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Abstract

Proliferation of glomerular epithelial cells, including the podocytes, is a key histologic feature of 

crescentic glomerulonephritis. We previously found that retinoic acid (RA) inhibits proliferation 

and induces differentiation of podocytes by activating RA receptor-α (RARα) in a murine model 

of HIV-associated nephropathy. Here, we examined whether RA would similarly protect podocytes 
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against nephrotoxic serum-induced crescentic glomerulonephritis and whether this effect was 

mediated by podocyte RARα. RA treatment markedly improved renal function and reduced the 

number of crescentic lesions in nephritic wildtype mice, while this protection was largely lost in 

mice with podocyte-specific ablation of Rara (Pod-Rara knockout). At a cellular level, RA 

significantly restored the expression of podocyte differentiation markers in nephritic wildtype 

mice, but not in nephritic Pod-Rara knockout mice. Furthermore, RA suppressed the expression of 

cell injury, proliferation, and parietal epithelial cell markers in nephritic wildtype mice, all of 

which were significantly dampened in nephritic Pod-Rara knockout mice. Interestingly, RA 

treatment led to coexpression of podocyte and parietal epithelial cell markers in a small subset of 

glomerular cells in nephritic mice, suggesting that RA may induce transdifferentiation of parietal 

epithelial cells towards a podocyte phenotype. In vitro, RA directly inhibited the proliferation of 

parietal epithelial cells and enhanced the expression of podocyte markers. In vivo lineage-tracing 

of labeled parietal epithelial cells confirmed that RA increased the number of parietal epithelial 

cells expressing podocyte markers in nephritic glomeruli. Thus, RA attenuates crescentic 

glomerulonephritis primarily through RARα-mediated protection of podocytes and in part through 

the inhibition of parietal epithelial cell proliferation and induction of their transdifferentiation into 

podocytes.
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INTRODUCTION

Crescentic glomerulonephritis (GN), characterized by multilayered accumulation of 

proliferating cells in the Bowman’s space, is a rapidly progressive disease leading to end 

stage renal failure. Immunosuppressive therapy, which carries a significant side effect 

profile, is the mainstay of treatment for GN. Thus, there is a need to identify more specific 

therapy with less significant side effects for GN. While podocytes are terminally 

differentiated quiescent cells in normal kidneys, proliferative cells in the crescents were 

shown to express podocyte-specific markers in the murine model of anti-glomerular 

basement membrane (GBM) GN 12 and in human crescentic GN, where the cells also co-

expressed cell proliferation markers 3, suggesting that proliferative podocytes are a 

component of cellular crescents in GN. A more convincing evidence for podocyte 

involvement in crescents is that mice with podocyte-specific deletion of the von Hippel-

Lindau gene specifically develop crescentic GN with proliferative podocytes 4, suggesting 

that podocyte proliferation caused by genetic manipulation can result in kidney disease 

similar to crescentic GN. Indeed, inhibition of podocyte proliferation improves renal 

function in the murine model of crescentic GN 5.

However, recent lineage-tracing experiments demonstrated that glomerular parietal epithelial 

cells (PECs) are a major component of crescents in GN and pseudo-crescents in collapsing 

glomerulosclerosis 6. Studies also suggest that PEC injury leads to cellular activation and 

proliferation of the remaining PECs, which ultimately forms cellular crescents 7. In addition, 
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PECs were found to express stem cell markers and have the ability to transdifferentiate into 

podocytes 8. Recent data further revealed that while podocyte generation from PECs is 

mainly confined to the glomerular development period and does not occur in aging kidneys 

or in response to nephron loss, it may occur after acute glomerular injury 910. Although the 

exact mechanism of cell injury in crescentic GN requires further clarification, it is likely that 

podocyte injury triggers glomerular cell proliferation and subsequent crescent formation.

Retinoic acids (RA) are derivatives of vitamin A and have multiple cellular functions 

including inhibition of proliferation, induction of cell differentiation, and inhibition of 

inflammation 11. In addition to their established benefits in treating a variety of cancers, RA 

also provides protection in multiple experimental models of kidney disease with podocyte 

injury 1213141516. We previously found that RA reduces proteinuria and glomerulosclerosis 

in a murine model of HIV-associated nephropathy (HIVAN) where pseudocrescent 

formation is present 17. RA also inhibits HIV-induced glomerular cell proliferation and 

preserves the expression of podocyte differentiation markers 1718. These studies suggest that 

RA may be an effective therapeutic option against proliferative glomerular diseases, such as 

crescentic GN and HIVAN.

Retinoids exert their biological effects by binding two families of nuclear receptors, the 

retinoic acid receptors (RAR) and the retinoid X receptors (RXR), which have distinct 

cellular functions and are expressed in a variety of tissues including the kidney 12. While all-

trans-retinoic acid (atRA) binds to and activates all RAR subtypes (RAR-α, -β, and -γ) 19, 

our recent data suggest that protective effects atRA against podocyte injury and in improving 

glomerular disease requires retinoic acid receptor-α (RARα) and that RARα is the most 

predominant RAR subtype expressed in podocytes 2021. However, as previous studies were 

performed using a global deletion of Rara, it was unclear how much of the renoprotection 

conferred by atRA was mediated directly through the podocytes. In addition, many studies 

have also shown an important role of regulatory T cells in the pathogenesis of crescentic 

GN 22, and since atRA can mediate the induction regulatory T cells and inhibition of the 

differentiation of Th17 cells 23, the beneficial effects of atRA or RAR agonists in vivo may 

also be in part due to the modulation of immune responses. Therefore, in the current study 

we sought to delineate the contribution of RA signaling directly on podocytes through 

podocyte RARα. Using podocyte-specific knockout mice of Rara, our results now show that 

the marked amelioration kidney injury by RA in the setting of nephrotoxic serum-induced 

GN (NTS-GN) is largely dependent on the podocyte-specific expression of RARα, 

underlining the importance of RA’s direct protective effects on podocytes. These 

renoprotective effects were also associated with inhibition of glomerular cell proliferation 

and with restoration of differentiated podocyte marker expression. Intriguingly, in addition 

to sparing the podocytes from injury, RA also induced a simultaneous expression of 

podocyte and PEC markers in a small subset of the glomerular cells in NTS-GN kidneys, 

suggesting that these may be transitional cells undergoing transdifferentiation from PECs 

into podocytes. Taking in vitro and in vivo lineage-tracing approaches, we confirmed that 

RA indeed enhances the transdifferentiation of PECs into podocytes. Taken together, our 

study indicates that RA attenuates crescentic GN primarily through RARα-mediated 

protection of podocytes and in part through inhibiting the proliferation of PECs and 

enhancing their transdifferentiation into podocytes.
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RESULTS

Generation of podocyte-specific RARα-null mice

To generate podocyte-specific RARα-null mice, mice carrying homozygous floxed Rara 
allele (RARαL2/L2) 24 were crossed with transgenic mice expressing Cre recombinase driven 

by the podocin promoter (podocin-Cre) 25. PCR analysis of genomic DNA obtained from 

isolated glomeruli showed a presence of both floxed L2 allele and an excised L- allele 

(Supplementary Figure 1A and 1B) in the podocyte-specific RARα-null (Pod-Rara−/−) mice, 

which was not present in the Rara wildtype (Pod-Rara+/+) mice. To further confirm the 

specific deletion of RARα in podocytes, we isolated primary podocytes from Pod-Rara−/− 

and Pod-Rara+/+ mice and cultured them in vitro, as previously described 26. Western blot 

analysis showed the loss of RARα expression in primary podocytes isolated from Pod-

Rara−/− compared to Pod-Rara+/+ (Supplementary Figure 1C). Weak residual expression of 

RARα observed in some primary podocyte samples of Pod-Rara−/− mice may be due to 

contamination of other glomerular cells during podocyte isolation and/or incomplete 

excision of floxed Rara in podocytes by podocin-Cre transgene. There were no gross defects 

observed in Pod-Rara−/− mice, nor changes in their kidney function when observed up to 8 

months of age (data not shown).

Podocyte RARα is required for improvement in renal function and cellular crescents in 
NTS-GN mice following RA treatment

To address the role of RA and RARα in podocytes in glomerular injury, we employed a 

murine model of NTS-induced glomerulonephritis (NTS-GN). NTS-GN was established in 

mice at 7 weeks of age by injection of the anti-glomerular basement membrane (anti-GBM) 

antibody, following the preimmunization with sheep immunoglobulin (IgG) as described 

previously 27, 28. Control mice were administered phosphate-buffered saline (PBS) vehicle 

control following preimmunization. To assess whether the administration of RA would be 

protective against NTS-GN, mice were treated daily with either RA or vehicle, starting one 

day prior to NTS injection for a total of 7 days. Representative image of their kidney 

histology is shown in Figure 1A. As anticipated, NTS administration led to glomerular 

crescent formation in both Pod-Rara+/+ and Pod-Rara−/− mice (Figure 1A, arrowheads; 

Figure 1B). RA treatment markedly reduced the number of crescents in Pod-Rara+/+ 

kidneys, but to a much less extent in Pod-Rara−/− kidneys. NTS also induced significant 

albuminuria (Figure 1C, Supplementary Figure 2) and resulted in declining kidney function, 

as measured by blood urea nitrogen levels in both Pod-Rara−/− and Pod-Rara+/+ mice 

(Figure 1D). RA treatment markedly diminished albuminuria and improved renal function in 

nephritic Pod-Rara+/+ mice, whereas RA had little effects in Pod-Rara−/− mice. We further 

verified that beneficial effects of RA are not mediated through the suppression of the 

immune complex deposition, as NTS-induced immune complex deposition (mouse IgG, 

sheep IgG, and C3) in glomeruli was not different between NTS-injected mice with or 

without RA treatment (Supplementary Figure 3). Together, these results suggest that RA 

protects from NTS-induced glomerular injury, which is conferred directly through the 

activation of podocyte RARα. While much of this protection is lost in Pod-Rara−/− GN 

mice, nevertheless a small partial protection remained with RA treatment. This may be 

through a small residual podocyte RARα as observed in some of the cultured primary 
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podocytes (Supplementary Figure 1C), potentially through incomplete ablation of Rara by 

podocin-Cre. We also cannot exclude the possibility that RA may affect other glomerular 

cell types, such as PECs, that may contribute to the observed partial protection in Pod-

Rara−/− mice. In addition, we also observed that RA administration led to a marked decrease 

in the presence of infiltrating inflammatory cells in nephritic mice of both genotypes 

(Supplementary Figures 4–6), suggesting that the immunomodulatory effects of RA also 

contribute to the partial protection observed in nephritic Pod-Rara−/− mice.

RA restores the expression of podocyte markers and protects against cell injury in NTS-
GN

We and others have previously shown that RA reduces markers of proliferation and 

preserves podocyte-specific differentiation markers both in vitro and in vivo 1718. Therefore, 

we next examined whether RA affected the expression of podocyte differentiation markers 

in NTS-GN and if so, whether this was mediated directly through podocyte RARα. NTS led 

to a marked reduction in both protein and mRNA expression of synaptopodin in mice of 

both genotypes (Figure 2A–B, 2D). While RA treatment significantly restored its expression 

in nephritic Pod-Rara+/+ mice, this restoration was largely lost in nephritic Pod-Rara−/− 

glomeruli. We next examined the expression of CD44, which is markedly enhanced in renal 

injury, including crescentic GN 29–31. There was an apparent increase in both protein and 

mRNA levels of CD44 in nephritic mice of both genotypes (2A, C, and E). Interestingly, in 

nephritic Pod-Rara−/− glomeruli mRNA expression of CD44 was significantly greater than 

in nephritic Pod-Rara+/+ (there was also an observable increase in the immunostaining of 

CD44, although not statistically significant, which may be due to the limitation of semi-

quantitative measurement of immunofluorescent signals). RA treatment significantly 

suppressed the CD44 mRNA expression in glomeruli of nephritic Pod-Rara+/+ mice, but to a 

much lesser extent in nephritic Pod-Rara−/− mice, further indicating that podocyte RARα is 

necessary for the full protective effects of RA against NTS-induced injury.

RA inhibits cell proliferation in NTS-GN

We next sought to determine the effects of RA on cell proliferation that accompanies NTS-

GN and its requirement for podocyte RARα. Immunohistological staining revealed 

numerous Ki-67-positive nuclei in glomeruli of NTS-injected mice compared to vehicle-

injected mice (Figure 3A–B). Ki-67 mRNA expression also considerably increased in 

nephritic glomeruli (Figure 3C). RA treatment led to a near complete repression of 

glomerular Ki-67 expression in nephritic Pod-Rara+/+ mice, whereas it had only a modest 

effect in nephritic Pod-Rara−/− mice, suggesting that RA inhibits glomerular cell 

proliferation through mechanisms that are both dependent and independent on the activation 

of podocyte RARα. While we cannot conclude which glomerular cell types were Ki-67-

positive, the data nonetheless suggest that decreased podocyte injury mediated by RA 

impacts glomerular cell proliferation in NTS-GN. Consistent with this notion, similar to 

what was observed with CD44 expression above, Ki-67 mRNA expression in nephritic Pod-

Rara−/− glomeruli was significantly greater than in nephritic Pod-Rara+/+, suggesting a 

potential association between degree of injury and the degree of cell proliferation in GN. In 

addition, this increase may also be attributable to the endogenous RA ligands that may limit 

proliferation through binding to RARα in nephritic Pod-Rara+/+ mice, but not in Pod-
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Rara−/− mice, consistent with earlier reports showing significant role of endogenous RA in 

glomerular disease 3233.

RA reduces the expression of parietal epithelial cell markers in NTS-GN

As PECs are shown to be a major component of proliferating cells in crescentic GN, we 

sought to examine whether PECs contributed to the RA-mediated inhibition of cell 

proliferation by comparing the expression of Claudin-1 and nephrin, PEC and podocyte 

markers respectively, in control and nephritic mice. As expected, there was a marked 

decrease in the expression of nephrin, consistent with the above observation of synaptopodin 

expression in Figure 2, and conversely a notable increase in Claudin-1 expression in 

nephritic mice of both genotypes (Figure 4A–C). RA treatment in nephritic Pod-Rara+/+ 

mice largely restored nephrin expression and effectively prevented the NTS-induced 

Claudin-1 upregulation. However, RA had no effect on nephrin expression and led to a 

partial inhibition of Claudin-1 in nephritic Pod-Rara−/− mice. Real-time PCR analyses of 

nephrin and Claudin-1 in isolated glomeruli showed similar results (Figure 4D–E). These 

results indicate that RA/RARα signaling on podocytes to prevent its cellular injury, which in 

turn might prevent PEC proliferation in NTS-GN. However, since RA treatment did partially 

reduce the expression of Claudin-1 in nephritic Pod-Rara−/− mice, even in ongoing podocyte 

injury (as observed by lack of recovery in nephrin expression), the data also suggest that 

there may be a direct effect of RA on PEC proliferation. Interestingly, we observed that a 

small number of Claudin-1-positive cells were also nephrin-positive, which were found only 

in the RA-treated GN glomeruli (Figure 4F), whose numbers were not significantly different 

between RA-treated Pod-Rara+/+ and Pod-Rara−/− mice. We speculated that this might be 

due to RA’s ability to transdifferentiate PECs towards a podocyte phenotype, independent 

from RARα function in pre-existing podocytes, as previous findings by Zhang et al. also 

showed that RA could increase the expression of podocyte markers in PECs in the setting of 

experimental glomerular disease 34.

RA inhibits the proliferation of PECs and induces their transdifferentiation in vitro

Since we observed that RA administration in vivo led to a reduced expression of PEC 

marker Claudin-1 and to a dual expression of Claudin-1 and nephrin in a small subset of 

glomerular cells, we sought to validate these observations in vitro. We obtained 

conditionally immortalized mouse PECs (from laboratory of Dr. Stuart Shankland) and 

cultured them as described in Ohse et al. 35. Cultured mPECs were allowed to differentiate 

by incubation at 37°C without IFN-γ to inactivate the T-antigen for 14 days. To test whether 

RA can directly inhibit PEC proliferation through RARα, differentiated mPECs were treated 

with either vehicle (DMSO), atRA (5μM), or RARα-specific agonist AM580 (200nM), and 

their proliferation was assessed using a crystal violet staining method 36. Addition of either 

atRA or AM580 significantly decreased their proliferation, which was detectable at 48 hours 

and more pronounced by 72 to 96 hours in culture (Figure 5A). Furthermore, by 72 hours of 

incubation with atRA or AM580, there was a marked enhancement in the mRNA expression 

levels of podocin, nephrin, and synaptopodin in comparison to vehicle treated cells, while 

the PEC marker Pax2 remained unchanged (Figure 5B). We further confirmed that atRA 

enhanced the podocyte marker expression in mPECs by immunofluorescence. While there is 

a small percentage of differentiated mPECs that express both Pax2 and synaptopodin at 
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basal level (21.25±1.38%) in vitro, atRA treatment led to a substantial increase in number of 

cells that co-express Pax2 and synapotodin (73.25±3.68%) (Figure 5C, arrowheads). 

Together, these results support the above in vivo finding that RA can directly inhibit 

proliferation of PECs and enhance their transdifferentiation into podocytes.

RA induces transdifferentiation of PECs into podocytes in vivo

To further validate the in vitro findings, we performed the lineage-tracing of PECs in vivo in 

the setting of NTS-GN. Cre reporter mice that express red fluorescent protein (RFP), 

tdTomato, upon recombination 37 were crossed with mice carrying PEC-rtTA 6 and TetO-

Cre transgenes. In the resulting triple transgenic mice (PEC-rtTA; TetO-Cre; tdTomato) 

PECs were first fluorescently labeled with by feeding mice with doxycycline (DOX)-

supplemented chow (625mg/kg of chow) for 4 weeks prior to NTS injection. DOX feeding 

induced a robust tdTomato RFP expression in PECs (Figure 6A). RA treatment in NTS-

injected mice induced migration of RFP-labelled PECs into the glomerular tufts, where they 

exhibited podocyte morphology and concomitantly expressed synaptopodin. We observed an 

average of three to four RFP/synaptopodin double-positive cells per glomerulus in RA-

treated GN mice, while such cells were not present in the glomeruli of nephritic mice 

without RA treatment (Figure 6B), further lending credence to the above findings that RA 

induces PEC transdifferentiation. Taken together, our data indicate that RA confers 

protection against NTS-GN largely through direct activation of RARα in podocytes and in 

part through the inhibition of PEC proliferation and induction of their transdifferentiation 

into podocytes.

RARα expression in human crescentic GN

Since our data suggested that RA might be an effective therapeutic approach against renal 

injury in crescentic GN, we wanted to confirm that there were no alterations in the 

expression pattern of RARα in human crescentic GN. We were able to obtain patient biopsy 

samples from 4 patients with minimal change disease (MCD) and 5 patients with crescentic 

GN (clinical information of the patients is summarized in Supplementary Table 1). 

Immunostaining for RARα showed that its expression is broadly distributed in all 

glomerular and tubular cells in both MCD and in crescentic GN patient kidneys, suggesting 

that the expression level of RARα is not significantly altered in crescentic GN in 

comparison to normal kidneys (Figure 7). These findings are consistent with our previous 

studies showing that RARα expression was not different between human HIVAN kidneys 

and control kidneys 20. Thus, as our data demonstrates that RARα is a key molecule 

mediating the beneficial effects of RA and its expression is not altered in the diseased 

kidney, development of RARα agonists may be a novel therapeutic approach to treat patients 

with crescentic GN.

DISCUSSION

In addition to the critical role that RA plays during kidney development, RA has been 

demonstrated to preserve differentiation markers in cellular injury as well as induce the 

differentiation of kidney progenitor cells 38. Furthermore, RA has also been shown to 

attenuate inflammation and apoptosis in models of podocyte injury 39. In this current study 
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we sought to address whether RA can improve renal function and ameliorate kidney injury 

in the context of NTS-GN and whether this would be mediated directly through the 

inhibition of podocyte injury. Our data indeed demonstrates that RA confers renoprotection 

in NTS-GN and that much of the beneficial effects of RA are directly mediated by 

engagement of podocyte RARα. Our data also indicate that reduced podocyte injury is 

associated with reduced number of proliferative cells in NTS-GN. Furthermore, in addition 

to podocytes, our data show that RA can directly reduce proliferation of PECs and induce 

their transdifferentiation into podocytes. Lineage tracing of PECs in vivo lends further 

support that RA can induce the number of transitional PECs co-expressing PEC and 

podocyte maker expression in the setting of glomerular injury. To our knowledge, this is the 

first study to show a specific role of RARα in podocytes against pathogenesis of crescentic 

GN and also a first to demonstrate in vivo by lineage tracing that RA can induce PECs to 

generate new podocytes. Our previous studies also suggest that PECs also express RARα 20. 

Therefore, future studies are required using PEC-specific deletion of RARα in vivo to 

further confirm our findings.

Recent data suggest that podocyte generation occurs mainly during glomerular development 

and may occur only after acute glomerular injury, and that the regeneration capacity of the 

podocytes in aging kidneys is very limited. In fact, in response to nephron loss podocytes 

undergo hypertrophy rather than regeneration 910. Therefore, it is unlikely that podocyte 

regeneration, such as through transdifferentiation of PECs, is sufficient for full recovery of 

injury in kidney disease such as FSGS or GN. Our data suggest that RA is able to generate 

podocytes from PECs, albeit a small number per glomeruli, and that this may contribute 

partially to the beneficial effects of RA. However, the majority of the renoprotective effects 

of RA are shown to be mediated directly by RARα in podocytes and that there is a 

significant, but limited contribution of RA-induced podocyte regeneration from PECs, which 

is consistent with the previous findings 910.

Recent data demonstrated that PECs are the sources of proliferative cells in early 

crescents 40. Our data suggests that initiation of podocyte injury is a critical step leading to 

crescentic GN, as protective effects of RA were markedly diminished in Pod-Rara−/− mice. 

However, we did observe some renoprotection by RA in nephritic Pod-Rara−/− mice, albeit 

significantly less than in nephritic Pod-Rara+/+ mice. This may be due to a combination of 

factors, which include: 1) an incomplete knockout of RARα in podocytes driven by 

podocin-Cre, resulting in small residual level of RARα signaling in podocytes; 2) retinoic 

acid receptors other than RARα that may mediate the renoprotective effects of RA in 

podocytes (however, our previous in vitro and in vivo studies clearly showed that RARα is 

the key RA receptor in podocytes 1720); 3) effects of RA on glomerular cells other than 

podocytes to confer protection. Our findings suggest that RA has directly affects PECs, as 

shown by RA-mediated inhibition of PEC proliferation in vitro and in vivo. In addition, we 

observed that RA induced the transdifferentiation of PECs into podocytes; and 4) 

immunomodulatory effects of RA 22 that may contribute to the renoprotection. Indeed, our 

data on reduced expression of infiltrating cells in both Pod-Rara+/+ and Pod-Rara−/− mice 

support the important immuomodulatory role of RA in NTS-GN.
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Treatment of GN is currently limited to immunosuppressive therapy. Our data indicate that 

RA may be a potential treatment of crescentic GN by directly minimizing podocyte injury. 

Since RARα is a key receptor mediating the effects of RA and its expression does not 

appear to be altered in human crescentic GN, specific agonists of RARα could be developed 

as a novel therapeutic option. It is known that RARα agonists have lower toxicity than RA, 

since many adverse effects of RA are mediated through activation of RARγ. As such, 

RARα agonists do not have much toxicity in skin cells, which is mediated mainly by 

RARγ 4142. Novel RARα agonists with less toxicity have also been developed recently and 

show efficacy in experimental model of HIV-associated nephropathy 21. In sum, we have 

demonstrated that RA improves renal function and reduces the number of crescents in NTS-

GN mice primarily by reducing podocyte injury and by inhibiting proliferation of 

glomerular cells, and to a small extent, by inducing transdifferentiation of PECs into 

podocytes (illustrated in schematics in Figure 8). RARα is a key molecule mediating the 

beneficial effects of RA, and RARα agonists may be further developed as new therapeutic 

approach to treat patients with crescentic GN.

METHODS

Human archival kidney samples

Human biopsy samples of crescentic GN and minimal change were obtained from archival 

biopsy specimens collected at Icahn School of Medicine at Mount Sinai (ISMMS) under a 

protocol approved by the Institutional Review Board at ISMMS and at Zhongshan Hospital 

in Shanghai, China under a protocol approved by the Ethics Committee at Zhongshan 

Hospital, Fudan University, China.

Generation of mouse lines

All animal studies were performed according to the protocols approved by Institutional 

Animal Care and Use Committee at Icahn School of Medicine at Mount Sinai. The 

conditional floxed RARα−/− mice were provided by Dr. Pierre Chambon (Strasbourg, 

France) 43. Podocin-Cre transgenic mice in C57BL/6 were obtained from Jackson laboratory 

(Bar Harbor, ME). These mice were crossed to generate the experimental Pod-Rara−/− mice 

in the mixed background of 129/Sv and C57BL/6, and Pod-Rara+/+ wildtype littermates 

were used as controls. Genomic DNA was isolated from tail, glomerular, no glomerular 

fraction (NGF), liver, or cortex for genotyping by PCR using the following three primers: 1: 

5′-CTC CCT GTG ACC ACC AGA AGC TC-3′, 2: 5′-GGA AGG AAC TAG GGC AGA 

GG-3′ and 3: 5′-TAT CCT GTT GAC CCC AGC TC-3′. These primers amplify three 

different Rara alleles: wildtype (400bp), floxed allele (450bp), and excised allele (330bp). 

PEC-rtTA mice were kindly provided by Dr. M. J. Moeller. Cre reporter strain [B6.129S6-

Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J, Stock# 007905] that expresses red fluorescent 

protein (RFP) variant, tdTomato, following Cre-mediated recombination was purchased 

from The Jackson Laboratory (Bar Harbor, ME). Induction of transgene expression in PEC-

rtTA/TetO-Cre/CAG-tdTomato mice was achieved by giving 625mg/kg doxycycline-

supplemented chow (Bio-Serv, French Town, NJ) for 4 weeks prior to NTS injection. After 4 

weeks of supplementation, the chow was replaced with normal chow.
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Induction of anti-GBM nephritis and RA treatment

Antiglomerular basement membrane (anti-GBM) nephritis was induced with injection 

nephrotoxic serum (NTS) as described in Salant et al. 27. Briefly, Pod-Rara+/+ and Pod-

Rara−/− mice between 7 weeks of age were immunized with a single intraperitoneal injection 

of 0.5 mg of sheep IgG (Jackson Immunoresearch Laboratories, West Grove, PA) in 0.2 ml 

of a 1:1 emulsion with complete Freund’s adjuvant (Sigma Chemical Co., St. Louis, MO). 

Six days later, glomerulonephritis was induced with an intravenous injection of 2.5ul/g NTS 

(66.7g/L in sterile PBS) or sterile PBS as control through the tail vein (anti-GBM antibody 

NTS was kindly provided by Dr. David J. Salant). To assess the effect of RA treatment in 

NTS-GN, Pod-Rara+/+ and Pod-Rara−/− were treated daily with intraperitoneal injection of 

atRA (16 mg/kg) or vehicle (corn oil) beginning one day before NTS injection. Seven days 

after NTS injection, serum samples were collected and kidneys were harvested for histology 

and glomeruli isolation. There were 6 mice in each group of PBS-injected, NTS-injected, or 

NTS-injected with RA treatment per genotype.

Measurement of urine albumin and creatinine

Urine albumin was quantified by ELISA using a kit from Bethyl Laboratories, Inc. 

(Houston, TX). Urine creatinine levels were measured in the same samples using 

QuantiChromTM creatinine assay kit (DICT-500) (BioAssay Systems) according to the 

manufacturer’s instruction. The urine albumin excretion was expressed as the ratio of 

albumin to creatinine.

Measurement of BUN

Blood urea nitrogen (BUN) was measured by using a commercially available kit (Bioassay 

Systems, Hayward, CA).

Histopathology and immunohistochemistry

Kidney samples were either frozen in OCT embedding compound or fixed in 10% formalin 

then embedded in paraffin. Periodic Acid Schiff’s (PAS) staining of paraffin-sections was 

used for quantification of crescents. The proportion of glomeruli with crescents was 

determined by an examiner blinded to the experimental condition. At least 30 glomeruli per 

animal were counted. Each biological group had 6 animals. Paraffin-embedded sections 

were used for Ki-67 staining by using a rabbit anti-Ki67 antibody (Vector Laboratories, 

Burlingame, CA). For quantification of Ki-67-positive nuclei, more than 10 glomeruli per 

animal and three animals from each biologic group were examined to calculate the number 

of Ki-67 stained nuclei.

Immunofluorescence

Frozen section of OCT-embedded tissue was used for synaptopodin, CD44, nephrin, 

Claudin-1, mouse IgG, sheep IgG, and C3 complement immunofluorescent labeling. 

Cultured mPECs were fixed with 2% formaldehyde containing 4% sucrose for 10 min, then 

permeabilized with 0.3% Triton-X100 in PBS for 10 min. The following primary antibodies 

were used: rabbit-anti-Claudin-1, goat-anti-RARα, rabbit-anti-RARβ from Abcam 

(Cambridge, MA); rabbit anti-synaptopodin antibody from Dr. Peter Mundel (Massachusetts 
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General Hospital, Boston, MA); mouse anti-synaptopodin antibody from Fitzgerald 

Industries International. Inc. (Acton, MA); rabbit anti-nephrin antibody from Dr. Larry 

Holzman (University of Pennsylvania, Philadelphia, PA); rabbit anti-Pax2 antibody from 

Invitrogen (Waltham, MA); rat anti-CD44 from eBioscience (San Diego, CA); anti-mouse 

IgG and anti-sheep IgG from Jackson ImmunoResearch Laboratories (West Grove, PA); 

After mounting, slides were examined by Zeiss Axioplan2IE microscope.

Quantification of Immunostaining

After sections were immunostained, negatives were digitized, and images with a final 

magnification of X400 were obtained. ImageJ 1.26t software was used to measure the level 

of immunostaining in the glomeruli. First, the images were converted to 8-bit grayscale. 

Next, the glomerular region was selected for measurement of area and integrated density. 

Next, the background intensity was measured by selecting three distinct areas in the 

background with no staining. The corrected optical density (COD) was determined as shown 

below:

where ID is the integrated density of the selected glomerular region, A is the area of the 

selected glomerular region, and MGV is the mean gray value of the background readings) 44.

Glomerular isolation

Mouse glomeruli were isolated as described 45. Briefly, animals were perfused with Hank’s 

Buffered Salt Solution (HBSS) containing 2.5mg/ml iron oxide and 1% bovine serum 

albumin. At the end of perfusion, kidneys were removed, decapsulated, minced into 1-mm3 

pieces, and digested in HBSS containing 1mg/ml collagenase A and 100 U/ml 

deoxyribonuclease I. Digested tissue was then passed through 100-micron cell strainer and 

collected by centrifugation. The pellet was resuspended in 2 ml of HBSS and glomeruli were 

collected using magnetic beads.

Real-time PCR

Total RNA was isolated from either isolated glomeruli using RNeasy Mini Kit (Qiagen, 

Valencia, CA). Real-time PCR was performed using complementary DNA reverse 

transcribed from RNA with SYBR green PCR master mix (Applied Biosystems, Foster city, 

CA) and PCR reactions were carried out using the Applied Biosystems 7900HT Fast Real-

Time PCR system. Primer sets were obtained from Sigma Aldrich (St. Louis, MO) for Ki67, 

nephrin, synaptopodin, CD44, Claudin-1, and GAPDH. Sequences of the PCR primers are 

provided in Supplementary Table 2. SDS2.2.1 software was used to quantitatively analyze 

CT values of target genes. Data were normalized to GAPDH presented as fold increase 

compared to the reference experimental group using the 2−ΔΔCT method.

Mouse PEC culture and cell proliferation assay

Immortalized mouse PEC cells were a generous gift of Dr. Stuart Shankland. mPECs were 

cultured as described by Ohse et al.35. Briefly, mPECs were expanded under growth-
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permissive conditions at 33°C with 50U/ml IFN-γ in RPMI1640 media containing 2% fetal 

bovine serum (FBS), penicillin (100U/ml), streptomycin (100mg/ml), sodium pyruvate 

(1mmol/L). Differentiation was induced by switching to growth-restrictive conditions (37°C 

without IFN- γ) for 14 to 16 days, at which either vehicle (DMSO), atRA (5μM), or AM580 

(200nM) was added for 72 hours (for real-time PCR analysis and immunocytochemistry) or 

96 hours (cell proliferation assay). Cell proliferation assay was conducted using the crystal 

violet staining method, as described previously 36. Briefly, each 12-well plate of 

differentiated mPECs (incubated with vehicle, atRA or AM580) were fixed every 24 hours, 

until 96 hours, using 4% PFA. After the last collection of the 12-well plate at 96 hours, fixed 

cells were incubated with crystal violet staining solution (0.1% crystal violet powder in 10% 

ethanol) for 20 minutes in room temperature. Incorporated crystal violet dye was solubilized 

with 1% SDS and quantified using absorbance measurement at 570nm. The assay was 

performed using 6 replicates per group and repeated twice.

Statistical Analysis

Data are expressed as mean ± SEM. The unpaired t-test was used to comparison between 

groups or two-way ANOVA followed by Bonferroni correction was used when comparing 

between groups for treatment conditions using the GraphPad Prism software. P-value<0.05 

was considered statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Role of RA and RARα in NTS-induced GN
(a) Representative images of Periodic acid-Schiff (PAS)-stained kidney sections are shown 

for Pod-Rara+/+ and Pod-Rara−/− mice injected with vehicle (PBS), NTS only (NTS) or NTS 

with RA treatment (NTS+RA). Arrowheads show NTS-induced glomerular crescents 

(magnification: x200, scale bar: 50μm). (b) Quantification of percentage of glomeruli with 

crescents. (c) Development of proteinuria was assessed by urinary albumin to creatinine 

ratio (UACR). (d) Measurement of blood urea nitrogen levels. (*P<0.05 and ***P<0.001, 

compared to respective PBS-injected control; ##P<0.01 and ###P<0.001 compared to 

respective NTS-injected mice; §P<0.05 and §§P<0.01 compared to NTS+RA Pod-Rara+/+; 

n=6 in each group, n.d., not detected.)
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Figure 2. Role of RA and RARα in the expression of podocyte differentiation and injury markers
(a) Representative images of synaptopodin (green) and CD44 (red) immunofluorescence are 

shown (magnification: x400, scale bar: 50μm). (b, c) Quantification of immunofluorescence 

optical density for synaptopodin (b) and CD44 (c) are shown. AU, arbitrary units. n.d., not 

detected. (d, e) Real-time PCR analysis for synaptopodin (d) and CD44 (e) from isolated 

glomeruli are shown. (**P<0.01 and ***P<0.001 compared to respective PBS-injected 

control; ##P<0.01 and ###P<0.001 compared to respective NTS-injected mice; ‡P<0.001 

compared to NTS-injected Pod-Rara+/+; §P<0.05 and §§§<0.001 compared to NTS+RA Pod-

Rara+/+. n.d., not detected, n=6 in each group).
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Figure 3. Role of RA and RARα in glomerular cell proliferation in NTS-GN
(a) Immunohistochemical staining of kidney sections for Ki-67 are shown. Representative 

images of kidneys of mice in each group are shown (magnification: x400, scale bar: 50μm). 

(b) Quantification of Ki-67+ cells per glomerular cross section. (c) Real-time PCR analysis 

of Ki-67 from isolated glomeruli is shown. (***P<0.001 compared to respective PBS-

injected control; ##P<0.01 and ###P<0.001 compared to respective NTS-injected 

mice; ‡P<0.001 compared to NTS-injected Pod-Rara+/+; §§P<0.01 compared to NTS+RA 

Pod-Rara+/+. n.d., not detected, n=6 in each group).
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Figure 4. Role of RA and RARα in the expression PECs and podocyte markers
(a) Immunofluorescence staining of nephrin and Claudin-1. Representative images from 

mice in each group are shown (magnification: x400, scale bar: 50μm). (b, c) Semi-

quantification of immunofluorescence optical density for nephrin (b) and Claudin-1 (c) are 

shown. AU, arbitrary units. (d, e) Real-time PCR analysis was performed for nephrin and 

Claudin-1. (f) Quantification of nephrin/Claudin-1-double positive cells in glomeruli of NTS 

and vehicle-injected mice. Nephrin and Claudin-1-double positive cells were detected only 

in the nephritic mice treated with RA. (*P<0.05, **P<0.01, and ***P<0.001 compared to 

respective PBS-injected control; ##P<0.01 and ###P<0.001 compared to respective NTS-

injected mice; §P<0.05 and §§P<0.01 compared to NTS+RA Pod-Rara+/+. n.d., not detected, 

n.s. not significant, n=6 in each group).
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Figure 5. RA inhibits proliferation of PECs and enhances expression of podocyte marker 
synaptopodin in vitro
(a) Immortalized mouse PECs were cultured in 37°C without IFN-γ for 14 days to induce 

their differentiation and were incubated with either vehicle (DMSO), atRA (5μM), or 

AM580 (200nM) for 96 hours. Crystal violet cell proliferation assay was performed to 

determine the effect of RA on PECs. Growth curve of differentiated PECs are shown as 

relative fold change in crystal violet stain (OD570nm) compared to 0h (no factors added) 

(*P<0.05 and ***P<0.001 compared to DMSO control; n=6). (b) Immortalized mouse PECs 

were cultured either at 33°C with IFN- γ or 37°C without IFN- γ to induce differentiation 

for 14 days. Following 14 days, cells were additionally treated with either vehicle (DMSO) 

atRA (5μM), or AM580 (200nM) for 72 hours. Real-time PCR analysis for PEC marker, 

Pax2, and podocyte markers, podocin, nephrin and synaptodopodin, are shown (*P<0.05, 

**P<0.01 and ***P<0.001 compared to 33°C-grown undifferentiated controls; ##P<0.01 

and ###P<0.001 compared to DMSO-treated differentiated PECs. n=6). (c) Representative 

image of Pax2/synaptopodin immunofluorescence in differentiated PECs treated with 
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vehicle or atRA (5μM) for 72 hours. Quantification of Pax2/synaptopodin co-expressing 

PECs/field is shown on the right (***P<0.001 compared to DMSO control).
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Figure 6. Lineage tracing of PECs shows increased PECs expressing podocyte marker 
synaptodopodin in vivo following RA admnistration in NTS-GN mice
PEC-rtTA; TetO-Cre; CAGs-tdTomato transgenic mice were fed with DOX for 4 weeks 

before injection of NTS to label PECs with tdTomato RFP. (a) Representative images of 

glomeruli in mice with or without DOX induction show RFP-labeled PECs only with the 

DOX induction (magnification: x400, scale bar 20μM). RA treatment induced migration of 

PECs into glomerular tufts in NTS-treated mice. Co-localization of RFP with synaptopodin 

(in green) confirms the transdifferentiation of PECs into podocytes in NTS+RA glomeruli. 

(b) Quantification of RFP/synaptopodin (synpo)-double positive cells/glomerular cross 

section (n.d., not detected, n=6 per group).
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Figure 7. Expression of RARα in human crescentic GN kidneys
Immunohistochemical analysis of RARα in biopsy samples of human crescentic GN and 

minimal change disease (MCD) kidneys. Representative image from crescentic GN biopsy 

samples (n=5, 3 IgA nephropathy, 2 anti-GBM patients) in comparison to those of MCD 

(n=3). There is no significant change in RARα expression pattern between crescentic GN 

compared to MCD kidneys (Magnification 400x, scale bar: 50μm).
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Figure 8. Schema of RA effects in crescentic GN
Podocyte injury is the initial event leading to the development of GN. Podocytes may 

undergo proliferation and/or stimulate PEC proliferation through paracrine effects. RA 

improves renal function and reduces the number of crescents in NTS-GN mice primarily by 

protecting podocytes from initial injury and inhibiting proliferation of glomerular cells 

(podocytes and/or PECs), and possibly by inducing transdifferentiation of PECs into 

podocytes.
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