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Integrating correlation between traits improves spatial predictions of plant functional composition
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Functional trait composition is increasingly recognized as key to better understand and predict community responses to environmental gradients. Predictive approaches traditionally model the weighted mean trait values of communities (CWMs) as a function of environmental gradients. However, most approaches treat traits as independent regardless of known trade-offs between them, which could lead to spurious predictions. To address this issue, we suggest jointly modeling a suit of functional traits along environmental gradients while accounting for relationships between traits. We use generalized additive mixed effect models to predict the functional composition of alpine grasslands in the Guisane Valley (France). We demonstrate that, compared to traditional approaches, joint trait models explain considerable amounts of variation in CWMs, yield less uncertainty in trait CWM predictions and provide more realistic spatial projections when extrapolating to novel environmental conditions. Modeling traits and their co-variation jointly is an alternative and superior approach to predicting traits independently. Additionally, compared to a "predict first, assemble later" approach that estimates trait CWMs post hoc based on stacked species distribution models, our "assemble first, predict later" approach directly models trait-responses along environmental gradients, and does not require data and models on species' distributions, but only mean functional trait values per community plot. This highlights the great potential of joint trait modeling approaches in large-scale mapping applications, such as spatial projections of the functional composition of vegetation and associated ecosystem services as a response to contemporary global change.

Introduction

For decades, community ecology has sought general principles that govern how species vary in space and time and in response to environmental gradients. The failure to arrive at such principles has led to considerable concern, and is caused in part by the inherently complex nature of communities [START_REF] Lawton | Are There General Laws in Ecology?[END_REF][START_REF] Simberloff | Community ecology: is it time to move on?[END_REF]). However, this complexity can be tackled by using functional traits of organisms [START_REF] Mcgill | Rebuilding community ecology from functional traits[END_REF]. Functional traits constitute quantifiable properties that influence individual's performance and as such can help to understand and predict community structure along environmental gradients, an approach which can conveniently be applied to the increasingly large functional datasets as they become available [START_REF] Mcgill | Rebuilding community ecology from functional traits[END_REF][START_REF] Violle | Let the concept of trait be functional![END_REF]. Beyond the link to community assembly and composition, functional traits can also be used to infer ecosystem functions [START_REF] Garnier | Plant functional markers capture ecosystem properties during secondary succession[END_REF]) and associated services (Lavorel and[START_REF] Lavorel | Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail[END_REF][START_REF] Lavorel | How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services[END_REF], which makes studying functional traits and/or their distribution along environmental gradients informative and important for environmental change research [START_REF] Lamarque | Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services[END_REF][START_REF] Lavorel | Ecological mechanisms underpinning climate adaptation services[END_REF].

How to analyze and map the functional structure and composition of communities along environmental gradients and how they potentially change across space and time due to global change has been an important area of research. Two alternative approaches have been used so far. One approach consists of first predicting species distributions as a function of environmental variables to produce a stack of species distribution maps that are subsequently used to reconstruct spatially explicit trait compositions ("predict first, assemble later"; [START_REF] Ferrier | Spatial modelling of biodiversity at the community level[END_REF]. In a second approach, community-level or grid-based trait composition is directly modeled in relation to environmental predictors, and the model is then used to provide predictions over space and time ("assemble first, predict later"; [START_REF] Ferrier | Spatial modelling of biodiversity at the community level[END_REF]. In the former approach, the use of species distribution models (SDMs) in trait-based ecology enables one to project species distributions across space and time (e.g., [START_REF] Buisson | Toward a loss of functional diversity in stream fish assemblages under climate change[END_REF][START_REF] Thuiller | From species distributions to meta-communities[END_REF], but the quantification of trait composition is done post hoc. In other words, structure and composition of functional traits in communities is treated as an emergent property of assembled species and is not modeled per se. An important drawback of this SDMstacking approach is that it requires a minimal number of observations per species, which can drastically restrict the number of species retained in the analysis and hence bias ad hoc calculation of community weighted mean traits. Another limitation of the "predict first, assemble later" approach is that species are modeled independently assuming that biotic interactions between species do not feed back on the functional trait structure of communities. Recent approaches such as modeling species simultaneously [START_REF] Clark | More than the sum of the parts: Forest climate response from joint species distribution models[END_REF][START_REF] Pollock | Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM)[END_REF][START_REF] Harris | Generating realistic assemblages with a joint species distribution model[END_REF] and accounting for multiple interacting traits and environmental gradients [START_REF] Pollock | The role of functional traits in species distributions revealed through a hierarchical model[END_REF][START_REF] Jamil | Selecting traits that explain species-environment relationships: A generalized linear mixed model approach[END_REF][START_REF] Brown | The fourth-corner solution -using predictive models to understand how species traits interact with the environment[END_REF] have the potential to improve the predictions of community composition beyond independent species models, and in doing so, improve estimates of trait composition across space. However, this new generation of approaches to model species distributions are computationally demanding when large numbers of species are involved and focus on how species, rather than traits, respond to environmental change.

By focusing on traits rather than species, the latter approach ("assemble first, predict later") is more explicit on directly modeling community-level trait characteristics in relation to environmental variables (e.g., [START_REF] Kühn | Relating geographical variation in pollination types to environmental and spatial factors using novel statistical methods[END_REF]. The average trait value of a community, weighted by the relative abundance of the species (community weighted mean, CWM) has been extensively used to study the functional trait structure of communities [START_REF] Díaz | Incorporating plant functional diversity effects in ecosystem service assessments[END_REF]) and how this structure affects ecosystem functioning [START_REF] Garnier | Plant functional markers capture ecosystem properties during secondary succession[END_REF]). The ever-increasing availability of trait data (e.g., TRY; http://www.try-db.org, BIEN; http://bien.nceas.ucsb.edu/bien) allows us to now study how multiple traits respond to environmental gradients and how they influence ecosystem functioning. However, current approaches are so far limited to estimating statistical relationships of such CWMs along environmental gradients independently for multiple traits (e.g., [START_REF] Bernard-Verdier | Community assembly along a soil depth gradient: Contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland[END_REF][START_REF] Widenfalk | Spatially structured environmental filtering of collembolan traits in late successional salt marsh vegetation[END_REF]. While appealing, this practice can be problematic given that traits are not independent of each other but rather exhibit functional relationships (e.g. trade-offs) within and between species (e.g., [START_REF] Diaz | The plant traits that drive ecosystems: Evidence from three continents[END_REF][START_REF] Boucher | Unravelling the architecture of functional variability in wild populations of Polygonum viviparum L[END_REF]. One of the most prominent examples is the leaf economic spectrum of plants, which is defined along a gradient of short-lived leaves with low dry mass per area that exhibit a high photosynthetic capacity on one end to long-lived heavy and small leaves that are photosynthetically inefficient on the other end [START_REF] Wright | The worldwide leaf economics spectrum[END_REF]). Another example is plant height, which is positively correlated with tissue density, as taller plants need mechanical stability of denser tissue to avoid breakage [START_REF] Niklas | Influence of Tissue Density-specific Mechanical Properties on the Scaling of Plant Height[END_REF]. Without this constraint, trees could at the same time get taller and become less dense with increasing temperature because they suffer less from freezing-induced cavitation. Naturally, this is not the case because of the trade-off between height and tissue density. In case trade-offs scale up, an "assemble first, predict later" approach that models the CWM of traits independently will not consider trait trade-offs and could yield erroneous models and predictions. This is analogous to the problem in species distribution modeling, in which independent species models ignore potential interactions between species.

In this paper, we argue that the "assemble first, predict later" approach could be substantially improved by modeling traits jointly and considering the correlation structure between traits. In comparison to "predict first, assemble later", it offers the possibility of predicting multiple traits at the same time without computational constraints (modeling ten traits is less computationally intensive than modeling 1000 species) and directly links traits to ecosystem functioning. To do so, we suggest the use of multivariate mixed effect models as a powerful approach to model joint responses of traits (or their community weighted means) along environmental gradients. Specifically, we do this by adapting recent approaches of jointly modeling species distributions to jointly model traits along environmental gradients, and compare the performance of models that model traits independently to those that model multiple traits simultaneously, and a joint trait model that explicitly accounts for correlations between traits. We hypothesized that joint trait models should provide more robust and more ecologically meaningful predictions than independent trait models. Further, we investigate the usefulness and advantages of the joint modeling approaches when projecting functional composition of communities in space. We here hypothesized that joint trait modeling would reduce projection uncertainty, especially when accounting for trait correlations, as this should prevent predicting communities with ecologically unrealistic trait combinations.

Materials and Methods

Community plots and trait data

We used extensive vegetation survey data from the French National Botanical Alpine Conservatory (Conservatoire Botanique National Alpin; CBNA) that spans the entire French Alps. CBNA plots were surveyed between 1980 and 2015 in homogeneous patches of vegetation with an average area of 100 m 2 . Species nomenclature was standardized according to the "Index synonymique de la flore de France" [START_REF] Kerguélen | Life-history traits of the Northwest European flora: The LEDA database[END_REF]. Relative abundance within a survey plot was recorded on an ordinal scale of percentages with cutoffs at 1%, 5%, 25%, 50%, 75% (with cutoff-values being assigned to the lower class), resulting in 6 abundance classes. We used the mean of each abundance-class to represent the relative abundance of each species in a local plot survey.

Our study area to model trait responses along environmental gradients was the grasslands of the Guisane Valley (Fig. 1), which are situated along steep climatic gradients. The valley is 25 km long and characterized by mean annual temperatures ranging from -8.2°C to 7.8°C. We chose to restrict our study case to the grassland surveyplots of this Valley because a relatively small number of plots ameliorates interpretation of results and cuts computational effort, and because modeling non-linear changes across ecotones, e.g. from grasslands to forest, would not be informative for the aims of our study. Therefore, we included only survey plots characterized as grasslands according to the CORINE land-cover data (European Environment Agency 2013).

Consequently, our analyses included only observations from the herbaceous layers of the plots (i.e., shrub and tree saplings were excluded before analysis). For each plot in the Guisane Valley, we extracted relative abundance of all occurring species from the CBNA database.

For each of the species, we extracted individual-level measurements for four traits (see below for more detail): plant height (HEIGHT, mm), seed mass (SEEDM, mg), leaf dry matter content (LDMC, mg/g), and specific leaf area (SLA, m 2 /kg). HEIGHT, SEEDM, and SLA were chosen to represent the leaf-height-seed (LHS) plant strategy scheme, which depicts general plant life strategies [START_REF] Westoby | A leaf-height-seed (LHS) plant ecology strategy scheme[END_REF]. LHS traits are especially wellsuited for our study because the LHS encompasses trait trade-offs both within and between traits [START_REF] Westoby | A leaf-height-seed (LHS) plant ecology strategy scheme[END_REF], leading to well-documented correlations among LHS traits [START_REF] Díaz | The global spectrum of plant form and function[END_REF]. We included LDMC in our study because LDMC is likely negatively correlated with SLA. Traits were extracted mostly from our own database of trait measurements in the Alps (Thuiller et al. unpublished data), complemented with data from LEDA (Knevel et al. 2003), BioFlor [START_REF] Kühn | BiolFlor -a new plant-trait database as a tool for plant invasion ecology[END_REF]), Ecoflora [START_REF] Fitter | The Ecological Flora Database[END_REF] and CATMINAT [START_REF] Julve | Baseflor. Index botanique, écologique et chorologique de la flore de France[END_REF]. The individual-level trait measurements with a mean of 4.1 (±1.5) observations per species were averaged to obtain a mean trait value for each species. Some species were missing trait data, so we restricted the dataset used in our analyses to only those plots where at least 80% of the plot was covered by species with complete trait information. This is justified by the biomass ratio hypothesis postulating that community level traits and functions are determined by species that dominate the biomass of a community [START_REF] Grime | Benefits of plant diversity to ecosystems: immediate, filter and founder effects[END_REF]. Based on this selection, we used 108 plots and 432 species overall. For each plot, we calculated the community weighted mean (CWM) trait value for each of the four traits. CWM averages species level traits weighted by abundance. We first log-transformed CWMs in order to approximate a normal distribution of the data and then standardized the CWMs (each trait separately) by subtracting the arithmetic mean and dividing by the standard deviation in order to facilitate convergence of the models.

Modeling traits along environmental gradients

We selected ecologically meaningful topo-climatic variables at a spatial resolution of 100x100m that have previously been shown to be important to explaining the functional structure of the Guisane Valley vegetation [START_REF] De Bello | Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps[END_REF][START_REF] Chalmandrier | Effects of species' similarity and dominance on the functional and phylogenetic structure of a plant meta-community[END_REF]. The set of variables included mean annual precipitation (MAP, mm), coldest temperature (TMIN, °C), relative humidity (RELH, %), and topographic position (TOPO).

The climatic variables were derived from downscaling the gridded 1km climate data from MeteoFrance [START_REF] Benichou | Prise en compte de la topographie pour la cartographie des champs pluviométriques statistiques[END_REF] in the case of MAP and TMIN, and from global CRU data [START_REF] New | A high-resolution data set of surface climate over global land areas[END_REF] in the case of RELH. Topographic position assesses concavity vs. convexity of a given location with respect to the surrounding landscape, with positive values indicating that the focal pixel is higher than the surrounding (vice versa for negative values). We chose these predictors from a larger set of environmental variables to minimize collinearity (all Pearson's correlations <0.55) and maximize ecological interpretation. We scaled the predictor variables by subtracting the mean and dividing by the standard deviation prior to model-fitting. The data will be available from the Dryad Digital Repository after acceptance of the manuscript.

We investigate whether joint modeling, and accounting for correlation structure improves the estimation of trait-environment relationships by comparing independent trait models (ITMs) with a multiple trait model (MTM) and a joint trait model (JTM) that explicitly accounts for correlations between traits (see below for details). While largescale analyses inform on the general direction of some traits along some of the selected environmental gradients [START_REF] Wright | The worldwide leaf economics spectrum[END_REF][START_REF] Poorter | Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis[END_REF], there are no welldefined theoretical expectations about the exact shape (e.g. linear, curvilinear, exponential) of the response of the four traits to our local environmental gradients. We thus used generalized additive models (GAMs) that do not require predefined response curve shapes along predictor variables [START_REF] Hastie | Generalized Additive Models[END_REF]. They use a class of equations called 'smoothers' that attempt to generalize data into smooth curves by local fitting to subsections of the data. More technically, we used thin plate regression to estimate the smoothers for the four predictor variables and a tensor product to generate a smoother for an interaction term between MAP and TOPO to account for the fact that effects of precipitation may change with topography due to differential water retention on ridges vs. in depressions. The thin plate and tensor product smoothers were estimated using the mgcv package [START_REF] Wood | Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models[END_REF] in the R statistical environment (Version 3.3.2; R Core Team 2016). A potential downside of GAMs is that they sometimes overfit, i.e. the estimated response could get very close to the data and potentially ignores biological realism. We minimized overfitting by allowing for a maximum of five degrees of freedom in the smoothers to avoid overly complex responses. In addition, we also fitted GLMs with linear and quadratic terms for all predictors (and including the interaction between MAP and TOPO) to test whether ITM performance was influenced by the flexibility of response curves in GAMs.

In the ITM approach, we modeled traits independently of each other, as traditionally done in functional ecology (e.g., [START_REF] Bernard-Verdier | Community assembly along a soil depth gradient: Contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland[END_REF][START_REF] Widenfalk | Spatially structured environmental filtering of collembolan traits in late successional salt marsh vegetation[END_REF]. In the simplest case of one predictor variable, the model equation for one trait would be as follows:

𝑦 𝑖 = 𝑏 + 𝑓(𝑥 𝑖 ) + 𝜀 𝑖 (1),
where each element of the response yi is the CWM of a trait in plot i, b is an intercept and f represents the smooth term of a predictor variable x. 𝜀 𝑖 represents the Gaussian residuals. In the case of several predictors eqn. (1) extends to:

𝑦 𝑖 = 𝑏 + 𝑓 𝑝 (𝑥 𝑖𝑝 ) + 𝜀 𝑖 (2)
where 𝑓 𝑝 indicates the predictor-specific smooth terms. The model equation for the MTM and JTM further extends eqn.

(2) to:

𝑦 𝑖𝑗 = 𝑏 𝑗 + 𝑓 𝑝𝑗 (𝑥 𝑖𝑝𝑗 ) + 𝜀 𝑖𝑗 (3) 
where 𝑏 𝑗 indicates a specific intercept for each trait, 𝑓 𝑝𝑗 indicates that for each predictor p a distinct smooth is fitted for each trait j. Technically, trait-specific responses are achieved by trait-specific random effects on the smooth-term parameters, leading to:

𝑦 𝑖𝑗 = 𝑏 𝑗 + 𝑓(𝑥 𝑖 ) + 𝑢 𝑝𝑗 + 𝜀 𝑖𝑗 (4) 
where 𝑢 𝑝𝑗 represents the random effects that enable the model to fit specific smoothers for each trait j along each predictor p. Random effects for each smoother in the MTM are constrained to stem from a normal distribution with expected value zero. The JTM additionally accounts for between-trait correlation by fitting an unstructured correlation structure on 𝑢 𝑝𝑗 with a different parameter for every possible pair of traits.

The mgcv package allows one to fit ITMs, MTMs and JTMs and we include the code to fit these models in the Supplementary material Appendix 2. Note that the correlation structure needs to refer to plotID, a factor with a unique ID for each of the i plots and its form has to be symmetric (corSymm) in order to obtain a pair-wise between-trait correlation structure.

We assessed goodness of fit in both approaches using root mean square error (RMSE) of predicted vs. observed trait CWM values, and R 2 of the regression between predicted and observed values (R 2 CORR). For both measures, we calculated a pooled value where the pooled predicted values of all four traits were compared to the pooled observations of all traits and a trait-specific value where we compared predicted vs. observed values separately for each trait. Further, as commonly done for SDMs, we applied a repeated split-sampling procedure to assess performance of the models. The split-sampling procedure consisted of a random splitting of original data into two thirds training and one third testing data, with 20 repetitions. Thus, in each repetition the models were fitted on training data, and evaluated against the testing data. Analogous to the fullmodel comparison, we evaluated model performance in the split-sampling procedure by assessing RMSE and R 2 CORR on the hold-out testing data pooled across the four traits and the 20 repetitions. In addition, we compared the correlation structure as estimated in the JTM with the observed correlation between trait CWMs in the Guisane Valley plots in terms of RMSE and bias (mean of predicted minus observed).

Trait-environment relationships

We produced partial response curves along the environmental gradients for all traits in order to facilitate identification and interpretation of differences between the modeling approaches. The partial response curve of a trait along a predictor variable describes how a trait changes along that variable and is produced by calculating the trait's predicted values along the focal variable, while keeping all other variables fixed at their mean.

Spatial projections

We used the fitted ITMs and JTMs built from the sampled communities to project the spatial distribution of each trait over the whole Guisane valley at a spatial resolution of 100x100m. We assess the plausibility of predictions by comparing the range of observed trait CWMs with predictions from both the ITM and JTM approaches. A1.

Results

Trait-environment relationships -model comparison

Assessing the predictive performance using repeated split-sampling revealed that ITM's performance collapsed markedly, where RMSE increased to 1.20 and R 2 CORR decreased to virtually zero. In contrast, predictive performance of the joint models did not decrease analogously in the split-sampling validation. The increase in RMSE was at highest 24% (for MTM; 19% for JTM; Table 1) and much lower compared to the ITM (where RMSE increased by 64%). R 2 CORR of the JTM approach was reduced by 68% (for JTM; 69% for JTM; Table 1) in the split-sampling procedure but was far from approaching zero, as observed in the ITM approach. Improved predictive performance of a JTM based on GLMMs was comparable to the presented results based on GAMMs and are reported in Supplementary material Appendix 1 Table A2.

We compared the pair-wise correlation between traits as estimated by the JTM approach with the observed correlations of CWMs in the plots of the Guisane valley (Table 2) in order to assess how much of the observed correlation structure is not explained by the predictors and thus mirrors in the residual structure. The low RMSE (0.10) and a bias close to zero (-0.03) indicated that the correlation structure as estimated in the JTM approach was close to the observed among-trait correlations.

Directional trends for all trait-correlations were congruent between estimated and observed correlations and a regression between observed and estimated correlations revealed that the intercept and slope do not differ from zero and one, respectively (details see Supplementary material Appendix 1 Fig. A1).

Response curves of the ITM and the MTM/JTM approaches differed in two aspects. First, ITM response curves were in general more complex than MTM and JTM response curves. For example, the response curves of SEEDM along all environmental variables took complex, data-driven shapes in the ITM approach, while except for relative humidity, both the MTM and the JTM approach yielded more linear responses along all gradients. Second, compared to the ITMs, prediction uncertainty was reduced when traits were modeled simultaneously using the JTM approaches. This manifested as reduced confidence intervals around the response curves. For example, confidence intervals in the case of SLA along minimum temperature were larger for the ITM compared to MTM and JTM. Even though less pronounced, the same tendencies also held for the comparison between MTM and JTM, where accounting for correlations between traits in JTM often led to simpler responses with less uncertainty associated to the predictions. Figure 2 illustrates the general findings, while partial response curves for all traits along the four environmental gradients are presented in Supplementary material Appendix 1 Fig. A2-A4.

communities across the Guisane valley. ITMs clearly perform worst and while both approaches that model multiple traits simultaneously increased predictive performance, the difference between the MTM and the JTM that additionally accounts for betweentrait correlations is rather marginal. The comparison of partial response curves (Fig. 2) helps to identify reasons for the superior performance of the MTM and JTM approaches over the ITM approach in predicting CWM trait values. ITMs generally yielded complex response curves along all environmental predictors (red curves in Fig. 2), which lead to a break down in ITM cross-validation performance (Table 1). Simultaneous modeling of traits in the MTM and JTM approaches restricts the complexity of response curves and yields more constrained and linear responses (orange and blue curves in Fig. 2), which yield more realistic predictions when extrapolating [START_REF] Merow | What do we gain from simplicity versus complexity in species distribution models?[END_REF]. Trait-models based on GLMs showed the same pattern as those based on GAMs: the JTM yielded better predictions in cross-validation than ITMs (Supplementary material Appendix 1 Table A2). Therefore, the complexity of the response is not the only explanation for improved predictions, because GLMs have simpler response curves and are less prone to over-fitting.

Joint modeling may be superior to independent modeling because the modeled trait responses potentially profit from each other, an argument that is put forward in the field of SDMS: rare species are better predicted in JSDMs compared to species-specific SDMs [START_REF] Ovaskainen | Making more out of sparse data: hierarchical modeling of species communities[END_REF]. Adopted to the case of modeling traits, this could mean that the observed data may not sufficiently well sample the environmental space to effectively approximate the biological reality of a specific trait-response in ITMs, but the response fitted by a joint model may get closer to biological reality in joint models because it is correlated with the responses of other traits. The fact that the JTM that explicitly accounts for correlations between traits performs better than the MTM supports this interpretation. More generally, modeling multiple traits simultaneously likely is superior to ITMs because it accounts for the fact that species' presence and abundance in a given location is not determined by single traits, but rather results from the interplay of multiple trait axes [START_REF] Muscarella | Do community-weighted mean functional traits reflect optimal strategies?[END_REF]. Indeed, while accounting for trait-environment relationships the JTM estimates a correlation structure that is very similar to the observed between-trait correlations (Supplementary material Appendix 1 Fig. A1). Taken together, this suggests that inherent trait trade-offs are indeed affecting assembly and functional composition of communities and should by no means be ignored in "assemble-first, predict later" approaches.

Improved validation-performance of the JTM approach parallels findings from species distribution modeling, where JSDM approaches exceed performance of independent SDMs across a number of multi-species data sets [START_REF] Clark | More than the sum of the parts: Forest climate response from joint species distribution models[END_REF][START_REF] Harris | Generating realistic assemblages with a joint species distribution model[END_REF]. In addition to the reduction in complexity, the JTM approach also yields less uncertainty in parameter-estimates. While reduced confidence intervals (CIs) are visible across the entire range of the environmental variables, differences are greatest when extrapolating beyond the observed data-range (e.g., height along annual precipitation, Fig. 2). In summary, the limited complexity in response curves that are associated with less uncertainty suggests that the modeling approaches that model multiple traits simultaneously, and the JTM in particular, hold much promise for predicting functional attributes of communities and should be favored in any predictive modeling endeavor that involves projecting in space or time.

response of LDMC along minimal temperature in Supplementary material Appendix 1 Fig. A3 for an extreme example). Extrapolation is well known to involve various potential pitfalls and should be avoided whenever possible. However, on-going global change likely causes the appearance of novel climates [START_REF] Williams | Projected distributions of novel and disappearing climates by 2100 AD[END_REF].

Consequently, the joint modeling of traits along environmental gradients that yields more conservative predictions when extrapolating is, therefore, the preferred approach.

Limitations and further development

Our results indicate that joint modeling should be preferred over independent modeling of traits along environmental gradients. Nevertheless, our approach is not free from limitations. We argued that the reduction of data dimensionality in a "assemble first, predict later" approach leads to higher efficiency because of the reduced number of required model-parameters. While this is certainly true for species-rich and trait-poor datasets, the number of model-parameters rapidly increases with the number of traits to be modeled. The increase in parameters will be especially drastic in the case of JTM,

where the number of pair-wise trait combinations increases quadratically with the number of traits. We suggest considering the MTM approach instead of JTM for datasets with many traits, or using hierarchical latent variable models to reduce trait dimensionality (e.g., see [START_REF] Warton | So Many Variables: Joint Modeling in Community Ecology[END_REF][START_REF] Hui | boral -Bayesian Ordination and Regression Analysis of Multivariate Abundance Data in R[END_REF]. While we compare our findings with recent developments in the field of (joint) SDMs, our analysis did not aim to compare our "assemble first, predict later" approach with the various flavors of "predict first, assemble later" approaches. Potential future studies comparing both performance and computational efficiency of the various approaches for a range of conditions (i.e., varying numbers of species, traits, and sites) could help to determine the optimal approach.

Our MTM and JTM approaches as currently implemented use GAMMs and are therefore restricted to continuous traits. However, many functional traits, such as growth form of plants or diet of animals are categorical in nature. Categorical (or mixed) traits could potentially be jointly modeled using mixed modeling software that allows for categorical (or mixed) responses, such as MCMCglmm in R [START_REF] Hadfield | MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package[END_REF] or using the various implementations of BUGS-like languages. While this is outside the scope of our study, we encourage further research to enable inclusion of categorical traits in joint models that follow the "assemble first, predict later" approach. Another potential avenue of investigations not covered in our initial assessment of the approach is how phylogenetic signal in traits interacts with independent and joint estimation of trait responses, because we know that phylogenetic signal affects the estimation of how functional traits interact with the environment [START_REF] Li | The statistical need to include phylogeny in trait-based analyses of community composition[END_REF].

Implications

Traditional approaches to the so-called fourth corner problem (understanding how functional traits mediate species-specific environmental responses) like RLQ analyses do not provide the possibility for spatial projections. While joint species distribution models overcome this limitation [START_REF] Pollock | The role of functional traits in species distributions revealed through a hierarchical model[END_REF][START_REF] Jamil | Selecting traits that explain species-environment relationships: A generalized linear mixed model approach[END_REF][START_REF] Brown | The fourth-corner solution -using predictive models to understand how species traits interact with the environment[END_REF], they are generally computationally intensive for large datasets (hundreds or thousands of species). While Latent Variable Models improve the capacity to model many species [START_REF] Warton | So Many Variables: Joint Modeling in Community Ecology[END_REF], these models still require spatial or environmental data for all species, which is not always available. Direct modeling of traits along environmental gradients in a "assemble first, predict later" manner may be debatable [START_REF] Clark | Why species tell more about traits than traits about species: predictive analysis[END_REF]), but it represents the basis of JTM's efficiency, which has great potential in large-scale applications like mapping ecosystem services in space. [START_REF] Lavorel | Using plant functional traits to understand the landscape distribution of multiple ecosystem services[END_REF], for example, relate a set of traits including height and LDMC to the environment to quantify ecosystem services. Such an approach is sensitive to spurious combinations of height-LDMC predictions and would obstruct correct predictions of ecosystem services.

Simultaneous modeling of multiple traits, and especially the JTM approach, avoids predicting spurious trait combinations, thus is better suited to inform approaches that predict ecosystem services -an important tool in analyzing and mitigating effects of global change on human well-being [START_REF] Díaz | The global spectrum of plant form and function[END_REF]. Additionally, spatial projections of trait CWMs like vegetation height or leaf traits such as silica content could provide proximal predictors for SDMs of herbivores, ranging from large ungulates to insects.

Furthermore, fitted trait-environment relationships could be used to drive trait responses to changing environments in earth system models [START_REF] Pavlick | The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs[END_REF][START_REF] Verheijen | Impacts of trait variation through observed trait-climate relationships on performance of an Earth system model: A conceptual analysis[END_REF] 
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	predicted vs. observed	split-sample validation
	RMSE	R 2 CORR		RMSE	R 2 CORR
	ITM	0.73	0.47	1.20 (64%) <0.01 (99%)
	MTM	0.80	0.35	0.98 (24%)	0.11 (69%)
	JTM	0.83	0.31	0.98 (19%)	0.10 (68%)
		seed mass	LDMC	SLA		RMSE 1
	observed				
	height	0.53		-0.13	0.28
	seed mass			-0.21	0.32
	LDMC				-0.31
	estimated (JTM)					0.10
	height	0.45		-0.18	0.10
	seed mass			-0.20	0.23
	LDMC				-0.32
	1 compared to observed correlations			
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Spatial projections

Spatial projections of the three modeling approaches showed that the JTM best approximates the range of observed CWMs. While ITMs tended to predict trait values outside the range of observed values that are sometimes unrealistic, the MTM and JTM approaches did not suffer from this problem to the same extent. The example of height (Fig. 3) demonstrates that the over-and under-prediction of ITMs and the MTM appeared mostly but not exclusively in areas of extrapolation, thus in areas with environmental characteristics that were not covered by the data used to train the models (black polygons in Fig. 3a-c). Spatial projections for all traits are presented in Supplementary material Appendix 1 Fig. A5.

Discussion

We show that it is possible to predict the functional composition of alpine grassland communities, and that models that model multiple traits simultaneously outperform independent modeling of traits in several aspects. We further show that accounting for between-trait correlation in joint models further improves predictions, especially when extrapolating to novel environmental conditions. These findings suggest that traits should be modeled jointly rather than in isolation, and that between-trait correlation should be accounted for when modeling functional attributes of communities.

Trait-environment relationships -model comparison

We find that the joint trait model JTM outperforms the multiple trait model MTM and the independent trait models ITMs when predicting functional attributes of plant

Spatial projections and extrapolation

Spatial projections of the ITMs, the MTM, and the JTM across the Guisane valley (Fig. 3) illustrate the differences between the three approaches. ITMs often predict extreme trait values that exceed observed values by orders of magnitude in both directions for both height and seed mass. For example, independent trait modeling predicts grasslands grow taller than 100m (Fig. 2). Seed masses in the same area are predicted to be heavier than 100g (Supplementary material Appendix 1 Fig. A5); more than 1000 times the maximal seed mass observed for grassland species in the Guisane valley. Spatial projections derived from the MTM and JTM do not suffer from this problem. The predicted ranges of trait values more closely approximate the observed ranges and the models rarely predict unrealistic values (Fig. 3b,c,d; Supplementary material Appendix 1 Fig. A5). The JTM also predicts more realistic trait CWMs than the MTM approach. For example, MTM predicts grasslands at the bottom of the Guisane Valley to grow as tall as 5m, while JTM predicts a maximal height of 1m. Nevertheless, neither of the two approaches that model multiple traits simultaneously avoids all potential issues regarding extrapolation and we urge the need to carefully assess the plausibility of predictions when extrapolating.

It is evident that the extreme predictions are largely restricted to areas where environmental conditions exceed conditions covered by data used to fit the models (black polygons in Fig. 3a-c, Supplementary material Appendix 1 Fig. A5). Responses along most gradients are curvilinear in ITMs (Fig. 2 and Supplementary material Appendix 1 Fig. A2-A4), and these flexible responses offer a possible explanation for the extreme predictions. Depending on the shape, extrapolation beyond the observed data range can quickly lead to extreme values outside the observed range (see the partial Tables Table 1 Model performance metrics for the ITMs, the MTM, and the JTM that accounts for the correlation structure among traits. RMSE and R 2 CORR are calculated across all four traits in all approaches.

Percentages in parentheses indicate how much performance