (‘SDM 

hybrids’). One approach infers demographic rates directly from the data and models habitat 

suitability as an outcome of demographic processes (Fig. 1).

We explicitly focus our comparison of models on predicting range dynamics of single 

species. Virtual species, however, were simulated within a virtual community to imitate 

constraints on species distribution and abundance resulting from both abiotic factors and 

biotic interactions. We first simulated virtual communities using a dynamic, individual-

based, multi-species simulation model, and then tracked these communities under climate 

change. Range models were calibrated using data from the output of the virtual community 

model. We tested the effects of different demographic (dispersal, source-sink dynamics) and 

community processes (single species, species sorting, neutral dynamics) as well as of 

environmental stochasticity on model predictive performance.

By comparing the performance of the different range models before and during climate 

change we aim at answering the following questions: (1) Do SDMs and different range 

dynamic models predict current species’ distribution and abundance equally well? (2) Do 

more complex, demography-based approaches consistently outperform SDMs under climate 

change? (3) How is predictive model performance affected by prevailing demographic and 

community processes? (4) What are the effects of structural decisions during model 

building? We found that more complex range dynamic models improved current range 

projections considerably compared to purely correlative SDMs. Under climate change, 

simpler range dynamic models often outperformed more complex models, especially when 

benchmarking data were simulated with more complex demographic and community 

processes. We discuss guidelines and perspectives for increasing the reliability of climate 

change-induced range predictions and for applying range dynamic models more widely in 

climate impact assessments.
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Material and methods

Overview of range dynamic models and hypotheses

We compare a classical SDM and four different range dynamic models, three of which are 

SDM hybrids (Fig. 1, Appendix S1 in Supporting Information). The simplest SDM hybrid, 

MigClim, supplements SDM predictions with distance-dependent colonisation probabilities 

(Engler & Guisan, 2009, Normand et al., 2013). However, local demographic processes 

including regeneration and mortality are not explicitly accounted for although these are 

crucial for predicting population viability and spread rates. More complex SDM hybrids 

couple SDM-derived habitat suitability maps and population models (Dullinger et al., 2012, 

Keith et al., 2008, Zurell et al., 2012b). These models can be calibrated with simple 

demographic information as we demonstrate with DemoNiche (Nenzén et al., 2012) or can 

be inversely fitted to abundance data as demonstrated by the application of LoLiPop (Cabral 

& Schurr, 2010).

The value of such SDM hybrids is debated, mainly because of potential circularity problems 

(Gallien et al., 2010) and because the relation of SDM-derived habitat suitability to species 

demographic parameters remains unclear (Thuiller et al., 2014). Dynamic range models 

(DRM) have been introduced to overcome these issues. They do not rely on SDM output and 

directly relate demographic rates to environmental factors and simultaneously estimate 

parameters of the population model and the demography-environment relationship from 

abundance and distribution data (Pagel & Schurr, 2012). We hypothesise that predictive 

performance under climate change will increase from left to right in Fig. 1 because (i) range 

dynamic models explicitly model the dispersal process and should hence outperform simple 

SDMs, (ii) population dynamic models (DemoNiche, LoLiPop, DRM) additionally model 

abundance dynamics from differently resolved demographic processes and should thus 

outperform MigClim that only simulates potential colonisation, and (iii) DRMs jointly 

estimate the effects of dispersal and demography on distribution and abundance dynamics 

and should thus outperform SDM hybrids which may suffer from circularity problems.

Virtual species/communities

Simulation model—An individual-based, spatially-explicit, stochastic model (IBM; 

Gravel et al., 2006, Münkemüller et al., 2012) was adapted to simulate the dynamics of a 

focal species and its co-occurring competitors in heterogeneous environments. The IBM is a 

cellular automaton in which each sub-cell is characterised by unique environmental 

conditions (temperature and soil moisture) and can support one sessile individual. In the 

following, we provide a simple overview over the main characteristics of the simulation 

model, while more details are given in Appendix S2.

The IBM’s spatial resolution only allows individual counts, yet the range models work at the 

population level. We therefore implemented a hierarchy of two spatial scales so that the 

sessile individuals are interacting locally but that aggregations at larger scale (10×10 sub-

cells) provide information on community composition and species abundance, which serve 

as input for the range model comparison. One time step corresponds to one year and the four 

main processes within one time step are large-scale, contagious disturbances at the coarse 
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resolution, and then the local (sub-cell) processes of adult mortality, propagule supply, and 

recruitment of propagules to adult size (Fig. S1).

(1) Large-scale contagious disturbances like fire or windthrow act at the coarse 

scale with an overall probability of 0.05, resulting in stochastic population 

dynamics and incomplete range filling. Disturbances were omitted for some 

scenarios (see Simulations), and are initiated in randomly selected cells at the 

coarse scale and spread to the eight nearest neighbours. In response to 

disturbance, individuals are killed with a probability of 0.9.

(2) Within each time step, adults die with a probability of 0.1 and can be replaced 

by recruits from the local community or by immigrants.

(3) Propagule supply is determined by offspring production and by propagule 

dispersal. Only adults that are at least one time step old can produce 

propagules. Offspring production rate is determined by the local (temperature 

and moisture) environment, and is described by a two-dimensional Gaussian 

function for the reproductive niche, with each species having a unique 

optimum. The Gaussian function is cut off at a threshold of 0.001 to obtain 

finite niche breadth. Dispersal is simulated using a negative exponential 

dispersal kernel where the rate parameter α determines the mean dispersal 

distance (1/α).

(4) Recruitment into empty space or by competitive replacement follows a lottery 

function of dispersal-driven propagule supply and interspecific differences in 

competitive ability. Competitive performance depends on the species’ niche, in 

particular the probability λ of propagules to survive in the understory of adults 

prior to recruitment, thus mimicking simple resource competition. An 

individual’s competitive performance (the probability of a propagule to 

establish and replace the resident) is proportional to the ratio between its 

survival probability λ and that of the resident (or between λ and a threshold of 

0.1 in empty cells). The survival probability λ is a function of the local 

environment, and we assumed a two-dimensional Gaussian function for the 

survival niche (driven by soil moisture and temperature, see section 

‘Simulations and sampling’ for more detail), which is equivalent to the 

reproductive niche, if not mentioned otherwise. The cells can stay empty, if the 

overall propagule rain is too small.

The species’ fundamental niche is equivalent to the reproductive niche while the realised 

niche can be smaller due to interspecific competition (determined by the overlap of 

propagule survival niches of competing species), or can be larger due to source-sink 

dynamics, which occur in the IBM if the species’ survival niche is wider than its 

reproductive niche.

Simulations and sampling—The virtual communities were simulated in artificial 

landscapes of 20x125 (coarse-scale) cells. Spatially auto-correlated patterns of soil moisture 

in the coarse-scale landscape were generated from two-dimensional fractal Brownian 

motion. Spatial variation in temperature was represented as a linear latitudinal gradient with 
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added spatially auto-correlated noise. Sub-scale environmental heterogeneity at the scale of 

the 10×10 sub-cells was added as normally distributed noise to the coarse-scale cells’ mean 

temperature and moisture. We simulated temporal variability in temperature by adding for 

each time step a temporally auto-correlated random deviate to temperature.

Simulations were initiated by randomly distributing the virtual species in their respective 

suitable habitats. First, simulations were run for 900 spin-up years under current 

environmental conditions and variability to ensure that species/communities were in 

(dynamic) equilibrium with the environment. After the end of the spin-up period (hereafter 

referred to as year 0), climate change was initiated with a linear increase in temperature of 

3° Celsius over a period of 100 years. Soil moisture patterns were assumed to remain 

constant over the simulation period.

We ran scenarios for three different community types: (1) neutral dynamics, (2) species 

sorting, and (3) single species without any competitors. The first two community simulations 

consisted of nine interacting species. For the species-sorting scenarios, the niche optima of 

the eight co-occurring species in environmental space were symmetrically arranged around 

the focal species niche with a fixed radius (Table S1, Fig. S4). In the neutral scenarios, all 

species had equivalent niche optima and widths. All species within a community were 

assumed to have equal dispersal ability.

We ran four scenarios for each type of community dynamics:

(1) SR: short-range dispersal without large-scale disturbances (with α=1/mean 

dispersal distance=0.05).

(2) LR: like SR but with long-range dispersal (LR; α=0.1).

(3) SR+sinks: source-sink dynamics where the reproductive niche was narrower 

(by 1/3) than the survival niche resulting in the realised niche being larger than 

the fundamental niche (Fig. S4).

(4) SR+cont: with large-scale contagious disturbances.

Overall, we ran 12 different scenarios as input for the subsequent range model 

intercomparison. To avoid increasing prevalence in the single species and in the source-sink 

scenarios, the fundamental niches for these scenarios were reduced (Table S1 and Fig. S4).

Sampling data were gathered at the coarse spatial scale. We assumed no detection errors and 

thus species data always represented a ‘perfect’ sampling of the virtual world. Different 

kinds of data were sampled according to the input needs of the range models (Fig. 1), 

including presence-absence and abundance data (n=500, year 0), abundance time series 

(n=50, years -10 to 10), and mean demographic rates (years -20 to 0; Appendix S1).

Calibration of range models

SDMs were fitted by relating the sampled presence/absence data from year 0 to the two 

environmental variables using the ensemble platform biomod2 in R (Thuiller et al., 2009) 

and simple averaging was used to derive consensus predictions. Predicted habitat suitability 
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was transformed to presence/absence predictions by applying a TSS-maximising threshold 

(true skill statistic; Allouche et al. 2006).

MigClim combines habitat suitability or presence/absence predictions from SDMs with a 

dispersal kernel to predict colonisation probabilities (Engler & Guisan 2009). Here, habitat 

suitability was rescaled to range between 0 and 1 and a sigmoidal relationship was used to 

relate habitat suitability to colonisation probability. Other structural relationships were tested 

and are discussed in Appendices S1 and S4. As dispersal kernel we took the known dispersal 

kernel from the IBM.

DemoNiche is a stage-structured matrix population model that constrains demographic rates 

or carrying capacity by habitat suitability (given by an SDM) and connects local populations 

by a dispersal kernel (Nenzén et al. 2012). Thereby, choices have to be made regarding the 

demographic property (vital rates or carrying capacity) that should be constrained and the 

relationship to habitat suitability (linear, sigmoidal, threshold). Here, we evaluated predictive 

performance of different model configuration for year 0, and averaged predictions of the 5 

best model configurations (see Appendix S1). Appendix S4 provides a more detailed 

discussion on effects of structural uncertainty. We used a box-constraint variable metric 

algorithm to calibrate the transition matrix by minimising differences between observed and 

predicted mean demographic rates (Appendix S1). Calibrating the transition matrix was 

necessary because the induced functional relationship between habitat suitability and 

demographic transition probabilities implicitly assumes that demography is known for 

optimal conditions (habitat suitability = 1) while demographic rates are usually averaged 

across the population. As dispersal kernel we took the known dispersal kernel from the IBM.

LoLiPop simulates local population dynamics with different populations connected by two-

dimensional dispersal kernels (Cabral & Schurr 2010). Population dynamics can only take 

place on suitable cells (given by SDM). Here, local population dynamics followed a 

Beverton-Holt model extended with Allee effects (Cabral & Schurr 2010). Demographic 

parameters were estimated from spatial abundance data from year 0 using maximum 

likelihood estimation. As dispersal kernel we took the known dispersal kernel from the IBM.

The DRM is based on a simple stochastic model of local population dynamics (Ricker 

model) coupled by a negative exponential dispersal kernel. The demography-environment 

relationship is formulated as a regression of intrinsic population growth rate against the 

environmental variables and the carrying capacity is assumed to likewise vary proportional 

to the growth rate. This demography-environment relationship, the proportionality between 

growth rates and carrying capacity as well as the mean dispersal distance are jointly 

estimated from presence/absence data from years -10 and 10 and from 50 randomly selected 

abundance time series (covering the same 20 years) using a hierarchical Bayesian modelling 

approach (Pagel & Schurr 2012).

Assessing range model performance

Models were calibrated under equilibrium conditions and were then used to project species 

distribution and abundance under climate change. Predictive performance was evaluated 

against full known truth for each time step within the 100 years of climate change. We 
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assessed accuracy of spatial predictions by first converting all predictions to binary maps 

and then calculating TSS (Allouche et al., 2006). Correlations between observed and 

predicted abundance as well as predicted occurrence probabilities were assessed using 

Spearman’s rank correlation coefficient Rho. Further, we compared positions of range front, 

centre, and rear edge by calculating quantiles (95%, 50%, and 5%, respectively) of the 

observed and predicted latitudinal positions. Last, we calculated relative deviation in total 

abundance (summed over all cells) as difference between predicted and observed abundance 

divided by observed abundance (except for SDMs and MigClim), and differences in relative 

abundance estimates, which is the relative decrease in observed and predicted abundance 

since year 0.

Results

Stochastic community IBM

The twelve different scenarios led to distinct spatial and temporal distribution of presence-

absence and abundance of the focal species (Appendix S2). Generally, short-range dispersal 

resulted in stronger spatial clustering of populations. Differences in spatial clustering for 

long- and short-range dispersal were particularly pronounced in neutral communities and 

large-scale contagious disturbances resulted in even patchier spatial distributions. Under 

climate change, the focal species exhibited range shifts accompanied with distinct 

population decreases. Also, for all scenarios the focal species showed distinct time lags in 

range filling following climate change with dispersal limitations at the range front and 

persistence in unsuitable conditions at the rear range edge (Fig. 2, Fig. S6). Dispersal 

limitations were more pronounced in short-range dispersal scenarios and under biotic 

interactions. In the species-sorting scenario, competing species were blocking the range 

front, whereas in neutral communities, dispersal success became more random due to strong 

spatial clustering. Overall, these diverse distributions provided a solid basis for comparing 

the predictive performance of SDMs and range dynamic models.

Range model performance under current conditions

For the observation period (year 0), DRMs best predicted the focal species’ mean and 

maximum abundances along the temperature gradient (Figs. 2, S7-S8). SDMs often slightly 

overestimated occurrence probability at range margins, which propagated differently to the 

SDM hybrids. For example, LoLiPop predicted local abundances near range margins quite 

successfully but underestimated abundances at range centres, whereas DemoNiche 

overpredicted local abundances across nearly the whole range. Correspondingly, DRMs 

obtained highest TSS and Rho in year 0 for most scenarios although differences between 

range models were minor except that DemoNiche achieved much lower TSS scores while 

Rho scores were consistently high (Fig. 3). By contrast, LoLiPop and SDMs predicted range 

positions under equilibrium conditions best while DemoNiche and DRMs predicted slightly 

too large ranges. DRMs and LoLiPop approximated total abundance best while DemoNiche 

generally overestimated abundances (Fig. 4).
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Range model performance under a warming climate

Under climate change, prediction accuracy of SDMs decreased significantly because the 

range shifting potential was greatly overestimated by the full-dispersal SDMs (Fig. 3), 

especially under short-range dispersal (Figs. 5-6). All range dynamic models were able to 

overcome these limitations to some extent, achieving higher TSS and Rho values than SDMs 

and generally showing less deviation between observed and predicted range margins (Figs. 

3, 5, Figs. S11-S27). Here, DRMs were outperformed by SDM hybrids though often only 

marginally, with MigClim and DemoNiche showing considerably higher TSS scores, 

slightly higher Rho scores and smallest average deviations from range centre and rear edge. 

LoLiPop predicted lowest average deviations from range front. Again, total abundance was 

best predicted by DRMs and LoLiPop, and overestimated by DemoNiche. However, in terms 

of relative change in abundance, all population models produced more similar projections 

with a tendency towards underestimating the relative abundance and, thus, overestimating 

extinction risks (Fig. 4, Figs. S28-S29). On average, DemoNiche best predicted relative 

change in abundance.

Effects of demographic and community processes

Prediction accuracy (TSS and Rho) of all range models decreased most under short-range 

dispersal and for scenarios including biotic interactions (Fig. 6). Under neutral dynamics, 

which produced the most complex range-shifting dynamics, the simple MigClim generally 

performed best. Overestimation of future total abundance by DemoNiche was particularly 

strong under neutral dynamics. Here, LoLiPop predicted total abundance best, while there 

were no clear winners among the population models for the other cases. However, in some 

scenarios, LoLiPop estimated quite extreme demographic rates that resulted in over-

compensatory local population dynamics, most severely for the long-range dispersal, species 

sorting scenario (Fig. S29). Generally, underestimation of relative abundance and, thus, 

overestimation of extinction risks was more severe under long-range dispersal and, to a 

minor extent, under neutral dynamics.

Effects of structural uncertainties

Effects of structural uncertainty were very pronounced in all range dynamic models 

(Appendix S4). For example, assuming a linear relationship between SDM-derived habitat 

suitability and colonisation probability in MigClim led to misleading predictions of near-

complete colonisation of the entire grid in long-range dispersal scenarios (Figs. S30-S31). In 

DemoNiche, prior knowledge of the demography-environmental relationships helped 

reducing uncertainty considerably. Also, model configurations that achieved highest 

accuracies under equilibrium conditions usually remained among the best for climate change 

predictions. We found no clear differences between constraining demographic rates or 

carrying capacities by habitat suitability in DemoNiche, although the latter showed reduced 

accuracy in long-range dispersal scenarios (Figs. S32-S34).

Discussion

We took the challenge of benchmarking state-of-the-art range models of varying complexity 

using a comprehensive set of simulated data that account for demographic and community 
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processes. Based on the comparison across these benchmark data and diverse model outputs, 

our initial questions can be answered as follows: (1) Under current climate, more complex 

range dynamic models like DRMs better fit the observed species distributions and 

abundances, although differences are small. (2) Under climate change, all dynamic 

approaches improved predictions over simple SDMs. We could not, however, identify a 

single, best approach for making predictions. Predictions of absolute abundance differed 

markedly between population models while predictions of relative abundance were similarly 

accurate. (3) Differences in dispersal ability and complex biotic interactions may introduce 

high uncertainty in range predictions, while the effects of source-sink dynamics and 

increased disturbance were minor. (4) In all range dynamic models, structural decisions 

during model building can have great impact on model accuracy, but prior system 

knowledge on important processes can reduce these uncertainties considerably. Our results 

reassure the clear merit in using dynamic approaches for range predictions. But they also 

emphasise several needs, namely: (i) to compare and combine multiple model outcomes for 

better capturing the uncertainty associated with range predictions under climate change; (ii) 

to gather more and higher quality data on species’ demography; (iii) to run preliminary tests 

with each demographic model in order to optimise the structural decisions and settings; and 

(iv) to incorporate assembly processes for better capturing the within-community dynamic 

processes and their constraints on range dynamics. In summary, implementing these insights 

will greatly help advancing our ability of predicting future range dynamics and making these 

approaches operational for larger numbers of species.

Range dynamic models on a par for current climates

Under current climates, DRMs provided the best fit in most cases, although their advantages 

in prediction accuracies were generally small compared to other range dynamic models and 

also compared to SDMs, which were not consistently outperformed by the more dynamic 

approaches. DRMs jointly estimate the demography-environment relationship, dispersal and 

other demographic parameters and, thus, avoid possible circularities that might arise from 

the fitting steps for SDM hybrids (Gallien et al., 2010, Pagel & Schurr, 2012). Yet, for the 

source-sink scenarios that could be assumed to be problematic for SDM hybrids while not 

for DRMs (Pagel & Schurr, 2012, Schurr et al., 2012), we did not find evidence that DRMs 

generally outperform hybrids.

Separate fitting steps in SDM hybrids of first fitting SDMs and then fitting the population 

model may lead to bias when species are not in equilibrium with their environment. 

However, if species are dispersal limited in some parts of their range but the entire niche in 

environmental space is well-covered by data, as is the case for our source-sink and 

contagious disturbance scenarios, circularity in SDM hybrids appear not to be a limiting 

problem. If, on the other hand, observed species’ distributions are biased by dispersal 

limitations such that parts of the environmental niche are not filled, then DRMs may be the 

preferred choice, as this approach directly accounts for the (limited) dispersal in the 

estimation of the species’ niche and can thereby reduce the bias that may otherwise arise 

from the disequilibrium (Pagel & Schurr, 2012). Still, more research is needed to (i) develop 

robust approaches for assessing limitations in range filling a priori (Svenning & Skov, 2004) 

as an important model assumption of SDM hybrids, (ii) to assess how prevalent the 
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phenomenon of incomplete range filling is in extant species, and (iii) to evaluate DRM 

predictive performance and their ability to accurately distinguish between environmental 

filtering and dispersal limitations in such situations.

Large variation in predictive performance under future climates

All range dynamic models tested here considerably improved climate change projections 

compared to SDMs, although relative model performance differed from those under current 

climates. Surprisingly, advantages of DRMs in predicting current ranges did not result in 

better predictions of future ranges compared to SDM hybrids. This may result from different 

calibration approaches, calibration data and process detail covered by the models. For 

example, the relatively poor performance of DRMs might arise to some extent from 

uncertainty in estimated dispersal rates while dispersal kernels were known for SDM 

hybrids. Also, DRMs overestimated the position of future trailing range edges (Figs. 3,6). 

This likely originates from the fact that DRMs did not explicitly describe adult survival, 

which is independent from the environment in the IBM, but summarised all demographic 

processes in an environment-dependent population growth rate. Therefore, the transient 

persistence of populations when temperatures have become unfavourable at the rear edge 

(Fig. 2) was not accurately predicted. Consequently, the different SDM hybrids 

outperformed the DRM in almost all scenarios. Notably, also MigClim, the simplest 

approach that only supplemented SDMs with a dispersal kernel, showed spatial predictions 

that were, on average, similarly accurate as the more complex approaches.

The main advantage of the more complex approaches is that they also predict population 

dynamics and associated extinction risks. Both before and after climate change simulations, 

DemoNiche largely overestimated abundance, while LoLiPop and DRMs produced more 

reasonable estimates. Nevertheless, the relative decrease in abundance and associated 

extinction risks were often better approximated by DemoNiche than by the other two 

population dynamic models. This is likely due to the fact that DemoNiche uses demographic 

instead of abundance data for calibration, and that DemoNiche does not restrict abundance 

except when habitat suitability was related to carrying capacity. Calibrating demographic 

parameters directly allows DemoNiche to more accurately predict population trajectories in 

many cases. In fact, calibration on abundance data led to estimation of partially unrealistic 

demographic rates in LoLiPop resulting in over-compensatory local population dynamics 

(although this could be avoided by choosing an alternative underlying population model; 

Cabral & Schurr 2010). Although also calibrating on abundance data, this effect was not 

found in DRMs, as DRMs use abundance time series for calibration that inherently include 

information on demographic trajectories.

We conclude that (i) predictions of relative change in abundance are often more reliable than 

predictions of absolute change in abundance, a feature already known for population 

viability models (Beissinger & Westphal, 1998, Zurell et al., 2012b), and that (ii) data on 

demography either through direct measurements or through abundance time series are 

indispensible for reliably calibrating population dynamic models (Schurr et al., 2012). Our 

study confirms that all calibration approaches using demographic data and/or spatial or 

temporal abundance data can generate reasonably accurate predictions overall. However, 
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models based solely on spatial abundance data may exhibit high uncertainty in future 

predictions and require careful testing of model structure. A constraining point is that 

accurate data on demography and spatial distribution and abundance are not available for 

many species and in high quality. Also, density is not easy to measure in many plant 

communities, where biomass or relative cover is preferentially recorded. Time series of 

relative cover may show strong inter-annual variability, which is not necessarily related to 

population processes (Boulangeat et al., 2012). Thus, we do not only need to increase our 

efforts into data collection but also in defining (more) meaningful response variables for 

population dynamic studies.

Effects of demographic and community processes

Generally, spatial prediction accuracies of all range models decreased when the focal species 

was interacting with other competitor species, especially under short-range dispersal (Fig. 

6). Contrary, the effects of large-scale disturbances and source-sink dynamics on model 

accuracy were comparably low. None of the tested range dynamics models account for biotic 

interactions and hence they all experienced difficulties in these particular cases. More work 

is thus needed to incorporate assembly processes in such dynamic models (Boulangeat et al., 
2012, Cabral & Kreft, 2012, Mokany et al., 2012). Therefore, caution is advised with these 

models when biotic interactions are highly stochastic as was shown in the neutral scenarios. 

Although the assumption of neutral community dynamics is much debated for temperate 

ecosystems, observed spatial distributions are often astoundingly consistent with neutrality 

even if driven by different mechanisms (Bell, 2005). Our results indicate that whenever the 

ecosystem under study is strongly affected by biotic or environmental stochasticity, simpler 

range models such as MigClim may be preferred over more complex population models 

although prediction of population dynamics and abundances cannot be retrieved from such 

models.

We additionally stress that although predictive performances of all models decreased 

stronger in the short-range compared to long-range dispersal scenarios, this does not imply 

that predictions are generally more reliable for long-distance dispersers. Our results need to 

be judged with some caution and with respect to the virtual simulation model setup, in 

which all species of the community had the same dispersal ability and recruitment was 

proportional to the amount of propagule rain. This is, of course, a simplifying assumption 

and we will likely observe even more complex community dynamics if species vary in 

dispersal ability (Cabral & Kreft, 2012). It is, thus, reasonable to assume that long-distance 

dispersers may also experience substantial migration limitation from competitors.

Uncertainty through structural decisions in range dynamic models

Most applications of range dynamic models ignore uncertainty in model structure and their 

effect on prediction uncertainty (but see Cabral & Schurr, 2010). Our results clearly show 

that structural decisions in model building are crucial and may strongly affect prediction 

accuracies. Range dynamic models necessarily simplify the species-environment 

relationship as well as the colonization and extinction processes and these simplifying 

assumptions may lead to large uncertainties (Appendix S4). Important structural decisions in 

range dynamic models relate to differences in the relationship between habitat suitability and 
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demographic rates, which has hitherto little empirical support (McGill, 2012, Thuiller et al., 
2010, Thuiller et al., 2014) and should receive more attention in the future. The different 

range dynamic models may strongly differ in how variation in the environment-dependent 

demographic rate drives variation in (i) local abundance or carrying capacity, (ii) persistence, 

and (iii) propagule dispersal and associated colonisation success. This aspect becomes even 

more important, when such models are applied in a climate change context, where different 

sources of uncertainty need to be considered in order to make meaningful projections with 

sufficient attention given to the sources of uncertainties.

Such structural aspects are rarely considered in dynamic range predictions, but we strongly 

advise to do so and to assess to what degree prediction accuracies vary under different model 

structures. In DemoNiche, for example, using habitat suitability to constrain carrying 

capacity led to more realistic abundance estimates in some scenarios, but caused higher 

uncertainty and erroneous predictions of extinction in other scenarios. Constraining vital 

rates seemed more robust in that respect, but only if appropriate vital rates were selected 

according to prior knowledge of the species’ ecology. Overall, we found that the DemoNiche 

configurations that achieved highest accuracy under equilibrium conditions usually remained 

among the best during climate change as well. Accordingly, the best model configurations 

under current climate could be used for making consensus forecasts. Alternatively, 

approximate Bayesian computation might be employed to optimise the structural link 

between the habitat suitability and demography in SDM hybrids given the data (Hartig et al., 
2011). This idea is similar to the information criterion based approach used by Cabral and 

Schurr (2010) in LoLiPop in order to select among different underlying population models 

including or not Allee effects and overlapping generations. Notably, the environment-

demography relationships in LoLiPop and DRMs, in particular more differentiated 

environmental responses of different demographic processes, should also be explored more 

thoroughly in the future, although such assessment will require larger computational efforts. 

Nevertheless, we want to stress that the underlying idea of DRMs of jointly estimating the 

different constraints on the niche, namely environmental limitation, population dynamics 

and dispersal, is better integrated with ecological theory than hybrid approaches (for 

discussion see Schurr et al., 2012).

Limitations and extensions

Clearly, even a model intercomparison using simulated data can by no means be exhaustive 

(Zurell et al., 2010). Our choice of assembly processes, dispersal and other demographic 

processes, and landscape structure represents only one possible implementation and is still 

highly simplified in many aspects. Nevertheless, such approach allowed for generating 

consistent benchmarking data, producing an array of important demographic and community 

processes that are known to affect species’ range limits. Therefore our results provide insight 

into comparative model performance in a wide subset of potential cases. Clearly, subsequent 

comparison on field data and evaluation of other complicating factors such as sampling 

effort or bias, unequal dispersal abilities and unequal competitive ability of heterospecifics 

among others will be additionally informative. Also, the robustness of range dynamic 

models under novel environments (Williams & Jackson, 2007, Zurell et al., 2012a), 
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changing collinearity structures in environmental predictors (Dormann et al., 2013) or 

arbitrary scale decisions (Thuiller et al., 2015) should be tested in the future.

Moreover, although we aimed for a representative selection of current modelling frameworks 

for predicting range dynamics and actual abundance (Ehrlén & Morris, 2015), our study 

could only include a subset of available software applications. Lurgi et al. (2015) provide an 

extensive review on available computer platforms for predicting population- or individual-

based range dynamics, which vary in the accommodated detail of demographic processes 

and complexity in species’ lifecycles. In comparison to some other platforms, for example 

RAMAS (Akçakaya, 2000) that has been used rather widely in conservation context (cf. 

Fordham et al., 2013) and more recently also for predicting range dynamics (e.g., Anderson 

et al., 2009, Keith et al., 2008, Pearson et al., 2014, Swab et al., 2015), DemoNiche, as our 

example of a stage-structured matrix population model, allows only a relatively low level of 

complexity in the species’ modelled life history. As the life cycle of the simulated species 

was likewise simple, this is unlikely to have limited the performance in our model. However, 

for other applications that demand a higher level of detail in the species’ life cycle or in 

environmental drivers, other approaches, such as RAMAS, might be preferable (Lurgi et al., 
2015).

Summary

Our range dynamic model intercomparison yielded no clear winners or losers. While all 

range dynamic models show clear benefits over simple SDMs, we cannot provide simple 

suggestions which model framework to choose for any single application. Currently, model 

choice will depend to a large extent on data availability and on prior knowledge on species’ 

ecology (Lurgi et al., 2015). For example, we currently lack spatiotemporal abundance data 

or solid demographic information for many taxa, which clearly limits model choice. As far 

as possible given data limitation, we generally advise a comparison of predictions from 

multiple models for improved understanding of model behaviour and prediction uncertainty 

(Cheaib et al., 2012). Thereby, great discrepancies between model predictions may indicate 

that we missed important ecological mechanisms. More efforts are needed to better 

understand the underlying mechanisms and its calibration in range dynamic models. This is 

specifically true for the interplay between demographic rates and biotic interactions in 

communities. Also, uncertainty through structural decisions should be assessed more 

routinely, and important model assumptions of range models should be verified a priori, for 

example the degree of range filling. Clearly, broader application of range dynamic models is 

limited by data and by computational efforts. Computation times are still quite high for 

DRMs compared to SDM hybrids. However, data availability is more crucial. We have 

shown that different kinds of calibration data (abundance, demographic rates) can be 

utilised, and that also SDM hybrids can be calibrated in a (semi-) automated way. Still, more 

efforts should be given to collecting longer-term and large-scale data on abundance and 

demography. Only such consistent data basis can ensure wide application of range dynamic 

models for climate impact assessment. Future studies should further focus on evaluating the 

effects of sampling effort and sampling bias, and of other complicating processes such as 

asymmetric competition or niche evolution on prediction accuracy of range dynamic models.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Main characteristics of implemented range models used for model inter-comparison. Habitat 

suitability maps (darker grey shades indicate higher suitability) or presence/absence maps 

(P/A, with black indicating presence) derived from SDMs serve as input to SDM hybrids. 

These are then linked with dispersal kernels and with a population model (except MigClim). 

DRMs infer the environment-demography relationship directly from the data and do not rely 

on SDMs, which is a major difference to DemoNiche and LoLiPop. Importantly, 

DemoNiche is calibrated on demographic data while the demographic models in LoLiPop 

and DRM are calibrated on spatial abundance data respective P/A maps and abundance time 

series. Different structural relationships may be assumed to link MigClim and DemoNiche 
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to SDM derived habitat suitability or P/A predictions. MigClim outputs P/A maps as 

predictions while all other dynamic range models output abundance maps as predictions 

(darker blue shades indicate higher abundances). The prefix ‘R:’ indicates the available R 

package (R Development Core Team, 2014).
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Figure 2. 
Realised temperature range of focal species for the long- (LR) and short-range (SR) 

dispersal variants of the species-sorting scenario as approximated by mean observed 

abundances along the temperature gradient. Top row shows the niche filled by the virtual 

species before (year 0) and after climate change (year 100). For both scenarios, realised 

ranges in year 100 exhibit lower overall abundances and a shift to the warmer end of the 

temperature tolerance (i.e. dispersal limitation at the cold front, persistence at the warm rear 

edge). Bottom row shows the corresponding predictions by the different range models for 

year 0.
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Figure 3. 
Boxplots depicting performance of different range models over all scenarios. We show TSS, 

Spearman’s rank correlation coefficient Rho, and deviations from range front, centre and 

rear for the years 0 and 100. SDM: species distribution model, MC: MigClim, DN: 

DemoNiche, LLP: LoLiPop, DRM: dynamic range models.
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Figure 4. 
Boxplots depicting abundance estimates of population models over all scenarios. Top row 

shows the factor of deviation in total abundance with positive and negative values referring 

to overestimation and underestimation of true abundance, respectively. Bottom row shows 

deviation in relative abundance with year 0 as reference. DN: DemoNiche, LLP: LoLiPop, 

DRM: dynamic range models.
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Figure 5. 
Observed abundances of virtual species for years 0 and 100, and predictions of range models 

for year 100 after climate change for the species sorting scenario with long range dispersal 

(left) and short range dispersal (centre), and for the neutral dynamics scenario with short 

range dispersal (right). Abundances are presented in blue shading with darker colour 

indicating higher abundance. For SDMs, predicted habitat suitability is shown with sandy 

colours indicating suitability values that correspond to predicted absences, and grey shading 

indicating suitability values that correspond to predicted presences, with darker colours 

indicating higher habitat suitability. MigClim predicts colonised (in black) vs. uncolonised 

cells. Grey shading in MigClim indicates that these cells were not colonised in all replicate 

runs. SDM: species distribution model, MC: MigClim, DN: DemoNiche, LLP: LoLiPop, 

DRM: dynamic range model.
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Figure 6. 
Prediction accuracies (grey) and error rates (orange/blue) obtained for range models under 

different scenarios, with circle sizes being proportional to accuracy or error rate. The table 

compares measures before (open circles) and after climate change (filled circles). The more 

similar filled circles are to open circles, the less decrease in prediction accuracy or the less 

increase in error rates were observed over time. Squares indicate the best model for year 0 

(thin lines) and year 100 (thick lines). Accuracy measures: TSS (true skill statistic) and Rho 

(Spearman’s rank correlation coefficient). Error measures: M05, M50 and M95: absolute 
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differences between observed and predicted range margins, (5%, 50% and 95% quantiles of 

latitudinal distribution). N: factor by which predicted absolute abundance overestimates/

underestimates observed abundance. N/N0: absolute difference between observed and 

predicted relative abundance. Orange indicates overestimation and blue underestimation. 

Maximum circle sizes correspond to TSS=0.87, Rho=0.89, M=37 cells, N= 22, and N/

N0=57%.
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