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Abstract—Dynamic uncontrolled human–robot interactions
(HRIs) require robots to be able to adapt to changes in the
human’s behavior and intentions. Among relevant signals, non-
verbal cues such as the human’s gaze can provide the robot
with important information about the human’s current engage-
ment in the task, and whether the robot should continue its
current behavior or not. However, robot reinforcement learn-
ing (RL) abilities to adapt to these nonverbal cues are still
underdeveloped. Here, we propose an active exploration algo-
rithm for RL during HRI where the reward function is the
weighted sum of the human’s current engagement and varia-
tions of this engagement. We use a parameterized action space
where a meta-learning algorithm is applied to simultaneously
tune the exploration in discrete action space (e.g., moving an
object) and in the space of continuous characteristics of move-
ment (e.g., velocity, direction, strength, and expressivity). We
first show that this algorithm reaches state-of-the-art perfor-
mance in the nonstationary multiarmed bandit paradigm. We
then apply it to a simulated HRI task, and show that it outper-
forms continuous parameterized RL with either passive or active
exploration based on different existing methods. We finally test
the performance in a more realistic test of the same HRI task,
where a practical approach is followed to estimate human engage-
ment through visual cues of the head pose. The algorithm can
detect and adapt to perturbations in human engagement with
different durations. Altogether, these results suggest a novel effi-
cient and robust framework for robot learning during dynamic
HRI scenarios.
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I. INTRODUCTION

DEVELOPING social robots dedicated to interacting and
cooperating with humans requires endowing robots with

learning capabilities that enable them to adapt quickly and on
the fly to changes in humans’ behavior and intentions. While
one of the explored ways to achieve this has been through the
study of robot verbal communication abilities [1]–[6], nonver-
bal cues such as the human’s gaze can provide the robot with
important information about the human’s current engagement
in the task [7], and whether the robot should continue its cur-
rent behavior or not. Indeed, primates naturally and implicitly
monitor mutual gaze and gaze following behaviors to evalu-
ate the level of joint attention during social interaction, and to
establish common ground for efficient joint action [8].

Researches in the field of social robotics have recently
shown a growing interest in monitoring human and robot gaze
during social interaction [9]–[12]. Results show that gaze fol-
lowing improves intention readout, efficiency of joint action,
and arouses on human partners the illusion of a social intel-
ligence. Conversely, it has been proposed that monitoring the
level of engagement of the human during the task, for instance
through the monitoring of body posture and gaze, may provide
the robot with crucial information to assess how it is perceived
by the human, how this perception changes according to the
behaviors shown by the social robot, and hence to improve the
quality of human–robot interaction (HRI) [6], [7], [13]–[15].
According to [16], “Engagement is a category of user experi-
ence characterized by attributes of challenge, positive affect,
endurability, aesthetic and sensory appeal, attention, feed-
back, variety/novelty, interactivity, and perceived user control.”
However, to our knowledge no one has yet proposed a way
to make the robot learn on the fly in response to changes
in human engagement. More generally, robot reinforcement
learning (RL) abilities based on nonverbal cues during HRI
are still largely underdeveloped, mostly due to the high level
of unpredictability and variability of human behavior, but
also due to the difficulty in coping with the high-dimensional
continuous action space available to the robot during such sce-
narios. Some studies have previously applied RL techniques
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for robot adaptation during interaction (e.g., [17]). However,
this was made possible through the prior categorization of a
small number of discrete stimuli and actions that the robot had
to deal with, which prevents generalization to more complex
tasks requiring continuous motor actions.

The original contribution of this paper consists of several
aspects. To our knowledge, this paper constitutes the first pro-
posal to use human engagement monitoring signals as a reward
signal for robot RL during nonverbal social interaction. Here
the proposed reward function consists in a weighted sum of
the human’s current engagement and variations of this engage-
ment (so that a low but increasing engagement is rewarding).
Second, this paper proposes a way to apply a parameterized
version of RL [18], [19] to HRI: this employs a set of discrete
actions Ad = {a1, a2, . . . , ak}, where each action a ∈ Ad fea-
tures ma continuous parameters {θa

1 , . . . , θa
ma
} ∈ R

ma , which
enables to benefit from the simplicity of task decomposition
into a small set of discrete actions while at the same time
being able to exploit the precision of continuous motor execu-
tion. We finally propose a way to achieve robot fast adaptation
during social interaction through active exploration [20]–[24].
The proposed solution relies on a novel combination of exist-
ing methods applied to a simple HRI scenario in the following
manner. We apply Gaussian exploration [25] to actions’ con-
tinuous action parameters, which in the original formulation
uses a fixed Gaussian width σ , hence, a fixed exploration rate.
Here, we apply a noiseless version of the meta-learning algo-
rithm of [26], which tracks online variations of the agent’s
performance measured by short-term and long-term reward
running averages. At each timestep, we use the difference
between the two averages to simultaneously tune the inverse
temperature βt used for selecting between discrete actions aj,
and the width σt of the Gaussian distribution from which each
continuous action parameter θa

i is sampled around its current
value.

The rest of this paper is organized as follows. In the next
section, we present the detailed formulation of the algorithm.
We then present a series of numerical experiments to test it. We
first simulate a standard nonstationary (i.e., switching) multi-
armed bandit paradigm proposed by [27]. We show that the
algorithm reaches similar performance to one of the state-of-
the-art upper confidence bound algorithms, while also being
generalizable to continuous actions and multistep tasks (which
is not the case for bandit methods). We then apply the proposed
algorithm to a simple simulated HRI task, where the algorithm
tries to maximize reward computed as an approximate and
partial measure of engagement of the human in the task, this
engagement representing the attention that the human pays to
the robot and its actions. We show that the proposed algo-
rithm outperforms continuous parameterized RL both without
active exploration and with active exploration based on dif-
ferent existing methods: uncertainty variations measured by
a Kalman-RL algorithm [28], exploration bonuses based on
computational neuroscience methods [29], [30]. Finally, we
test the performance of the algorithm in a more realistic ver-
sion of the HRI task, where a practical approach is followed to
estimate human engagement through visual cues of the head
pose. We then measure the adaptation of the algorithm to

engagement perturbations simulated as changes in the optimal
action parameter and we quantify its performance for vari-
ations in perturbation duration and measurement noise, thus
illustrating the robustness of the algorithm.

A preliminary version of this work has been presented at
a conference [31] and at a workshop [32]. Nevertheless, this
paper includes more comparisons with alternative algorithms,
includes a novel exhaustive parameter search for each tested
algorithm, uses a different method for the engagement esti-
mation process which gives better results than in [32], and
presents an extended description and discussion of the work.

II. ACTIVE EXPLORATION ALGORITHM

This section describes the mathematical formulation under-
lying the proposed active exploration method. The proposed
meta-learning algorithm is then summarized at the end of the
section (Algorithm 1). It first employs Q-learning [33] to learn
the value of discrete action at ∈ Ad selected at timestep t in
state st

δt = rt + γ max
a

(Qt(st+1, a))− Qt(st, at) (1)

Qt+1(st, at)← Qt(st, at)+ αQδt (2)

where αQ is a learning rate and γ is a discount factor. The
probability of executing discrete action aj at timestep t is given
by a Boltzmann softmax equation

P
(
aj|st, βt

) = exp
(
βtQt

(
st, aj

))

∑
a exp(βtQt(st, a))

(3)

where βt is a dynamic inverse temperature meta-parameter
which will be tuned through meta-learning (see below).

In parallel, continuous parameters θ̃
aj
i,t with which action aj

is executed at timestep t are selected from a Gaussian explo-
ration function centered at the current values θ

aj
i,t(st) in state

st of the parameters of this action [25]

P
(
θ̃

aj
i,t|st, aj, σt

)
= 1√

2πσt
exp

(
−

(
θ̃

aj
i,t − θ

aj
i,t(st)

)2
/
(

2σ 2
t

))

(4)

where the width σt of the Gaussian is a meta-parameter which
will be tuned through meta-learning (see below) and action
parameters θa

i,t(st) are learned with a continuous actor–critic
algorithm [25]. A reward prediction error is computed from
the critic: δt = rt+γ Vt(st+1)−Vt(st) and is used to update the
parameter vectors ωC

t and ωA
t of the neural network function

approximations in the critic and the actor

ωC
i,t+1 = ωC

i,t + αCδt
∂Vt(st)

∂ωC
i,t

(5)

ωA
i,t+1 = ωA

i,t + αAδt
(
θ̃a

i,t − θa
i,t(st)

)∂θa
i,t(st)

∂ωA
i,t

(6)

where αC and αA are learning rates. In contrast to the orig-
inal version where ωA

t updates are performed only when
δt > 0 [25]—which occasionally led to divergence in our
simulations—here we update them all the time and propor-
tionally to δt as in [34].



KHAMASSI et al.: ROBOT FAST ADAPTATION TO CHANGES IN HUMAN ENGAGEMENT DURING SIMULATED DYNAMIC SOCIAL INTERACTION 883

Finally, in order to perform active exploration, we need to
dynamically update βt and σt through a meta-learning pro-
cess based on variations of the robot’s performance. The idea
is that increases in the average reward obtained by the robot
can be interpreted as improvement of performance which can
thus result in increasing the exploitation of learned action val-
ues [26], [35]. Conversely, drops in the average reward can
be interpreted as signs of a change in the task conditions and
thus as a need to re-explore. Nevertheless, the average reward
is not an absolute measure and should rather be considered
relatively to a reference such as the estimated average value
of the task [36]. For instance, in tasks where only punish-
ments are received, the average value of the task is negative,
but should not be interpreted as an indication that the robot
should only explore and never exploit. Thus here, following
the proposition of [26], we measure a long-term reward run-
ning average ¯̄rt serving as reference, and a short-term one r̄t

serving as current measure of performance. When r̄t > ¯̄rt, this
means that the current performance is above average and that
exploration can be decreased. When r̄t < ¯̄rt, this means that
the current performance is below average and that exploration
should be increased. Contrary to the noisy version of [26]
which can lead to meta-learning instability, here we implement
a noiseless version of the algorithm. We compute short- and
long-term reward running averages in the following manner:

�r̄t = (rt − r̄t)/τ1 and �¯̄rt =
(
r̄t − ¯̄rt

)
/τ2 (7)

where τ1 and τ2 are two time constants. We then update βt

and σt with

βt+1 = (R ◦ F)
(
βt, μτ2�¯̄rt

)
and σt+1 = G

(
μτ2�¯̄rt

)
(8)

where R(x) is a rectifier function, F(x, y) is an affine func-
tion, μ is a learning rate and 0 < G(x) < 0.1M is a sigmoid
function, with M denoting the parameter range.

We also compared this meta-learning algorithm with the
Kalman Q-learning proposed by [28]. We first tested the orig-
inal formulation which proposes a purely exploratory agent
by replacing Q-values in (3) by the action-specific diagonal
terms of the covariance matrix—these terms representing the
current variance/uncertainty about an action’s Q-value. We
then tested an extended version of the algorithm were diago-
nal terms of the covariance matrix are treated as exploration
bonuses ba

t which, like in a previous computational neuro-
science work [29], are multiplied by a weight η and added
to Q-values in (3). A particular novelty here is that we also
use the covariance terms ba

t in replacement of ¯̄rt in (8) to
tune action-specific σ a

t with function G(x). As the result sec-
tion will show, this turns out to be much more efficient in
our task than the original purely exploratory agent proposed
in [28]. This nevertheless does not outperform the meta-
learning algorithm proposed in this paper. We finally tested
the above-mentioned active exploration method proposed in
computational neuroscience [29], [30]. The softmax function
is also based on a weighted sum of Q-valuers and exploration
bonuses. Nevertheless, the bonuses used are here computed as
a low-pass filter on the square of δ computed by (1), which
gives a simple approximation of the uncertainty associated to
each Q-value.

Algorithm 1 Active Exploration With Meta-Learning

1: Initialize ωA
i,0, ωC

i,0, Qi,0, β0 and σ0
2: for t = 0, 1, 2, . . . do
3: Select discrete action at with softmax(st, βt) (Eq. 3)
4: Select action parameters θ̃a

i,t with
GaussianExploration(st, at, θ

a
i,t, σt) (Eq. 4)

5: Observe new state and reward {st+1, rt+1} ←
Transition(st, at, θ̃

a
i,t)

6: Update Qt+1(st, at) in the discrete Q-Learning (Eq. 2)
7: Update function approx. ωC

i,t+1 and ωA
i,t+1 in continuous

actor-critic (Eq. 5, Eq. 6)
8: if meta-learning then
9: Update reward running averages r̄t and ¯̄rt (Eq. 7)

10: Update βt+1 and σt+1 (Eq. 8)
11: end if
12: end for

III. NUMERICAL EXPERIMENTS

A. Global Experimental Paradigm

The global experimental paradigm adopted here simulates
a robot interacting with a human and trying to maximize the
human engagement in the task by dynamically adjusting its
behavior. We do not pretend to model all aspects of real human
engagement. Instead, we simply simulated a partial measure
of human engagement during interaction with a robot which
has been suggested by [7]: this engagement represents the
human’s attention toward the robot and its actions, proposed to
be estimated in real settings through measures of human gaze
and body posture. The task consists in having the robot point
toward one among a set of discrete objects (e.g., cubes on a
table) while varying continuous parameters of action which
here abstractly represent the expressivity of the action (i.e.,
for how long the robot moves its hand back and forth; with
which angle the robot bends its torso) aimed at making the
pointing gesture more explicit.

The paradigm is based on a currently ongoing pilot exper-
iment, conducted in a specially arranged laboratory setting,
where the NAO robot interacts with children with autistic
spectrum disorders (presenting different levels of symptom
severity, according to predefined assessment criteria), and tries
to engage them in collaborative action by pointing at desired
objects. In this pilot experiment, the human engagement pro-
cessed by the robot as a reward is low when the child does
not pay attention to the robot and its action, increases mildly
when the child starts to look but remains far away, increases
further when the child comes closer to look, and becomes
maximal when the child helps the robot catch the object. At
different moments in time, and playing with different objects,
the robot explores different levels of expressivity until finding
an appropriate level specific to each child it interacts with.
Nevertheless, its behavioral exploration can sometimes either:
1) make the child engagement suddenly drop or 2) transiently
low when the child’s attention is captured away for a few
seconds. The robot should thus adapt its action parameters in
the first case while ignoring engagement perturbations in the
second case.
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The results of the pilot experiment with real children (12
children so far) are for the moment preliminary. More tri-
als with more children are planned for the near future, to be
conducted as an interventional study in a special education
school, which will aim at more systematically evaluating the
full potential of the approach. Nevertheless, while the analysis
of the results of these studies is out of the scope of this paper
and will rather be the focus of a future publication, preliminary
results of the first pilot study are quite promising. More pre-
cisely, eight children successfully increased their engagement,
although not optimally, ending up moving the pointed object
closer to the robot, and moreover expressed in a post-interview
that they found the task relatively easy and that they would like
to play more often with the robot. In addition, the initial find-
ings already highlight that there exists a large variance in the
behavior and the preferences of children in such child–robot
interaction scenarios (which are apparently not only related to
cognitive age), providing evidence that an online active explo-
ration process combined with RL is necessary for the robot
to adapt to such variations of human engagement, which may
consequently have a significant effect in terms of enhancing
the targeted social responses of the child. To our knowledge,
such an adaptive robot learning algorithm does not yet exist.
We present here simulations and robustness analyses of this
novel algorithm in order to propose a feasible solution to such
a human engagement maximization problem during HRI.

B. Nonstationary Multiarmed Bandit

At first we evaluate the algorithm’s performance on a non-
stationary multiarmed bandit problem in order to estimate its
intrinsic adaptive characteristics, as the single-state HRI which
will be used in the next section can also be viewed as a
nonstationary multi armed-bandit task with continuous param-
eterized actions. Here, we compare our meta-learning algo-
rithm (modified and simplified accordingly to fit a single-state
setup) with the performance of SW-UCB [27], D-UCB [37],
and UCB1 [38]; the former two constitute analytically and
experimentally proven algorithms on nonstationary cases.

Even though multiarmed bandits may seem to be out of
the scope of our research, each state in an RL framework
can be viewed as a multiarmed bandit problem, with the tran-
sition function defining the sequence on which each bandit
is being visited according to the agent’s actions. Our inter-
est on such cases is crucial in order to better understand
and improve its performance, as also to design an optimal
decision-making agent in both high and low dimensional state
spaces. One would argue however, that the most proper bandit
setup for the task of our interest would be the nonstochas-
tic (since the changes on reward distributions may depend
on the robot’s previous actions). However, here we consider
the same stochastic setup used in [27] for comparison with
two state-of-the-art adaptive algorithms. In stochastic setups
there is no contextual information regarding the transitions of
reward distributions and hence the performance of our algo-
rithm on nonstationary cases would depend mainly on the
intrinsic adaptive behavior of meta-learning.

Fig. 1. Probability that an arm a will return a reward upon choice in the
nonstationary multiarmed bandit task tested here. Adapted from [27].

In particular, the stochastic multiarmed Bernoulli bandit can
be formulated as having a set of arms K = {1, . . . , K}, each of
them attached to a gambling machine, while at every episode
t ∈ T , with T = {1, . . . , T} denoting the sequence of decision
episodes, the decision maker pulls an arm a ∈ K and receives
a reward rt(a) with some unknown probability pt(a), and zero
otherwise. For the switching task of [27], K = 3, T = 10 000,
the reward are binary rt ∈ {0, 1}, pt(1) = 0.5, pt(2) = 0.3,
pt(3) = 0.9 for 3000 ≤ t < 5000, and pt(3) = 0.3 otherwise
as seen in Fig. 1.

For our implementation we used the Boltzmann softmax
of (3) for action selection, while we updated Q-values accord-
ing to a simple learning rule with a learning rate of 0.4. For
updating the inverse temperature β of the softmax function,
we used an iterative procedure with the use of a simplistic
affine as defined in (8)

βt+1 ← max
{
0, βt + μτ2�¯̄rt + ε

}
(9)

using μ = 0.25, τ1 = 20, τ2 = 300, and ε as a very small
constant to ensure increment of exploitation on long station-
ary intervals. For hyper-parameter tuning we performed grid
search on a large scale, observed areas of optimal behavior and
robustness and rerun grid search on smaller regions until suffi-
cient performance was achieved. All simulations were repeated
for 500 sessions, and the average total regret per episode, the
final cumulative regret and the final cumulative reward for
each session were computed.

As seen in the results of Fig. 2, UCB-1 outperforms all
other algorithms from episodes 1 to 3000 as expected, due to
the stationary nature of this interval, but suffers from large
regret values and learning inertia right after the first change
point. SW-UCB is initially the second best, demonstrating a
balanced exploration-exploitation ratio which is interpreted by
the small average slope of the graph. The adaptive nature of
meta-learning is exhibited right after the first change point. The
flat line of the graph during timesteps 3500–5000 demonstrates
that the action taken during this interval was the optimal,
achieving an almost “no-regret” performance. At the end of
episode 5000 SW-UCB has the lowest cumulative regret.
However, the average slope of the graph is approximately
equal with the one of the first interval, inferring the same
levels of exploration regardless the large “probability gap”
between the optimal and the second best action. After the
second change point, the gap between the optimal and the
second best action is once again small, and SW-UCB per-
forms better than all others except for the last 1500 timesteps
where UCB-1 has overcome the learning inertia. Yet UCB-1
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Fig. 2. Performance in the tested abruptly changing bandit task shows that
the proposed meta-learning algorithm performs as well as SW-UCB. Top: The
averaged cumulative regret per episode. Bottom left: The final cumulative
regret for 500 sessions. Bottom right: The final cumulative reward for 500
sessions.

has already accumulated large regret. Finally, the overall per-
formance of meta-learning algorithm is comparable with the
one of SW-UCB, despite its multistate nature.

Even though for the proposed problem set SW-UCB and
D-UCB used as parameters the ones that guarantee an upper
bound of regret as shown in [27], meta-learning for bandits
was empirically optimized through an extensive parameter grid
search. In [39], however, new evidence about the empirical
performance of all the above is provided, with meta-learning
(MLB algorithm) achieving significantly better performance
in most cases, while it can be also enhanced with the use of
sibling Kalman filters. More precisely, [39] thoroughly studied
cases with altering volatility levels of the environment, as well
as different probability gaps between the optimal and the sec-
ond best actions, demonstrating the intrinsic adaptive nature
of our algorithm at the lower level of an RL framework.

C. Simple HRI Simulation

We then test the algorithm described in Section II in a sim-
ple simulated HRI task involving a single state and six discrete
actions (corresponding to pointing toward different cubes on
a table), hence in essence similar to the nonstationary multi-
armed bandit paradigm. However, a major difference here is
the requirement for the robot to not only learn to perform the
optimal discrete action a� (i.e., pointing at the cube that the
human is interested in) but also to perform it with the optimal
continuous parameters of action μ� (μ� ∈ [−100; 100]). These
continuous parameters of action abstractly represent different
properties of movement, such as velocity, direction, strength,
expressivity, or any other aspect which could affect the human
engagement in the task. In other words, rather than associating
a fixed probability of reward to each discrete action, an action
will yield reward only when its continuous parameters are cho-
sen within a Gaussian distribution around the current optimal

action parameter μ� with variance σ� (which are unknown
to the robot). This mimics the fact that, depending on the
human the robot is interacting with, its action should nei-
ther be executed too fast nor too slow, should neither be too
expressive nor too little expressive. For each interlocutor, there
are appropriate continuous parameters of action that the robot
needs to find autonomously. Finally, every n timesteps, a� and
μ� change—representing a change in the robot behavior that
maximizes the engagement of the simulated human—so that
the task is nonstationary and requires constant re-exploration
and learning by the robot. In Sections III-C and III-D, these
abrupt task changes mimic the case where the human at some
point changes its object of interest and wants the robot to also
change its way of interacting with this object (e.g., faster).
In Section III-E, the object of interest of the human does not
change (same cube) but the abrupt task change corresponds
to a transient perturbation of the human engagement (e.g., the
human’s attention is attracted away by the noise of someone
else entering the room) that the robot has to robustly cope
with in order not to deviate from the task at hand.

Previous researches on HRI have shown that the human
engagement can be a critical aspect of the quality of the inter-
action [7]. Nevertheless, during interaction tasks the actions
performed by a robot can have delayed effects on the human’s
behavior and on his engagement. To mimic this, we chose the
reward to be given by a dynamical system which is based on
the virtual engagement e(t) of the human in the task. This
engagement somehow represents the attention that the human
pays to the robot and will constitute a reward signal, since
this type of joint attention social signals have been shown to
activate the same brain regions that are activated by nonsocial
extrinsic reward such as food or money [40]. The simulated
human engagement e(t) starts at 5, increases up to a max-
imum emax = 10 when the robot performs the appropriate
actions with the appropriate parameters, and decreases down
to a minimum emin = 0 otherwise

et+1 =
⎧
⎨

⎩

et + η1(emax − et)H
(
θa

t

)
, if at = a� & H

(
θa

t

) ≥ 0
et − η2(emin − et)H

(
θa

t

)
, if at = a� & H

(
θa

t

)
< 0

et + η2(emin − et), otherwise

(10)

where η1 = 0.1 is the increasing rate, η2 = 0.05 is the decreas-
ing rate, and H(x) is the re-engagement function given by
H(x) = 2(exp(−[(x− μ�)2]/2σ�2) − 0.5) where a�, μ�, and
σ� are, respectively, the optimal action, action parameter, and
variance around a�.

The reward function is then computed as r(t+1) = e(t+1)+
λ�e(t) where λ = 0.7 is a weight and �e(t) = e(t+1)−e(t).
This reward function ensures that the algorithm gets rewarded
in cases where the engagement e(t + 1) is low but neverthe-
less has just been increased by the action tuple (a(t), θa(t))
performed by the robot.

We first present a set of short simulations of different ways
to handle exploration in the algorithm (shown in Fig. 3) in
slightly different task conditions just to illustrate the strengths
and weaknesses of the tested alternative solutions. We will
later show proper comparisons of these methods in the exact
same task conditions in order to assess their performance. We
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(a) (b) (c) (d)

Fig. 3. Simulations of the parameterized RL algorithm with different methods to handle exploration. (a) Fixed σ = 20 and β = 4 (no active exploration)
can adapt to abrupt task changes but does not maximize simulated human engagement. (b) Fixed σ = 10 and β = 4 (no active exploration) can maximize
engagement and adapt to some task changes but not in the case where the new optimal action parameter is too far away from the previous one. (c) σa

t
and ba

t tuned by Kalman-RL (active exploration) can adapt to multiple consecutive task changes but will overall progressively average the statistics of the
different task conditions. (d) σt and βt tuned by meta-learning (active exploration) can maximize engagement and adapt to task changes after fast transient
re-exploration phases. Gray vertical dashed lines indicate changes in optimal action tuple.

(a) (b) (c) (d) (e)

Fig. 4. Parameter optimization for the different tested algorithms. For each algorithm, each datapoint corresponds to the average engagement obtained for ten
simulations of the task with a given parameter set. For each given model and pair of parameters, black full and empty arrow heads on the colorbar, respectively,
indicate the maximal and minimal mean engagement reached within the subplot. (a) Active exploration with meta-learning. (b) Passive exploration. (c) Active
exploration with exploration bonuses. (d) Active exploration with Kalman-QL. (e) Fully exploratory Kalman-QL.

first simulated the algorithm without active exploration (thus
with a fixed σ = 20) in a task, where the optimal action tuple
(a�, μ�) is (a6,−20) during 200 timesteps (σ� = 10 in all

the experiments presented here), then switches to (a2,−20)

until timestep 600. Fig. 3(a) shows that the algorithm first
learns the appropriate action tuple (a6,−20), then takes some
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time to learn the second tuple, making the engagement drop
between timesteps 200 and 400 and eventually finds the second
optimal tuple. Nevertheless, σ = 20 makes the robot select
action parameters θ̃a

t with a large variance (illustrated by the
clouds of dots around the learned action parameters θ2

t and θ6
t

plotted as black curves). As a consequence, the engagement is
not optimized and always remains below 7.5. In contrast, the
same algorithm with a smaller fixed variance σ = 10 can make
the engagement reach the optimum of 10 when the optimal
action tuple is learned [Fig. 3(b) before timestep 400], but
results in too little exploration which prevents the robot from
finding a new action parameter when it is too far away from
the previously learned one (after timestep 400, the new optimal
action tuple is (a6, 20)). These two examples illustrate the need
to actively vary the variance σt as a function of changes in the
robot’s performance.

We next tested active exploration with exploration bonuses
based on the Kalman-RL algorithm [28] in a task alter-
nating between optimal tuples (a2,−20) and (a6, 20) every
400 timesteps. Fig. 3(c) shows the results of this extended
version of Kalman-QL. The diagonal terms of the covari-
ance matrix COV in the Kalman filter nearly monotonically
decrease, resulting in a large variance σt when action a6 is
executed until about timestep 600, and progressively decreas-
ing the variance until the end of the experiment. Nevertheless,
the algorithm quickly finds the appropriate action parame-
ters and rapidly shifts between actions a2 and a6 after each
change in the task condition. In the long run, the model
progressively averages the statistics of the two conditions
and learns to perform both actions with 50/50 probabilities
[bottom part of Fig. 3(c)] which decreases the simulated
engagement (top).

We then tested active exploration with the meta-learning
algorithm in a slightly more difficult task where the opti-
mal action tuple (a�, μ�) alternates between (a2,−50) and
(a6, 50) every 1000 timesteps [Fig. 3(d)]. Transient drops in
the engagement result in transient decreases in the exploration
parameter βt as well as transient increases in the variance σt.
This enables the algorithm to go through quick transient but
wide exploration phases and to rapidly reconverge to exploita-
tion, thus maximizing the simulated engagement. Strikingly,
the engagement decreases less and less after each change in
task condition (i.e., timesteps 1000, 2000, 3000, and 4000),
which shows that the algorithm adapts faster and faster to task
changes. Note that this simulated engagement is indicative of
the robot’s behavioral accuracy because it increases accord-
ing to (10) only when the robot performs the optimal discrete
action a� with a continuous parameter θa

t close to the optimal
parameter μ�. Thus, engagement and behavioral accuracy are
correlated here, and when the simulated engagement reaches
10, this means that the robot performs the optimal behavior
100% of the time thanks to the increase of βt and decrease
of σt according to (8) which focuses the algorithm on pure
exploitation once the optimal behavior is reached.

We performed an exhaustive search of the parameters that
permit each algorithm to reach its highest performance in
the difficult version of the task (Fig. 4). While the previ-
ous simulations used different task conditions to illustrate the

respective properties of each tested algorithm, here, all algo-
rithms are thus compared on the same task in order to compare
their performance. Active exploration based on meta-learning
reached the highest performance, with an average engagement
of 9.2 obtained with the best parameter-set. Importantly, the
performance was robust for a large portion of the explored
parameter space, except in the case where τ2 = 1 for which the
mean simulated engagement during the experiment was 0.02.
In all other cases (we tested all combinations of (τ1, τ2) ∈
{1, 2, 5, 10, 50, 90}2, thus including cases where τ1 = τ2,
cases where τ1 < τ2 and cases where τ1 > τ2), the mean
simulated engagement is higher or equal to 8.09, thus higher
than the best engagement obtained for all other tested algo-
rithms (Fig. 4). Interestingly, the original meta-learning paper
using these two parameters for active exploration [26] (which
does nevertheless neither include the continuous parameters of
actions nor the Gaussian-exploration process proposed here)
only presented simulations were τ1 = τ2, thus leaving the
question open whether different values would also work or
not. Thus, the exploration of the parameter space presented
here shows that the choice of τ1 and τ2 for the tasks studied
here is not crucial.

Active exploration based on Kalman-QL gave the sec-
ond best performance, with an average engagement of 7.2.
Interestingly, the original fully exploratory Kalman-QL agent
proposed in [28] did not manage to get an average engagement
higher than 3, due to the nonstationarity of the environment.
Similarly, the tested computational neuroscience method for
the estimation of exploration bonuses did not reach an aver-
age engagement higher than the passive exploration algorithm.
This is due to the presence of the engagement variation term
in the reward function, which makes the reward decrease once
a plateau of engagement is reached, leading to non-null reward
prediction errors and thus to non-null exploration bonuses
when the algorithm should rather be exploiting. Finally, Fig. 5
shows the average and standard deviation of the simulated
engagement obtained for these ten simulations of the task
with the two best algorithms and the passive exploration
one. The blue curve shows the performance of the algo-
rithm without active exploration (i.e., fixed σ = 19 obtained
through parameter optimization), which adapts to each new
condition but never exceeds a plateau of about 6. The green
curve shows the active exploration with Kalman, which adapts
faster at the beginning but progressively decreases its maxi-
mal engagement. The red curve shows the active exploration
with meta-learning which initially takes more time to adapt but
then only performs short transient explorations and reaches the
optimum engagement of 10.

D. Realistic HRI Simulation

In order to have a more realistic demonstration of the pro-
posed algorithm and to gain a better insight of its envisaged
application to HRI tasks, we created and visualized a scenario
using the V-REP robot simulator (Fig. 6). In the considered
scenario, a small humanoid robot, in this case a NAO, inter-
acts with a human subject, where the envisaged goal is to
collaboratively perform a task involving pointing at, picking
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Fig. 5. Comparison of engagement in ten simulations of the meta-learning
model (red), the model without active exploration (blue), and the Kalman-QL
(green).

Fig. 6. Snapshot of the V-REP simulated HRI scenario showing the
configuration of the experiment.

up, and placing objects in the scene in order to build a puzzle.
Such a collaborative HRI scenario is in line with the objectives
defined in the frames of the EU-funded project BabyRobot
(H2020-ICT-24-2015-6878310), where a set of child–robot
interaction use-cases have been designed and are currently
being implemented to study the development of specific socio-
affective, communication, and collaboration skills in children.
In particular, the task considered in the simple scenario simu-
lated here comprises a set of 6 objects (cubes) set in front of
the human and the robot (Fig. 6). Each robot action at the cur-
rent implementation stage corresponds to a pointing gesture of
the robot (with its right arm) toward one of the 6 cubes. The
human engagement is expressed through the gazing direction
with respect to the pointed cube. In essence this means that,
if the engagement is high, the attention of the human subject
is directed toward the pointed cube, while if the engagement
is low, the human turns his head around.

In the current implementation, the human gaze is sampled
from a normal distribution centered around the position of
the object corresponding to the action (pointing gesture) cur-
rently performed by the robot, with a standard deviation that
depends (inversely) on the current human engagement value.
Changes of human gaze direction are sampled and executed
every T1 time-steps, while each robot action is performed and

remains unchanged for T2 time-steps (T2 = nT1); meaning
that the robot is assumed to collect n observations of human
gaze direction changes before selecting and executing a new
action. In this section, a simple case is considered where the
actual simulated human engagement value is assumed to be
directly known to the robot, which nevertheless poses the prob-
lem of being able to quickly adapt to engagement changes. The
next section will then show tests of a more realistic scenarios
where the actual human engagement value will be assumed
to be unknown to the robot and estimated online based on
observations of the human gaze directions. Furthermore, the
action parameter will also be integrated in the task and will
represent a measure of the overall “intensity” of the robot’s
arm movements when executing a communicative action (e.g.,
a pointing gesture).

It is interesting in this scenario to study and visualize
the performance of the proposed meta-learning active explo-
ration algorithm when the optimal action parameter changes
(while the optimal action itself remains the same). Fig. 7 com-
pares the performance of the proposed meta-learning algorithm
with the Kalman Q-learning mechanism, when the optimal
action parameter undergoes a 50% change (from a value of
−50 to −25). We can see that the meta-learning algorithm
adapts much faster to the new task parameter. Specifically, the
human engagement drops to no less than 70% of the maxi-
mum engagement and recovers to 85% after a few trials (in
this case, after approximately 25 trials). In addition, the action
parameter converges fast to the optimal value (in this example,
after 30 trials). On the contrary, the Kalman Q-learning algo-
rithm fails to adapt to the new task parameter and to raise the
engagement back to its maximum value, resulting in a subop-
timal engagement for the rest of the experiment. This behavior
is also illustrated by the oscillation of the action parameter as
it fails to converge to the optimal value.

These initial simulations provide a first understanding of
practical considerations that will have to be addressed toward
the implementation and deployment of more realistic HRI
scenarios as already described. Initial results are promising
showing the potential of the proposed meta-learning algorithm
as a scheme to efficiently adapt to nonstationary conditions in
challenging HRI scenarios.

E. Engagement Estimation Process in the HRI Simulation

We finally made a last experiment where we consider that
the human engagement is unknown, can be the subject to
transient and more-or-less long-lasting perturbations (e.g., the
human’s attention is attracted away by the noise of someone
else entering the room), and that the robot has to estimate
this engagement online based on nonverbal cues expressed by
the human partner during HRIs. This experiment is aimed
at making the simulated HRI scenario even more realistic
and obtain a more reliable assessment on the applicability of
the developed learning algorithms in real use-case scenarios
where the human subject can be disturbed during the task,
and the robot should avoid unlearning the correct behavior
because of this perturbation. Thus, in this last experiment
we focus on a task where there is a single object to focus
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Fig. 7. Left column: Comparison of engagement (top) and action parameter (bottom) convergence between the meta-learning and the Kalman-QL algorithms.
Right column: Zoomed-in plots depicting convergence performance of the proposed meta-learning algorithm.

on (but the robot still has to adapt its continuous parameters
based on variations of human engagement), and we conduct
an initial evaluation as to how scalable and generalizable the
proposed learning algorithm is in a more close to real-life
scenario and how the presence of an uncertainty on human
engagement estimation may affect the performance of the
system (Fig. 8).

As mentioned in [7] and [41], head pose data is proved to
be highly correlated with human’s engagement. In particular,
clustering of the gaze, head stability as well as head pose and
its variance constitute important features for the evaluation
of human engagement in face-to-face, interactive scenarios. In
the current implementation of our simulations, the human head
pose changes according to his engagement. More specifically,
pitch and yaw angles of the head are each generated by sam-
pling a normal distribution centered around the position of the
object pointed by the robot. The distribution’s standard devi-
ation is inversely proportional to human engagement. Thus,
when the engagement drops, the head pose variance increases,
meaning that the human is disengaged from the task and starts
looking around. On the contrary, when engagement is high the
attention of the person is focused on the pointed object which
results in a stable head with low variance. This dependence is
illustrated in Fig. 8.

The engagement estimation is achieved by measuring the
mean standard deviation (MSD) of the human’s head pitch and
yaw angles with respect to the cube’s location projected on the
pitch-yaw plane pointed by the robot in a specified time win-
dow. In particular, the robot collects n observations of human’s
head pose before selecting and executing a new action. Given
that the head pose is measured by visual means, the measure-
ment error is taken into account and modeled as an additive

Fig. 8. Left: Low head pose variance. Human engagement is high. Right:
High head pose variance. Human engagement is low.

Gaussian noise with zero mean and standard deviation σ that
depends on the accuracy of the visual head pose estimation.

The presence of uncertainties in observed measurements
(head pose) for the estimation of an unknown variable (engage-
ment) pushed us to use a Kalman filter for producing more
accurate engagement estimates. Since the engagement model
is unknown to the robot, the prediction step of the Kalman fil-
tering process considers an engagement estimate based on the
head pose variance. Specifically, we consider a re-engagement
function, similar to H(x) that was defined earlier, given by

Ĥ
(
sp, sy

) = 2
(
exp

(−k1 · sp − k2 · sy
)− 0.5

)
(11)

where sp and sy are the head pitch and yaw MSD from
the pointed cube in a time window and k1 and k2 are pos-
itive constants. It is clear that Ĥ is maximized when the
head pose variance is zero, or when human engagement is
maximum. Therefore, the estimator increases the estimated
engagement up to 10 when the human’s head pose variance is
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Fig. 9. Real (simulated) versus estimated engagement based on n = 5 head
pose observations per trial and Gaussian measurement noise with σ = 0.5.

Fig. 10. Top: Real (simulated) human engagement (mean and variance after
20 runs) when the optimal action parameter undergoes step changes every
100 trials as shown in bottom figure (engagement does not drop below a 60%
value). Bottom: Executed action parameter (mean and variance after 20 runs)
involving step changes.

low (Ĥ(sp, sy) > 0) and decreases it down to 0 otherwise
(Ĥ(sp, sy) < 0). Of course this is a rough and unreliable
estimate of the engagement, since it is based on noisy pitch
and yaw measurements. However, accuracy improves in the
update step, where the measurement noise is taken into account
and the estimate is updated according to the optimal Kalman
gain. Fig. 9 shows the accuracy of the engagement estimation
when the robot collects five head pose observations per trial
and the measurement noise has σ = 0.5. After the human
engagement is evaluated through the described process, it is
provided to the robot as a reward. The reward function now
considers the estimated engagement ê and is computed as
r(t + 1) = ê(t + 1)+ λ�ê(t).

The first series of numerical experiments that we con-
ducted involves step changes in the optimal (continuous)
action parameter performed every 100 trials. A series of 20
runs for the same step-change scenario has been conducted
and the results are shown in Fig. 10. In this situation the opti-
mal action parameter increases from 1 to 4 (300% increase)

Fig. 11. Human engagement (top) and action parameter (bottom) during
optimal action parameter perturbations with duration of 1 (solid black),
2 (dashed black), 5 (solid gray), and 10 (dashed gray) trials, respectively.

Fig. 12. Performance for increasing perturbation duration (number of trials).
Top: Engagement deviation from its maximum value (10). Bottom: Action
parameter deviation from its optimal value (1). The measurement noise has
σ = 1.

and after 100 trials drops to 0. We calculated the mean value
and standard deviation of the actual executed action parame-
ter and the human engagement at every timestep. The results
indicate that although the optimal action parameter initially
quadrupled, the adaptation was fast enough to keep the engage-
ment above a 70% value and consistently make it converge to
a value above 90% after approximately 25 trials. In the next
100 trials the action parameter change was larger (dropped
from 4 to 0) leading to a slightly wider engagement drop.
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TABLE I
NUMBER OF TRIALS NEEDED FOR ENGAGEMENT TO REACH 90%

OF ITS MAXIMAL VALUE AFTER A PERTURBATION

Fig. 13. Performance for increasing noise σ . Top: Engagement deviation
from its maximum value (10). Bottom: Action parameter deviation from its
optimal value (1).

During a real HRI task, it is natural for a person and much
more for a child to be distracted by an external event (loud
noise, presence of other people, etc.). We simulate such a
perturbation as an abrupt and short in time (impulse-type)
change of the optimal action parameter. The behavior of the
algorithm is depicted in Fig. 11 for various durations of the
perturbation impulse that begin at trial 100. In these exper-
iments the optimal action parameter has a value of 1 that
is changed to 5 during the perturbations. As the perturbation
duration increases, the engagement and action parameter devi-
ation from their optimal values become larger. However, we
observe that when the perturbation is short (1–2 trials), the
executed action parameter is almost unaffected and the human
engagement drop is unnoticeable. In order to further quantify
the performance of the algorithm, we calculate the mean abso-
lute deviation (MAD) of the real (simulated) engagement and
the action parameter from their optimal values for perturba-
tion duration in the range of 1–10 trials. Fig. 12 indicates
that longer perturbations lead to slower adaptation, resulting
in larger MAD values. The same results are also numerically
shown in Table I that presents the number of trials needed for

the engagement to recover 90% of its maximal value after the
end of the perturbation. It should also be highlighted, though,
that as illustrated by the obtained results, no matter how long
the perturbation, the algorithm will always reconverge to the
optimal value.

In a similar way, Fig. 13 shows the engagement and action
parameter deviation for an increasing σ of the Gaussian head
pose measurement noise. In the particular experiment the per-
turbation duration is 1 trial. It is clear that noisier pitch and
yaw head angles measurements result in larger deviations of
the estimated engagement from the real (simulated) engage-
ment (Fig. 13 top). The same holds for the action parameter
whose deviation from its optimal value is proportional to the
amplitude of the measurement noise (Fig. 13 bottom).

IV. CONCLUSION

In this paper, we have shown that a meta-learning algo-
rithm based on online variations of reward running averages
can be used to adaptively tune two exploration parameters
simultaneously used to select between both discrete actions
and continuous action parameters in a parameterized action
space.

We first compared the proposed algorithm with standard
bandit methods in the nonstationary (switching) multiarmed
bandit task proposed by [27]. We showed that it reaches a
performance which is not different from one of the state-
of-the-art bandit methods, namely SW-UCB. Interestingly,
SW-UCB does not adapt well to some other nonstationary
tasks [42]. Moreover, bandit methods work specifically in
single-state tasks. The meta-learning algorithm proposed here
seems promising in that it is in principle generalized to con-
tinuous actions and multistep tasks. In future work, we will
compare it with bandit methods in a variety of nonstationary
tasks and then study its performance in sequential multistep
tasks.

We then applied the proposed meta-learning algorithm to a
simple simulated HRI task consisting in having the robot point
toward one among a set of discrete objects (e.g., cubes on a
table) while varying continuous parameters of action which
here abstractly represent the expressivity of the action (i.e.,
for how long the robot moves its hand back and forth; with
which angle the robot bends its torso) aimed at making the
pointing gesture more explicit. The task involved abrupt task
changes mimicking either the case where the human at some
point changes its object of interest and wants the robot to also
change its way of interacting with this object (e.g., faster), or
the case where a transient perturbation of the human engage-
ment (e.g., the human’s attention is attracted away by the noise
of someone else entering the room) requires the robot to show
robustness in order not to deviate from the task at hand.

Previous studies have investigated ways to handle nonsta-
tionary, noisy, and delayed feedback during HRI [43], [44],
especially engagement signals [14], [45]. Nevertheless, one
of the novelties of this paper was the use of human engage-
ment monitoring signals as a reward signal for robot RL
during social interaction. Here, the proposed reward func-
tion consisted in a weighted sum of the human’s current
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engagement and variations of this engagement (so that a low
but increasing engagement is rewarding). We found that the
active exploration meta-learning algorithm outperforms con-
tinuous parameterized RL both without active exploration and
with active exploration based on alternative methods, such as
uncertainty variations measured by a Kalman-Q-learning algo-
rithm. While we had previously successfully used the Kalman
Q-learning proposed by [28] to coordinate model-based and
model-free RL in a stationary task [46], it was not appropriate
for the current nonstationary task.

The robustness of the algorithm was then tested in situa-
tions where the human is distracted by external events and we
showed that no matter the length of the perturbation, the algo-
rithm would always come back to optimal behavior afterward.
In fact, the algorithm succeeded to keep human engagement
high when engagement perturbations were short. Then, we
showed how engagement estimation is affected by the pres-
ence of measurement noise. Although the algorithm is not
significantly affected by small noise amplitudes, the perfor-
mance drops when uncertainties in human engagement are
high as shown by the increased action parameter deviation
from its optimal value. To improve this, the robot could reset
its engagement estimation when the human looks at a discrete
object whose location is known to the robot. The robot could
even ask the human to look at the object in order to recalibrate
its estimation. In future work, we will address these issues and
test the algorithm in more complex simulated interaction tasks
before applying it to real HRI.

The different results presented in this paper suggest that the
proposed active exploration scheme in combination with the
described engagement estimation process could be a promis-
ing solution for applications related to HRI tasks in dynamic
environments.
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