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Abstract 21 

Functional trait composition is increasingly recognized as key to better understand and 22 

predict community responses to environmental gradients. Predictive approaches 23 

traditionally model the weighted mean trait values of communities (CWMs) as a 24 

function of environmental gradients. However, most approaches treat traits as 25 

independent regardless of known trade-offs between them, which could lead to spurious 26 

predictions. To address this issue, we suggest jointly modeling a suit of functional traits 27 

along environmental gradients while accounting for relationships between traits. We 28 

use generalized additive mixed effect models to predict the functional composition of 29 

alpine grasslands in the Guisane Valley (France). We demonstrate that, compared to 30 

traditional approaches, joint trait models explain considerable amounts of variation in 31 

CWMs, yield less uncertainty in trait CWM predictions and provide more realistic spatial 32 

projections when extrapolating to novel environmental conditions. Modeling traits and 33 

their co-variation jointly is an alternative and superior approach to predicting traits 34 

independently. Additionally, compared to a “predict first, assemble later” approach that 35 

estimates trait CWMs post hoc based on stacked species distribution models, our 36 

“assemble first, predict later” approach directly models trait-responses along 37 

environmental gradients, and does not require data and models on species’ 38 

distributions, but only mean functional trait values per community plot. This highlights 39 

the great potential of joint trait modeling approaches in large-scale mapping 40 

applications, such as spatial projections of the functional composition of vegetation and 41 

associated ecosystem services as a response to contemporary global change. 42 

 43 
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Introduction 47 

For decades, community ecology has sought general principles that govern how species 48 

vary in space and time and in response to environmental gradients. The failure to arrive 49 

at such principles has led to considerable concern, and is caused in part by the 50 

inherently complex nature of communities (Lawton 1999, Simberloff 2004). However, 51 

this complexity can be tackled by using functional traits of organisms (McGill et al. 52 

2006). Functional traits constitute quantifiable properties that influence individual’s 53 

performance and as such can help to understand and predict community structure along 54 

environmental gradients, an approach which can conveniently be applied to the 55 

increasingly large functional datasets as they become available (McGill et al. 2006, Violle 56 

et al. 2007). Beyond the link to community assembly and composition, functional traits 57 

can also be used to infer ecosystem functions (Garnier et al. 2004) and associated 58 

services (Lavorel and Garnier 2002, Lavorel and Grigulis 2012), which makes studying 59 

functional traits and/or their distribution along environmental gradients informative 60 

and important for environmental change research (Lamarque et al. 2014, Lavorel et al. 61 

2015). 62 

 63 

How to analyze and map the functional structure and composition of communities along 64 

environmental gradients and how they potentially change across space and time due to 65 

global change has been an important area of research. Two alternative approaches have 66 

been used so far. One approach consists of first predicting species distributions as a 67 

function of environmental variables to produce a stack of species distribution maps that 68 

are subsequently used to reconstruct spatially explicit trait compositions (“predict first, 69 

assemble later”; Ferrier and Guisan 2006). In a second approach, community-level or 70 
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grid-based trait composition is directly modeled in relation to environmental predictors, 71 

and the model is then used to provide predictions over space and time (“assemble first, 72 

predict later”; Ferrier and Guisan 2006). In the former approach, the use of species 73 

distribution models (SDMs) in trait-based ecology enables one to project species 74 

distributions across space and time (e.g., Buisson et al. 2013, Thuiller et al. 2015), but 75 

the quantification of trait composition is done post hoc. In other words, structure and 76 

composition of functional traits in communities is treated as an emergent property of 77 

assembled species and is not modeled per se. An important drawback of this SDM-78 

stacking approach is that it requires a minimal number of observations per species, 79 

which can drastically restrict the number of species retained in the analysis and hence 80 

bias ad hoc calculation of community weighted mean traits. Another limitation of the 81 

“predict first, assemble later” approach is that species are modeled independently 82 

assuming that biotic interactions between species do not feed back on the functional 83 

trait structure of communities. Recent approaches such as modeling species 84 

simultaneously (Clark et al. 2014, Pollock et al. 2014, Harris 2015) and accounting for 85 

multiple interacting traits and environmental gradients (Pollock et al. 2012, Jamil et al. 86 

2013, Brown et al. 2014) have the potential to improve the predictions of community 87 

composition beyond independent species models, and in doing so, improve estimates of 88 

trait composition across space. However, this new generation of approaches to model 89 

species distributions are computationally demanding when large numbers of species are 90 

involved and focus on how species, rather than traits, respond to environmental change. 91 

 92 

By focusing on traits rather than species, the latter approach (“assemble first, predict 93 

later”) is more explicit on directly modeling community-level trait characteristics in 94 

relation to environmental variables (e.g., Kühn et al. 2006). The average trait value of a 95 
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community, weighted by the relative abundance of the species (community weighted 96 

mean, CWM) has been extensively used to study the functional trait structure of 97 

communities (Díaz et al. 2007) and how this structure affects ecosystem functioning 98 

(Garnier et al. 2004). The ever-increasing availability of trait data (e.g., TRY; 99 

http://www.try-db.org, BIEN; http://bien.nceas.ucsb.edu/bien) allows us to now study 100 

how multiple traits respond to environmental gradients and how they influence 101 

ecosystem functioning. However, current approaches are so far limited to estimating 102 

statistical relationships of such CWMs along environmental gradients independently for 103 

multiple traits (e.g., Bernard-Verdier et al. 2012, Widenfalk et al. 2015). While appealing, 104 

this practice can be problematic given that traits are not independent of each other but 105 

rather exhibit functional relationships (e.g. trade-offs) within and between species (e.g., 106 

Diaz et al. 2004, Boucher et al. 2013). One of the most prominent examples is the leaf 107 

economic spectrum of plants, which is defined along a gradient of short-lived leaves 108 

with low dry mass per area that exhibit a high photosynthetic capacity on one end to 109 

long-lived heavy and small leaves that are photosynthetically inefficient on the other 110 

end (Wright et al. 2004). Another example is plant height, which is positively correlated 111 

with tissue density, as taller plants need mechanical stability of denser tissue to avoid 112 

breakage (Niklas 1993). Without this constraint, trees could at the same time get taller 113 

and become less dense with increasing temperature because they suffer less from 114 

freezing-induced cavitation. Naturally, this is not the case because of the trade-off 115 

between height and tissue density. In case trade-offs scale up, an “assemble first, predict 116 

later” approach that models the CWM of traits independently will not consider trait 117 

trade-offs and could yield erroneous models and predictions. This is analogous to the 118 

problem in species distribution modeling, in which independent species models ignore 119 

potential interactions between species. 120 
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 121 

In this paper, we argue that the “assemble first, predict later” approach could be 122 

substantially improved by modeling traits jointly and considering the correlation 123 

structure between traits. In comparison to “predict first, assemble later”, it offers the 124 

possibility of predicting multiple traits at the same time without computational 125 

constraints (modeling ten traits is less computationally intensive than modeling 1000 126 

species) and directly links traits to ecosystem functioning. To do so, we suggest the use 127 

of multivariate mixed effect models as a powerful approach to model joint responses of 128 

traits (or their community weighted means) along environmental gradients. Specifically, 129 

we do this by adapting recent approaches of jointly modeling species distributions to 130 

jointly model traits along environmental gradients, and compare the performance of 131 

models that model traits independently to those that model multiple traits 132 

simultaneously, and a joint trait model that explicitly accounts for correlations between 133 

traits. We hypothesized that joint trait models should provide more robust and more 134 

ecologically meaningful predictions than independent trait models. Further, we 135 

investigate the usefulness and advantages of the joint modeling approaches when 136 

projecting functional composition of communities in space. We here hypothesized that 137 

joint trait modeling would reduce projection uncertainty, especially when accounting for 138 

trait correlations, as this should prevent predicting communities with ecologically 139 

unrealistic trait combinations.  140 

Materials and Methods 141 

Community plots and trait data 142 

We used extensive vegetation survey data from the French National Botanical Alpine 143 

Conservatory (Conservatoire Botanique National Alpin; CBNA) that spans the entire 144 
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French Alps. CBNA plots were surveyed between 1980 and 2015 in homogeneous 145 

patches of vegetation with an average area of 100 m2. Species nomenclature was 146 

standardized according to the “Index synonymique de la flore de France” (Kerguélen 147 

1993). Relative abundance within a survey plot was recorded on an ordinal scale of 148 

percentages with cutoffs at 1%, 5%, 25%, 50%, 75% (with cutoff-values being assigned 149 

to the lower class), resulting in 6 abundance classes. We used the mean of each 150 

abundance-class to represent the relative abundance of each species in a local plot 151 

survey. 152 

 153 

Our study area to model trait responses along environmental gradients was the 154 

grasslands of the Guisane Valley (Fig. 1), which are situated along steep climatic 155 

gradients. The valley is 25 km long and characterized by mean annual temperatures 156 

ranging from -8.2°C to 7.8°C. We chose to restrict our study case to the grassland survey-157 

plots of this Valley because a relatively small number of plots ameliorates interpretation 158 

of results and cuts computational effort, and because modeling non-linear changes 159 

across ecotones, e.g. from grasslands to forest, would not be informative for the aims of 160 

our study. Therefore, we included only survey plots characterized as grasslands 161 

according to the CORINE land-cover data (European Environment Agency 2013). 162 

Consequently, our analyses included only observations from the herbaceous layers of 163 

the plots (i.e., shrub and tree saplings were excluded before analysis). For each plot in 164 

the Guisane Valley, we extracted relative abundance of all occurring species from the 165 

CBNA database. 166 

 167 

For each of the species, we extracted individual-level measurements for four traits (see 168 

below for more detail): plant height (HEIGHT, mm), seed mass (SEEDM, mg), leaf dry 169 
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matter content (LDMC, mg/g), and specific leaf area (SLA, m2/kg). HEIGHT, SEEDM, and 170 

SLA were chosen to represent the leaf-height-seed (LHS) plant strategy scheme, which 171 

depicts general plant life strategies (Westoby 1998). LHS traits are especially well-172 

suited for our study because the LHS encompasses trait trade-offs both within and 173 

between traits (Westoby 1998), leading to well-documented correlations among LHS 174 

traits (Díaz et al. 2015). We included LDMC in our study because LDMC is likely 175 

negatively correlated with SLA. Traits were extracted mostly from our own database of 176 

trait measurements in the Alps (Thuiller et al. unpublished data), complemented with 177 

data from LEDA (Knevel et al. 2003), BioFlor (Kühn et al. 2004), Ecoflora (Fitter and 178 

Peat 1994) and CATMINAT (Julve 1998). The individual-level trait measurements with a 179 

mean of 4.1 (±1.5) observations per species were averaged to obtain a mean trait value 180 

for each species. 181 

 182 

Some species were missing trait data, so we restricted the dataset used in our analyses 183 

to only those plots where at least 80% of the plot was covered by species with complete 184 

trait information. This is justified by the biomass ratio hypothesis postulating that 185 

community level traits and functions are determined by species that dominate the 186 

biomass of a community (Grime 1998). Based on this selection, we used 108 plots and 187 

432 species overall. For each plot, we calculated the community weighted mean (CWM) 188 

trait value for each of the four traits. CWM averages species level traits weighted by 189 

abundance. We first log-transformed CWMs in order to approximate a normal 190 

distribution of the data and then standardized the CWMs (each trait separately) by 191 

subtracting the arithmetic mean and dividing by the standard deviation in order to 192 

facilitate convergence of the models. 193 

 194 
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Modeling traits along environmental gradients 195 

We selected ecologically meaningful topo-climatic variables at a spatial resolution of 196 

100x100m that have previously been shown to be important to explaining the functional 197 

structure of the Guisane Valley vegetation (de Bello et al. 2013, Chalmandrier et al. 198 

2015). The set of variables included mean annual precipitation (MAP, mm), coldest 199 

temperature (TMIN, °C), relative humidity (RELH, %), and topographic position (TOPO). 200 

The climatic variables were derived from downscaling the gridded 1km climate data 201 

from MeteoFrance (Benichou and Breton 1987) in the case of MAP and TMIN, and from 202 

global CRU data (New et al. 2002) in the case of RELH. Topographic position assesses 203 

concavity vs. convexity of a given location with respect to the surrounding landscape, 204 

with positive values indicating that the focal pixel is higher than the surrounding (vice 205 

versa for negative values). We chose these predictors from a larger set of environmental 206 

variables to minimize collinearity (all Pearson’s correlations <0.55) and maximize 207 

ecological interpretation. We scaled the predictor variables by subtracting the mean and 208 

dividing by the standard deviation prior to model-fitting. The data will be available from 209 

the Dryad Digital Repository after acceptance of the manuscript. 210 

 211 

We investigate whether joint modeling, and accounting for correlation structure 212 

improves the estimation of trait-environment relationships by comparing independent 213 

trait models (ITMs) with a multiple trait model (MTM) and a joint trait model (JTM) that 214 

explicitly accounts for correlations between traits (see below for details). While large-215 

scale analyses inform on the general direction of some traits along some of the selected 216 

environmental gradients (Wright et al. 2004, Poorter et al. 2009), there are no well-217 

defined theoretical expectations about the exact shape (e.g. linear, curvilinear, 218 

exponential) of the response of the four traits to our local environmental gradients. We 219 
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thus used generalized additive models (GAMs) that do not require predefined response 220 

curve shapes along predictor variables (Hastie and Tibshirani 1990). They use a class of 221 

equations called ‘smoothers’ that attempt to generalize data into smooth curves by local 222 

fitting to subsections of the data. More technically, we used thin plate regression to 223 

estimate the smoothers for the four predictor variables and a tensor product to generate 224 

a smoother for an interaction term between MAP and TOPO to account for the fact that 225 

effects of precipitation may change with topography due to differential water retention 226 

on ridges vs. in depressions. The thin plate and tensor product smoothers were 227 

estimated using the mgcv package (Wood 2011) in the R statistical environment 228 

(Version 3.3.2; R Core Team 2016). A potential downside of GAMs is that they 229 

sometimes overfit, i.e. the estimated response could get very close to the data and 230 

potentially ignores biological realism. We minimized overfitting by allowing for a 231 

maximum of five degrees of freedom in the smoothers to avoid overly complex 232 

responses. In addition, we also fitted GLMs with linear and quadratic terms for all 233 

predictors (and including the interaction between MAP and TOPO) to test whether ITM 234 

performance was influenced by the flexibility of response curves in GAMs. 235 

 236 

In the ITM approach, we modeled traits independently of each other, as traditionally 237 

done in functional ecology (e.g., Bernard-Verdier et al. 2012, Widenfalk et al. 2015). In 238 

the simplest case of one predictor variable, the model equation for one trait would be as 239 

follows: 240 

𝑦𝑖 = 𝑏 + 𝑓(𝑥𝑖) + 𝜀𝑖 (1), 241 

where each element of the response yi is the CWM of a trait in plot i, b is an intercept and 242 

f represents the smooth term of a predictor variable x. 𝜀𝑖 represents the Gaussian 243 

residuals. In the case of several predictors eqn. (1) extends to: 244 
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𝑦𝑖 = 𝑏 + 𝑓𝑝(𝑥𝑖𝑝) + 𝜀𝑖 (2) 245 

where 𝑓𝑝 indicates the predictor-specific smooth terms. The model equation for the 246 

MTM and JTM further extends eqn. (2) to: 247 

𝑦𝑖𝑗 = 𝑏𝑗 + 𝑓𝑝𝑗(𝑥𝑖𝑝𝑗) + 𝜀𝑖𝑗  (3) 248 

where 𝑏𝑗 indicates a specific intercept for each trait, 𝑓𝑝𝑗 indicates that for each predictor 249 

p a distinct smooth is fitted for each trait j. Technically, trait-specific responses are 250 

achieved by trait-specific random effects on the smooth-term parameters, leading to: 251 

𝑦𝑖𝑗 = 𝑏𝑗 + 𝑓(𝑥𝑖) + 𝑢𝑝𝑗 + 𝜀𝑖𝑗  (4) 252 

where 𝑢𝑝𝑗 represents the random effects that enable the model to fit specific smoothers 253 

for each trait j along each predictor p. Random effects for each smoother in the MTM are 254 

constrained to stem from a normal distribution with expected value zero. The JTM 255 

additionally accounts for between-trait correlation by fitting an unstructured 256 

correlation structure on 𝑢𝑝𝑗 with a different parameter for every possible pair of traits. 257 

 258 

The mgcv package allows one to fit ITMs, MTMs and JTMs and we include the code to fit 259 

these models in the Supplementary material Appendix 2. Note that the correlation 260 

structure needs to refer to plotID, a factor with a unique ID for each of the i plots and its 261 

form has to be symmetric (corSymm) in order to obtain a pair-wise between-trait 262 

correlation structure. 263 

 264 

We assessed goodness of fit in both approaches using root mean square error (RMSE) of 265 

predicted vs. observed trait CWM values, and R2 of the regression between predicted 266 

and observed values (R2CORR). For both measures, we calculated a pooled value where 267 

the pooled predicted values of all four traits were compared to the pooled observations 268 
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of all traits and a trait-specific value where we compared predicted vs. observed values 269 

separately for each trait. Further, as commonly done for SDMs, we applied a repeated 270 

split-sampling procedure to assess performance of the models. The split-sampling 271 

procedure consisted of a random splitting of original data into two thirds training and 272 

one third testing data, with 20 repetitions. Thus, in each repetition the models were 273 

fitted on training data, and evaluated against the testing data. Analogous to the full-274 

model comparison, we evaluated model performance in the split-sampling procedure by 275 

assessing RMSE and R2CORR on the hold-out testing data pooled across the four traits and 276 

the 20 repetitions. In addition, we compared the correlation structure as estimated in 277 

the JTM with the observed correlation between trait CWMs in the Guisane Valley plots in 278 

terms of RMSE and bias (mean of predicted minus observed). 279 

Trait-environment relationships 280 

We produced partial response curves along the environmental gradients for all traits in 281 

order to facilitate identification and interpretation of differences between the modeling 282 

approaches. The partial response curve of a trait along a predictor variable describes 283 

how a trait changes along that variable and is produced by calculating the trait’s 284 

predicted values along the focal variable, while keeping all other variables fixed at their 285 

mean. 286 

Spatial projections 287 

We used the fitted ITMs and JTMs built from the sampled communities to project the 288 

spatial distribution of each trait over the whole Guisane valley at a spatial resolution of 289 

100x100m. We assess the plausibility of predictions by comparing the range of observed 290 

trait CWMs with predictions from both the ITM and JTM approaches. 291 
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Results 292 

Trait-environment relationships – model comparison 293 

All models (ITMs, the MTM and the JTM) explained considerable amounts of variation in 294 

CWMs (R2CORR ≥0.31). ITMs performed best when assessing performance by comparing 295 

predicted and observed data across all traits. RMSE across ITMs (0.73) was lower than 296 

RMSE of the MTM (0.80) and the JTM (0.83), indicating that ITM predictions best 297 

approximated the observed trait values, corroborated by a higher R2CORR (0.47 across all 298 

ITMs vs. 0.35 for the MTM and 0.31 for the JTM; Table 1). Differences in trait-specific 299 

RMSE of the independent models of the ITM approach indicate that vegetation height 300 

(0.63) and seed mass (0.57) are potentially more strongly driven by our selected 301 

environmental variables than LDMC (0.82) and SLA (0.86). A complete comparison of 302 

trait-specific RMSE and R2CORR values is provided in Supplementary material Appendix 1 303 

Table A1. 304 

 305 

Assessing the predictive performance using repeated split-sampling revealed that ITM’s 306 

performance collapsed markedly, where RMSE increased to 1.20 and R2CORR decreased 307 

to virtually zero. In contrast, predictive performance of the joint models did not 308 

decrease analogously in the split-sampling validation. The increase in RMSE was at 309 

highest 24% (for MTM; 19% for JTM; Table 1) and much lower compared to the ITM 310 

(where RMSE increased by 64%). R2CORR of the JTM approach was reduced by 68% (for 311 

JTM; 69% for JTM; Table 1) in the split-sampling procedure but was far from 312 

approaching zero, as observed in the ITM approach. Improved predictive performance 313 

of a JTM based on GLMMs was comparable to the presented results based on GAMMs 314 

and are reported in Supplementary material Appendix 1 Table A2. 315 
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 316 

We compared the pair-wise correlation between traits as estimated by the JTM 317 

approach with the observed correlations of CWMs in the plots of the Guisane valley 318 

(Table 2) in order to assess how much of the observed correlation structure is not 319 

explained by the predictors and thus mirrors in the residual structure. The low RMSE 320 

(0.10) and a bias close to zero (-0.03) indicated that the correlation structure as 321 

estimated in the JTM approach was close to the observed among-trait correlations. 322 

Directional trends for all trait-correlations were congruent between estimated and 323 

observed correlations and a regression between observed and estimated correlations 324 

revealed that the intercept and slope do not differ from zero and one, respectively 325 

(details see Supplementary material Appendix 1 Fig. A1).  326 

 327 

Response curves of the ITM and the MTM/JTM approaches differed in two aspects. First, 328 

ITM response curves were in general more complex than MTM and JTM response 329 

curves. For example, the response curves of SEEDM along all environmental variables 330 

took complex, data-driven shapes in the ITM approach, while except for relative 331 

humidity, both the MTM and the JTM approach yielded more linear responses along all 332 

gradients. Second, compared to the ITMs, prediction uncertainty was reduced when 333 

traits were modeled simultaneously using the JTM approaches. This manifested as 334 

reduced confidence intervals around the response curves. For example, confidence 335 

intervals in the case of SLA along minimum temperature were larger for the ITM 336 

compared to MTM and JTM. Even though less pronounced, the same tendencies also held 337 

for the comparison between MTM and JTM, where accounting for correlations between 338 

traits in JTM often led to simpler responses with less uncertainty associated to the 339 

predictions. Figure 2 illustrates the general findings, while partial response curves for all 340 
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traits along the four environmental gradients are presented in Supplementary material 341 

Appendix 1 Fig. A2-A4. 342 

Spatial projections 343 

Spatial projections of the three modeling approaches showed that the JTM best 344 

approximates the range of observed CWMs. While ITMs tended to predict trait values 345 

outside the range of observed values that are sometimes unrealistic, the MTM and JTM 346 

approaches did not suffer from this problem to the same extent. The example of height 347 

(Fig. 3) demonstrates that the over- and under-prediction of ITMs and the MTM 348 

appeared mostly but not exclusively in areas of extrapolation, thus in areas with 349 

environmental characteristics that were not covered by the data used to train the 350 

models (black polygons in Fig. 3a-c). Spatial projections for all traits are presented in 351 

Supplementary material Appendix 1 Fig. A5. 352 

Discussion 353 

We show that it is possible to predict the functional composition of alpine grassland 354 

communities, and that models that model multiple traits simultaneously outperform 355 

independent modeling of traits in several aspects. We further show that accounting for 356 

between-trait correlation in joint models further improves predictions, especially when 357 

extrapolating to novel environmental conditions. These findings suggest that traits 358 

should be modeled jointly rather than in isolation, and that between-trait correlation 359 

should be accounted for when modeling functional attributes of communities. 360 

Trait-environment relationships – model comparison 361 

We find that the joint trait model JTM outperforms the multiple trait model MTM and 362 

the independent trait models ITMs when predicting functional attributes of plant 363 



 17 

communities across the Guisane valley. ITMs clearly perform worst and while both 364 

approaches that model multiple traits simultaneously increased predictive performance, 365 

the difference between the MTM and the JTM that additionally accounts for between-366 

trait correlations is rather marginal. The comparison of partial response curves (Fig. 2) 367 

helps to identify reasons for the superior performance of the MTM and JTM approaches 368 

over the ITM approach in predicting CWM trait values. ITMs generally yielded complex 369 

response curves along all environmental predictors (red curves in Fig. 2), which lead to 370 

a break down in ITM cross-validation performance (Table 1). Simultaneous modeling of 371 

traits in the MTM and JTM approaches restricts the complexity of response curves and 372 

yields more constrained and linear responses (orange and blue curves in Fig. 2), which 373 

yield more realistic predictions when extrapolating (Merow et al. 2014). Trait-models 374 

based on GLMs showed the same pattern as those based on GAMs: the JTM yielded 375 

better predictions in cross-validation than ITMs (Supplementary material Appendix 1 376 

Table A2). Therefore, the complexity of the response is not the only explanation for 377 

improved predictions, because GLMs have simpler response curves and are less prone to 378 

over-fitting.  379 

 380 

Joint modeling may be superior to independent modeling because the modeled trait 381 

responses potentially profit from each other, an argument that is put forward in the field 382 

of SDMS: rare species are better predicted in JSDMs compared to species-specific SDMs 383 

(Ovaskainen and Soininen 2011). Adopted to the case of modeling traits, this could mean 384 

that the observed data may not sufficiently well sample the environmental space to 385 

effectively approximate the biological reality of a specific trait-response in ITMs, but the 386 

response fitted by a joint model may get closer to biological reality in joint models 387 

because it is correlated with the responses of other traits. The fact that the JTM that 388 
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explicitly accounts for correlations between traits performs better than the MTM 389 

supports this interpretation. More generally, modeling multiple traits simultaneously 390 

likely is superior to ITMs because it accounts for the fact that species’ presence and 391 

abundance in a given location is not determined by single traits, but rather results from 392 

the interplay of multiple trait axes (Muscarella and Uriarte 2016). Indeed, while 393 

accounting for trait-environment relationships the JTM estimates a correlation structure 394 

that is very similar to the observed between-trait correlations (Supplementary material 395 

Appendix 1 Fig. A1). Taken together, this suggests that inherent trait trade-offs are 396 

indeed affecting assembly and functional composition of communities and should by no 397 

means be ignored in “assemble-first, predict later” approaches. 398 

 399 

Improved validation-performance of the JTM approach parallels findings from species 400 

distribution modeling, where JSDM approaches exceed performance of independent 401 

SDMs across a number of multi-species data sets (Clark et al. 2014, Harris 2015). In 402 

addition to the reduction in complexity, the JTM approach also yields less uncertainty in 403 

parameter-estimates. While reduced confidence intervals (CIs) are visible across the 404 

entire range of the environmental variables, differences are greatest when extrapolating 405 

beyond the observed data-range (e.g., height along annual precipitation, Fig. 2). In 406 

summary, the limited complexity in response curves that are associated with less 407 

uncertainty suggests that the modeling approaches that model multiple traits 408 

simultaneously, and the JTM in particular, hold much promise for predicting functional 409 

attributes of communities and should be favored in any predictive modeling endeavor 410 

that involves projecting in space or time. 411 
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Spatial projections and extrapolation 412 

Spatial projections of the ITMs, the MTM, and the JTM across the Guisane valley (Fig. 3) 413 

illustrate the differences between the three approaches. ITMs often predict extreme trait 414 

values that exceed observed values by orders of magnitude in both directions for both 415 

height and seed mass. For example, independent trait modeling predicts grasslands 416 

grow taller than 100m (Fig. 2). Seed masses in the same area are predicted to be heavier 417 

than 100g (Supplementary material Appendix 1 Fig. A5); more than 1000 times the 418 

maximal seed mass observed for grassland species in the Guisane valley. Spatial 419 

projections derived from the MTM and JTM do not suffer from this problem. The 420 

predicted ranges of trait values more closely approximate the observed ranges and the 421 

models rarely predict unrealistic values (Fig. 3b,c,d; Supplementary material Appendix 1 422 

Fig. A5). The JTM also predicts more realistic trait CWMs than the MTM approach. For 423 

example, MTM predicts grasslands at the bottom of the Guisane Valley to grow as tall as 424 

5m, while JTM predicts a maximal height of 1m. Nevertheless, neither of the two 425 

approaches that model multiple traits simultaneously avoids all potential issues 426 

regarding extrapolation and we urge the need to carefully assess the plausibility of 427 

predictions when extrapolating. 428 

 429 

It is evident that the extreme predictions are largely restricted to areas where 430 

environmental conditions exceed conditions covered by data used to fit the models 431 

(black polygons in Fig. 3a-c, Supplementary material Appendix 1 Fig. A5). Responses 432 

along most gradients are curvilinear in ITMs (Fig. 2 and Supplementary material 433 

Appendix 1 Fig. A2-A4), and these flexible responses offer a possible explanation for the 434 

extreme predictions. Depending on the shape, extrapolation beyond the observed data 435 

range can quickly lead to extreme values outside the observed range (see the partial 436 
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response of LDMC along minimal temperature in Supplementary material Appendix 1 437 

Fig. A3 for an extreme example). Extrapolation is well known to involve various 438 

potential pitfalls and should be avoided whenever possible. However, on-going global 439 

change likely causes the appearance of novel climates (Williams et al. 2007). 440 

Consequently, the joint modeling of traits along environmental gradients that yields 441 

more conservative predictions when extrapolating is, therefore, the preferred approach. 442 

Limitations and further development 443 

Our results indicate that joint modeling should be preferred over independent modeling 444 

of traits along environmental gradients. Nevertheless, our approach is not free from 445 

limitations. We argued that the reduction of data dimensionality in a “assemble first, 446 

predict later” approach leads to higher efficiency because of the reduced number of 447 

required model-parameters. While this is certainly true for species-rich and trait-poor 448 

datasets, the number of model-parameters rapidly increases with the number of traits to 449 

be modeled. The increase in parameters will be especially drastic in the case of JTM, 450 

where the number of pair-wise trait combinations increases quadratically with the 451 

number of traits. We suggest considering the MTM approach instead of JTM for datasets 452 

with many traits, or using hierarchical latent variable models to reduce trait 453 

dimensionality (e.g., see Warton et al. 2015, Hui 2015). While we compare our findings 454 

with recent developments in the field of (joint) SDMs, our analysis did not aim to 455 

compare our “assemble first, predict later” approach with the various flavors of “predict 456 

first, assemble later” approaches. Potential future studies comparing both performance 457 

and computational efficiency of the various approaches for a range of conditions (i.e., 458 

varying numbers of species, traits, and sites) could help to determine the optimal 459 

approach. 460 
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 461 

Our MTM and JTM approaches as currently implemented use GAMMs and are therefore 462 

restricted to continuous traits. However, many functional traits, such as growth form of 463 

plants or diet of animals are categorical in nature. Categorical (or mixed) traits could 464 

potentially be jointly modeled using mixed modeling software that allows for categorical 465 

(or mixed) responses, such as MCMCglmm in R (Hadfield 2010) or using the various 466 

implementations of BUGS-like languages. While this is outside the scope of our study, we 467 

encourage further research to enable inclusion of categorical traits in joint models that 468 

follow the “assemble first, predict later” approach. Another potential avenue of 469 

investigations not covered in our initial assessment of the approach is how phylogenetic 470 

signal in traits interacts with independent and joint estimation of trait responses, 471 

because we know that phylogenetic signal affects the estimation of how functional traits 472 

interact with the environment (Li and Ives 2017). 473 

Implications 474 

Traditional approaches to the so-called fourth corner problem (understanding how 475 

functional traits mediate species-specific environmental responses) like RLQ analyses 476 

do not provide the possibility for spatial projections. While joint species distribution 477 

models overcome this limitation (Pollock et al. 2012, Jamil et al. 2013, Brown et al. 478 

2014), they are generally computationally intensive for large datasets (hundreds or 479 

thousands of species). While Latent Variable Models improve the capacity to model 480 

many species (Warton et al. 2015), these models still require spatial or environmental 481 

data for all species, which is not always available. Direct modeling of traits along 482 

environmental gradients in a “assemble first, predict later” manner may be debatable 483 

(Clark 2016), but it represents the basis of JTM’s efficiency, which has great potential in 484 
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large-scale applications like mapping ecosystem services in space. Lavorel et al. (2011), 485 

for example, relate a set of traits including height and LDMC to the environment to 486 

quantify ecosystem services. Such an approach is sensitive to spurious combinations of 487 

height-LDMC predictions and would obstruct correct predictions of ecosystem services. 488 

Simultaneous modeling of multiple traits, and especially the JTM approach, avoids 489 

predicting spurious trait combinations, thus is better suited to inform approaches that 490 

predict ecosystem services – an important tool in analyzing and mitigating effects of 491 

global change on human well-being (Díaz et al. 2015). Additionally, spatial projections of 492 

trait CWMs like vegetation height or leaf traits such as silica content could provide 493 

proximal predictors for SDMs of herbivores, ranging from large ungulates to insects. 494 

Furthermore, fitted trait-environment relationships could be used to drive trait 495 

responses to changing environments in earth system models (Pavlick et al. 2013, 496 

Verheijen et al. 2013). 497 
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Supplementary material (Appendix oik.XXXXX at 618 
<www.oikosjournal.org/readers/appendix>). Appendix 1-2 619 

Tables 620 

Table 1 Model performance metrics for the ITMs, the MTM, and the JTM 621 

that accounts for the correlation structure among traits. RMSE 622 

and R2CORR are calculated across all four traits in all approaches. 623 

Percentages in parentheses indicate how much performance 624 
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drops (i.e., how much RMSE increases and how much R2CORR 625 

decreases) in the split-sample validation. Metrics for the best 626 

performing approach in bold. 627 

 628 

 629 
 630 
 631 
Table 2 Pearson’s correlation coefficients among 632 

traits as observed in plots of the Guisane 633 

valley (based on CWMs) and as estimated 634 

by the JTM. 635 

  seed mass LDMC SLA RMSE1 

observed  

 height 0.53 -0.13 0.28  

 seed mass  -0.21 0.32  

 LDMC   -0.31  

estimated (JTM) 0.10 

 height 0.45 -0.18 0.10  

 seed mass  -0.20 0.23  

 LDMC   -0.32  

1 compared to observed correlations 636 

 637 
  638 

 predicted vs. observed  split-sample validation 

 RMSE R2CORR  RMSE R2CORR 

ITM 0.73 0.47  1.20 (64%) <0.01 (99%) 

MTM 0.80 0.35  0.98 (24%) 0.11 (69%) 

JTM 0.83 0.31  0.98 (19%) 0.10 (68%) 
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Figures 639 

 640 

Figure 1 Study regions and plot data used in this study. The French Alps in (a) with an 641 

inset map showing where the study region is located within France. The 642 

white area in (a) depicts the location of the Guisane valley as shown in (b), 643 

with the locations of the 108 grassland plots included our study. 644 

 645 

 646 
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 647 

Figure 2 Response curves of ITMs (red), the MTM (orange), and the JTM (blue) along 648 

the four environmental predictors for vegetation height. Solid lines represent 649 

predictions based on estimates, colored areas include the 95% confidence 650 

intervals. The grey background shading indicates environmental conditions 651 

that exceed the range spanned by the sample-locations used to fit the models 652 

(black dots). 653 

 654 

 655 
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 656 
Figure 3 Spatial projection of plant height across the Guisane valley. Projection of 657 

ITMs are shown in (a), the MTM projection in (b), and the JTM projection in 658 

(c) with colors indicating plant height on a log-scale according to the legend. 659 

Grey crosses represent locations of plots used for fitting the models. Black 660 

polygons depict areas where at least one of the environmental predictors 661 

reaches outside the observed (data-fitting) range. The boxplots in (d) 662 

describe the range of observed and predicted CWM values. 663 

 664 
 665 
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