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Abstract—Braitenberg vehicles are bio-inspired controllers for
sensor-based local navigation of wheeled robots that have been
used in multiple real world robotic implementations. The com-
mon approach to implement such non-linear control mechanisms
is through neural networks connecting sensing to motor action,
yet tuning the weights to obtain appropriate closed-loop naviga-
tion behaviours can be very challenging. Standard approaches
used hand tuned spiking or recurrent neural networks, or
learnt the weights of feedforward networks using evolutionary
approaches. Recently, Reinforcement Learning has been used
to learn neural controllers for simulated Braitenberg vehicle 3a
– a bio-inspired model of target seeking for wheeled robots –
under the assumption of noiseless sensors. Real sensors, however,
are subject to different levels of noise, and multiple works
have shown that Braitenberg vehicles work even on outdoor
robots, demonstrating that these control mechanisms work in
harsh and dynamic environments. This paper shows that a
robust neural controller for Braitenberg vehicle 3a can be learnt
using policy gradient reinforcement learning in scenarios where
sensor noise plays a non negligible role. The learnt controller is
robust and tries to attenuate the effects of noise in the closed-
loop navigation behaviour of the simulated stochastic vehicle.
We compare the neural controller learnt using Reinforcement
Learning with a simple hand tuned controller and show how the
neural control mechanism outperforms a naı̈ve controller. Results
are illustrated through computer simulations of the closed-loop
stochastic system.

Index Terms—Braitenberg Vehicle, Reinforcement Learning,
Stochastic Environment

I. INTRODUCTION

Braitenberg Vehicles are a set of qualitative models of
sensor-based steering behaviour in animals navigating towards,
or away from, a stimulus [1]. They have been used for
decades in different navigation tasks, and empirical works
on real robots have shown that robots using these controllers
can work in harsh and dynamic environments [2]. Because
of their qualitative biological nature, these controllers have
been typically implemented using different types of neural
networks. Qualitative models of the closed-loop have been

derived for the case of ideal (noiseless) sensors [3], where
the control mechanism is modelled as a generic function.
The assumption of deterministic state and perception had the
advantage of greatly simplifying the analytic treatment of the
closed-loop motion models. Moreover, it has been recently
shown that Policy Gradient Reinforcement Learning can be
used to find neural controllers that approximate functions
leading to closed-loop stable behaviour of Braitenberg Vehicle
3a [4]. However, these controllers might not perform well in
presence of sensor noise. Recently, a new model of Braitenberg
Vehicle 3a has been derived for noisy sensors as a non-
linear Stochastic Differential Equation [5], which allows us
to simulate and obtain new theoretical results on the closed-
loop behaviour of this robot navigation controller. Like in the
deterministic model, the navigation control function is mod-
elled as a generic function of the sensor measurements, yet,
in the stochastic case finding a controller to generate a stable
closed-loop navigation behaviour is even more challenging.
This paper uses Policy Search Reinforcement Learning to
learn appropriate control functions, leading to stable closed-
loop behaviour, modelled as feedforward neural networks.
Results show that the learnt neural controllers adapt to the
stochasticity of the system trying to minimise the effects of
noise. We rely on the stochastic model of Braitenberg vehicle
3a to analyse the resulting control functions approximated by
the networks. Furthermore, we compare the performance of
these controllers with a naı̈ve linear controller, which has been
shown to generate stable navigation in presence of sensor noise
[5].

Because of their flexibility, Braitenberg vehicles have been
used for multiple robotic tasks like; finding sources of chem-
icals through mobile robots [2], navigating against a water
current [6], obstacle avoidance [7], sound source localisation
[8], and underwater navigation with electric sensors [9]. All
these examples used empirical tuning of the sensory-motor
connection in the robots. However, as already stated some



research works made use of learnt neural controllers to im-
plement navigation behaviours. A recurrent neural network is
used in [10] using the qualitative principles of Braitenberg ve-
hicles to control a legged robot. The navigation network is able
to negotiate obstacles and interfaces the pre-processed sensory
input with a Central Pattern Generator module that controls
locomotion. Navigation towards a sound source (phonotaxis)
is another existing application of Braitenberg vehicles imple-
mented as neural controllers. In a series of works [11] [12] [13]
phonotaxis was implemented using spiking neural networks.
The neural controllers replicate the motion of female crickets
navigating towards the chirping males in wheeled robots. The
robots were tested in both indoor and outdoor environments.
Feedforward neural networks have been also used to learn,
through evolutionary techniques, Braitenberg like controllers
for sensor-based obstacle avoidance [14].

As we can see from the literature, neural controllers have
been widely used to implement Braitenberg vehicles with
desired closed loop dynamics of the robots. However, in
the examples using spiking neural networks the neural con-
trollers were hand tuned, and only in some cases were the
controllers actually learnt through optimisation techniques,
which are computationally costly. Reinforcement Learning
(RL), meanwhile, can greatly reduce the time of learning
compared to evolutionary techniques, enabling the learning
agent the discovery of an optimal behaviour autonomously by
trial-and-error according to a reward function [15]. RL has
been widely used in robotics because it provides solutions
for hard to engineer and sophisticated problems of behaviour
implementation that roboticists typically face. For example,
Reinforcement Learning was used in several works to learn
navigation strategies for mobile robots, both in simulated [16]
and on real robot [17]–[19]. All of these works used Value
Function Approaches to solve navigation problems, which are
not well suited to deal with continuous state and action spaces.
For instance, a change in the value function for some state-
action pair can alter the whole policy [15], making these
approaches prone to fail in highly stochastic problems. Recent
research in RL focuses instead on Policy Search techniques
which are better suited for continuous domains and stochastic
environments.

Ng et al. [20] use a policy search method to learn a robust
helicopter controller for autonomous inverted flight; a difficult
problem as helicopters have high-dimensionality, are non-
linear, complex, and stochastic. The Pegasus policy search
algorithm is used to learn a controller which can hover in
place and execute a number of manoeuvres. In this work, a
model of the helicopter is used for the learning. Although
this speeds up the process of learning the controller, it can
be dangerous because of modelling uncertainties, meaning the
controller may not work when deployed on the real robot.
State of the art work by [21] shows model-free policy search
used to control a manipulator in a stochastic scenario: In a
series of experiments, first a door position was varied in the x
and y space in an environment and the robotic arm was able
to consistently open the handle using monocular RGB images.

In a second experiment, the manipulator learns to pick up a
bottle regardless of position in a 30cm × 40cm grid.

As we can see, multiple experimental works have shown that
Braitenberg vehicles can perform target seeking behaviours
with noisy sensors, yet none can ensure optimal or robust
behaviour. Meanwhile, we have seen RL used to learn naviga-
tion controllers and robust controllers for stochastic systems.
This work shows that RL can be used to learn a robust
controller for a stochastic Braitenberg vehicle 3a. The learnt
controller will be optimal with respect to the reward function,
thus by carefully engineering the reward function for target
seeking behaviour, we can take the first steps towards optimal
controller design for a stochastic Braitenberg Vehicle 3a. The
rest of the paper is organised as follows: Section II reviews the
assumptions, the mathematical model of Braitenberg vehicle
3a as a stochastic differential equation, and how to use
RL to learn the sensori-motor connection function. Section
III presents results of the Stochastic Braitenberg Vehicle 3a
with different amounts of noise on the sensors using a non-
linear connection function learnt using the Policy Gradient
Reinforcement Learning algorithm. The learnt controllers are
tested under noise and are compared against a hard-coded
connection function. The paper concludes with a summary of
the presented findings and some future work in Section IV.

II. A STOCHASTIC MODEL OF BRAITENBERG VEHICLE 3A

Before applying any Reinforcement Learning techniques,
we will first briefly introduce the stochastic closed-loop model
of Braitenberg vehicle 3a as drift-diffusion equations, already
presented in [5], which we will later use for our simulations.
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Fig. 1. A Stochastic Braitenberg Vehicle 3a.

As seen in figure 1, vehicle 3a is a unicycle type robot with
a wheelbase d and distance between the sensors δ. The two
symmetrically arranged sensors have an inhibitory connection
to the corresponding wheel motor on the same side of the
vehicle as the sensor, and have a white noise signal following
a Gaussian distribution in our sensor readings (ξr, ξl), turning
the standard model of vehicle 3a into a stochastic one. Since
the sensori-motor connection is decreasing, illustrated using



the ‘–’ sign in the figure, the vehicle’s wheels turn at a faster
speed when low stimulus readings are recorded by the sensors,
and as the sensed stimulus gets stronger closer to the origin,
the wheel speeds slow down until they eventually stop moving
when the vehicle has reached the source (which has the highest
stimulus reading). This inhibitory connection also controls the
steering of the vehicle. For example, if the stimulus source
is to the left side of the vehicle, the intensity recorded by
the left sensor will be higher than the intensity recorded
by the right sensor. This results in the left wheel turning
slower than the right one, hence the vehicle steers towards
the stimulus source. [22] presents the mathematical model of
this bio-inspired non-linear controller for unicycle type robots,
although this work assumes noiseless sensors. [5] however
develops a stochastic closed-loop model of Braitenberg vehicle
3a using drift-diffusion equations which allows us to model
sensor noise.

Let us assume in a domain D there is a non-negative smooth
scalar stimulus S(x). The connection function between the
wheels and sensors is a function of the stimulus, F (s), and
since the connection for vehicle 3a should be decreasing, that
means F ′(s) < 0 for all perceived values s of the stimulus. To
model the sensor noise we define a random variable ξ with a
variance smoothly dependent on the measured stimulus value
as:

ξ = σ(s)dWt (1)

where σ(s) is the variance of the noise, describing how far
from the true value of the measured stimulus the random
perturbations can go, and Wt is a Wiener process. The sensor
noise has a zero mean Gaussian distribution at every point
in time. Although the noise is different for each sensor, we
will assume it has the same statistical properties. Under these
assumptions, for a vehicle with the left and right sensors
located at xl and xr respectively, the speed of the left and
right wheels are:

vl = F (S(xl) + σ(S(xl))dW
l
t )

vr = F (S(xr) + σ(S(xr))dW
r
t ) (2)

where dW l
t and dW r

t are independent noise processes on the
left and right sensors. Remembering that the distance between
the sensors is δ, we can approximate vl and vr as a Taylor
series around the middle point between the sensors x. We can
use these approximations of the wheel velocities (vl and vr)
to obtain the forward speed (v) and turning rate (ω = θ̇) of
the vehicle:

ω = − δ
d
∇F (x)T êp −

1

d
D1(x, θ)dW−t −

1

d
D2(x, θ)dW+

t

v = F (x) +
1

2
D1(x, θ)dW+

t +
1

2
D2(x, θ)dW−t (3)

where d is the wheelbase of the vehicle, dW+
t = dW l

t +
dW r

t and dW−t = dW l
t − dW r

t are two stochastic processes

combining the two sensors noise, and the diffusion terms
D1(x, θ) and D2(x, θ) are:

D1(x, θ) =
δ2

4
F ′′(x)σ(x)[∇S(x) · êp]2 + F ′(x)σ(x)

D2(x, θ) =
δ

2
∇S(x) · êp[F ′(x)σ′(x) + F ′′(x)σ(x)] (4)

If we substitute equations (3) into the unicycle kinematic
model we get the following closed-loop system of stochastic
differential equations:

dxt = F (xt) cos θtdt+
1

2
D−(xt, θt) cos θtdW

r
t

+
1

2
D+(xt, θt) cos θtdW

l
t

dyt = F (xt) sin θtdt+
1

2
D−(xt, θt) sin θtdW

r
t

+
1

2
D+(xt, θt) sin θtdW

l
t

dθt = − δ
d
∇F (xt).êp(θt)dt−

1

d
D+(xt, θt)dW

l
t

+
1

d
D−(xt, θt)dW

r
t (5)

where D−(xt, θt) = D1(xt, θt) − D2(xt, θt) and
D+(xt, θt) = D1(xt, θt) + D2(xt, θt). Note we have
eliminated the compound functions in the equations to simplify
the notation, i.e. F (xt) = F (S(xt)), F ′(xt) = F ′(S(xt)),
and so on. The diffusion terms in equations (4) rely on the
noise variance σ(s), the connection function F (s), and each
of their derivatives. They model non-additive noise since the
terms multiplying the increments of the Wiener Processes
dW l

t and dW r
t have a functional dependency on the state of

the system, xt and θt.
Now that we have obtained the system of Stochastic Differ-

ential Equations needed to simulate our Stochastic Braitenberg
Vehicle 3a, we can use Reinforcement Learning to learn the
connection function, F (s), between the wheels and the noisy
sensors.

A. The Reinforcement Learning Problem

The problem of learning the target seeking behaviour for
a stochastic Braitenberg vehicle 3a given a stimulus function
can be restated as finding a non-increasing function of the
stimulus to compute the velocities of the vehicle’s wheels.
Given the stimulus S(x) defined in an environment D ⊆ <2,
and with some initial vehicle pose (x0, θ0) ∈ D × S1

the trajectory followed depends on the connection function
F (s). Since the trajectory unfolds in time (x(t), θ(t)) but
also depends on the initial pose and F (s) we will write
(x(t,x0, θ0, F ), θ(t,x0, θ0, F )). We define a scalar reward
function r(x, θ) for each pose of the vehicle to measure how
good being at that state is. However, since the trajectory
depends on the initial pose and the connecting function, we
have to make the reward along a given trajectory a function



of the initial pose and the connecting function too, that is
r(x, θ) = r(t,x0, θ0, F ).

Since the problem we are trying to solve is a stochastic
dynamical system (a partially observable Markov decision pro-
cess), we need to choose a Reinforcement Learning methodol-
ogy which best leans itself towards stochastic data. While this
renders Value Function Approaches unsuitable, Policy Search
Methods are highly effective when the policy is stochastic
– the most common of which are Policy Gradient Methods.
Policy Gradient Methods are a type of Reinforcement Learning
technique which works by optimising parameterised policies
w.r.t. the expected return using gradient ascent. We decided to
use the Simultaneous Perturbation Stochastic Approximation
Algorithm [23] to estimate the gradient of the policy, and
used Adam [24], a state of the art algorithm for stochastic
optimisation to tune the weights of the neural network that
would be used to approximate the sensori-motor connection
function F (s). This method would be used to learn a robust
controller for our stochastic Braitenberg Vehicle 3a. We opted
to use a Radial Basis Function Feed-Forward Neural Network.
The final form of the RBF was as follows:

F (s) =

(
N∑
i=1

φi(s)wi

)
(6)

where N is the number of basis functions, the radial basis
functions φi(s) were Gaussian kernel functions centred at
fixed equidistant positions si within the range of the stimulus
(from s = 0 to s = S(0)), and wi is the weight of the
i-th neuron. By denoting the weight vector of the RBF as
Φ = (wi) we can state the reinforcement learning problem as
maximising the following total return:

R[Φ] =

∫
(x0,θ0)∈D×S1

p(x0, θ0)dx0dθ0∫ ∞
0

r(t,x0, θ0,Φ)dt (7)

where p(x0, θ0) is the probability of the initial conditions
being x0, θ0 and we need to integrate for all the initial
conditions. In other words, we need to integrate for all the
initial poses of the vehicle – the starting coordinates in the
workspace x0 and all orientations in the unit circle θ0 ∈ S1

– while also needing to integrate over the whole trajectory.
It is impossible, however, to evaluate these integrals due to
the total return function depending on the solution of the non-
linear dynamical system modelling the Braitenberg vehicle.
Furthermore, in our case it is not feasible to integrate over the
whole trajectory, so we changed the upper integration limit in
equation (7) to a finite time tf for our simulations. To solve the
problem of evaluating the total return we used the sampling
trick – where we sampled the space using random initial
poses of the vehicle – to estimate, through simulations, the
value of the integral. By using the Simultaneous Perturbation
Stochastic Approximation Algorithm (SPSA), we can estimate
the expected return:

∆R̂i ≈ R(Φi + ∆Φi)−R(Φi −∆Φi) (8)

where R is a function which generates an episode, returning
the total return from equation (7), Φi is the RBF weight vector,
∆Φi is a d-dimensional vector of perturbations defined as
∆Φi = Ck ·X ∼ ±1.Bernoulli( 1

2 ) and Ck = C0/k
γ , where

k is the iteration and γ is a non-negative coefficient. From
this, we can estimate the gradient of the total return using
regression yielding:

∇ΦR[Φ] = (∆ΦT∆Φ)−1∆ΦT∆R (9)

With the initial estimate of the gradient ∇ΦR[Φ] obtained, we
can use the Adam algorithm for Stochastic Gradient Descent
on the return to tune the weight vector Φ of the RBF:

Φk+1 = Φk + α · m̂k/(
√
v̂k + ε) (10)

where m̂k and v̂k are bias-corrected first and second moment
estimates of the gradient ∇ΦR[Φk], tuned using the default
settings from [24], α is the step size, and ε is a parameter
whose value is 10−8.

As we mentioned, the environment of the vehicle is the
whole plane D = <2, however we can simplify things in
the domain of the integral in equation (7), i.e. the domain
in which the initial conditions are selected for the sampling
process by defining the environment as a square region around
the origin D = [X−3, Y−3]× [X3, Y3] where [X−3, Y−3] is the
minimum starting coordinates and [X3, Y3] is the maximum
starting coordinates. To further simply the learning process we
decided to select the initial angular directions of the vehicle
to be pointing towards the source within a ±90◦ range, i.e.
θ0 ∈ [θt − π/2, θt + π/2], where θt = arctan

[
y0
x0

]
− π.

III. SIMULATIONS

This section presents the results of learning a robust sensori-
motor connection for a stochastic Braitenberg Vehicle 3a
using the Reinforcement Learning methodology presented in
Section II. In the experiments, the sensor noise variance is
increased while the system tries to effectively attenuate for
the stochastic environment. The results are compared against
a naı̈ve linear sensori-motor connection, previously used for
Stochastic Braitenberg vehicle 3a control in [5]. In the RL
experiments, the RBF function approximator was initialised
using 11 neurons, the perturbation size C0 was initialised
to 0.7, the maximum iterations was set to 500, and the
number of randomly initialised episodes per iteration was
330. The parameters for the Adam optimiser followed the
default settings in the documentation and were α = 0.001,
β1 = 0.9, and β2 = 0.999. To simulate the Braitenberg Vehicle
we integrate numerically the Stochastic Differential Equations
presented in equations (3) using the Euler-Maruyama method
with a fixed time step of h= 0.05 and a simulation time of
tf = 8.

A. Defining the reward function

Instead of directly imposing conditions on the learning,
RL uses an agent to preform trial and error interactions
with its environment, learning via a reward signal which
indicates whether the generated behaviour of the agent was



desirable. However, defining a reward function which will
generate the exact behaviour we want the agent to learn is
often seen as a difficult to engineer problem. While there
are multiple ways we could allocate reward to achieve the
target seeking behaviour of a stochastic Braitenberg Vehicle
3a, we have to be careful that the reward function we design
cannot be “gamed” by the agent, learning some function which
maximises the return but does not produce the behaviour we
want – a phenomenon known as reward hacking. To ensure
we avoid reward hacking by the agent, we kept the reward
function simple since it is noted that the more complicated
the reward function, the higher the likelihood and severity
of any hacking [25]. Since our robot is biologically inspired,
we wanted to base our reward function on how animals in
their natural environment learn a navigation task i.e. based
on the perceived strength of a stimulus using their receptor
organs. The function we designed allocated reward directly
corresponding to the strength of the perceived stimulus at
the agents current location, and since the sensors are noisy
the reward function would take the noisy observations as it’s
parameters. We summed these noisy readings recorded by the
vehicle’s two sensors and used this as the reward:

r = Slξl + Srξr (11)

where Sl|r are the true sensor readings and, as mentioned
previously, ξl|r are white noise signals following a Gaussian
distribution with a variance smoothly dependent on the mea-
sured stimulus value. To fulfil the criteria that the motion of the
vehicle is never backwards, i.e. F : <+∪{0} → <+∪{0}, the
reward function will only assign reward when the movement
of the vehicle is in the forward direction.

B. Learning target seeking with a stochastic vehicle

Although our Braitenberg vehicle could be used to find the
origin of any stimulus source, the most popular application is
the phototaxis Braitenberg Vehicle i.e. using light sensors to
find the source of a light stimulus. Given that a light source
follows the inverse-square law, we can define the stimulus as a
function of the position of the vehicle S(x) = g0

1+ηxTAx
where

η = 0.25, g0 = 4 and A is a 2 × 2 identity matrix defining
the isotropic nature of the stimulus source. Since the goal of
this work is target seeking, we want our vehicle to reach as
close to the origin of the stimulus source as possible. Based
on our definition of the light source, we know that in theory
the limit of proximity to the source and thus the ideal stopping
point of the vehicle is when the light sensors on the vehicle
measure the maximum stimulus value, i.e. S(0) = g0, which
is recorded when x = (0, 0). However, due to the stimulus
being sampled by the sensors the vehicle can never reach this
point. To calculate the real limit of proximity to the source
we need to account for δ, the distance between the sensors,
as the vehicles cannot get closer to the origin than this – thus

the maximum “S” they can reach is S
(

1√
2

[
δ
δ

])
. Combining

δ with the stimulus function we get

S(x) =
g0

1 + ηxT +

(
1√
2

[
δ
δ

])T
Ax +

(
1√
2

[
δ
δ

]) (12)

where, in our case δ = 0.1 hence the largest stimulus value
we can ever expect the vehicle to perceive is 3.99, instead of
g0 = 4.

For our first experiment, we want to check if we can effec-
tively use Reinforcement Learning to train a neural controller
when there is noise present in the learning process. We will
use the Newton-Raphson method for obtaining the roots of
functions to calculate the stimulus value at the equilibrium
point of the learned functions. This will allow us to analyse
how well our controllers preform as we increase the amount
of noise on the sensors. Ten learning experiments were ran
each time we increased the sensor noise variance (σ), from
0 to 0.1 in 0.005 increments. Although the noise is applied
in the simulations used for the learning process, it should be
emphasised that the results presented in this section are being
evaluated in a noise-free environment so we can focus on the
effectiveness of the algorithm at attenuating for noise.

Fig. 2. Stimulus values at the RBF zero crossings as the variance of the
sensor noise σ is increased from 0 - 0.1 in 0.005 increments.

Figure 2 shows a plot of stimulus values at the vehicles
equilibrium point (i.e. the RBF zero crossing) averaged over
10 trajectories, as a function of the sensor noise variance
σ. The grey shaded area shows the maximum and minimum
equilibrium points over the 10 trials, while the red line is the
average. While S(δ) = 3.99 is the ideal RBF zero crossing,
we can see from figure 2 that in the experiment where σ = 0
i.e. when there is no noise on the sensors, the equilibrium
point is at S(0) = 3.87. We can therefore use this value as
our new baseline to compare the effect sensor noise has on the
learning process. As soon as we add noise to the sensors, the
robot stops at an equilibrium point further from the source.
Even at the lowest level of noise, σ = 0.005, the equilibrium
point is S(0) = 3.65, a significant change from the no noise
scenario. However, as the variance increases from σ = 0.005
to σ = 0.06, the equilibrium point remains largely unaffected
displaying a mean of 3.6232 across the range with a standard



deviation of 0.0304, showing that Reinforcement Learning is
robust with noise present in the learning process. After this
point, the vehicles equilibrium point starts increasing. The last
experiment which shows an average equilibrium point below
S(0) = 4 is when the sensor noise variance σ = 0.085,
with variance σ = 0.09 experiments showing an average
equilibrium point of S(0) = 4.0172.

Although we may think the Reinforcement Learning algo-
rithm is no longer able to attenuate for the stochasticity in the
system effectively once the sensor noise variance increases
beyond σ = 0.085, later we will see that using the neural
controller learnt even when σ = 0.1 is still very effective
when it is used for stochastic vehicle control.

Fig. 3. RBF network outputs defining the connection function

Figure 3 shows a comparison between the trained RBF
Neural Networks under no sensor noise (turquoise plot) and
when the sensor noise variance σ is 0.08 (plum plot). Ten
learnt networks are shown on each plot. These networks map
the relationship between the wheel velocity and the strength
of the stimulus. While the plots help visualise the equilibrium
points presented in figure 2, what is interesting is that as
the sensor noise variance increases, the standard deviation
of the RBF networks remains the same i.e. the stability of
the algorithm remains unaffected as noise is added to the
system. All 10 trials in each case take positive values meaning
the vehicles are moving forward, and have a negative slope
which indicates the positive taxis behaviour of Braitenberg
Vehicle 3a. The figures show that the slope of the RBF is
much steeper when there is no noise in the system (turquoise
plot) compared to when the RBF is trained under noise (plum
plot), a behaviour expected as the neural network attenuates
for noise. Notice that as the variance σ increases, as well as the
steepness of the slope at the equilibrium point decreasing, the
velocity of the vehicle at any of the sampled stimulus values
is also smaller. This is because the weights of the network
are tuned using the estimated gradient of the total return.
In our simulations, if the angular direction of the vehicle
was not pointing towards the source within a ±90o range
during any stage of the simulation, the simulation stopped.
Therefore, once the noise in the system is increased, the

heading angle is much more likely to deviate from this range
during the simulation. This is confirmed by our results: in the
deterministic case with no noise, there was a 60% success of
full simulation, compared to 47% success of full simulation
at σ = 0.005 (the lowest amount of sensor noise variance
we applied to our system) and 15% success of full simulation
when σ = 0.08. This leaves us with a smaller ∆R compared
to the deterministic case, thus the weight updates are not as
large and therefore not as large a velocity is learnt.

C. Testing the controller on a simulated stochastic vehicle

The previous section has shown that Reinforcement Learn-
ing can effectively learn a robust sensori-motor connection
function for Braitenberg Vehicle 3a control, even under vary-
ing levels of sensor noise. However, we also need to test
how effective the learnt neural controllers are at attenuating
for stochasticity when the vehicle experiences sensor noise
during its target seeking task, i.e. we need to ensure that
the robot with noisy sensors can successfully preform target
acquisition using the learnt connection functions. To give some
comparison, we ran simulations of the stochastic Braitenberg
vehicle under the same levels of noise using the learnt sensori-
motor connection and a hard coded linear connection function,
defined as F (s) = 4−s where s is the strength of the stimulus,
so we can see if using RL improves Stochastic Braitenberg
Vehicle performance.

Fig. 4. The mean of 4000 trajectories evaluated using the naı̈ve controller
and RBF controller when σ = 0.08, compared against a noise-free trajectory.

The plots in Figure 4 show an example of the time evolution
of the mean of 4000 simulated trajectories using the naı̈ve
hard coded connection function (orange plot) and the RBF
connection function learnt using our RL algorithm (blue plot).



Each simulation is ran for 20 seconds. The figure shows the
results when when the sensor noise is following a normal
distribution with a variance σ = 0.08. The red dashed line is
our control experiment and represents the evolution obtained
from the deterministic equations of the moments, i.e. how the
vehicle performs in optimal conditions when the sensor noise
variance is zero. In each simulation, we start the vehicle at
x = (−2.8, 0), θ = 0, while the target is x = (0, 0), θ = 0.
We can see from the orange plot which uses the hard coded
connection function, that by introducing sensor noise there is a
large effect on the trajectory of the vehicle. Not only does the
x coordinate not reach close to zero (stops at x = −1.0129),
the y coordinate and θ coordinate drift. Comparatively, the
experiment which uses the RBF connection function performs
much better when tested under the same level of sensor noise.
Although the x coordinate does not reach zero (x = 0.0144),
it still performs much better than the hard coded controller
counterpart. Additionally, the y and θ coordinates, although
slightly noisy over the entire evolution of the trajectory, do not
drift. We can further analyse the effectiveness of using the RBF
controller over a hard coded linear controller by evaluating
the strength of the stimulus perceived by the robot at the end
of the simulation, T = 20. Remembering that the maximum
stimulus value that can be perceived is S(0) = 4, when we use
the hard coded connection function, the robot stops moving at
S(0) = 3.1666, while the connection function learned using
RL stops at S(0) = 3.9992.

Table I documents the complete results of the above exper-
iment for all tested variances in the sensor noise σ, from 0 to
0.1 in 0.01 increments. As above, each controller is evaluated
4000 times and the mean is taken. Then, using the coordinates
of the vehicle when T = 20 we calculate the mean value of
the perceived stimulus at the end of the target seeking task
for each realisation of sensor noise. The results indicate that
the hard coded naı̈ve controller performs well up to σ = 0.05,
however after this point the controller starts to significantly
deteriorate. The RBF controller on the other hand maintains
a consistent performance as σ is increased, even at σ = 0.1.
Interestingly, compared to the first experiment (see figure 2),
instead of overshooting the target and continuously roaming
the environment when σ = 0.1, the vehicle now stops close
to the source due to having noisy sensors.

As we have seen above, the neural controller preforms well
and locates the stimulus source under different levels of sensor
noise when the controller is evaluated over 4000 trajectories
and the mean taken. However, this does not necessarily tell a
fair story about the success rate of the controller in a real life
navigation task since a real robot only takes one trajectory
to attempt to locate the source of the target. Thus, in our
final experiment, we seek to find out how the target seeking
robot performs over individual trajectories when there is noise
in the system. We tested both controllers under each level
of noise as we increased the variance from 0 to 0.1 in 0.01
increments. We ran 50 simulations for each experiment and
computed how many trajectories converged at the source of
the stimulus. Each vehicle stimulation started from the same

Sigma Naı̈ve Controller RBF Controller

0 3.979 3.865
0.01 3.980 3.631
0.02 3.985 3.756
0.03 3.991 3.716
0.04 3.979 3.796
0.05 3.991 3.788
0.06 3.711 3.870
0.07 3.647 3.992
0.08 2.967 3.995
0.09 2.821 3.885
0.1 2.415 3.708

TABLE I
STIMULUS VALUES AT THE EQUILIBRIUM POINTS OF THE NAÏVE AND RBF

CONTROLLERS FOR DIFFERENT REALISATIONS OF SENSOR NOISE.
MAXIMUM STIMULUS IN ENVIRONMENT IS 4.

coordinates, x = (−2.8, 1.2), θ = 0, while the goal was at the
origin, x = (0, 0). We classified a successful single trajectory
as one which reached ±0.9 distance units from the source
(i.e. the recorded stimulus value at the vehicles equilibrium
point had to be at least 3.3) Table II documents the complete
results of successful individual trajectories as the sensor noise
variance is increased. Both controllers remain unaffected by
the sensor noise in the initial experiments, each displaying
a 100% success at target seeking until the variance reaches
0.03. At this point, the RBF controller manages 98% (one
trajectory did not reach the source) while the naı̈ve controller
still achieves a 100% success. However, the experiments from
σ = 0.04 until the maximum noise level, σ = 0.1, show that
the naı̈ve controller’s performance is consistently diminishing
until, at σ = 0.1, the controller can only converge to the
stimulus 46% of the time. We compare these results to our
neural controller which consistently is able to attenuate for the
noise, and at σ = 0.1 shows a 88% successful convergence
rate.

Sigma Naı̈ve Controller RBF Controller

0 100% 100%
0.01 100% 100%
0.02 100% 100%
0.03 100% 98%
0.04 92% 96%
0.05 90% 88%
0.06 80% 84%
0.07 68% 84%
0.08 62% 90%
0.09 54% 86%
0.1 46% 88%

TABLE II
PERCENTAGE OF CONVERGED INDIVIDUAL TRAJECTORIES OVER 50

TRIALS FOR DIFFERENT REALISATIONS OF SENSOR NOISE.

Figure 5 illustrates the results: while Figure 5(a) shows the



successful results of 50 trajectories using the naı̈ve controller,
Figure 5(b) shows the successful trajectories using the RBF
controller, both when the variance of the sensor noise was
σ = 0.1. Each simulation was initialised with the same
starting coordinates of the vehicle, x = (−2.8, 1.2), θ = 0,
marked on the figures using a blue triangle. The goal was
x = (0, 0), marked with a red asterisk. The heatmap represents
the stimulus strength at each point in the environment. From
Figure 5(a), which uses the hand tuned controller, we can see
that out of the 50 test trajectories, only 23 (46%) successfully
converge at the stimulus source. We can also see that the
trajectories are jagged as the naı̈ve controller cannot attenuate
for the noise in the closed-loop dynamical system. Meanwhile,
Figure 5(b), which uses the neural controller, shows 44 (88%)
successfully converged trajectories at the stimulus source. As
well as almost doubling the successful number of trials, we
can see from figure 5(b) that the trajectories are much more
smooth as the robot successfully attenuates for the noise in its
sensors and easily navigates to the source of the stimulus.

(a) Naı̈ve controller preforming target seeking in real world sce-
nario. 23/50 trajectories reach the source with jagged trajectories
as the controller fails to attenuate for the sensor noise.

(b) RBF controller preforming target seeking in real world scenario.
44/50 trajectories reach the source with very smooth trajectories as
the controller successfully attenuates for the sensor noise.

Fig. 5. Simulated trajectories using each control mechanism, when sensor
noise variance is σ = 0.1. Only successful trajectories are shown.

IV. CONCLUSIONS

This paper has presented the first implementation of Rein-
forcement Learning for a target seeking Stochastic Braitenberg
Vehicle 3a. While previous empirical works use hand tuned
parameters or Evolutionary strategies to optimise a fitness
function on a real robot with potentially noisy sensors, this
work uses Reinforcement Learning with a simulated robot to
demonstrate that a Policy Gradient algorithm can be used with
a RBF neural network to learn a robust connection function,
even under white Gaussian noise. Our results show that the
connection function can be learnt under varying amounts
of noise without affecting the stability of the algorithm.
Moreover, the connection function learnt using RL performs
significantly better when tested under noise compared to the
hard coded linear connection function, allowing the robot to
reach much closer to the origin of the source before stopping.
Finally, when simulated in a real life scenario, i.e. when
we cannot take the average of the trajectories, the neural
controller significantly outperforms the naı̈ve controller. This
is demonstrated in the results when measuring the successfully
converged trajectories, where some levels of noise show a
converged trajectory improvement of 42% using the learnt
controller compared to the naı̈ve hard coded controller.

Future work will focus on implementing the Reinforcement
Learning algorithm onto a real robot for a target seeking
problem. Eventually, this will enable real robots to be used
more effectively in disaster zones where there is likely to be
noise affecting the sensors, for example in nuclear disaster
areas or earthquakes where there are large amounts of dust.
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