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Abstract: A tool based on the mass action law was developed to calculate plasma compositions and
thermodynamic properties for pure gases and mixtures, assuming a local thermodynamic equilibrium
for pressures of up to 300 bar. The collection of the data that was necessary for tool calculation was
automated by another tool that was written using Python, and the formats for the model were
adapted directly from the NIST and JANAF websites. In order to calculate the plasma compositions
for high pressures, virial correction was introduced. The influences of the parameters that were
chosen to calculate the Lennard–Jones (12-6) potential were studied. The results at high pressure
show the importance of virial correction for low temperatures and the dependence of the dataset used.
Experimental data are necessary to determine a good dataset, and to obtain interaction potential.
However, the data available in the literature were not always provided, so they are not well-adapted
to a large pressure range. Due to this lack, the formulation provided by L. I. Stiel and G. Thodos
(Journal of Chemical and Engineering Data, vol. 7, 1962, p. 234–236) is a good alternative when the
considered pressure is not close to the critical point. The results may depend strongly on the system
studied: examples using SF6 and CH4 plasma compositions are given at high pressure.

Keywords: plasma composition; high pressure; virial coefficient; SF6; CH4

1. Introduction

The calculation of plasma compositions under the assumption of local thermal equilibrium (LTE)
is necessary to determine the thermodynamic properties and the transport coefficients that are needed
for magneto-hydrodynamic models of thermal plasma processes and systems as circuit breakers,
plasma torches, or thermal engines. These compositions are also necessary as initial equilibrium states
for chemical kinetic studies and to determine departures from chemical equilibrium.

In the literature, three methods are mainly used to calculate the evolution of species densities
with temperature and pressure in thermal plasmas: the Gibbs free enthalpy minimization [1], the
mass action law method [2,3], and the collisional radiative model. Based on these methods, numerous
papers have reported chemical plasma compositions for pure gases and mixtures, with or without the
LTE assumption [2,4–16].

Nevertheless, in most of these papers, even at high pressure (>30 bar), only the first-order
Debye–Hückel correction is taken into account [2,17]. Although this correction is necessary at high
temperatures to consider the Coulombic interactions between the charged particles and others, it is
not sufficient for low temperatures (around 300 K), where molecule interactions are important. Under
these conditions, it is necessary to correct the perfect gas behavior by considering virial pressure
correction. However, in the thermal plasma community, only a few authors have considered this
correction at high pressures [4,6,9,14].
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The virial pressure correction can be developed over several orders, named virial coefficients.
They can be obtained experimentally ([18], for instance) by deducing them from measurements of the
mass density, viscosity, or, in some cases, sound velocity [19,20] or by theoretical calculation using
intermolecular interaction potentials [18,21,22]. In the literature, we can find that, for some gases,
the second and sometimes the third coefficients are given as a function of the temperature [19,22–26].
These data are very dependent on the pressure and temperature of the gas, and they are not valid for a
large range of temperatures and pressures. The densities of the species, and the mass density of the
gases depend very strongly on the applied dataset. This mass density has a direct effect on convection
modeling for its applications.

In our research fields, at high pressures, we are particularly focused on three topics:

- the plasma behavior in high-voltage circuit breakers (HVCBs) [27–29], where pressures in heating
volumes can reach bar values of several tens;

- hydro–electro formation and hydraulic fracturing using an electric arc in water [30];
- the combustion of methane in thermal gas engines [31].

For each of these topics, the pressure considered and the gases used are different, and they include,
within a high-pressure range, SF6 for the first application, H2O for the second, and mixtures of air and
CH4 for the third.

In the case of HVCB, some compositions and thermal properties are available in the literature;
nevertheless, a complete databank for describing the current cutoff from the initial pressure to the one
obtained during the high-current phase is not given, and authors seem to use the same parameters to
calculate the Lennard–Jones potential for the entire pressure range [14,32,33]. This problem is the same
for the case of hydro–electro formation and hydraulic fracturing: little data is available for H2O, and
only few details on the parameters that are used to calculate the Lennard–Jones potential are given.
For engine applications, we did not find data related to air–CH4 mixtures in the literature. Therefore,
papers from the literature generally consider pure air, and pressure corrections are not taken into
account [34–36].

In the first part of this paper, the method that was used to calculate the plasma composition is
presented. The different equations based on the mass action law, neutrality, conservation of nuclei, and
pressure law, used for determining the species densities, are given. The validation of the developed
tool is presented with regard to some plasma compositions at atmospheric pressure. In the second part,
the importance of the parameters that were used for determining the interaction potential for virial
correction is presented. These parameters can be obtained from experimental data, or from a theoretical
approach. The two methods are discussed, and they are applied to a mass density calculation. Finally,
the plasma compositions of SF6 and CH4 are calculated at high pressures.

2. Equations and Methods

2.1. Partition Functions

Whatever the method used to calculate the compositions, partition functions are necessary. Indeed,
they are the link between the microscopic and macroscopic properties of the system. For each species,
the total partition function Qvol

tot can be calculated from Equation (1):

Qvol
tot (T) =

(
2.π.m.kB.T

h2

) 3
2
.Qint.

(
e−

E0
kB .T

)
(1)

where

- m is the mass of the species;
- kB is the Boltzmann constant;
- T is the temperature;
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- h is Planck’s constant;
- E0 is the energy of formation.

The first term of this equation corresponds to the translation partition function Qtrans. Qint is
the internal partition function, taking into account the vibrational, electronic, and nuclear partition
functions. The last term takes into account the chemical energy that is needed for the formation of
the particle. This expression differs for each species, due to their specific masses, from the internal
partition function and the energy of formation. This last variable can be obtained from the JANAF
table [37], which directly provides the value of the formation enthalpy ∆Hf for each species, which in
most cases is estimated at absolute zero temperature.

2.1.1. The Internal Partition Function of Monoatomic Species

For species with only one atom, the internal partition function is given by Equation (2):

Qint(T) =
imax

∑
i

gi.e
− Ei

kB .T (2)

where

- gi is the statistical weight of an electronic level i, given by gi = 2.J + 1, where J is the
angular momentum;

- Ei is the energy of the electronic level i;
- imax is the limitation of the summation over the electronic levels, to avoid the divergence of the

summation at high temperatures. The limit of the summation is the energy of ionization Eion,
which is reduced by the lowering of the ionization potential ∆E (imax ≤ Eion − ∆E). The lowering
of the ionization potential (Equation (3)) is introduced in order to limit the number of electronic
energy levels that are considered in the sum (Equation (2)), due to the electric and electromagnetic
field effects created by the charged particles. This can be estimated from the Debye–Hückel
formula (Equation (3)):

∆E =
(Z + 1).e2

4.π.ε0.λD
(eV) (3)

where

- Z is the electrical charge of the considered species;
- e is the electrical charge of the electron;
- ε0 is the vacuum permittivity;
- λD is the Debye length, given by Equation (4):

λD =

√
ε0.kB.T

e2.
(
ne + ∑i 6=e Z2

i .ni
) (4)

where ne is the electronic density, and ni is the density of each species.
The various data on the energy levels, and the angular momentum for the calculation of the

statistical weights of the considered levels, were extracted from the NIST database [38].
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2.1.2. The Internal Partition Function for Molecules

For molecules, the internal partition function can be obtained from Equation (5), by using the
spectroscopic data available in the JANAF database [37], and especially the free Gibbs energy and
the enthalpy.

Qint(T) =
Pr

kB.T

(
h2

2.π.m.kB.T

) 3
2

exp

[
1

Na.kB

(
[H(0)− H(Tr)]JANAF

T
−
[

G− H(Tr)

T

]
JANAF

)]
(5)

where

- Tr and Pr are the temperature and pressure, respectively, of the reference in the JANAF database;
- Na is the Avogadro constant;
- H(0) − H(Tr) represents the enthalpy at absolute zero;
- [G − H(Tr)]/T is the Gibbs energy, which must be known for each temperature that is considered.

For the electrons, the internal partition function is constant and equal to 2.

2.2. The Equation for the Calculation of the LTE Plasma Composition

In this work, to calculate the plasma composition, we used the mass action law (Equation (6)) with
the method proposed by Godin [2,3]. This method is a generalization of the Saha and Guldberg–Waage
laws, and enables a fast solution for the system of equations.

N

∏
i
(ni)

vi =
N

∏
i

(
Qvol

tot, i

)vi
(6)

where ni represents the densities of the species i, νi is the stoichiometric coefficients of the reaction
(cf. Section 2.2.4), Qvol

tot,i is the total partition function (Equation (1)), and N is the number of species
considered in the plasma.

The composition calculation can then be divided into several steps, described below.

2.2.1. Choices of Elements and Chemical Species

The chemical elements are the basic components. When an ionized gas is described, the electric
charge needs to be considered and added to the list of the basic components. The chemical species are
constituted of one or several of these basic components. For instance, the oxygen atom is the basic
component of several chemical species, such as O, O+, O−, O2, and O2

+.
Of course, the element and species choices depend on the plasma of interest. The only limit is the

availability of the species data in the NIST [38] and JANAF [37] databases for the internal partition
functions. In order to properly differentiate the basic components and the chemical species, two
parameters, M and N, are defined. M is the number of chemical (or basic) elements, and N is the
number of chemical species, with M ≤ N.

2.2.2. The Composition Matrix

Once defined as M elements and N species, the composition matrix can be built with elements Cj,i.
Its dimension is N ×M. This matrix links the chemical species with the basic elements. An example is
shown in Equation (7), for plasma composed of dinitrogen and dioxygen.
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N O charge

C =



1 0 0
1 0 1
2 0 0
1 1 0
0 1 0
0 1 1

0 2 0
1 2 0
0 0 −1



N
N+

N2

NO
O

O+

O2

NO2

e−



Chemical species
. (7)

2.2.3. The Chemical Base

The chemical base is a subsection of chemical species from which it is possible to express the other
species that are not present in the base matrix, but which can be created by chemical processes. This
introduces the concept of the base matrix B, and the out-of-base matrix B*. Their coefficients can be
obtained from the composition matrix by Equation (8):{

Bk,i = Ck,i
B∗j,i = Cj,i

with

{
i, kε{1, M}

jε{1, N −M}
. (8)

In order to choose the chemical species of the base, some specific conditions have to be verified
for each temperature step:

- The densities of the species in the base matrix must be the highest densities.
- The species of the base matrix must be independent, in order to avoid |B| = 0 (the null

determinant).
- The species that are present at very low densities must not be included in the base matrix.

For that, at the beginning of the calculation, the densities of the base species must be evaluated.
This estimation depends greatly on initial temperature and on the given pressure. For instance, for the
composition matrix proposed in Equation (7), the estimation of the base matrix, starting from T = 30
kK and P = 1 bar, is given in Equation (9):

N O charge

B =

 1 0 1
0 1 1
0 0 −1

 N+

O+

e−

Species o f the base
. (9)

The other species in the composition matrix (Equation (7)) that are not included in matrix B
(Equation (9)) are used to constitute the out-of-base matrix B*.

2.2.4. The Reaction Coefficient

The reaction coefficient matrix ν is used to link the species from the base to those that are out of
the base. Its dimension is (N −M) ×M, and its expression is given in Equation (10):

B∗ = v.B⇔ B∗j,i =
M

∑
k=1

vj,k.Bk,i (10)

where k is the number of species of the base, and j is the number of out-of-base species.
From the concept of the reaction matrix coefficient, it is possible to obtain all of the chemical

processes, creating out-of-base species from the base ones.
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2.2.5. Conservation Equations

For closing the system, several equations of conservation are used.

- Conservation of nuclei:

ε j

N

∑
i=1

ni.Ci,k = εk

N

∑
i=1

ni.Ci,jwhere j, k

{
ε {1, M− 1}
6= charge

(11)

with the atomic proportion ε.
- Electric neutrality:

N

∑
i=1

ni.Zi = 0 (12)

where Zi is the electric charge of the species i (which can be directly expressed from Ci, charge).

- Pressure conservation:
The plasma pressure P is determined by the Dalton law (the perfect gas law) with Debye–Hückel,

and with virial correction for real fluids:

P =
N

∑
i=1

ni.kb.T + ∆PDebye + ∆Pvirial (13)

where

- ∆PDebye is the Debye–Hückel pressure correction:

∆PDebye = −
kb.T

24.π.λ3
D

; (14)

- ∆Pvirial is the virial pressure correction. For its calculation, several coefficients describing the
difference in behavior between real fluids and perfect gases are needed. Taking into account the
second- and third-order corrections, the virial pressure correction is given in Equation (15):

∆Pvirial = kB.T.B(T).

(
N

∑
i=1

ni

)2

+ kB.T.C(T).

(
N

∑
i=1

ni

)3

(15)

where B(T) and C(T) are the second and third virial coefficients, respectively, and they depend
on the temperature. The methods to obtain them are described in Section 3 of this paper (cf.
Section 3 « virial coefficient »).

More generally, all conservation equations can be written in the form given in Equation (16):{
N

∑
i=1

Al,i.ni = A
◦
l

}M

l=1

(16)

where Al,i and A
◦
l are the coefficients of the conservation equation l for species i. A summary of all of

these equations is given in Table 1.

Table 1. Conservation coefficients.

Conservation Equation Al,i Ao
l Number of Equations

Atomic nuclei ε jCi,k − εkCi,j 0 M-2
Electric neutrality Ci,charge 0 1

Pressure 1 (P−∆P)
kT

1



Appl. Sci. 2019, 9, 929 7 of 22

2.2.6. The Equation for Out-of-Base Species Density

The general equation for the out-of-base densities n∗bj
, depending on the base densities nbi

, and
the total partition functions of the base (Qbi

) and the out-of-base (Q∗bj
) species is given in Equation (17):

{
n∗bj

= Q∗bj
.exp

(
M

∑
i=1

vj,i.
[
ln
(
nbi

)
− ln

(
Qbi

)])}N−M

j=1

. (17)

2.2.7. Numerical Methods and System of Equations

As the equation system is strongly nonlinear, a linearization algorithm based on the Newton
Raphson iterative method is derived, using Equations (18)–(21):

M

∑
i=1

Jl,i.δnbi
= −Rl ⇔ J.δn = −R (18)

Rl = −A
◦
l +

M

∑
i=1

Al,bi
.nbi

+
N−M

∑
j=1

Al,b∗j
.nb∗j

(19)

Jl,i = Al,bi
+

1
nbi

N−M

∑
j=1

Al,b∗j
.nb∗j

.vj,ii and l ε {1, M} (20)

nbi
= nbi

+ δnbi
(21)

where Jl,i is the Jacobian matrix of the system, Rl represents the residuals of the matrix, and δnbi
is the

correction applied on the densities at each iteration. The convergence criterion is given in Equation
(22), with a convergence threshold ε = 10−10 [2].{

|Rl |
Max

∣∣{Al,ini
}∣∣N

i=1

ε

}M

l=1

. (22)

2.3. Automatization of the Tool

The calculation of the composition requires a large amount of information, such as the information
required for the determination of the partition functions for each species, the virial coefficient, the
considered pressure, and the temperature range or temperature step.

2.3.1. Data from the NIST and JANAF Tables

To simplify the searching and formatting of the data available in the NIST and JANAF tables,
software was developed using Python. This enables all of the required data for the species of the
chosen composition to be concatenated and formatted automatically. In the case of the data originating
from the NIST [38], the added parameters for each species, complementing the different energy levels
and angular momentums, are as follows:

- the name of the species, for a link between the initialization file and the data file;
- the energy of formation, needed for the calculation of the total partition function;
- the energy of ionization that is used in order to satisfy the limit condition of Equation (2);
- the units for the energy levels, depending on the extracted data (in cm−1 or in eV);
- the number of energy levels to consider, up to the ionization of the considered species;
- the mass of the considered species.

For data from the JANAF database [37], two parameters are added: the name of the species and
the mass. We have collected 296 chemical species, which can be used for calculating compositions
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containing carbon (C), hydrogen (H), oxygen (O), nitrogen (N), sulfur (S), fluorine (F), argon (Ar),
helium (He), copper (Cu), and iron (Fe). All kinds of particles have been taken into account in this
databank: atoms, molecules, positive and negative ions, and molecular ions.

2.3.2. The Initialization File

This file is very important, as it contains all of the necessary parameters for determining the
densities of the species. It generally contains the following:

- the number of gases considered in the composition.
- the name(s) of the gas(es) in the composition (for instance, SF6, N2, and O2, Ar, and Cu, etc.).
- the molar fraction of each gas in the melt (the sum of all of the fractions must equal unity; for

example, it could be 1 SF6, 0.7885 N2 and 0.2115 O2, or 0.8 Ar and 0.2 Cu, etc.);
- the number of atoms and species that come from the gas mixture, in order to define M and N (cf.

Section 2.2.1);
- the names of the species in the plasma;
- the atomic proportions of each atom/nucleus for the considered mixture (for example, 100% SF6:

1 S and 6 F; 78.85% N2 and 21.15% O2: (0.7885 × 2) N and (0.2115 × 2) O);
- the considered pressure;
- the temperature range and the temperature step of the results.

2.4. Results and Discussion

In order to validate our tool, we compared our results with two examples found in the literature
at atmospheric pressure:

- Case 1: pure argon;
- Case 2: air with 78.084% N2, 20.946% O2, 0.036% CO2, and 0.934% Ar.

In order to properly compare the results with the literature, we considered the same species
(Table 2) reported by authors of past studies.

Table 2. Chemical species considered for argon and air plasma compositions.

Gas Chemical Species

Argon Ar, Ar +, Ar +2, Ar +3, e−.

Air N, N+, N+2, O, O+, O+2, O−, C, C+, C+2, C−, Ar, Ar+, Ar+2, N2, N2
+, NO, NO+, O2, O2

+, C2, CO,
N2O, NO2, CO2, e−.

The composition obtained from our tool in Case 1 is shown with those of three other studies [2,11,16]
in Figure 1. For the air plasma, our results were compared with the calculation of André [5], and are plotted
in Figures 2 and 3 (Figure 2 shows the atomic and ionic species, and Figure 3 shows the molecular species).

In the two cases (Ar and Air), a good agreement could be observed. At low temperatures,
the neutral species were dominant. When the temperature increased, we observed different types
of processes. In the case of argon, the ionization of the atoms and the simultaneous apparition of
electrons occurred. In the case of air, we noted the dissociation of the molecules, the recombination
processes, the apparition of electrons, and the ionization of atoms, but also the electronic attachments.
Nevertheless, for some species, some of the results displayed differences between the literature and
our calculations. These were generally due to the sources used for the internal partition function of
each species. In Figure 1, the results from Godin [2] are based on the data available from Drawin &
Felenbok [39]. In this database, the internal partition functions are given versus temperature, with
values of the lowering of ionization potential. For the results of Rat [16], the source was not given, but
the shift in argon atom density observed at high temperature could be due to the fact that the Ar+3 ion
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was not taken into account by this author. For the air composition, the partition functions calculated
by André [5] were determined from data in the literature [37–39]. Furthermore, his calculation method
was different from ours, as he used the minimization of Gibbs free energy.
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Although most papers from the literature used tabulated values for the partition functions, we
chose to calculate them from the available data of the NIST database [38] for monoatomic species, and
from the JANAF database [37] for molecules.
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By using our tool, the LTE compositions of air and argon plasmas were calculated at P = 1 bar. The
choices for the temperature range and of the considered species were made with the aim of assisting
with the comparison of our results against the works of other authors. The results validate our tool for
atmospheric pressure.

Appl. Sci. 2019, 9, 929 9 of 22 

 
Figure 2. Evolution of atomic species: air: P = 1 bar − LTE. 

Comparison of our results with P. André [5] 

 
Figure 3. Evolution of molecular species: air; P = 1 bar − LTE. 

Comparison of our results with P. André [5] 
 
In the two cases (Ar and Air), a good agreement could be observed. At low temperatures, the 

neutral species were dominant. When the temperature increased, we observed different types of 
processes. In the case of argon, the ionization of the atoms and the simultaneous apparition of 
electrons occurred. In the case of air, we noted the dissociation of the molecules, the recombination 
processes, the apparition of electrons, and the ionization of atoms, but also the electronic 
attachments. Nevertheless, for some species, some of the results displayed differences between the 
literature and our calculations. These were generally due to the sources used for the internal 
partition function of each species. In Figure 1, the results from Godin [2] are based on the data 
available from Drawin & Felenbok [39]. In this database, the internal partition functions are given 

Figure 3. Evolution of molecular species: air; P = 1 bar − LTE. Comparison of our results with P.
André [5].

3. Virial Coefficients

The tool presented in this study is also aimed at determining initial compositions for kinetic
studies, in applications where the pressure can reach bar values of several tens. The developments,
taking into account the pressure correction, are now presented. Virial coefficients are parameters that
are used to describe the real behavior of a fluid. For this description, the second- (B(T)) and third-(C(T))
order coefficients could be used, and they were expressed using intermolecular potential:

B(T) = −2.π.Na.
∞∫

0

f (r12).r2
12.dr12 (23)

C(T) = −8.π2.N2
a

3
.

∞∫ ∫ ∫
0

f (r12). f (r13). f (r23).r12.r13.r23.dr1.dr2.dr3 (24)

where f
(
rij
)
= exp

[
− u(rij)

kB .T

]
− 1 is the Mayer function, u

(
rij
)

is the potential for interactions between

two molecules, and rij are the coordinates of molecules i, relative to molecule j.
For a mixture, the virial coefficients can be expressed by Equations (25) and (26):

B(T)mixture =
m

∑
i=1

m

∑
j=1

Bij(T).xi.xj (25)

C(T)mixture =
m

∑
i=1

m

∑
j=1

m

∑
k=1

Cijk(T).xi.xj.xk (26)
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where

- m is the number of gas for mixing;
- xi, xj, and xk are the respective molar fractions of species i, j, and k;

- Bij is the binary interaction parameter;

- Cijk is the ternary interaction parameter.

3.1. The Lennard–Jones Potential

For calculating the virial coefficients, several kinds of intermolecular potentials can be used,
depending on the study [6,18,40–42]. Nevertheless, obtaining the third-order coefficient requires the
calculation of a triple integration on the potential. In the literature, the expression of this integral
is only given for a hard-sphere potential, a square-shaped potential, and the Lennard–Jones (12-6)
potential [18]. This last approach seems to be the best at properly describing inter-particle interactions,
and it is used in this paper.

3.1.1. Expression of the Potential

The Lennard–Jones (LJ) potential derives from the Mie potential, assuming that n = 12 and m = 6.
The number 12 corresponds to the repulsive index at short distances, and 6 to the attractive index,
based on Van der Waals interactions. This shape of the potential is very commonly used by other
authors [13,18,43,44] for describing particle interactions in pure gas and mixtures. This potential is
given by

u(r) = 4.ε.
[(σ

r

)12
−
(σ

r

)6
]

(27)

where r is the distance between two atoms.
With the LJ potential, Hirschfelder [18] proposed the use of reduced amounts of data expressed

with hard-sphere potential b0 (Equations (28) and (29)). This approach has been validated by this
author for the second and third virial coefficients for several species:

B(T) = b0.B∗(T∗) (28)

C(T) = b2
0.C∗(T∗) (29)

where B*(T*) and C*(T*) are reduced values of, respectively, the second and third virial tabulated
coefficients versus the reduced temperature T* given in Equation (30):

T∗ =
kB.T

ε
. (30)

Equation (31) expresses the hard-sphere potential:

b0 =
2
3

.πσ3. (31)

The significance of σ and ε is given in the next paragraph.
For a gas mixture, the terms Bij(T) and Cijk(T), in Equations (25) and (26), respectively, can be

obtained using the LJ potential. Their respective expressions are given in Equations (32) and (33):

Bij(T) = b0ij .B
∗
(

T∗ij
)

(32)

Cijk(T) =
[
Cijk(T)

]
S.W

.
[

A(T∗i ).A
(

T∗j
)

.A(T∗k )
]

(33)

where
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- bij =
1
8

[
b

1
3
0i
+ b

1
3
0j

]3
is the interaction parameter of the mixture;

- T∗ij =
kB.T
εij

is the reduced temperature of the mixture with εij =
(
εi.ε j

) 1
2 ;

-
[
Cijk(T)

]
S.W

is the third virial coefficient obtained from the square-shaped potential [18];

- A
(
T∗i
)
, A
(

T∗j
)

, and A
(
T∗k
)

are the tabulated values under the reduced temperature [18].

When i = j = k, Ciii(T) = [Ciii(T)]S.W .
[
A
(
T∗i
)]3

= Ci(T) = b2
0.C∗(T∗).

From these expressions, it appears that the virial coefficients obtained using the LJ potential use
parameters of other kinds of potentials (hard-sphere and square-shaped), in order to better describe
real fluid behavior at high pressure.

3.1.2. Potential Parameters σ and ε

The parameter σ corresponds to the distance at which it can be assumed that u(r) = 0; ε is an
energy value, and it represents the depth of the potential. This last parameter is generally given by
the expression ε

kB
. These two parameters play a very important role in the determination of the virial

coefficients. Currently, much data concerning these parameters can be found in the literature for
several species [18,32,41,43,45,46]. The determination of these parameters was obtained for almost all
cases from experimental measurements, based on the transport coefficients (viscosity and diffusion),
or the second virial coefficient [18,43,45,46]. Nevertheless, for a given species, the values obtained
by several authors [18,22,45–47] present very large differences, depending on the method used for
their determination. An example of these disparities is presented for some species in Table 3. The LJ
potential (12-6) has been considered in all relevant sources.

Table 3. The variation of potential LJ (12-6) parameters for some species.

Species σ [Å] ε
kB

[K] References

Ar 2.83–3.48 110.2–124 [18,45,46]
N2 3.681–4.21 26.9–95.9 [18,45,46]
O2 3.30–3.58 88–118 [18,45,46]
SF6 4.8–6.5 155–414.81 [18,22,45,47]
CH4 3.22–3.882 137–176.8 [18,45,46]
CO2 2.84–4.486 152–594.4 [18,45,46]

In Table 3, the range for the values of σ is quite narrow, compared to the values of ε
kB

. In the
cases of SF6 or CO2, the ε

kB
values presented a large range, and it was difficult to make conclusions

pertaining to the value to be used. In the literature, several approximation methods have been proposed
for determining these parameters. Some of them are based on empirical rules, considering species
interactions [18], and others are based on critical properties, such as the critical temperature, pressure,
volume, or compressibility factor [45,48–51]. For example, Stiel [51] proposes the determination of the
parameters based on Equations (34) and (35):

σ = 0.1866 v
1
3
c Z

−6
5

c (34)

ε

kB
= 65.3 Tc Z

18
5

c (35)

where vc, Zc, and Tc are critical properties. In order to choose the better dataset, it is necessary to
compare the results with the experimental data. Hirschfelder [18] recommends the use of parameters
deduced from experimental viscosity for calculations of transport properties, the experimental second
virial coefficients for the state equation calculation, and the calculation of thermodynamic properties.
Nevertheless, the data in this last case were scarce, and they were only available for some species.
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In Table 4, a comparison of the σ and ε
kB

parameters is given. The values from the literature used
for the comparison with Stiel [51] are included in the range given in Table 3. These values were chosen,
as they corresponded to the experimental values deduced from the viscosity. Consequently, it appears
that the Stiel formulation [51] can be a good option for when data are missing.

Table 4. A comparison of the LJ (12-6) potential parameters, based on their use in experimental
measurements, as calculated by several authors from the formulation given by Stiel et al. [51].

Species (σcal)[Å] ( ε
kB

)[K] Reference σlit [Å] ( ε
kB

)
lit

[K] Reference

Ar 3.451 116.035 [52] 3.465 116 [18]
N2 3.694 94.837 [53] 3.681 91.5 [18]
O2 3.474 115.008 [54] 3.433 113 [18]
SF6 4.993 215.04 [55] 5.199 212 [45]
CH4 3.828 143.02 [51] 3.796 144 [18]
CO2 3.993 191.143 [56] 3.996 190 [18]

3.2. Results and Discussion

3.2.1. Choice of Parameters

From the values of σ and ε
kB

obtained with the Stiel formulation, it is possible to calculate the
plasma composition and the mass density at high pressure. For validation, experimental gas densities
at high pressure are not often available. Nevertheless, experimental mass densities are more widely
available. Thus, a validation of the calculations for theoretical composition were performed with this
data. As the species densities from our composition tool were previously presented, the mass density
of the gas could be calculated according to Equation (36):

ρ =
N

∑
i=1

ni.mi (36)

where N is the total number of species, ni represents the densities of the species i, and mi is the mass of
the species.

Table 5 shows a comparison of the calculated mass densities (from our tool and from using the
Stiel formulation for the parameters of the Lennard–Jones potential) at different pressures, using the
experimental data for SF6. The theoretical data were compared over a temperature range of 300–490 K.
In order to study the influence of the virial coefficients, the calculation was performed without taking
them into account. It can be observed in Table 5 that the theoretical results with and without the
virial corrections become closer over higher temperatures. This indicates that the virial corrections
were predominantly relevant at low temperatures for high pressures. Nevertheless, despite the good
agreement between the Stiel formulation-derived values of σ and ε

kB
and the experimental values

(observed in Table 4), these values led to quite large differences in the theoretical mass densities,
compared to the experimental values given by Funke [19] and Claus [57] at around the critical point
(Pc ≈ 37.5 bar and Tc ≈ 318.8 K) (Table 5). Table 6 shows the same comparison for CH4. The mass
densities for this gas were less sensitive for the values of σ and ε

kB
. Indeed, the virial effect was not as

preponderant as that observed in Table 6.
Even with the consideration of the virial correction, for SF6 (Table 5), large differences could

be observed between the calculated and experimental values for some points. In order to better
understand this, we tried to calculate the mass density through another method. Indeed, Funke [19]
gives the values of the second and third virial coefficients in his paper, deduced from measurements
in a homogeneous area of SF6. Thus, by using the state equation proposed by Funke, it was possible
to re-calculate the mass densities on the points given in the article. These values of ρcal are reported
in Table 7. We expected that the mass densities calculated from the virial coefficients given by Funke
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would lead to values that were close to the experimental ones given in the same paper. Unfortunately,
this was not the case, and a perfect agreement was only reached for P = 20 bar.

Table 5. SF6 mass densities for several pressure values.

SF6

Sources Funke et al. [19] Claus et al. [57] This Work with the Stiel Formulation

T
[K]

Plit
[bar] ρlit [kg/m3]

Plit
[bar] ρlit [kg/m3]

ρcal [kg/m3]

with
Virial

%
Error

without
Virial % Error

300
100.1876 1505.417 100.613 1505.939 1673.43 11.2% 585.554 61.1%
40.1390 1382.802 - - 1312.44 5.1% 234.222 83.1%
20.0346 162.945 - - 147.34 9.6% 117.111 28.1%

316
100.2052 1399.646 - - 1444.65 3.2% 555.906 60.3%
40.6363 1152.050 - - 387.055 66.4% 222.362 80.7%
20.0334 142.452 - - 133.724 6.1% 111.181 22.0%

324
100.0588 1340.546 - - 1333.7 0.5% 542.18 59.6%
40.6180 550.994 - - 340.594 38.2% 216.872 60.6%
19.9775 134.527 - - 128.128 4.8% 108.436 19.4%

340
100.0395 1208.301 100.618 1210.5 1124.27 7.0% 516.665 57.2%
41.2991 351.610 - - 288.904 17.8% 206.666 41.2%
19.8607 121.89 - - 118.652 2.7% 103.333 15.2%

360
- - 100.512 1019.111 897.537 11.9% 487.962 52.1%
- - 19.9922 111.689 109.6 1.9% 97.592 12.6%

375
- - 100.31 872.05 768.606 11.9% 468.443 46.3%
- - 39.9242 241.556 230.316 4.7% 187.377 22.4%
- - 20.1877 111.689 113.597 1.7% 93.688 16.1%

410
- - 102.462 644.85 583.902 9.5% 428.454 33.6%
- - 40.7729 206.536 196.906 4.7% 171.382 17.0%
- - 20.2447 93.8963 91.6877 2.4% 85.690 8.7%

460
- - 100.829 469.477 452.405 3.6% 381.883 18.7%
- - 40.5095 170.138 166.066 2.4% 152.753 10.2%
- - 20.2695 81.2073 79.7085 1.8% 76.376 5.9%

490
- - 101.215 415.62 404.055 2.8% 358.503 13.7%
- - 20.0561 74.4856 74.0648 0.6% 71.700 3.7%

Table 6. CH4 mass densities for several pressure values.

CH4

Cristancho et al. [58] This Work with the Stiel Formulation

Tlit
[K]

P
[bar] ρlit [kg/m3]

ρcal [kg/m3]

with virial % Error without
Virial % Error

305.236 50.01 34.173 34.011 0.5% 31.636 7.4%
305.231 99.93 72.932 72.321 0.8% 63.216 13.3%
338.049 50 29.983 29.848 0.5% 28.542 4.8%
338.037 69.05 42.093 41.821 0.6% 39.416 6.4%
338.103 99.69 62.054 62.391 0.5% 56.907 8.3%
400.015 100.02 49.746 49.807 0.1% 48.246 3.0%
450.115 344.92 136.647 136.563 0.061% 147.891 7.6%
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Table 7. Comparison of the SF6 mass densities between the experimental values [19] and the theoretical
value calculated from B and C [19].

SF6

Sources Funke et al. [19] This Work

T
[K]

B
[cm3/mol]

C
[cm3/mol]2

P
[Bar] ρlit [kg/m3] ρcal [kg/m3] from B and C % Error

300 −271.2 ± 0.8 18,160 ± 1250
100.1876 1505.417 1732.788 15.1%
40.1390 1382.802 1532.088 10.8%
20.0346 162.945 162.913 0.01%

316 −241.1 ± 0.8 17,850 ± 1000
100.2052 1399.646 1467.539 4.9%
40.6363 1152.050 1122.203 2.6%
20.0334 142.452 142.439 0.0%

324 −227.4 ± 0.6 16,950 ± 750
100.0588 1340.546 1410.368 5.2%
40.6180 550.994 915.276 66.1%
19.9775 134.527 134.572 0.03%

340 −202.9 ± 0.6 15,860 ± 750
100.0395 1208.301 1235.266 2.2%
41.2991 351.610 355.637 1.1%
19.8607 121.89 121.912 0.01%

These large differences close to critical point for SF6 caused us to search for better values for σ and
ε

kB
, by lowering the error between the theoretical and experimental values of mass density. Homemade

optimization software was developed for obtaining such values. The software proposes values of σ

and ε
kB

that minimize the difference between the theoretical and experimental mass densities, using all
of the experimental data available. This minimization was based on a real genetic algorithm proposed
by Ballester [59]. From this model, we obtained two values: σ = 5.21279 Å and ε

kB
= 222.27 K. Different

sources of SF6 mass densities versus temperature are indicated in Figures 4–6, respectively, for pressure
P = 20, 40, and 100 bar. These values were compared to the mass densities that were calculated from
the parameters deduced from the genetic algorithm. Five curves are plotted in these figures:

- the experimental mass densities measured by Funke [19];
- the mass densities calculated from the second and third virial coefficients given by Funke [19];
- the mass densities calculated from the values of σ and ε

kB
by Hirschfelder et al. [18];

- the mass densities calculated from the values of σ and ε
kB

, deduced by the Stiel formulation [51];

- the mass densities calculated from the values of σ and ε
kB

, deduced from the optimization process
and named “fit”.

The mass densities obtained from the optimization process are the closest to the experimental
ones. The mass densities obtained from the other sources from the literature are sometimes in good
agreement below the critical point, and sometimes agree at values over the critical point, but not over
the full range of temperature and pressure. By using the optimized data (fit), the relative errors of
the experimental values did not exceed 9%. Thus, when experimental data for the mass densities are
available, obtaining σ and ε

kB
with the optimized software is preferable. This dataset σ = 5.21279 Å

and ε
kB

= 222.27 K gives a better approximation of the calculated mass densities for a pressure range
of between 1 and 300 bar. The use of the Stiel [51] formulation is a good option for pressures and
temperatures that are not too close to the critical point Pc ≈ 37.5 bar and Tc ≈ 318.8 K (cf. Figures 4
and 6), when no other data are available. The curves from Figures 4–6 show discrepancies in the
variation of the LJ potential parameters on the mass densities deduced from the composition. It should
be underlined that a dataset for σ and ε

kB
, obtained from the experimental measurements for the given

values of temperature and pressure, cannot be used without care over the whole pressure range.
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3.2.2. SF6 and CH4 Plasma Compositions

Using the values for σ and ε
kB

obtained from the genetic algorithm, the compositions of the SF6

and CH4 plasma were calculated at pressure P = 100 bar. The values proposed by the genetic algorithm
to minimize the error using the same values of σ and ε

kB
for the pressure range (1 bar < P < 300 bar)

and temperature (300 K < T < 60 kK) are given in Table 8.
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Table 8. Optimized values of σ and ε
kB

for SF6 and CH4, deduced from the genetic algorithm.

σ [Å] ε
kB

[K]

SF6 5.21279 222.27
CH4 4.083 143.57

The results obtained at P = 1 bar were in agreement with other authors from the literature for
SF6 [60–62] and CH4 [2,4] and are not reported here. The plasma compositions at P = 100 bar using
the values in Table 8 are presented in Figures 7 and 8 for the case of SF6, and in Figures 9 and 10 for
the case of CH4. An increase in pressure induces changes: the higher the pressure, the higher the
temperature that is needed for the dissociation of molecules. This leads to the presence of molecules at
higher temperatures. The same trend is observed for ionized particles.
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4. Conclusions

Software using the mass action law for obtaining the plasma composition was developed.
Under the assumption of LTE, a variation of species densities with temperature can be obtained
for atmospheric pressures of up to 300 bar. For such high pressures, the virial corrections that are
associated with classical Debye–Hückel corrections are systematically used in ours developments.
After a presentation of the theory for calculating the plasma composition, the results of the software
were validated with compositions reported from the literature concerning argon and air plasmas at
atmospheric pressure. Additional routines were developed using Python to automatically collect
the required data from the NIST and JANAF Internet databases. To consider the high pressures,
potential interactions that are formally used in virial correction were studied. We focused on the (12-6)
Lennard–Jones potential, which is very commonly used in the literature. For this kind of potential, two
parameters are necessary: σ, which corresponds to the distance where the potential is zero, and energy
ε, corresponding to the depth of the potential. A different set of values can be found in the literature,
or determined from measurements of gas mass density or viscosity. Some authors have also directly
given values for the second and third virial coefficients. Nevertheless, a wide disparity appears in
these two coefficients, leading to quite large differences in composition and hence mass density. Most
of the time, the data given in the literature are only valid for a given pressure value, but they are not
optimized for other values. We then developed a computing code based on a genetic algorithm to
optimize these parameter values from the experimental data over a wide range of pressures. If no
measurements are available, we suggest the use of the Stiel formulation, based on the critical values
for temperature and pressure. Indeed, for temperatures and pressures that are not too close to the
critical values, this formulation leads to a good compromise for values of σ and ε. The software was
applied to obtain results for SF6 and CH4 plasma compositions at a pressure P = 100 bar.

Plasma Compositions: Even if the software is currently automated, it does not have a user-friendly interface.
In the meantime, the authors can be contacted at the given email to obtain the plasma compositions and properties.
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