
HAL Id: hal-02324073
https://hal.science/hal-02324073

Submitted on 21 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License

Adaptive reinforcement learning with active
state-specific exploration for engagement maximization

during simulated child-robot interaction
George Velentzas, Theodore Tsitsimis, Iñaki Rañó, Costas Tzafestas, Mehdi

Khamassi

To cite this version:
George Velentzas, Theodore Tsitsimis, Iñaki Rañó, Costas Tzafestas, Mehdi Khamassi. Adaptive
reinforcement learning with active state-specific exploration for engagement maximization during sim-
ulated child-robot interaction. Paladyn: Journal of Behavioral Robotics, 2018, 9 (1), pp.235-253.
�10.1515/pjbr-2018-0016�. �hal-02324073�

https://hal.science/hal-02324073
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://hal.archives-ouvertes.fr

Open Access. © 2018 George Velentzas et al., published by De Gruyter. This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 License.

Paladyn, J. Behav. Robot. 2018; 9:235–253

Research Article Open Access

George Velentzas, Theodore Tsitsimis, Iñaki Rañó, Costas Tzafestas, and Mehdi Khamassi*

Adaptive reinforcement learning with active
state-specific exploration for engagement
maximization during simulated child-robot
interaction
https://doi.org/10.1515/pjbr-2018-0016
Received February 2, 2018; accepted June 29, 2018

Abstract: Using assistive robots for educational applica-
tions requires robots to be able to adapt their behavior
specifically for each childwithwhom they interact. Among
relevant signals, non-verbal cues such as the child’s gaze
can provide the robot with important information about
the child’s current engagement in the task, and whether
the robot should continue its current behavior or not. Here
we propose a reinforcement learning algorithm extended
with active state-specific exploration and show its applica-
bility to child engagement maximization as well as more
classical tasks such as maze navigation. We first demon-
strate its adaptive nature on a continuousmazeproblemas
an enhancement of the classic grid world. There, parame-
terized actions enable the agent to learn single moves un-
til the end of a corridor, similarly to “options” but without
explicit hierarchical representations.We then apply the al-
gorithm to a series of simulated scenarios, such as an ex-
tended Tower of Hanoi where the robot should find the
appropriate speed of movement for the interacting child,
and to a pointing task where the robot should find the
child-specific appropriate level of expressivity of action.
We show that the algorithm enables to cope with both
global and local non-stationarities in the state space while
preserving a stable behavior in other stationary portions of
the state space. Altogether, these results suggest a promis-
ing way to enable robot learning based on non-verbal cues
and the high degree of non-stationarities that can occur
during interaction with children.

Keywords: human-robot interaction, reinforcement
learning, active exploration, meta-learning, autonomous
robotics, engagement, joint action

George Velentzas, Theodore Tsitsimis, Costas Tzafestas: School
of Electrical and Computer Engineering, National Technical Univer-
sity of Athens, Athens, Greece; Email: ktzaf@cs.ntua.gr

1 Introduction
Among the large set of possible domains of applications
of assistive robotics, a substantial subset requires social
interaction between the human and the robot, and in par-
ticular the ability of the robot to adapt to non-verbal social
signals [1]. For example, a robot assisting elderly people at
home during daily life should be able to detect when the
human has difficulties reaching a particular object or even
standing up and moving, in order to spontaneously and
quickly come to help. Another example relates to educa-
tional applications where a small humanoid robot can as-
sist a human teacher, the robot being here considered as
an educational tool, in order to promote typical or Autistic
Spectrum Disorders (ASD) children’s interest in educative
games, and help further develop their social skills [2–4]
and enhance their motivation [5].

In the case of assistive robots for educational applica-
tions, one particularly important non-verbal social signal
that has received increasing interest in the last few years
is the notion of maximizing a child’s engagement in the
game or task [6–8]. Mutual engagement can be defined as
“the process by which interactors start, maintain and end
their perceived connection to each other during an inter-
action” [9]. This can give crucial information about the de-
gree with which the child is involved in joint attention and
joint action with the other social agents. A number of dif-
ferent measures have been considered as relevant to es-
timate a human’s engagement during social interaction,
amongwhich body posture and gaze [6, 10].While propos-
ing a full model of human engagement is a complex task
and is out of the scope of the present work, the goal here is

Iñaki Rañó: Intelligent Systems Research Centre, Ulster University,
UK; E-mail: i.rano@ulster.ac.uk
*Corresponding Author: Mehdi Khamassi: Sorbonne Université,
CNRS, Institute of Intelligent Systems and Robotics, F-75005 Paris,
France; E-mail: mehdi.khamassi@upmc.fr

236 | George Velentzas et al.

to enable a robot to learn to efficiently and rapidly adapt its
behavior in response to changes in a child’s body posture
and gaze in order to improve the efficiency of the educa-
tional game in terms of development of the child’s social
skills.

Attempting to develop robot learning abilities in
this social context emphasizes two important challenges
among those that are common to non-social applications:
(1) the choice to learn either discrete or continuous actions
that should be performed by the robot in order to produce
a sufficiently fine-grained behavior but nevertheless cat-
egorizable and understandable by the child during inter-
action; (2) the choice of the level of exploration in learn-
ing that is appropriate to cope with the high level of non-
stationarity that can occur during social interaction. Previ-
ous researches have applied reinforcement learning to dis-
crete action spaces, including for human-robot interaction
applications (e.g., see [11]). Nevertheless, the decomposi-
tion of the task into a small set of discrete actions requires
important prior human knowledge and may prevent gen-
eralization to more complex tasks requiring continuous
motor actions. Alternatively, applications of reinforcement
learning to continuous action spaces [12, 13] are promis-
ing for fine-grained robot behavioral adaptation in real-
world applications (see [14] for a recent review). Never-
theless, important human knowledge is still required here
(e.g. by demonstration) to reduce exploration to small rel-
evant portions of the large continuous action space.

In [15, 16], we have previously proposed to apply the
framework of Parameterized Action Space Markov Deci-
sion Processes (PAMDP) [17, 18] to human-robot interac-
tion because it constitutes a promising intermediate so-
lution between discrete and continuous action learning.
This framework permits rich behavioral repertoires by en-
abling a robot to learn to choose between a small set of
discrete actions (e.g., shooting in a ball, turning, running)
and at the same time to learn continuous parameters of
these actions (e.g., shooting strength, rotation angle, run-
ning speed). Moreover, in order to apply this framework to
tasks with non-stationarities, we introduced active explo-
ration principles [19–23] to avoid employing a fixed pre-
determined balance between exploration and exploita-
tion. Nevertheless, we previously focused on single state
scenarios where a single action by the robot is sufficient to
trigger an outcome. This permitted a proof-of-concept of
the method and analyses of robustness to uncertainty and
perturbations in human engagement measures during in-
teraction [16].

Here we extend this framework to multiple states sce-
narios – requiring sequences of actions to complete the
task – in order to permit its generalization to a variety of

educational games that can be used during child-robot in-
teraction. One important novelty here is to propose a state-
specific active exploration process, which permits to cope
with local non-stationarities in the state space without in-
terfering with learning in other stable portions of the state
space. In addition, because there may be several continu-
ous parameters of actions that could be modulated online
(e.g., duration, velocity, gaze orientation, etc.), we have ex-
tended the algorithm to multiple continuous parameters
per action. We present a series of validation experiments
to evaluate the algorithm in simulation. We first test it in
a navigation task in a continuous maze and show that it
can copewith sequences of abrupt non-stationarities such
as changes in the maze topology as well as in the goal
location. We then test the algorithm on simulated child-
robot interaction experiments and show that it outper-
forms the previous version with non-state-specific active
exploration, and can cope with local and global change-
points, as well as with deterministic and stochastic tasks.
We thenperformaTower ofHanoi experimentwhere in ad-
dition to achieving the task within the minimum number
of steps the algorithm has also to learn to build the tower
with the appropriate speed of movement for the child with
whom it interacts. Finally, we simulate a task inspired by
a pilot experiment that we made with ASD children where
the robot needs to find the child-specific appropriate level
of expressivity of action while pointing at an object in or-
der to make the child react to help the robot reach the ob-
ject.

Figure 1: Setup used for the pilot real child-robot interaction experi-
ment.

Active state-specific exploration for child-robot interaction | 237

2 Methods

2.1 General experimental paradigm

The general experimental paradigm adopted here consists
in having a small humanoid robot interact with children
(one at a time), under the supervision of an observing
human adult, and finding the appropriate robot behav-
ior to maximize children’s engagement in the task. This
paradigm follows the objectives defined in the framework
of the EU-funded project BabyRobot (H2020-ICT-24-2015-
6878310), where a set of child-robot interaction use-cases
have been designed and implemented to study the de-
velopment of specific socio-affective, communication and
collaborative skills in typical and ASD children. In this
framework, we have set up a pilot experiment where the
NAO robot is interacting with a child (Figure 1), and re-
peatedly points at an unreachable object while varying the
level of expressivity of its pointing gesture (i.e., opening-
and-closing hand for a certain duration, bending its torso
with a certain angle in the direction of the object, gazing
at the child for a certain duration) until the child under-
stands the “intention” of the robot and engages herself
into joint action in order to help the robot grasp the object.
Importantly, because different children may not like the
same level of robot action expressivity and mutual gaze,
especially in the case of ASD children, we want the robot
to learn the appropriate level of expressivity specifically
for each interacting child. Moreover, because the child’s
preferences and attention may not be stationary, resulting
in drops of engagement after long periods with a certain
level of expressivity, we also want the robot to dynami-
cally adapt its behavior to variations of the child’s engage-
ment. Finally, in a second pilot scenario, the child and the
robot successively perform a Tower of Hanoi taskwhile be-
ing observed and helped by the other. In this case, the task
involves a sequence of states where the objects are at dif-
ferent locations. The goal of the scenario is to develop the
child’s social skills by making her understand when the
robot has difficulties solving the task and thus may need
help.

Here we present extensions of our previous active
exploration reinforcement learning algorithm [15, 16] to
cope with these scenarios requiring multiple continuous
parameters per action and multiple task states. We then
present a series of numerical simulations to show that it
can solve these tasks. The first important idea here is that
active exploration will be a way for the algorithm to track
variations of the child’s engagement (transformed into a
social reward signal) in order to re-explore each timea con-

sistent change is detected and thus adapt faster. The sec-
ond important thing to stress is that the algorithm learns in
parallel a discrete Markov Decision Process (MDP) to solve
these tasks (which can be seen as a non-social reward) and
continuous parameters of action (i.e., expressivity, speed
of movement) in order to maximize child engagement dur-
ing the task (which can be seen as a social reward).

2.2 State-specific exploration

Exploration during a learning procedure should be han-
dled in a sophisticated manner in order to find a deci-
sion strategy that does not suffer from initialization biases,
andavoids converging to local-minima in termsof optimal-
ity. A commonly used strategy known as “annealing” is
to monotonically decrease exploration in time. However,
in dynamic environments this approach will fail as the
distributions of rewards and the state transition function
might be time-dependent. In particular, when the environ-
mental dynamics are not constrained by inertial rules (i.e.,
they are not traceable), the decision agent should incor-
porate intrinsic characteristics of adaptivity. In [24] a bi-
ologically plausible method was proposed to adaptively
tune the exploration levels as also the learning rate and
the discount of rewards in a reinforcement learning frame-
work. In [16] this idea was expanded to parameterized ac-
tion spaces, by tuning the uncertainty of the continuous
action parameters in parallel to dynamically regulating ex-
ploratory choices between discrete actions (e.g., choosing
between pointing at the red cube or the blue cube), and at
the same time exploring the continuous parameters of ex-
pressivity or speed of execution of these discrete actions.
This approach can be seen as a way to generalize when a
hierarchical breakdown of a high dimensional continuous
action space can result in having discrete subsets (viewed
as the discrete actions), reducing the dimensionality of the
computationally expensive continuous search to smaller
regions of the action space.

Nevertheless, this previous work focused on single-
state tasks where a single action is sufficient to produce an
outcome (i.e., a reward signal as a functionof the change in
the engagement of the human interacting with the robot).
Here, we want to further generalize the approach to multi-
state taskswhere the robot shall performa series of actions
before completing the task. In such a case, the volatil-
ity of the state space may vary depending on the region.
Some regions of the state space may produce stochastic
transitions and rewards while others may be determinis-
tic.Moreover, some regionsmay be stationarywhile others
are volatile. As a simplistic example, let us consider a sce-

238 | George Velentzas et al.

nariowhere a teacherwants to teach themathematical op-
erations of addition, subtraction, multiplication and divi-
sion to students, having a redundant number of paradigms
in mind. The instructor can choose different time alloca-
tions for the demonstration of each one. He/she can also
tune the expressiveness of his/her explanations. The ob-
jectivewould be to complete the curriculum in certain time
frames by also maximizing the students’ engagement and
understanding of the material. An instructor with many
years of experience will have probably optimized the way
addition is being taught. However, the instructor might
be more uncertain about division, and may try different
strategies for each class each year by using an estimation
of students’ engagement as a feedback. Going back to the
general idea, using a global exploration level would result
in an over-pessimistic approach, which could prevent the
optimality of actions in states where there is no need for
re-exploring.

Taking into consideration the above, here we expand
the ideas from [16] by incorporating state-specific explo-
ration strategy. We substitute the mid-term and long-term
reward running-averages (which are not state-specific but
global) of a state respectively with the state value V(s) and
V̄(s) as a running average of V(s). More precisely, when
the agent is in some state s, and performs a discrete ac-
tion a with parameter values θ, observes a reward r and a
resulting state s′, we update V(s), then update V̄(s) with
V̄(s) ← V̄(s) + αV (V(s) − V̄(s)) and use their difference
δ̄V = V(s) − V̄(s) to tune the exploration levels specifi-
cally for state s. This approach follows a common reason-
ing, backedupwith neurobiological data described in [25],
when the average of the returned rewards is greater than
the average of the averages, then the current strategy is
more promising and hence exploitationmay be increased.
Re-engaging exploration in an adaptive manner is a chal-
lenging problem since a “positive feedback” loop may re-
sult in an unstable strategy. To make it clear, even small
incorrect increments of exploration may result in having
a worse performance than the existing one. However, the
observation of a degraded performance would be further
regarded as an evidence for the need of an additional in-
crement. Moreover, as described in [26], cases where a
non-optimal action becomes themost promising onewith-
out a change of the reward distribution of the current per-
forming actions,may stay “hidden” anduntracked.Agood
strategy could then be to lower-bound the exploration lev-
els, with the sacrifice of not achieving a “no regret” perfor-
mance in stationary cases [27].

With theuse of the abovenotation, the value δ̄V will be
used to tune the uncertainty of the action decision strategy

in state s, but also the uncertainty of the estimated param-
eter values of the performed action in state s.

2.3 Description of the algorithm

Weconsider a finite discrete state space S = {s1, s2, ..., sk}
where each state s ∈ S is representedby anm-dimensional
feature vector ϕ(s). The parameterized action space can
be described in general with the use of a finite discrete set
Ad = {a1, a2, ..., an} where each a ∈ Ad denotes a dis-
crete action. Following the parameterized reinforcement
learning framework [17], each discrete action has a num-
ber ofma continuous parameters and therefore can be de-
scribed by an ma-dimensional vector θa ∈ Rma . Using the
above notation the action space A is then written as

A =
⋃︁

a∈Ad
{(a, θa)|θa ∈ Rma}

For learning the action values we will be using a simple
Q-learning rule which can however be substituted with a
different strategy depending on the task. Assume that the
decision agent is in state s and chooses a discrete action a
with a parameter vector θa (we will later describe how), a
reward r is returned and a transition to state s′ takes place.
With the observation of the quintuple (s, a, θa , r, s′) the
reward prediction error can be computed as

δQ = r + 𝛾max
aj

Q(s′, aj) − Q(s, a)

where 𝛾 is the reward discount factor. Take note that the
parameter vector θa is not taken into consideration here,
since theQ-valueswill beused as ameasure for the evalua-
tion of the discrete actions. However, we can follow amore
general approach where the Q-values may not be directly
accessible.Withϕ(s) representing them-dimensional fea-
ture vector, a linear function approximator can be used
with this feature vector as an input to a neural network.
Here for claritywewill be using a single layer networkwith
m inputs and n = |Ad| outputs (with | · | denoting the cardi-
nality). Nevertheless the ideas can be expanded to deeper
architectures. LetW be the m × n weight matrix of the net-
work, where wij is the weight connecting the i-th compo-
nent ϕi(s), with the j-th output, which corresponds to the
Q-value of action aj in state s. With this notation in mind
it can be easily seen that

[WTϕ(s)]j = Q(s, aj) (1)

where [·]j is the j-th element of a vector. With j being the
index of the performed action such that a = aj, the reward
prediction error δQ is then

δQ = r + 𝛾max
i
[WTϕ(s′)]i − [WTϕ(s)]j (2)

Active state-specific exploration for child-robot interaction | 239

and for all i ∈ {1, 2, ...,m} the weights wij are updated
with the following rule

wij ← wij + αQδQϕi(s) (3)

where αQ is a learning rate of choice.
The estimations of the parameter values for each ac-

tion a can be represented by a matrix Θ̂a of size ma × k,
with k = |S|, where the j-th column of Θ̂a will embody the
current expectation θ̂a = E[θa* |S = sj], (i.e., the approxi-
mation of the optimal parameter vector θa* for action a in
state sj). In order to update the current expectationwewill
be using a continuous actor-critic algorithm [28]. At first,
with v being theweight vector for the critic, the value func-
tion of each state s can be approximated as vTϕ(s) and the
reward prediction error δV of the critic can be computed as

δV = r + 𝛾vTϕ(s′) − vTϕ(s) (4)

The full weight vector v for the value function can now be
updated with the following step

v ← v + αCδVϕ(s) (5)

To update the weights v̄ for the linear approximation of
function V̄(s), the new output of the value function net-
work for state s will be used as a target. With denoting the
weights of the approximator as v̄ and using a learning rate
αV , the updates will then be

v̄ ← v̄ + αV (vTϕ(s) − v̄Tϕ(s))ϕ(s) (6)

And the error δ̄V = V(s) − V̄(s) can then be computed as
the difference of the two network outputs

δ̄V = vTϕ(s) − v̄Tϕ(s) (7)

For the approximation of Θ̂a, a networkwithweightmatrix
Ga of size m × ma will be used for each action. Addition-
ally, the values of the parametersmay be constrained such
that ‖θa‖∞ ≤ θmax. We consider this case as a general one,
since the parameter search may be performed (and in fact
this should be the case) in a symmetric space (regarding
the boundary constraints) with a proper affine transform.
WithFθ(·) being a piece-wise linear activation vector func-
tion, simply lower-truncating each component of the input
at −θmax and upper-truncating at +θmax. The estimation
θ̂a of the optimal parameter vector for action a in state s
will therefore beFθ((Ga)Tϕ(s)). With θa being the current
choice, we compute the displacement e as

e = θa − θ̂a = θa −Fθ((Ga)Tϕ(s)) (8)

Then for i = {1, ...,m} and j = {1, ...,ma}, the weights gaij
of Ga can be updated if δV > 0 with

gaij ← gaij + αAδVejϕi(s) (9)

Take note that the updates for the estimators of the param-
eter values here are made according to δV as in the CA-
CLA algorithm [28]. Going back to the beginning of the de-
scription, let us denote that the agent at each state s ∈ S
chooses an action-parameter tuple (a, θa) ∈ A sampled
from a joint probability distribution such that

p(a, θa|s) = P(a|s)p(θa|s, a)

For the discrete action choice we will be using the softmax
layer as also done in [16], with the extension of using an
adaptive state-specific inverse temperature β(s) such that

P(a|s) = exp(β(s)Q(s, a))∑︀
a exp(β(s)Q(s, a))

(10)

where the Q-values are the outputs of the function approx-
imator. The parameter vector is sampled from a multivari-
ate Gaussian distribution centered at the current approxi-
mation θ̂a = Fθ((Ga)Tϕ(s)) of the optimal parameter vec-
tor θa* with the use a diagonal covariance matrix Σas such
that

p(θa|s, a) = 1
(2π)ma/2|Σas |1/2

e−
1
2 (θ

a−θ̂a)TΣ−1(θa−θ̂a) (11)

The weight vectors for approximating β(s) and the diago-
nal elements of the matrix Σas are updated right after the
computation of δ̄V . We choose a piece-wise linear activa-
tion functionFβ(·) as an activation function for β(s), lower-
truncating the input to zero and upper-truncating to βmax
in order to avoid letting β(s) take values greater than a sat-
isfactory limit for which the discrete action decision will
be made in an exploitative manner anyway, thus

β(s) = Fβ(bTϕ(s)) (12)

The covariance matrix Σas will be the diagonal σ2(s, a)Ima ,
such that σ2(s, a) will be the common variance of the
Gaussians used as probability density functions for choos-
ing the parameter values. A weight vector sa is then as-
signed for the approximation of each σ(s, a), such that

σ(s, a) = Fσ(sTaϕ(s)) (13)

where Fσ(·) is a sigmoid activation function, adjusted to
have a lower limit at σmin and an upper limit at σmax. For
the updates of vector b and vector sa which relate to the
performed action a, a different strategy is performdepend-
ing on the sign and the value of δ̄V . If δ̄V ≥ 0 then

b ← b + µβ δ̄V (βmax − Fβ(bTϕ(s)))ϕ(s) (14)

sa ← sa − µσ δ̄VG(sTaϕ(s))ϕ(s) (15)

where µβ and µσ are parameters of choice, and G(·) is the
default sigmoid function G(x) = 1/(1+ e−x). Note that δ̄V is

240 | George Velentzas et al.

being used here, instead of δV used in the updates of Ga.
When δ̄V is negative a threshold value δ̄thr < 0 is being
used and the updates take place only if δ̄V ≤ δ̄thr, such
that

b ← b + µβ δ̄VFβ(bTϕ(s))ϕ(s) (16)

sa ← sa − µσ δ̄V (1 − G(sTaϕ(s)))ϕ(s) (17)

The use of this threshold value is mainly needed on highly
stochastic environments in order to avoid thepositive feed-
back loop of exploration, whichwill be initiated from even
small decrements of performance. Small decrements may
not be the result of environmental changes but due to the
stochastic nature of rewards. Not taking this into consid-
eration will probably result in unnecessarily re-engaging
exploration. The use of this threshold value can then be
viewed as a changepoint detector which allows explo-
ration increments only when significant reductions of per-
formance occur.

1: Choose parameters α{Q,C,V ,A}, µ{β,σ}, 𝛾, βmax , δ̄thr
2: Initialize Ga ,W , v, v̄, b, sa
3: Observe the initial state s
4: while true do
5: Estimate β(s), σ(s, a), Q(s, a) with Eq.12,1,13
6: Select the action tuple (a, θa) with Eq. 10, 11
7: Observe the new state s′ and reward r
8: Compute the errors δQ , δV , e with Eq.2,4,8
9: Update the weightsW , v, v̄ with Eq.3,5,6
10: Compute the error δ̄V with Eq.7
11: if δV > 0 then
12: Update the weights Ga with Eq.9
13: end if
14: if δ̄V > 0 then
15: Update the weights b, sa with Eq.14,15
16: else if δ̄V < δ̄thr then
17: Update the weights b, sa with Eq.16,17
18: end if
19: Set s ← s′

20: end while

Algorithm 1: State Specific Parameterized Exploration.

Another approach of interest, involves cases where a
reward signal is always present after each interaction with
the environment. This is mainly the case in Human-Robot
Interaction applications,where a global goal is present but
also local myopic rewards should be taken into consider-
ation. In such cases, the signal for adaptation δ̄V may be
computed with the myopic mid and the long-term rewards

gained from the present state. Specifically, we calculate δ̄V
as

δ̄V = Vm(s) − V̄m(s) (18)

where Vm(s) is themyopic value function (see supplemen-
tary material for a detailed explanation). Additionally, for
tuning each action’s uncertainty σ(s, a), the difference δ̄Q
of the mid- and long-term myopic action values Qm(s, a)
may be used such that

δ̄Q = Qm(s, a) − Q̄m(s, a) (19)

For updating the vector b, the value of δ̄V is then used in
Eqs.(14, 16), while the updates of vectors sa are done by
using the value δ̄Q instead of δ̄V in Eqs.(15, 17).

In general, the parameter search can be done in a nor-
malized space and then be translated to the natural values
(e.g., for the actuators of the robot) with the use of an affine
as Aθ + b taking into consideration the range of each pa-
rameter as well as the minimum and maximum possible
immediate rewards. With this consideration in mind, the
full algorithm can now be summarized in Algorithm 1.

3 AI-based simulations
Althoughour goal ismainly todemonstrate the algorithm’s
adaptive nature inHuman-Robot Interaction scenarios,we
initially tested the algorithm on an environment which is
more relevant to classic Artificial Intelligence (AI) / Ma-
chine Learning (ML) problems. On the other hand, this can
also be viewed as a more general approach. As an exam-
ple, a path planning problem is a generalization of many
robotic tasks using the grid world as the discretized con-
figuration space. However, since this is a new field of re-
search, there is a lack of presence of benchmarks for pa-
rameterized action spaces. Here we present amodification
of a grid world to an equivalent of a continuous maze as
described in the next section.
For testing the performance of the algorithm and its adap-
tive nature, we consider a continuous maze as seen in Fig-
ure 2, which we name “matchball game”. The objective is
to “kick” the red ball, such that it does not fall off the sur-
face of themaze and it finally reaches andhits the blue ball
(target). If after an attempt the ball falls off the maze, it is
repositioned at its last position prior to this attempt. Addi-
tionally the environment may change, by either removing
a path and/or by adding new ones, by changing the tar-
get ball’s position, or by changing any other environmen-
tal characteristics such as the floor’s friction coefficient.

We consider an artificial agent that can kick the red
ball in the 4 basic directions, so the discrete action space

Active state-specific exploration for child-robot interaction | 241

Figure 2: Experiment 1 - Different maze configurations used in the
“matchball game” scenario. The red ball can be kicked in the 4 ba-
sic directions (up, down left, right) and the objective is to make it
hit the blue ball without falling off the maze. Since a reward can be
obtained only when the two balls hit each other, an optimal policy
is one that minimizes the number of decision step, i.e., kicking the
red ball with the appropriate force at each step to make a single
move within each corridor despite the floor’s friction coeflcient.
The maze is continuous and the balls can be anywhere on its sur-
face. If the red ball falls off the maze during an attempt, it is then
reset at its last position on the surface prior to this attempt. Dif-
ferent maze configurations are used after each changepoint: (a)
Initial maze (games 1-5000). (b)Maze used after the first change-
point (games 5001-10000). The optimal path is blocked and another
path is opened. (c)Maze used after the second changepoint (games
10001-15000). The optimal path is blocked and another path is
opened. (d)Maze used after the third changepoint (games 15001-
20000). The position of the blue ball has changed.

is Ad = {up, down, le�, right}. For each action then there
is a continuous parameter θa ∈ (−3, 3) which is indi-
rectly related to the initial velocity v0 at which the ball will
start themotion. Specifically,we consider anupper limit of
vmax for the magnitude of the initial velocity, which prac-
tically corresponds to themaximumpower with which the
agent can kick the ball. Here, we perform the parameter
search for θ values in the interval (−3, 3), and the value
is then transformed to the corresponding initial speed as
v0 = (θ + 3)vmax. We find this approach convenient, since
we will be using Gaussian exploration in a normalized pa-
rameter space. We also use an upper bound of σmax = 3,
which will result in almost uniform sampling of the pa-
rameter space in highly uncertain conditions. The ball’s
speed is reduced in time based on the environment’s char-
acteristics, and here due to simulation reasons we simply
choose an update of vt+1 = (1 − fc)vt, where fc = 0.05
is a friction-related parameter, while the ball stops com-
pletely if |vt| < ϵ, with ϵ being a small positive constant (a
value of ϵ = 0.1was used). The state representation can be
done by a number of ways as discussed in [29]. At first, we
used radial basis functions, each one centered at a point

ci ∈ R2 of a N × M grid. Then, if x ∈ R2 is the 2D posi-
tion of the ball on the surface, d ∈ RN×M is a vector such
that di = exp(−‖x−ci‖2/2σ2), with σ being a parameter of
choice. Using a continuous state vector such thatϕ(s) = d
can then be one approach which however did not produce
better results than using a one-hot representation vector,
such that ϕi(s) = I{di = ‖d‖∞}, with I{·} being the indi-
cator function. A coarse coding strategy was also tried but
due to the nature of the environment it only added compu-
tational complexity without further improving the perfor-
mance.

Initially, the game begins as shown in Figure 2a. The
agent is rewarded with a reward r = 1 if it eventually
achieves to hit the blue ball and receives a zero reward in
any other attempt.When a game is successfully completed
the two balls are reset at their default positions, the num-
ber of steps taken is stored for evaluating the performance
(take note that theminimumnumber of actions needed for
an optimal policy is 3 in all the maze configurations used
here) and a new game begins. In cases where a large num-
ber of actions have been made without hitting the blue
ball (here this maximum was set to 1000), the game ends
and the red ball is reset. After 5000 games have been com-
pleted, an environment changepoint occurs where the op-
timal path is blocked and another path opens such that
the number of optimal steps remains the same as shown in
Figure 2b. The agent is unaware of this changepoint occur-
rence and the objectivewould be to adapt and find the new
optimal solution. At game 10000 another changepoint oc-
curs by blocking the optimal path and creating a new one
as seen in Figure 2cwhile at game 15000 the blue ball posi-
tion changes as seen in Figure 2d. At game 20000 the simu-
lations end andwe regard thiswhole procedure as a hyper-
session.

3.1 Hyperparameter tuning

One of the algorithm’s disadvantages is the large number
of hyperparameters to tune.Using rewards in [0,1] themax-
imumvalue of inverse temperature βmax and the threshold
value δ̄thrmay be chosenmanually, but an analytic deriva-
tion would be needed and it is out of the scope of the cur-
rent work. Here we also included them in the hyperparam-
eter search strategy and we only fixed the reward discount
factor to 𝛾 = 0.9. Since we used the one-hot representa-
tion for the feature vector ϕ(s), the parameter σ of the ra-
dial basis functions was irrelevant (i.e., practically for any
value of σ ≠ 0 the representation vector will be the same
for a given positionx of the ball). Hereweused σ = 0.7 and
N = M = 14, resulting in a 196-dimensional state vector.

242 | George Velentzas et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Experiment 1 - Paths. (a) A game instant of maze 1, where
the optimal action-parameter tuples have been learned. In this
game instant the red ball went very close to the edge of the surface.
(b)Optimal path learned for maze 2. (c) Optimal path learned for
maze 3. (d) Optimal path learned for maze 4. (e) A sub-optimal path
learned for maze 1. (f) A sub-optimal path learned for maze 2. (g) A
sub-optimal path learned for maze 3. (h) A sub-optimal path learned
for maze 4.

Initially, we handcrafted all parameter values by ob-
servation in order to find a satisfactory set for initializa-
tion.We evaluated the performance by estimating the “op-
timality percentage” defined as the number of games that
the agent completed at theminimum required actions over
the total number of games in the hyper-session. Figure 3
shows the optimal paths (a,b,c,d) and some of the sub-
optimal paths (e,f,g,h) found by the agents for each of the
4 mazes of Figure 2 respectively. Due to the rough repre-
sentation of the state and the stochastic nature of the pa-
rameter value selection (we used σmin = 0.05), each game
instance is different and unique evenwhen the algorithm’s
strategy has been stabilized. For example in Figure 3a, the
optimal action-parameter tuples have been found, yet the
red ball sometimes almost fell off the surface of the maze,
as using σmin is equivalent to adding an observable Gaus-
sian noise to a deterministically chosen parameter value.
There were also cases where the agent performed two or
more sequential actions of the same type with small pa-
rameter values (e.g. two small steps) rather than one ac-
tion with a larger parameter value (e.g. one big step), as
also cases of “back-and-forth” movements.

We performed a uniform random search in a gradu-
ally decreasing hyper-cubic area around the dynamically
changing optimal parameter set. The agent may also find
a sub optimal path resulting in a lower optimality percent-
age. We ran the parameter search for 1000 hyper-sessions
(that is 2 × 107 games in total) and the results for each
trial canbe seen inFigure 4a (theoptimality-percentage for
cases where a sub-optimal path was found is not shown).
The parameters corresponding to the hyper-session with

hyper-sessions0 1000
0.8

0.9

1.0

o
p

ti
m

a
li
ty

 p
e
rc

e
n
ta

g
e

hyper-parameter tuning sorted agents by performance

a
c
c
u
m

u
la

te
d
 s

c
o
re

agents0 200

x104

0

1

2

sc
o
re

sc
o
re

sc
o
re

average score per game - optimal agents

average score per game - sub-optimal agents

average score per game - failing agents

game

game

game

0.8

1.0

0.6

0.4

0.2

0
0 5000 10000 15000 20000

0.8

1.0

0.6

0.4

0.2

0

0.8

1.0

0.6

0.4

0.2

0

0 5000 10000 15000 20000

0 5000 10000 15000 20000

(a) (b)

(c)

(d)

(e)

Figure 4: Experiment 1 - Parameter Tuning. (a) Hyper-parameter tun-
ing strategy where each dot represents the performance of an agent
for a chosen set of parameters. (b) Performance of 200 agents using
the optimal parameter set. The red dots correspond to “optimal”
type of agents, which adapted and found the optimal policy. The
blue dots correspond to “sub-optimal” agents which adapted but
didn’t find the optimal policy. The black dots correspond to “failing”
agents which adapted only for some changepoints but finally didn’t
find a successful policy up to the end of the hyper-session . (c) Av-
erage score per game gained by the “optimal” agents (128-200).
(d) Average score per game gained by the “sub-optimal” agents. (e)
Average score per game for the “failing” agents.

the larger optimality percentage are αQ = 0.142, αA =
0.433, αC = 0.196, αV = 0.005, µβ = 0.205, µσ =
1.378, βmax = 16.2, δ̄thr = −0.311, and they were cho-
sen to further evaluate the performance of the algorithm
as described in the next section.

3.2 Results

We ran 200 hyper-sessions for the chosen parameter set,
and we tracked the number of actions performed by the
agent to finish each game, regarding that an independent
agent corresponds to each hyper-session. We sorted the
agents with respect to their performance based on the fol-

Active state-specific exploration for child-robot interaction | 243

lowing reasoning. If an agent ended a game in the opti-
mal number of actions, a score of 1 was added to its to-
tal score. This value was reduced by 0.25 with each extra
step taken, and we thus considered a null score for cases
where the agent reached the blue ball in more than 4 ex-
tra steps. The accumulated score for each agent can be
viewed in Figure 4b. About 39%of the agents (128-200) not
only adapted to the changepoints but also learned to solve
each game in the optimal number of steps. 56% (agents 11-
127) adapted but found a sub-optimal pathwith on average
only one extra action required for some of the game config-
urations (thus reaching the blue ball in 4 steps rather than
the 3 steps required by the optimal policy). The remaining
5% (agents 1-10) adapted less and less well changepoint
after changepoint. Figure 4(c,d,e) depicts the average ac-
cumulated score achieved by these three types of agents
(noted with red, blue, black respectively). Overall, these
results demonstrate the adaptive nature of the proposed
algorithm in a quite complex task involving a continuous
maze navigation with non-stationarities.

4 HRI-based simulations
As our main concerns and applications deal with human-
robot interactions where the goal would be to maximize
human engagement during an interaction task, for all
the following experiments and setups we will be using
a virtual engagement model as used in [16]. Previous re-
searches on human-robot interaction have shown that the
human engagement can be a critical aspect of the qual-
ity of the interaction [10]. Nevertheless, during interaction
tasks the actions performed by a robot can have delayed
effects on the human’s behavior and on his engagement.

To mimic this, we chose a reward component to be
given by a dynamical system which is based on the vir-
tual engagement E of the human in the task. This engage-
ment represents the attention that the human pays to the
robot andwill constitute a reward signal, since this type of
joint attention social signals have been shown to activate
the same brain regions that are activated by non-social ex-
trinsic rewards such as food or money [30]. In all the sim-
ulations followed, the quantified engagement starts at 5,
increases up to a maximum EM = 10 when the robot per-
forms the appropriate actionswith the appropriate param-
eters, and decreases down to a minimum Em = 0 other-
wise:

Et+1 =
{︃
Et + η1(EM − Et)H(θat), if at = a* & H(θat) ≥ 0
Et − η2(Em − Et)H(θat), if at = a* & H(θat) < 0
Et + η2(Em − Et), otherwise

(20)

where η1 = 0.1 is the increasing rate, η2 = 0.05 is the
decreasing rate, and H(x) is the re-engagement function
given by

H(x) = 2 exp
(︂
−12(x − µ

)T(Σ)−1(x − µ*)
)︂
− 1 (21)

where a*, is the optimal discrete action, µ* is the optimal
parameter vector θa* for the optimal action and Σ* is a di-
agonal matrix σ*2I of size ma* × ma* . To picture the idea,
the parameters for which H(x) = 0 define the boundaries
of an m*

a-dimensional ball in the parameter space, inside
which the engagement is increased. In general, each pa-
rameter might have difference tolerance, however for all
the experimentswewill be using a common σ* = 10,while
all parameter values will be in [-100,100]. Figure 5 depicts
H-function in the case where the optimal action has only
one continuous parameter.

In the cases forwhich the application has a dual learn-
ing objective of both completing a task andmaximizing en-
gagement, a hybrid reward shaping with components re

and rc will be used, where the component re is relevant to
the maximization of the engagement will be given by:

ret+1 = Et+1 + λ∆Et+1 (22)

where λ = 0.7 is a weight. This will ensure that the algo-
rithm gets rewarded in cases where the engagement is low
but nevertheless has just been increased by the action tu-
ple (a, θa) performed by the robot. The component rc will
depend on the task. In case the objective is only to maxi-
mize the engagement (which here is our main goal), only
re will be used as a feedback to the agent. For the HRI ex-
periments, we use the signals δ̄V and δ̄Q to tune the in-
verse temperature and the action-specific uncertainty of
each state respectively, as described in section 2.

µ?
θα

H(θα)

Figure 5: Principle adopted to simulate variations of child engage-
ment as a function of the distance between the robot’s current con-
tinuous parameters of action and optimal ones.

244 | George Velentzas et al.

S1start S2

S3

S4S5

F

S1start S2

S3

S4S5

a−S1,t

a?S1,t

a−S2,t

a?S2,t

a−S3,t

a?S3,t

a−S4,t

a?S4,t

a−S5,t

a?S5,t

a−S1,t

a?S1,t

a−S2,t

a?S2,t

a−S3,t

a?S3,t

a−S4,t

a?S4,t

a−S5,t

a?S5,t

Figure 6: Experiment 2. Left: MDP for a single session. The optimal
action a*Si ,t on each state Si results in a state change while all other
actions a−Si ,t are sub-optimal. The transitions are not independent
on the parameter value. Right : An equivalent MDP used for repeat-
edly simulating numerous sessions.

4.1 Experiment 2

As an extension of previous experiments presented in
[15], here we test our algorithm on a parameterized action
Markov Decision Process of 5 states plus a final accepting
state (left MDP of Figure 6) where the objective is to max-
imize the virtual engagement function. The action space
is A = Ad × Ap, where Ad = {a1, a2, a3, a4, a5, a6} and
Ap = [−100, 100]; simply there are 6 discrete actions, each
one with a continuous parameter. We assume that for ev-
ery state si at each timestep t, there is an optimal action
a*si which leads to the next state in a deterministic manner
(i.e., P(si+1|si , a*si) = 1) independently of the parameter
choice θαsi , while all other actions a ∈ Ad∖{a*si} result in no
state change. However each optimal discrete action α*si is
characterized by an optimal value µ*si as shown in Figure 5,
and choosing a parameter θαsi such that H(θαsi) ≥ 0 will re-
sult in an increase of the reward signal rt as described in
Eq. 22. This occurs when:

µ*si − σ
*√2ln2 ≤ θαsi ≤ µ

*
si + σ

*√2ln2

where σ* will be a global parameter for all states and ac-
tions. This inequality specifies a tolerance interval with a
fixed width, but with non-fixed boundaries since the op-
timal action-parameter tuples are non-stationary. Having
a reward feedback after each action on each visited state
don’t truly demonstrate the learning ability of an RL agent,
and the problem could be tackled by having independent
multi-armed bandit agents to each state. However, the
propagation of rewards from future states wouldn’t take
any effect (which here does), and the optimal strategy for
multi-objective cases would be untraceable.

At first we perform numerical simulations and mea-
sure the performance on a dynamic task with a global
changepoint occurrence of the optimal action-parameter

state 1

timesteps0 10000

0

-100

100
state 2

timesteps0 10000

0

-100

100

state 3

timesteps0 10000

0

-100

100
state 4

timesteps0 10000

0

-100

100

state 5

timesteps0 10000

0

-100

100
engagement

timesteps0 10000
0

10

Figure 7: Experiment 2 Task 1. The chosen action-parameter tuples
shown as colored dots for 50 hyper-sessions. The color of the hori-
zontal dash-dot lines represent the optimal actions while the range
between them represents the tolerance interval. The engagement
on each timestep is shown at the bottom right.

tuples. We then demonstrate the main adaptive nature
of the algorithm on an environment where local state
changes occur, bothdrifting andabrupt.We choose thepa-
rameters by at first manually tuning an initial set based on
observations, and then using themethod presented in sec-
tion 3.

4.1.1 Global changepoints

We simulate the algorithm on a task (Task 1)
with a global changepoint of the optimal action-
parameter tuples, using the right MDP of Figure 6 for
10000 timesteps (we call this a hyper-session). For
1 ≤ t < 5000 the optimal actions on each state are
{a*s1 ,t , a*s2 ,t , a*s3 ,t , a*s4 ,t , a*s5 ,t} = {a2, a3, a4, a5, a6}
and their corresponding optimal parameter values are
{µ*s1 ,t , µ*s2 ,t , µ*s3 ,t , µ*s4 ,t , µ*s5 ,t} = {−50, 50, −50, 50, −50}.
For t ≥ 5000 the optimal discrete actions change to
{a*s1 ,t , a*s2 ,t , a*s3 ,t , a*s4 ,t , a*s5 ,t} = {a1, a4, a3, a2, a5}
and their parameters to {µ*s1 ,t , µ*s2 ,t , µ*s3 ,t , µ*s4 ,t , µ*s5 ,t} =
{0, −10, 10, 10, 0}. Figure 7 captures the results of task
1 after 50 hyper-sessions. The graphs depict the chosen
action-parameter pairswith colored dots for each timestep
that the agent was found in one of the 5 states. The color
of the horizontal dash-dot lines represents the optimal
action and the range between these lines is the tolerance
interval (i.e., the values of the parameters for which the

Active state-specific exploration for child-robot interaction | 245

engagement is increased). The graph at the bottom-right
shows the virtual engagement.

The algorithm performs exploration at first (shown
by the large “cloud” of actions) and then manages to ap-
proximate the optimal action-parameter tuple (a*si ,t , µ

*
si ,t)

for all states si (as the colored dots fall inside the tol-
erance interval). The uncertainty of the chosen parame-
ters, which is adaptively tuned with the use of the sigmoid
Fσ(·), described in the mathematical section, has been
lower bounded with a value of σmin = 2, which is here
pictured by the minimumwidth of the action “cloud”. The
engagement at first drops but then increases to a value of
10, achieving perfect performance right before the change-
point occurrence. Right after the changepoint, both explo-
ration and action uncertainty increased resulting in find-
ing the new optimal actions and achieving a perfect per-
formance after 200 timesteps on average.

Interestingly, Suppl. Figure S1 and S2 in the support-
ing material show that the non-state specific exploration
of the previous version of the algorithm [16] – neverthe-
less extended to deal with multiple states – can learn this
type of tasks with a performance below the one of the
new algorithm. In Suppl. Figure S1 the global changepoint
only requires adaptation of the continuous parameters for
the stable optimal actions. In this case, the engagement
drops mildly after the changepoint (resulting in a par-
tial re-exploration) and then re-converges to a good but
non-optimal engagement (slightly below 9). In Suppl. Fig-
ure S2 the global changepoint require adaptation of both
the discrete actions and the continuous parameters, as
in Figure 7, which results in a sharp drop of engagement
(and thus a full re-exploration). In this case, the previ-
ous version of the algorithm enables to re-converge to ap-
proximately the same level of engagement than before the
changepoint. This highest engagement is nevertheless be-
low the one with the novel algorithm. Nevertheless, the
main message here is that a global changepoint results in
sufficient cumulated novelty over all states to permit a sat-
isfying performance with global active exploration. In the
next section, we will show that local changepoints result
in much more subtle variations of uncertainty on action
parameters so that a state-specific active exploration is re-
quired for optimal performance.

4.1.2 Local changepoints

Here we test the algorithm on Task 2, for which states fol-
low different dynamics as shown in Figure 8. In state s1
a changepoint occurs at timestep t = 3000. The opti-
mal action-parameter tuple for t < 3000 is {a2, −50} and

state 1

timesteps0 10000

0

-100

100
state 2

timesteps0 10000

0

-100

100

state 3

timesteps0 10000

0

-100

100
state 4

timesteps0 10000

0

-100

100

state 5

timesteps0 10000

0

-100

100
engagement

timesteps0 10000
0

10

Figure 8: Experiment 2 Task 2. As in Figure 7, the chosen action-
parameter tuples for 50 hyper-sessions are shown as colored dots.
The tolerance interval is represented by the range between the
dash-dot lines and the type of the optimal discrete action is rep-
resented by their color. The engagement is shown at the bottom
right.

temperatrure 1/β

Figure 9: Experiment 2 Task 2. Average temperature levels (Tt(si) =
1/βt(si)) for all states si from 50 hyper-sessions of task 2. Each
row i of the image corresponds to a state si and each column cor-
responds to a timestep t. Bright regions are relevant with high ex-
ploration levels while dark regions correspond to more exploitative
strategies.

changes to {a1, 0} for t ≥ 3000. In state s2 the optimal dis-
crete action is a3, however the optimal parameter is chang-
ing sinusoidally in time. In state s3 a changepoint occurs at
timestep t = 7000,where the optimal action-parameter tu-
ple is {a4, −50} for t < 7000 and {a2, 0} afterwards. State
s4 is also subject to an abrupt change, where the optimal
tuple is {a5, 50} for t < 5000 and {a4, −10} for t ≥ 5000.
State s5 is stationary, with {a6, −50} as an optimal action
tuple.

From the results shown in Figure 8, we can see that
the optimal actions and their associated optimal param-
eters are approximated in an accurate manner. The ac-
tion “cloud” falls inside the tolerance interval most of the

246 | George Velentzas et al.

Figure 10: Experiment 2 Task 2 (stochastic version). A block de-
scribing the sequence of selections of the 6 discrete actions (dif-
ferent colors, y-axis) together with the exploration parameters β(s)
and σ(s, a) (z-axis) in state s1 during a random session right af-
ter a changepoint occurrence. Time starts from the changepoint
and shows the first 100 timesteps (x-axis) where the agent was in
state s1. Action 2 was optimal before the changepoint, and Action
1 after. The height of each ribbon i illustrates the value of σ(s1 , ai)
(the closer to 0 the more exploitative). The colored dots at the bot-
tom correspond to the discrete actions taken, each one shown on a
different line for clarity. The dashed dotted line on the back of the
cube corresponds to the inverse temperature β(s1) (the closer to 0
the more exploratory).

time, and the engagement is close to 10 even though the
optimal parameter value of action a3 in state s1 is con-
stantly changing, and the exploration results in tracking
the dynamics of the environmental changes. It is also im-
portant to note that the exploration in state s5 does not
increase, even at the moments where the rest of the envi-
ronment is subject to abrupt changes. Figure 9 shows the
average temperature levels T(s) = 1/β(s) in all states and
all timesteps. In state s1, the reduced immediate rewards
rt(s1) result in a decrease of the inverse temperature βt(s1)
which is shown by the increase of intensity in the first row
of the image. In state s2 where the optimal parameter val-
ues are drifting, the temperature stays high except for the
small time intervals where the monotonicity of the sinu-
soid changes and the existing approximation falls inside
the tolerance region.

To have a better picture of the active exploration
strategy taken, Figure 10 shows an example for a non-
optimized version of the algorithmwith stochastic rewards
(the parameters used here are those that had been opti-
mized for a different task in [16]). After the changepoint
in state s1 the uncertainty of parameter values starts to
increase, while the inverse temperature decreases. After
uncertainty and exploration reach high levels, the agent

starts to choose among other discrete actions (shown as
color dots at the bottom of the figure). When the optimal
action is found and the chosen parameter starts to fall in-
side the tolerance interval, the performance starts to re-
increase resulting in a reduction of the uncertainty of this
new action and re-exploitation phase.

Importantly, when comparing the performance in Ex-
pertiment 2 Task 2 (local changepoints) with that of the
previous non-state specific exploration (Suppl. Figure S4
in the supporting material), we found that the new algo-
rithmoutperforms the old one. Strikingly, Suppl. Figure S4
shows that each local changepoint in a given state pollutes
performance in the other states (timesteps 3000, 5000
and 7000). More importantly, the non-state specific explo-
ration version of the algorithm completely fails in captur-
ing the drifting type of environmental change. Overall, the
old algorithm still manages to fastly adapt to each abrupt
changepoint and the simulated engagement is most of the
timehigher than8/10 althoughnot optimal. Themainmes-
sage here again is that state-specific active exploration is
required for optimal performance with the subtle varia-
tions of uncertainty in action parameters locally induced
by local changepoints.

4.1.3 Robustness on stochasticity and volatility

To evaluate the algorithm’s performance on stochastic en-
vironments and to further investigate its limits of adap-
tivity based on the volatility of the environment, we per-
formed a number of experiments on stochastic version of
Experiment 2 Task 1 (global changepoints) by altering the
probability of a correct transition from0.5 to 1. Specifically,
if the chosen action was the optimal one, then the tran-
sition to the next state took place with probability p and
the state did not change probability 1 − p. Similarly, when
a non-optimal action was chosen the state remained the
samewith probability p, while the state transitioned to the
next one with probability 1 − p. While we investigated the
performance on different values of p from 0.5 to 1 with a
step of 0.05, we also changed the volatility of the environ-
ment in 2 different ways, abruptly changing and drifting.

At first, we changed the optimal action-parameter tu-
ple in a circular manner based on the following reason-
ing. If n is an incremental index (initialized at zero) such
that n ← n + 1 after every changepoint, then the op-
timal action at each state si is given by a*si = aj, with
j = mod (i + n − 1, 6) + 1, while the optimal parameter
value is µ*si = (−1)n+i × 20. With Ncp being the number of
changepoints (uniformly distributed over a time horizon
of 10000 timesteps), we altered its value from 0 to 10 and

Active state-specific exploration for child-robot interaction | 247

Figure 11: Experiment 2. (a,b,c) Performance for different stochastic-
ity levels p (denoting the probability of a correct transition) and the
number of changepoints Ncp in a globally changing environment.
(d,e,f) Performance for different stochasticity levels and cycles Nc
of sinusoidal changes of all parameter values in the specified time
horizon of T = 10000.

we evaluated the performance of the algorithm after run-
ning 20 hyper-sessions for each pair of (p, Ncp). We com-
puted the average engagement achieved and numerically
estimated the probabilities Pr{a = a*&H(θa) > 0}, and
Pr{H(θa) > 0|a = a*} as shown in Figure 11(top).

Secondly, we fixed the optimal actions to some ran-
dom set and we altered the parameter value sinusoidally
in timesteps, as done in state 2 of Task 2. With Nc being
the number of cycles of the sinusoid up to the end of a
hyper-session, we tried values from Nc = 1 to Nc = 6 with
a step of 0.5 andwe evaluated the performance on all pairs
(p, Nc). The results are shown in Figure 11(bottom).

To have a reference point, the performance of the
global changepoint in Experiment 1 Task 1 (shown in Fig-
ure 7) corresponds to the mean engagement value of Fig-
ure 11a for p = 1 and Ncp = 1. Reducing p then seems to
have had a low impact on the performance. However, the
performance gradually decayed while Ncp increased and
p was lowered. In the case of “drifting” type of environ-
ments, the mean engagement was high for 1-3 cycles but
steeply reduced after this point.

4.2 Experiment 3

In the following experiment we performed visual simula-
tions of a child-robot interaction in aMatlab environment,
where 3 colored cubeswere placed randomly at 3 positions
(left, center, right). The objective was for the robot to learn
the “Tower of Hanoi” game and build a tower of cubes at
the center position by only having a visual feedback from
the child to estimate her current engagement (social re-
ward) and a small reward every time the task was com-

pleted (non-social reward). The robot’s actions consisted
in grasping and placing objects. It could also follow the
game’s rules by not placing a larger cube over a smaller
one and had the ability of parameterizing the trajectories
of itsmovements (here the only considered continuous pa-
rameter was be the speed of movement). We considered 27
states and used a one-hot representation as a feature vec-
tor. Specifically, ϕ(s) was a 27-dimensional vector where
all components were zero except the one corresponding to
the current state s. There were 6 actions in total with ac-
tion a1 being to grasp the top cube at the “left” position
and place it at the “center”. With using “LC” as abbrevia-
tion for this type of action, the discrete action space was
then {a1, a2, a3, a4, a5, a6} = {LC, LR, CL, CR, RL, RC}
(however not all of the actions were “legal” and avail-
able in every state). The parameter values were varying in
the range [−100, 100], as in the MDP case, and were then
translated to the appropriate interval for the robot’s actu-
ators.

The child’s preference on the parameter valueswas re-
lated to the difficulty of the action. To be more precise, we
broke down the parameters to 6 families of actions, where
each family had similar characteristics of demanding dex-
terity.We considered actions of type 1 the actions forwhich
a “lone” cube (cube that is not over another cube) was
placed at a “lone” position (positions where there is no
cube) and therefore the natural speed of performing this
action was relatively fast (as there was no particular diffi-
culty). We used the abbreviation “1 − 1” for such actions
and they all shared a commonoptimal parameter value µ*1.
Actions of type 2 were the actions for which the top cube
from a “stack of two” was picked and placed at a “lone”
position. We used the abbreviation “2 − 1” for this type
of actions and they all shared the same optimal param-
eter value of µ*2. Using the same reasoning, there were 6
different types of actions {“1 − 1”, “2 − 1”, “3 − 1”, “1 −
2”, “2 − 2”, “1 − 3”} in an ascending order of dexterity
requirements, and we may assume that the child’s pref-
erence (i.e., here corresponding to her possible expecta-
tion for natural movements) was correlated with actions
that display amore “natural” behavior. However,while the
task was being learned, the simulated child could become
more and more impatient, resulting in an iterative incre-
ment of the optimal parameter values. This way we forced
the robot to display adaptive characteristics of learning in
such parameterized-action environments. Note that the al-
gorithm could learn arbitrary speeds for each (state, ac-
tion) pairs, and arbitrary variations of optimal speed (e.g.,
decrements of speed). But here, the requirements of the
task were chosen to illustrate a more meaningful child-
robot interaction.

248 | George Velentzas et al.

Figure 12: Experiment 3 Tower of Hanoi Game. Left: an instance of the simulation where the robot has just placed the small-sized pink cube
over the medium-sized red cube. AT: Action Taken (green for optimal-red for bad action) OP: Optimal Parameter, PT: Parameter Taken, β(s):
inverse temperature in this state, σ(s, a): standard deviation for the Gaussian exploration, Q-Values: The action values in this state for the
“legal” actions. On the middle right the tolerance interval is shown with a shaded area and the distribution from which the parameter is
shown with a red color. The top graph depicts the engagement achieved, where the dash dot lines show the time steps at which an optimal
parameter value of an action changed.

Figure 12, shows an instance of the simulation envi-
ronment after learningwhere the robot had already placed
the small-sized pink colored cube (previously placed over
the large-sized green cube) over the medium-sized red
at the left position. The child’s engagement is visually
displayed, representing the relation of the angle of the
child’s gaze to the point of interest. The gaze angle was
sampled from a bimodal distribution centered on the op-
timal angle (i.e., towards the point of interest), and for
which the distance of the modes were inversely propor-
tional to the engagement values. The point of interest here
was the position of the robot’s moving arm performing
an action, we could however generalize to have multiple
points with different weights (this is out of the scope of
the present work). At the bottom right, the green colored
box shows that the action performed was the optimal one
(otherwise the color would be red). The “OP” corresponds
to the optimal parameter value for the action taken and
the “PT” corresponds to the parameter tried. The inverse
temperature, the uncertainty of action parameter and the
Q-Values are shown. As the pink-colored cube was ini-
tially over the large green cube, the Q-value of optimal
action a5 was the highest among the allowed actions to
take. The middle-right figure shows the tolerance inter-

val with a shaded area, together with the probability den-
sity function from which the current parameter value was
sampled. The top-right graph displays the engagement
achieved, while the gray dashed dotted lines are placed at
the timesteps on which an optimal parameter of an action
increased. Suppl. Video 1 in the supporting information il-
lustrates a simulation including different task phases: (1)
first a simulation of the task with a pretrained robot that
already knew how to solve the Tower of Hanoi task but
had nevertheless to adapt its continuous parameter of ac-
tion (i.e., speed of movement) to the child; (2) then a se-
quence of changepoints where the optimal speed of move-
ment was iteratively increased; (3) finally, a “new born”
robot which had to relearn the task from scratch. Note the
smooth variations in the speed of movement which was
generated by the algorithm and which produces an appar-
ent more “natural” behavior during the social interaction.

Finally, to investigate the adaptive limits of the algo-
rithm for this specific environment, we evaluated the per-
formance on a number of experiments where a change-
point of the optimal parameter occurred for all types of ac-
tions every Tcp number of timesteps, in a sequential man-
ner. We altered Tcp to take values in {10, 50, 100, 500}
and we ran 20 hyper-sessions for each case. The achieved

Active state-specific exploration for child-robot interaction | 249

10 20 30 40 50 60
5

6

7

8

9

10

100 200 300 400 500 600
5

6

7

8

9

10

50 100 150 200 250 300
5

6

7

8

9

10

500 1000 1500 2000 2500 3000
5

6

7

8

9

10

timesteps

e
n
g

a
g

e
m

e
n
t

changepoint every 10 timesteps changepoint every 50 timesteps

changepoint every 100 timesteps changepoint every 500 timesteps

e
n
g

a
g

e
m

e
n
t

e
n
g

a
g

e
m

e
n
t

e
n
g

a
g

e
m

e
n
t

timesteps

timesteps timesteps

(a) (b)

(c) (d)

Figure 13: Experiment 3. Average engagement of a pre-trained
agent for 20 hyper-sessions in locally changing environments,
where a changepoint occurred (a) every 10 timesteps, (b) every
50 timesteps, (c) every 100 timesteps, (d) every 500 timesteps.

mean engagement can be viewed in Figure 13. For Tcp = 10
the algorithm could not catch the dynamics and the en-
gagement dropped. For Tcp = 50, the algorithm managed
to adapt partially. For Tcp = 100, the engagement maxi-
mized right before the next changepoint occurred, while
for Tcp = 500, there was enough time for the engagement
to be maximized and stabilized after each changepoint.

4.3 Experiment 4

In order to illustrate the different ways children engage
in a collaborative game with a robot, we performed real-
istic simulations of the child-robot interaction pilot task
described above (Section 2.1). We implemented the simu-
lations in the virtual robot experimentation platform (V-
REP). In the considered scenario, a small humanoid robot,
in this case a NAO, interacts with a human child subject,
and the goal is to collaboratively perform a task involving
pointing at, picking up andplacing objects (cubes) located
in the scene (Figure 14) in order to later use them for the
construction of a tower. Ideally, when the robot points at
a cube, the child should understand the robot’s intention,
pick up the cube and hand it over to the robot so that the
game continues. In this case the child is maximally en-
gaged and the robot executes the pointing action with a
specific child-dependent way that appears more natural
and intuitive to the child. With this simulation, we do not
attempt to visualize the whole tower-building game but to
show how the robot’ s expressive gestures lead tomore en-
gaging interactions with human partners.

In the pilot version of this joint attention experiments
that we performed between a NAO and children (Section
2.1), we studied how the robot’s movements affected the
child’s engagement. The goal was again the pick-and-
place task described above andwe observed that when the

robot opened and closed its grip or exchanges glances be-
tween the child and the object for a period of time while
pointing at the object, it contributed to an increase of the
child’s engagement. Nevertheless, we have yet too little
data with this pilot and simulations appear crucial to fine
tune the algorithm for this scenario.

Inspired by these experiments, we parameterized the
simulated pointing action of the robot with low-level fea-
tures describing the physical aspects of the robot’s move-
ments. Thesemovements accompanied and reinforced the
robotic pointing action by iteratively opening-closing its
hand or alternating glances at the child and at the object.
The amount of time of these iterations was an aspect of
the gesture’s expressivity and also a parameter that had
to be learned. Depending on the parameters values, the
robot executed a pointing gesture of different expressiv-
ity. Examples of such gestures are shown in Table 1. In
the current implementation of our simulations, the robot
performed one discrete action (pointing gesture) which
had two parameters (t1, t2) corresponding to the time in
seconds of the open-close and glance movements respec-
tively.

Table 1: Robot’s pointing action with parameters corresponding to
increasing levels of expressivity.

Pointing gesture

expressivity

⎮⎮⎮⎮⎮⎮⌄

point (t1 = 0, t2 = 0)
point + open-close hand (t1 ≠ 0, t2 = 0)
point + exchange glance (t1 = 0, t2 ≠ 0)

point + open-close + glance (t1 ≠ 0, t2 ≠ 0)

In the lowest level of expressivity, the robot only per-
formed a pointing gesture by simply putting its arm for-
ward towards the object. In the next levels, the pointing
actions were reinforced by iteratively opening-closing the
hand or exchanging glance between the child and the ob-
ject for t1 and t2 seconds respectively. We assumed that
each simulated child reached an optimal state of engage-
mentwhen the pointing actionwas performedby the robot
with specific child-dependent durations of open-closing
and glancing. For instance, one of the children reacted
and came to help the robot only when the robot gazed at
her, while another child did not like to be looked at by the
robot. Therefore, the robot had to be able to adapt to differ-
ent children and to learn their corresponding parameters.
Nevertheless, we also considered that the algorithm could
be initialized based on the parameters obtained on aver-
age during previous interactions with children. This way,

250 | George Velentzas et al.

Figure 14: Experiment 4. Setup used for the simulations of the same
task as the pilot real child-robot interaction experiment.

the algorithm started from a meaningful average value
of action parameters/durations (t̄1, t̄2), rather than being
initialized randomly, and then adapted to each specific
child. In future work, we can study whether the average
parameters over different interacting children is efficient
orwhether there exists distinct clusters of parameters – es-
pecially within the data obtained in the real experiments
– that should be used as separate initialization points.

In our simulations, we defined a time range from 0
to 10 seconds. Figure 15 shows an example of the param-
eters adaptation from their default to their optimal val-
ues. Specifically, the robot firstly interacted with an “av-
erage child”, meaning that the child engaged optimally
with parameters (t̄1, t̄2). Then, at timestep 40, the experi-
ment ended and another child (child 1) with different opti-
mal parameters started interactingwith the robot. Asmen-
tioned before, to accelerate learning the robot did not reset
its action parameters but adapted to its new partner. The
engagement of child 1 was initially very low but progres-
sively increased as the robot was finding the optimal con-
tinuous action parameters. Similarly, at timestep 80 child
2 took the place of child 1 and the robots readjusted its pa-
rameters. After running this series of experiments 10 times
andplotting themeanand standarddeviationof the action
parameters and the children’s engagement (Figure 15), we
observe that in less than 10 timesteps the robot found the
optimal parameter values of child 1 whose engagement
reached 8 in just a few timesteps. The adaptation was sim-
ilar for child 2.

Suppl. Video 2 in the supporting information illus-
trates a simulation where the algorithm was successively

interacting with three different simulated children. Each
child had its own preferences in terms of expressivity of
action by the robot and progressively got more and more
engaged as the robot was reaching the appropriate level of
expressivity. Child engagement was here simulated from
looking away (level 0) to looking from far away (level 1),
getting closer (level 2), bending the torso (level 3) as the
robot was progressively improving its behavior.

5 Discussion and conclusion
In this work, we proposed a novel state-specific active
exploration process in parameterized action spaces (i.e.,
combining the learning of discrete (state,action) values
and a vector of continuous actionparameters associated to
each (state,action) pair). This algorithm permits to benefit
from the task decomposition into a small set of discrete ac-
tions, that can be more easily categorized and understood
by childrenduring child-robot interaction, andat the same
time to finely tune in an onlinemanner continuous param-
eters of actions that can be adjusted in a child-specificway
(e.g., duration of action, speed, gaze orientation, expres-

0 20 40 60 80 100 120

timesteps

0

5

10

t 1
 (

se
c)

average
child

child 1

child 2

0 20 40 60 80 100 120

timesteps

0

5

10

t 2
 (

se
c)

average
child

child 1 child 2

0 20 40 60 80 100 120

timesteps

5

6

7

8

9

10

en
ga

ge
m

en
t

average
child

child 1 child 2

Figure 15: Experiment 4. Left: Before timestep 0 the robot executed
the default parameters values, no adaptation was performed. After
timestep 0, the robot adapted its action parameters (black) towards
the optimal action parameters (red). Right: Child’s engagement
reached 90% within less than 10 trials.

Active state-specific exploration for child-robot interaction | 251

sivity of action, etc.). This algorithm extends our previous
non-state-specific active exploration proposed in [15, 16]
which was restricted to single state scenarios (where each
action immediately results in an outcome). The extension
both permits to deal with multi-state scenarios (where an
action’s effects can be delayed in time) and to cope with
local non-stationarities in the state space without inter-
fering with learning in other stable portions of the state
space (e.g., if the child changesher expectation aboutwhat
the robot shall do with a particular object, the robot can
locally re-explore its behavior for this object while main-
taining a stable behavior elsewhere).Wepresented a series
of simulated child-robot interaction experiments, showing
(1) that the new algorithm outperforms the previous ver-
sion; (2) that it can perform a Tower of Hanoi experiment
where in addition to achieving the task within the mini-
mum number of steps the algorithm has also to learn to
build the tower with the appropriate speed of movement
for the child with whom it interacts; (3) and that it can per-
form a taskwhere the robot needs to find the child-specific
appropriate level of expressivity of action while pointing
at an object in order to make the child engage into joint
action.

This work has important implications for machine
learning methods applied to robotics as well as more
specifically for the field of human-robot social interaction.
From a theoretical point of view, the proposed algorithm
provides anovelway toperformstate-specific active explo-
ration in reinforcement learning, thus expanding active
exploration methods [19–23]. Moreover, it expands such
active exploration to parameterized action spaces [17, 18],
thus enabling to dynamically adjust in parallel choices be-
tween discrete actions and continuous parameters of ac-
tion. In terms of robot learning implications, the fast adap-
tation which is permitted by such a state-specific active
exploration algorithm constitutes a promising intermedi-
ate solutionbetweendiscrete and continuous action learn-
ing methods that have so far been applied to robotics (see
[14] for a recent review). From the point of view of the pos-
sible applications to human-robot social interaction, the
algorithm represents a new step on the so far little devel-
oped investigation of robot learning abilities to adapt on-
line to variations of non-verbal social signals [1, 5–9].More
particularly, the algorithm represents a solution to make
robots adapt to variations in human engagement [7, 9, 10].
Finally, for educational applications where a small hu-
manoid robot can assist a human teacher, the proposed al-
gorithmconstitutes anovel tool thatmay contribute to pro-
moting typical or Autistic Spectrum Disorders (ASD) chil-
dren’s interest in educative games, and help further de-

velop their social skills [2–4] and enhance theirmotivation
[5].

Two particular features of the algorithm deserve to be
highlighted in terms of the potential they have for child-
robot interaction. The first one is the general stability of
the robot’s learning performance during social interaction
(at least proven here in simulation) thanks to the active ex-
ploration process. On the one hand, the fact that an im-
provement in robot performance leads to more exploita-
tion enables a strong stability of behavior when the con-
ditions are stable. This contrasts with learning algorithms
with a fixed exploration rate which can remain subopti-
mal and unstable even during the stable task phases af-
ter learning. On the other hand, transient re-exploration
and thus fast adaptation is still permitted at any time
a changepoint is detected. This contrasts with learning
methods where the exploration phase is circumscribed
with prior information about the expected duration of
learning. Thus here the active exploration process enables
to alternate between transient periods of exploration and
fast re-learning, and periods of stabilization during ex-
ploitation. The second important feature is themodularity
of the combination of discrete and continuous action pa-
rameters, as well as associated exploration rates for each
of them. This permits applications where all are updated
in parallel, as well as applications where one module is
frozen. For instance, onemaywant the robot tohaveafixed
pre-learned behavioral policy in the discrete domain (for
instance, knowing how to optimally perform sequences of
discrete actions to solve the Tower of Hanoi task) so as to
avoid a too long learning process during child-robot inter-
action. This can be done by setting the learning rate for
discrete actions αQ to zero after pretraining and fixing the
inverse temperature β(s) to a very high value. This way,
the algorithm would start the social interaction with an
already appropriate behavior to solve the Tower of Hanoi
task, while still being able to adapt online the continuous
parameters of action. An intermediate application could
consist in having a fixed prelearned discrete behavioral
policy with αQ = 0 while still enabling a dynamic tuning
of β(s) to produce transient variability in the behavior. In
the simulations we have shown for Experiment 3, we nev-
ertheless showed that the robot could learn all in paral-
lel. But it’s important to highlight the other possible appli-
cations of the algorithm. Finally and conversely, one may
prefer to freeze the continuous parameters of action (by
setting αC = 0, αA = 0 and σ(s, a) ≈ 0) to a level of expres-
sivity and a speed of movement which have already been
learned and seem appropriate for child-robot interaction,
while still enabling the robot to learn discrete behavioral
policies for new tasks. In this context, freezing the contin-

252 | George Velentzas et al.

uous action parameters but still permitting active explo-
ration around these prelearned values by letting σ(s, a) be
dynamicallymodulated couldpermitmorefluid variability
in the robot behavior while still remaining around a set of
fixed reasonable averageswhen sufficient prior knowledge
enable to initialize these averages. These different variants
of the algorithm offer a wide range of possible applica-
tions to human-robot interaction, depending on the level
of prior human knowledge and the desired degree of vari-
ability.

Supplementary data

We present in the supplementary material the results ob-
tained by the previous version of the algorithm [16] with
global exploration rates βt and σt on the multi-state task,
to show that it performs less well than the new version.
This justifies the extension we made to have state-specific
discrete exploration rates βt(s), as well as (state,action)-
specific continuous exploration rates σt(s, a).

We moreover present two simulation videos.
Suppl. Video 1 illustrates a simulation of Experiment
3 including different task phases: post-training, change-
points and relearning from scratch. Suppl. Video 2
illustrates a simulation of Experiment 4 where the al-
gorithm is successively interacting with three different
children.

Acknowledgement: This research work has been par-
tially supported by the EU-funded Project BabyRobot
(H2020-ICT-24-2015, grant agreement no. 687831), the
Agence Nationale de la Recherche (ANR-12-CORD-
0030 Roboergosum Project and ANR-11-IDEX-0004-02
Sorbonne-Universités SU-15-R-PERSU-14 Robot Paral-
learning Project), Labex SMART (ANR-11-LABX-65 Online
Budgeted Learning Project), the Centre National de la
Recherche Scientifique (Mission pour l’Interdisciplinarité
ROBAUTISTE Project and PICS no. 279521 SocialRobot
Project) and the Royal Society International Exchange
Scheme (grant no. IE151293).

References
[1] T. Fong, I. Nourbakhsh, K. Dautenhahn, Robotics and Au-

tonomous Systems, 2003, 42, 143–166
[2] T. Kanda, T. Hirano, D. Eaton, H. Ishiguro, Interactive robots as

social partners and peer tutors for children: A field trial, Human-
Computer Interaction, 2004, 19(1), 61–84

[3] B. Robins, K. Dautenhahn, R. Te Boekhorst, A. Billard, Robotic
assistants in therapy and education of children with autism:
Can a small humanoid robot help encourage social interaction
skills? Universal Access in the Information Society, 2005, 4(2),
105–120

[4] T. Belpaeme, P. E. Baxter, R. Read, R. Wood, H. Cuayáhuitl, B.
Kiefer, et al., Multimodal child-robot interaction: Building social
bonds, Journal of Human-Robot Interaction, 2012, 1(2), 33–53

[5] K.-Y. Chin, Z.-W. Hong, Y.-L. Chen, Impact of using an educa-
tional robot-based learning system on students motivation in
elementary education, IEEE Transactions on Learning Technolo-
gies, 2014, 7(4), 333–345

[6] C. Rich, B. Ponsler, A. Holroyd, C. L. Sidner, Recognizing engage-
ment in human-robot interaction, In: 5th ACM/IEEE International
Conference on Human-Robot Interaction (HRI), IEEE, 2010, 375–
382

[7] S. Ivaldi, S. Lefort, J. Peters, M. Chetouani, J. Provasi, E. Zibetti,
Towards engagement models that consider individual factors
in HRI: on the relation of extroversion and negative attitude to-
wards robots to gaze and speech during a human-robot assem-
bly task, International Journal of Social Robotics, 2017, 9(1), 63–
86

[8] S. Lemaignan, M.Warnier, E.A. Sisbot, A. Clodic, R. Alami, Artifi-
cial cognition for social human-robot interaction: An implemen-
tation, Artificial Intelligence, 2017, 247, 45–69

[9] C. L. Sidner, C. Lee, C. D. Kidd, N. Lesh, C. Rich, Explorations
in engagement for humans and robots, Artificial Intelligence,
2005, 166(1–2), 140–164

[10] S. M. Anzalone, S. Boucenna, S. Ivaldi, M. Chetouani, Evaluat-
ing the engagement with social robots, International Journal of
Social Robotics, 2015, 7(4), 465–478

[11] M. Khamassi, S. Lallée, P. Enel, E. Procyk, P. F. Dominey, Robot
cognitive control with a neurophysiologically inspired reinforce-
ment learning model, Frontiers in Neurorobotics, 2011, 5, 1

[12] J. Kober, J. Peters, Policy search for motor primitives in robotics,
Machine Learning, 2011, 84, 171–203

[13] F. Stulp, O. Sigaud, Robot skill learning: From reinforcement
learning to evolution strategies, Paladyn Journal of Behavioral
Robotics, 2013, 4(1), 49–61

[14] J. Kober, J. A. Bagnell, J. Peters, Reinforcement learning in
robotics: A survey, The International Journal of Robotics Re-
search, 2013, 32(11), 1238–1274

[15] M. Khamassi, G. Velentzas, T. Tsitsimis, C. Tzafestas, Active ex-
ploration and parameterized reinforcement learning applied to
a simulated human-robot interaction task, In: 2017 First IEEE In-
ternational Conference on Robotic Computing (IRC), Taichung,
Taiwan, 2017, 28–35

[16] M. Khamassi, G. Velentzas, T. Tsitsimis, C. Tzafestas, Robot fast
adaptation to changes in human engagement during simulated
dynamic social interaction with active exploration in parameter-
ized reinforcement learning, IEEE Transactions on Cognitive and
Developmental Systems, 2018 (in press)

[17] W. Masson, P. Ranchod, G. Konidaris, Reinforcement learning
with parameterized actions, In: Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence (AAAI-16), 2016

[18] M.Hausknecht, P. Stone, Deep reinforcement learning in param-
eterized action space, In: International Conference on Learning
Representations (ICLR 2016), 2016

[19] J. Schmidhuber, Developmental robotics, optimal artificial cu-
riosity, creativity, music, and the fine arts, Connection Science,

Active state-specific exploration for child-robot interaction | 253

2006, 18(2), 173–187
[20] A. Baranes, P.-Y. Oudeyer, Active learning of inversemodelswith

intrinsically motivated goal exploration in robots, Robotics and
Autonomous Systems, 2013, 61(1), 49–73

[21] C. Moulin-Frier, P.-Y. Oudeyer, Exploration strategies in develop-
mental robotics: a unified probabilistic framework, In: 2013 IEEE
Third Joint International Conference on Development and Learn-
ing and Epigenetic Robotics (ICDL), IEEE, 2013, 1–6

[22] F. C. Y. Benureau, P.-Y. Oudeyer, Behavioral diversity generation
in autonomous exploration through reuse of past experience,
Frontiers in Robotics and AI, 2016, 3

[23] J. X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J. Z.
Leibo, R. Munos, et al., Learning to reinforcement learn, 2016,
arXiv:1611.05763

[24] N. Schweighofer, K. Doya,Meta-learning in reinforcement learn-
ing, Neural Networks, 2003, 16(1), 5–9

[25] K. Doya, Metalearning and neuromodulation, Neural Networks,
2002, 15(4-6), 495–506

[26] G. Velentzas, C. Tzafestas, M. Khamassi, Bio-inspired meta-
learning for active exploration during non-stationary multi-
armed bandit tasks, In: IEEE Intelligent Systems Conference
2017, London, UK, 2017

[27] A. Garivier, E.Moulines, On upper-confidence boundpolicies for
non-stationary bandit problems, 2008, arXiv:0805.3415

[28] H. van Hasselt, M. Wiering, Reinforcement learning in continu-
ous action spaces, In: IEEESymposiumonApproximateDynamic
Programming and Reinforcement Learning, 2007, 272–279

[29] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduc-
tion, Cambridge, MA: MIT Press, 1998

[30] L. Schilbach, M. Wilms, S. B. Eickhoff, S. Romanzetti, R. Tepest,
G. Bente, N. J. Shah, G. R. Fink, K. Vogeley, Mindsmade for shar-
ing: Initiating joint attention recruits reward-related neurocir-
cuitry, Journal of Cognitive Neuroscience, 2010, 22(12), 2702–
2715

Supplementary material includes:

Suppl. Video 1 illustrating a simulation of Experiment 3 including differ-
ent task phases: post-training, change-points and relearning from scratch.
(The video can be downloaded from here)

Suppl. Video 2 illustrating a simulation of Experiment 4 where the al-
gorithm is successively interacting with three different children. (The video
can be downloaded from here)

Supplementary text and figures comparing the results of Experiment 2
with those obtained with a previous version of the algorithm (hereafter).

20

https://www.degruyter.com/view/j/pjbr.2018.9.issue-1/pjbr-2018-0016/suppl/pjbr-2018-0016_sm2.mp4
https://www.degruyter.com/view/j/pjbr.2018.9.issue-1/pjbr-2018-0016/suppl/pjbr-2018-0016_sm3.mp4
https://www.degruyter.com/view/j/pjbr.2018.9.issue-1/pjbr-2018-0016/suppl/pjbr-2018-0016_sm3.mp4

Supporting information for the manuscript
entitled “Adaptive reinforcement learning with
active state-speci�c exploration for engagement
maximization during simulated child-robot
interaction” by Velentzas, Tsitsimis, Rañó,
Tzafestas and Khamassi, Paladyn. Journal of
Behavioral Robotics, 2018, 9(1), 235–253
1 Replacing the mid-term reward

with the myopic value function
From the update rule of the mid-term reward described in
the �rst version of the algorithm [1] it follows

∆r̄t = (rt − r̄t)/τ1 ⇒ r̄t+1 = r̄t + αC(rt − r̄t)

where αC = 1/τ1. Replacing this global approximation
of mid-term reward to state-dependent mid-term reward
(i.e., after observing quintuple (s, a, θa , r, s′)) we get

r̄(s) ← r̄(s) + αC(r − r̄(s))

Therefore, using state-speci�c mid-term rewards r̄(s) is
equivalent with using the value function with updates of

V(s) ← V(s) + αC(r + γV(s′) − V(s))

with γ = 0.We used the notation Vm(s) to state themyopic
computation. Equivalently, the state-speci�c long term re-
ward signals ¯̄r(s) are then updated with

¯̄r(s) ← ¯̄r(s) + αV (r̄(s) − ¯̄r(s))

where αV = 1/τ2. Therefore ¯̄r(s) is equivalent with V̄m(s).
The computations of Qm(s, a) and Q̄m(s, a) are done
equivalently.

2 Comparison with the previous
non-state speci�c version of
the active exploration algorithm

Here we compare our algorithm with the previous version
presented in [1, 2] on a parameterized action Markov Deci-
sion Process of 5 states plus a �nal accepting state (Exper-
iment 2, left MDP of Figure 3 in the paper).

The action space is A = Ad × Ap, where Ap =
{a1, a2, a3, a4, a5, a6} and Ap = [−100, 100]; simply
there are 6discrete actions, eachonewith a continuouspa-
rameter.We assume that for every state Si at each timestep
t, there is an optimal action a*Si which leads to the next
state in a deterministic manner (i.e., P(Si+1|Si , a*Si) = 1)
independently of its parameter θα

*

Si , while all other actions
a ∈ Ad\{a*Si} result in no state change. However, each
optimal discrete action α*Si is characterized by an optimal
value µ*Si as shown in Figure 2 of the main paper, and
choosing a parameter θα

*

Si such that H(θα
*

Si) ≥ 0 will result
to an increase of the reward signal rt. This occurs when

µ*Si − σ
*√2ln2 ≤ θα

*

Si ≤ µ
*
Si + σ*

√
2ln2

where σ* will be a global parameter for all states and ac-
tions, even though it could also be state-action dependent
as ameasure of speci�city. This inequality speci�es a toler-
ance interval with a �xed width for the parameter value of
each optimal action, however the range may change since
both the optimal action and the optimal parameter value
are non-stationary in the general case.

2 |

state 1

timesteps0 10000

0

-100

100
state 2

timesteps0 10000

0

-100

100

state 3

timesteps0 10000

0

-100

100
state 4

timesteps0 10000

0

-100

100

state 5

timesteps0 10000

0

-100

100
engagement

timesteps0 10000
0

10

Figure 1: Experiment 2 Task 0. The median values of the chosen
parameters for each action of interest at each state is shown, along
with their interquartile range as shaded area. The color of the hori-
zontal dash-dot lines represent the optimal actions while the range
between them represents the tolerance interval. The engagement on
each timestep is shown at the bottom right.

2.1 Global change-points

We �rst perform numerical simulations and measure the
performance on two di�erent tasks using the right MDP
of Figure 3 in the paper for 10000 timesteps (we call this
a hyper-session), where the structure of the MDP or the
environmental reward feedback changes for all states at
the samemoment (global change-point). We �rst simulate
Task 0, a simpli�ed version of Task 1 in the main paper
where the optimal discrete actions are stationary, mean-
ing that a*Si ,t are constant in time, whereas the optimal pa-
rameter values µ*Si ,t abruptly change at timestep t = 5000.
Task 0 permits to compare with Task 1 and analyze what
happens in the non-state-speci�c old version of the ac-
tive exploration algorithm [1] depending on the amount of
change required by the task.

Figure 1 captures the results of Task 0 after 200 hyper-
sessions. The graphs show the median values for the
actions of interest at each state as also the average en-
gagement (bottom right of the �gure) along with their
interquartile range as shaded areas. Even though the al-
gorithm cannot end up in more than one state on the
same timestep, here due to the fact that we present the
values over 200 hyper-sessions the lines seem continu-
ous. Note that the sub-optimal actions are not shown here
for clarity but we later present metrics on the probability
of choosing a correct action. The color of the horizon-
tal dashed-dotted lines represents the optimal action,

state 1

timesteps0 10000

0

-100

100
state 2

timesteps0 10000

0

-100

100

state 3

timesteps0 10000

0

-100

100
state 4

timesteps0 10000

0

-100

100

state 5

timesteps0 10000

0

-100

100
engagement

timesteps0 10000
0

10

Figure 2: Experiment 2 Task 1. As in Figure 1, the median values
of the chosen parameters for each action of interest at each state is
shown, along with their interquartile range as shaded area. The color
of the horizontal dash-dot lines represent the optimal actions while
the range between them represents the tolerance interval. The en-
gagement on each timestep is shown at the bottom right.

while the range between these lines represents the tol-
erance interval, for which H(θa

*
) ≥ 0 (we keep σ* = 10

for all cases). The optimal actions for each state are
{a*S1 ,t , a

*
S2 ,t , a

*
S3 ,t , a

*
S4 ,t , a

*
S5 ,t} = {a2, a3, a4, a5, a6}

for all timesteps t, while the optimal parameters are
{µ*S1 ,t , µ

*
S2 ,t , µ

*
S3 ,t , µ

*
S4 ,t , µ

*
S5 ,t} = {−50, 50, −50, 50, −50}

for t < 5000, and {µ*S1 ,t , µ
*
S2 ,t , µ

*
S3 ,t , µ

*
S4 ,t , µ

*
S5 ,t} =

{0, −10, 10, 10, 0} for t ≥ 5000. In task 2 the main dif-
ference is that the optimal actions also change so that
{a*S1 ,t , a

*
S2 ,t , a

*
S3 ,t , a

*
S4 ,t , a

*
S5 ,t} = {a1, a4, a3, a2, a5} for

t ≥ 5000. The results for Task 1 are shown in Figure 2 and
can be directly compared to those obtained with the new
state-speci�c active exploration algorithm (Figure 4 in the
main paper).

In both tasks the algorithm performs exploration on
the �rst timesteps and then manages to approximate the
optimal action-parameter tuple (a*Si , µ

*
Si) for each state Si

by the end of timestep 5000, as the greater part of the
shaded interquartile regions of uncertainty fall in the tol-
erance interval. To be more precise, Figure 3 captures the
numerically calculated probabilities of choosing the opti-
mal action at each timestep as Pt(a*), the probability of
choosing a parameter value inside the tolerance interval
given that the chosen action is the optimal as Pt(H(θa) ≥
0|a*), as also their product Pt(H(θa) ≥ 0 ∩ a*). At the bot-
tom of the same �gure the exploration level is also dis-
played with τ = 1/β as mean temperature for the softmax-
Boltzmann function.All probabilities beginwith small val-

Supporting information for Velentzas et al. | 3

Task 0 - probabilities

timesteps0 10000
0

1
Task 1 - probabilities

timesteps0 10000
0

1

temperature 1/β

timesteps0 10000

probabilites per timestep

timesteps

temperature (1/ β)

Task 1

timesteps timesteps

0 10000
0

0.2

0.4

0.6

0.8

1
probabilites per timestep

timesteps

temperature (1/ β)

Task 2

0 10000
0

0.2

0.4

0.6

0.8

1

0 10000 0 10000

probabilites per timestep

timesteps

temperature (1/ β)

Task 1

timesteps timesteps

0 10000
0

0.2

0.4

0.6

0.8

1
probabilites per timestep

timesteps

temperature (1/ β)

Task 2

0 10000
0

0.2

0.4

0.6

0.8

1

0 10000 0 10000

temperature 1/β

timesteps0 10000

Figure 3: Experiment 2 Tasks 0 and 1. Probabilities of choosing the
optimal action at each timestep, as also choosing an optimal parame-
ter inside the tolerance interval for both tasks. At the bottom the tem-
perature 1/β is shown,withhigher values corresponding towhite and
lower values to black.

ues as the exploration level and the uncertainty of actions
are high on the �rst timesteps. Gradually, the exploration
level drops and the actions are learned with Pt(a*) being
close to 1 right before the change-point occurrence, reach-
ing an engagement of 9.2 out of 10 in both tasks. The toler-
ance region is learned with probability close to 0.78 while
a random strategy would give 0.12 for σ* = 10.

After the change-point occurrence the algorithm
presents adaptivity in both tasks. This can be also seen by
observing the probability Pt(a*) and Pt(H(θa) ≥ 0|a*) in
Figure 3. ForTask0, Pt(a*) drops only slightly since the op-
timal actions are already learned. However, the algorithm
does not reach the same levels of performance afterwards.
The temperature rises (as β increases) but thendrops again
as the performance is stabilized. Even though the perfor-
mance is not completely restored, the engagement drops at
�rst but then rises up to high values of over 8 out of 10. For
Task 1, the algorithmalso relearns thenewoptimal actions.
In fact it manages to achieve the same levels of perfor-
mance with approximately the same levels of robustness.
Observing the temperature at the bottom right of Figure 3
we can see that the temperature rises more than in Task
0. However, the performance is completely restored after-
wards. Amain reason for this feature is the larger stimulus
(or “novelty”) resulting from the sudden drop of rewards
rt, which then results in large negative values of r̄t − ¯̄rt
and larger drops in β as a consequence. This large stim-
ulus therefore restores exploration to higher levels (also
observed by the lighter area of the temperature in com-
parison with the temperature in Task 1) and the algorithm
does not su�er from “inertia” by an already learned strat-
egy. Nevertheless, the maximal engagement reached and
the time needed to adapt after the change-point are not as
good as with the new state-speci�c exploration algorithm
(Figure 4 in the main paper).

state 1 state 2

state 3 state 4

state 5 engagement

timesteps0 10000
0

10

timesteps0 10000
0

10

timesteps0 10000
0

10

timesteps0 10000
0

10

timesteps0 10000
0

10

timesteps0 10000
0

10

Figure 4: Experiment 2 Task 2. All states follow di�erent dynamics
with non-global change-points and continuously changing parame-
ter values. When a change-point occurs in some state, exploration is
in�uenced in all states (shown by the disturbances in all other pa-
rameter values chosen). Additionally, the dynamically changing tol-
erance interval of the optimal action parameter value in state 2 (top
right) cannot be followed. These result in an overall lower engage-
ment, shown at the bottom right.

2.2 Local change-points

Next, we test the algorithm on Task 2, for which states
follow a di�erent dynamics with local change-points as
shown in Figure 4. In state S1 there is a change-point at
timestep t = 3000. The optimal action-parameter tuple for
t < 3000 is {a2, −50} and changes to {a1, 0} for t ≥ 3000.
In state S2 the optimal action is a3, however the optimal
parameter is changing sinusoidally in time. In state S3 a
change-point occurs at timestep t = 7000, where the opti-
mal action-parameter tuple is {a4, −50} for t < 7000 and
{a2, 0} for t ≥ 7000. State S4 is also subject of an abrupt
change, where the optimal tuple is {a5, 50} for t < 5000
and {a4, −10} for t ≥ 5000. State S5 is stationary, with
a6, −50 as an optimal action tuple.

From the results shown in Figure 4, we can see that
the algorithmmanages to adapt to the local change-points
in states S1, S3 and S4. Nevertheless, the algorithm fails to
follow the sinusoidally drifting optimal parameter change
in state S2. Also note that, because the active exploration
is not state-speci�c, any local change-point in a given state
transiently a�ects performance in all other states. This is
particularly obvious in state S5 where no change-point oc-
curs but where a transient mild re-exploration of the con-
tinuous parameter is performed at timesteps t = 3000,
t = 5000 and t = 7000. Overall, the algorithm performs
quite well, with an engagement above 8 most of the time

4 |

and fast adaptations to the local change-points. Neverthe-
less, the performance is not as good as the one reached by
the novel state-speci�c active exploration algorithm as il-
lustrated by Figure 5 of the main paper.

References
[1] M. Khamassi, G. Velentzas, T. Tsitsimis, C. Tzafestas, Robot fast

adaptation to changes in human engagement during simulated
dynamic social interaction with active exploration in parameter-
ized reinforcement learning, IEEE Transactions on Cognitive and
Developmental Systems, 2018 (in press)

[2] M. Khamassi, G. Velentzas, T. Tsitsimis, C. Tzafestas, Active ex-
ploration and parameterized reinforcement learning applied to
a simulated human-robot interaction task, In: 2017 IEEE Robotic
Computing Conference, Taipei, Taiwan, 2017, 28–35

