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ABSTRACT

Compound events are extreme impacts that depend on multiple variables that need not be extreme

themselves. In this study, we analyze soil moisture drought as a compound event of precipitation and potential

evapotranspiration (PET) on multiple time scales related to both meteorological drought and heat waves

in wet, transitional, and dry climates in Europe during summer. Drought indices that incorporate PET to

account for the effect of temperature on drought conditions are sensitive to global warming. However, as

evapotranspiration (ET) is moisture limited in dry climates, the use of such drought indices has often

been criticized. We therefore assess the relevance of the contributions of both precipitation and PET to the

estimation of soil moisture drought. Applying a statistical model based on pair copula constructions to data

from FluxNet sites in Europe, we find at all sites that precipitation exerts the main control over soil moisture

drought. At wet sites PET is additionally required to explain the onset, severity, and persistence of drought

events over different time scales. At dry sites, where ET is moisture limited in summer, PET does not

improve the estimation of soil moisture. In dry climates, increases in drought severity measured by indices

incorporating PET may therefore not indicate further drying of soil but the increased availability of energy

that can contribute to other environmental hazards such as heat waves and wildfires. We therefore highlight

that drought indices including PET should be interpreted within the context of the climate and season in

which they are applied in order to maximize their value.

1. Introduction

Soil moisture plays a critical role in agriculture and

the variability of temperature (Seneviratne et al. 2006).

As soil moisture observations are sparse, soil moisture

drought must be monitored and quantified using indirect

methods. These include land surface models that provide

physically based estimates of soil moisture (Mitchell et al.

2004; Sheffield et al. 2014) and drought indices that are

used as a proxy of soil moisture (Dai et al. 2004; Vicente-

Serrano et al. 2012). The simplicity of drought indices is

advantageous, but it also leaves their output open to in-

terpretation, which we assess in this article.
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Many studies have highlighted the multivariate nature

of soil moisture drought as well as the importance of in-

corporating temperature in drought analysis (Seneviratne

et al. 2012b; Teuling et al. 2013; AghaKouchak et al.

2014). Through the inclusion of temperature via potential

evapotranspiration (PET) in drought indices such as

the standardized precipitation evapotranspiration index

(SPEI; Vicente-Serrano et al. 2010), the Palmer drought

severity index (PDSI; Palmer 1965), and the reconnaissance

drought index (RDI; Tsakiris and Vangelis 2005), studies

have been able to analyze how drought conditions may

change in a warming climate at regional and global scales

(Dai et al. 2004; Dai 2011; Sheffield et al. 2012; Dai 2013;

Trenberth et al. 2014; Törnros and Menzel 2014; Vicente-

Serrano et al. 2014; Zarch et al. 2015; Stagge et al. 2017).

With increasing temperatures, drought events are

expected to set in quicker (Trenberth et al. 2014) and

become more severe based on indices incorporating

PET (Törnros and Menzel 2014; Zarch et al. 2015;

Vicente-Serrano et al. 2014). However, the meaning of

this increase in severity for soil moisture according to

these indices can be quite unclear due to the differing

contribution of PET to soil moisture drought inmoisture-

limited and energy-limited climates (Seneviratne et al.

2010). Understanding these differences can help in the

interpretation of future changes depicted by drought in-

dices and the potential implications they bring at a re-

gional level where impacts of drought are felt.

Soil moisture drought refers to moisture deficits in the

upper layer of soil known as the root zone. Soil moisture

in the root zone is primarily controlled by antecedent

precipitation while excesses in evapotranspiration (ET),

related to high temperatures, are required to explain the

severity of a negative soil moisture anomaly (Teuling

et al. 2013; Seneviratne et al. 2012b). The contribution of

ET to soil moisture drought depends on the availability of

moisture in the soil for ET to take place (Seneviratne

et al. 2010). PETmeasures the evaporative demand of the

atmosphere and indicates the amount of ET that would

occur given an unlimited water supply. Under moisture-

limited conditions, values of PET and ET can diverge

where ET may verge to zero while PET can continue to

rise with an increase in temperature (Seneviratne et al.

2010). In such dry conditions, PET and temperature can

therefore have little contribution to the estimation of soil

moisture (Luo et al. 2017) and lead to drying biases in

terms of moisture levels in soil when incorporated into

drought indices (Sheffield et al. 2012; Seneviratne 2012).

Describing soil moisture with drought indices requires

one to account for antecedentmeteorological conditions

that soil moisture holds memory of. This is done using

integrations of a climatic water balance (precipita-

tion minus PET) varying in length from 1 to 24 months

(e.g., SPEI), or through the use of recursivemodels (e.g.,

PDSI). The selection of this integration length for in-

dices such as the SPEI is important; a length that is too

short will not capture drought persistence while longer

periods can include redundant information (Törnros
and Menzel 2014). Studies using the SPEI or RDI to

represent soil moisture generally use integration periods

between 3 and 6 months (Hirschi et al. 2011; Törnros
and Menzel 2014). The PDSI is calculated with monthly

integrations and it can hold memory of the previous

winter and spring in summer months (Dai et al. 2004).

The use of a climatic water balance implies that PET

influences soil moisture over the same time scale as

precipitation. However, drying of soil occurs on a daily

time scale where excesses in ET can be driven by days of

extreme temperature that are filtered out through the

use of longer integration periods. Such a feature of long

integrations of the climatic water balance can lead to an

inability to capture both future changes in drying that

may cause droughts to set in quicker in a warmer climate

and the occurrence of flash droughts associated with

short periods of warm temperature and rapidly de-

creasing soil moisture (Mo and Lettenmaier 2016).

High temperatures driving excesses in ET can be

partly attributed to land–atmosphere interactions in-

duced by deficits in precipitation. By leading to dry soil

conditions, low antecedent precipitation is associated

with an increased probability of hot days (Hirschi et al.

2011; Mueller and Seneviratne 2012; Whan et al. 2015;

Ford and Quiring 2014), amplified extreme tempera-

tures, and the persistence of heat waves (Miralles et al.

2014; Lorenz et al. 2010) that, in turn, can further de-

plete soil moisture where moisture is available.

The individual roles of precipitation and PET, and that

of their dependence driven through land–atmosphere in-

teractions, highlight the compound nature of soil moisture

drought. Compound events are a class of events receiving

an increased amount of attention in recent times. They

encompass a broad range of impacts whose risk is influ-

enced by the dependence between their drivers (Wahl

et al. 2015; Hillier et al. 2015;Martius et al. 2016; Bevacqua

et al. 2017). Understanding the dependence between hot

and dry conditions and their impacts is of great impor-

tance. Overlooking nonlinear dependence between hot

and dry conditions and crop yields leads to an un-

derestimation of risk in reduced crop yields (Zscheischler

et al. 2017), while the bivariate risk of hot and dry summers

is underestimated when treating them independently

(Zscheischler and Seneviratne 2017). Underlining this

importance are findings of an increase in the concurrence

of drought and heat wave events (Mazdiyasni and

AghaKouchak 2015). Such an increase brings a potential

rise in the risk of associated impacts, as the impact arising
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from the combination of drought and heatwave events can

be greater than the sum of the impacts arising from indi-

vidual events (Hegerl et al. 2011; Zscheischler et al. 2014).

In this study, we analyze soil moisture drought as

a compound event of meteorological drought and heat

waves in Europe. We use a conceptual framework de-

veloped in Bevacqua et al. (2017) and apply it to a system

in which we describe soil moisture as a function of pre-

cipitation integrated over preceding months and PET

integrated over recent days. This conceptual framework

allows us to capture days of extreme temperature within

the PET variable and its dependence on antecedent

conditions. The framework is implemented via a multi-

variate statistical model based on pair copula construc-

tions (PCCs; Aas et al. 2009). Copula-based methods, in

particular PCCs, provide much flexibility in modeling

multidimensional systems (Aas et al. 2009; Bevacqua

et al. 2017), including the representation of nonlinear

dependence associated with hot and dry conditions

(Stagge et al. 2015; Zscheischler and Seneviratne

2017). Their use has therefore become quite prom-

inent in the analysis of compound events (Serinaldi

et al. 2009; AghaKouchak et al. 2014; Bevacqua et al.

2017; Zscheischler et al. 2017; Zscheischler and

Seneviratne 2017). More details on copula, PCCs, and

the advantages of their use can be found in the fol-

lowing sections.

We assess the compound nature of soil moisture

drought in Europe during the summer months June–

August (JJA) at locations in wet, transitional, and dry

climates. We aim to demonstrate the individual contri-

butions of precipitation and PET to the estimation of

soil moisture drought and highlight where, when, and

over what integration period lengths PET and its de-

pendence with precipitation are important for the esti-

mation of soil moisture in a statistical setting. In doing

so, we aim to characterize the compound nature of soil

moisture drought in differing climates during summer to

provide information that may aid with the interpretation

of drought indices incorporating PET and allow further

insight to be gained from such indices.

The paper is organized as follows: the data employed

in this study as well as the statistical methods involved

are described in section 2, themain results are presented

in section 3, and a summary and conclusions are pro-

vided in section 4.

2. Data and methods

a. Dataset

We employed the FluxNet dataset (Baldocchi et al.

2001) for this study using 11 stations situated across

Europe. The selection of sites was based both on an

initial review of data quality and length across many

sites as well as the recommendations of Rebel et al.

(2012). Table 1 provides a summary of the site charac-

teristics. To aid the interpretation of the results, we

classify the sites as wet or dry based on values of soil

moisture. Locations are provided in Fig. 1. At each site,

soil moisture measurements from the top 30 cm of soil

are provided along with precipitation data as well as

the variables required for the calculation of PET via

the reference crop Penman–Monteith equation, as de-

scribed in Zotarelli et al. (2010). These variables include

incoming solar radiation, temperature, wind speed, and

relative humidity. Among the selected sites, two general

land cover types are available: grassland and forest. The

data used here are at a daily resolution. We use soil

moisture values for the summer months of JJA. For the

contributing meteorological variables, we used obser-

vations that extend back into previous months in order

to calculate integration periods prior to a given soil

moisture observation.

b. Conceptual model

We design a conceptual model, based on a framework

developed by Bevacqua et al. (2017), in which we

describe soil moisture h as an impact of contributing

TABLE 1. Summary of FluxNet sites used throughout this study.

Site Site name Lat Lon Site type

a Dripsey, Ireland 51.998N 8.758W Grassland

b Hainich, Germany 51.088N 10.458E Forest

c Klingenberg, Germany 50.898N 13.528E Grassland

d Oensingen, Switzerland 47.288 N 7.738E Grassland

e Pang/Lambourne, United Kingdom 51.458 N 1.278W Forest

f Le Bray, France 44.728N 0.778W Forest

g Amplero, Italy 41.98N 13.68W Grassland

h Las Majadas del Tietar, Spain 39.948N 5.778W Savanna/Grassland

i Bugacpuszta, Hungary 46.698N 19.68E Grassland

j Mitra IV Tojal, Portugal 38.488N 8.028W Grassland

k Vall d’Alinya, Spain 42.158N 1.458E Grassland

AUGUST 2018 MANN ING ET AL . 1257

Unauthenticated | Downloaded 06/11/21 07:23 AM UTC



meteorological variables Y. The contributing meteoro-

logical variables include a short-term precipitation var-

iable (Y1PS), a long-term precipitation variable (Y2PL),

and a PET variable (Y3PET) that are integrated over pe-

riods L1, L2, and L3, respectively. A schematic repre-

sentation of the variables modeled is given in Fig. 2.

The quantities Y1PS and Y2PL respectively represent

the most recent and antecedent precipitation that in-

fluence the short- and long-term variability of soil

moisture. Their respective integration periods L1 and

L2 are nonoverlapping. Two precipitation variables

are required to better capture the temporal distribu-

tion of precipitation that would otherwise be lost using

one long-term integration only.

The quantityY3PET represents PET integrated over the

period L3. PET is often employed as an estimate of ET

in drought indices given the lack of ET data. We cal-

culate PET using the reference crop Penman–Monteith

equation as defined in Zotarelli et al. (2010), where it is

derived from incoming solar radiation, temperature,

wind, and the actual and saturation vapor pressures. The

quantity Y3PET includes temperature within its calcula-

tion and so can capture heat waves that influence the

drying of soil moisture. Depending on the question at

hand, the integration length L3 is varied; more details of

this are given in section 2e.

c. Copula

A copula is a multivariate distribution function that

describes the dependence structure between random

variables independent of their marginal behavior.

The selection of structure of dependence, defined by the

given copula family, is hence not constrained by the

choice of the marginal distribution functions. This fea-

ture provides much flexibility in modeling multivariate

distributions as it allows for the application of complex

marginal distributions (Salvadori et al. 2007). According

to Sklaar’s theorem (Sklar 1959), the joint cumulative

distribution function (CDF) F of an n-dimensional

random vector Y 5 (Y1, . . . , Yn) with marginal CDFs

F1, . . . , Fn can be written as

F(y
1
, . . . , y

n
)5C(u

1
, . . . , u

n
) , (1)

where C is an n-dimensional copula and ui 5 Fi(yi) are

uniformly distributed variables in the domain [0, 1].

Provided the marginal distributions Fi are continuous,

the multivariate probability density function (PDF)may

be decomposed as

f (y
1
, . . . , y

n
)5 f

1
(y

1
)3 � � � 3 f

n
(y

n
)

3 c[F
1
(y

1
), . . . ,F

n
(y

n
)] , (2)

where c is the copula density and fi are marginal

PDFs.

There exists a large number of bivariate copula fam-

ilies that each provide an explicit formulation for a given

structure of dependence. However, the number of cop-

ula families applicable to a dimension of three or higher

is quite limited (Aas et al. 2009) and in contrast to re-

ality, where heterogeneous dependence structures often

exist, each copula will usually assume the same structure

of dependence between all marginals (Aas et al. 2009;

Acar et al. 2012; Noh et al. 2013; Bevacqua et al. 2017).

We therefore employ PCCs that provide higher flexi-

bility than multivariate copulas and more simplicity in

terms of the selection of dependence structure (Aas

et al. 2009; Noh et al. 2013).

d. Pair copula constructions

PCCs, initially proposed by Joe (1997), allow us to

mathematically decompose an n-dimensional copula den-

sity into a product of n(n2 1)/2 bivariate copulas, of which

some are conditional. They allow much flexibility in

modeling multidimensional distributions (Aas et al.

2009; Bevacqua et al. 2017) and provide a means to

easily calculate quantiles of the multivariate condi-

tional distribution of an impact h given values of Y

(Noh et al. 2013; Bernard and Czado 2015; Kraus and

Czado 2017; Fischer et al. 2017).

FIG. 1. Locations of FluxNet sites employed for this study.
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For a high-dimensional distribution, there exists a

significant number of decompositions of a multivari-

ate PDF into a PCC that are each mathematically

equivalent to one another (Aas et al. 2009). Two

special types of decompositions called vines exist for

PCCs, the canonical vine (C-vine) and the D-vine

(Kurowicka and Cooke 2005). Throughout this study

we employ a D-vine decomposition. For the four-

dimensional distribution under study here, there are

12 possible D-vine decompositions. For convenience,

we select one decomposition to be applied through-

out the study at all sites; the procedure we follow for

this selection is outlined in section 2e. The selected

D-vine decomposition for the conditional model is

given as

f
3,2,1,h

(y
3
, y

2
, y

1
,h)5 f

3
(y

3
)3 f

2
(y

2
)3 f

1
(y

1
)3 f

h
(h)

3 c
32
(u

3
,u

2
)3 c

21
(u

2
, u

1
)3 c

1h
(u

1
,u

h
)3 c

31j2(u3j2,u1j2)

3 c
2hj1(u2j1,uhj1)3 c

3hj21(u3j21, uhj21) . (3)

The differences between each of the 12 possible

decompositions are in the ordering of variables

within the PCC, which determines the bivariate de-

pendencies that are modeled. As can be seen in

Eq. (3), the ordering of variables in the selected de-

composition are (Y3, Y2, Y1, h). To sample h condi-

tioning on the Y, we employ a sampling algorithm

provided by the CDVineCopulaConditional R pack-

age (Bevacqua 2017), which uses a modified version

of the algorithm presented in Aas et al. (2009). This

algorithm requires that h is positioned last (or

equivalently first) in the order of variables as shown

above. This constraint reduces the number of possible

decompositions to six. And although each of these

possibilities are mathematically equivalent, the ex-

planatory power of h from the resulting conditional

model varies depending on the order of the contrib-

uting variables Y within the decomposition, as each

Y can have differing levels of influence over h (Kraus

and Czado 2017).

1) ESTIMATION OF PCC

The estimation of the PCC given in Eq. (3) is ob-

tained through a sequential approach. First, the un-

conditional bivariate copulas c32, c21, and c1h are fitted

to capture the respective pairwise dependencies of the

variables u3, u2, u1, and uh. Second, the conditional

bivariate copulas c31j2 and c2hj1 are then fitted to the

respective conditional probabilities u3j2, u1j2, u2j1, and
uhj1. These variables are obtained from the conditional

distributions given by the partial differentiation of the

respective unconditional bivariate copula with respect

to the conditioning variable:

u
3j2 5F

3j2(u3
ju

2
)5

›

›u
2

C
32
(u

3
, u

2
) ,

u
1j2 5F

1j2(u1
ju

2
)5

›

›u
2

C
21
(u

2
, u

1
) ,

u
2j1 5F

2j1(u2
ju

1
)5

›

›u
1

C
21
(u

2
, u

1
) , and

u
hj1 5F

hj1(uh
ju

1
)5

›

›u
1

C
1h
(u

1
, u

h
) . (4)

In the final step of the estimation procedure, a

copula c3hj21 is fitted to the conditional probabilities

u3j21 and uhj21. These conditional probabilities are

obtained from the conditional distributions given from

the partial differentiation of the respective conditional

bivariate copula with respect to the conditioning

variable:

u
3j215F

3j21(u3
ju

2
, u

1
)5

›C
31j2[F3j2(u3

ju
2
),F

1j2(u1
ju

2
)]

›F
1j2(u1

ju
2
)

and

u
hj215F

hj21(uh
ju

2
, u

1
)5

›C
2hj1[F2j1(u2

ju
1
),F

hj1(uh
ju

1
)]

›F
2j1(u2

ju
1
)

.

(5)

From the conditional copula c3hj21, the conditional CDF

Fhj321 can be obtained through partial differentiation of

C3hj21 with respect to F3j21:

F
hj321(uh

ju
3
,u

2
,u

1
)

5
›C

3hj21[F3j21(u3
ju

2
,u

1
),F

hj21(uh
ju

2
,u

1
)]

›F
3j21(u3

ju
2
, u

1
)

. (6)

FIG. 2. Schematic of the variables used in this study to construct the

soil moisture model.
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As will be shown, all unconditional and conditional bi-

variate CDFs described above are required when sam-

pling from the PCC.

2) SAMPLING FROM PCC

Sampling variables u3, u2, u1, and uh from the four-

dimensional D-vine PCC repeatedly results in four

uniformly distributed variables that exhibit a de-

pendence structure specified by the given PCC. Al-

gorithms proposed by Aas et al. (2009) provide a

convenient means of sampling variables u3, u2, u1, and

uh. Within these algorithms, variables w3, w2, w1, and

wh are first drawn independently from a random

uniform distribution on [0, 1]. Then, u3, u2, u1, and uh
are determined as

u
3
5w

3
,

u
2
5F21

2j3 (w2
ju

3
) ,

u
1
5F21

1j2 [F
21
1j23(w1

ju
2
,u

3
)] , and

u
h
5F21

hj1 (F
21
hj21[F

21
hj321(wh

ju
3
,u

2
, u

1
)] . (7)

Given specified values of Y, the model may be used to

sample h5F21
h (uh) from a conditional distribution de-

fined by the givenY values. In this case, the variables u3,

u2, u1, and uh are obtained as

u
3
5F

3
(y

3
) ,

u
2
5F

2
(y

2
) ,

u
1
5F

1
(y

1
) , and

u
h
5F21

hj1 [F
21
hj21(F

21
hj321(wh

ju
3
,u

2
, u

1
)] . (8)

Throughout this study, we use an algorithm proposed by

Bevacqua et al. (2017) to sample from Eq. (8) and carry

out all simulations using the CDVineCopulaConditional

R package (Bevacqua 2017).

When sampling from Eq. (8) given an observed Y, we

produce a stochastic time series of h. Repeated simula-

tions conditioning on the observed Y will produce

multiple time series with varying statistics and agree-

ment with observed h values (Pham et al. 2016).

Throughout this study, given an observed time series of

Y, we produce an ensemble consisting of 1000 members

of h time series and obtain a probabilistic forecast of h

at each time step.

e. Model construction

In this section, we lay out the procedure taken for

selecting integration period lengths Li for the contrib-

uting meteorological variables Yi (Fig. 2). We also pro-

vide details of the selection procedure for the D-vine

decomposition of the PCC and the selection of copula

families within the PCC.

1) METEOROLOGICAL PREDICTOR SELECTION

We describe soil moisture h as a function of two pre-

cipitation variables, Y1PS and Y2PL, integrated over pe-

riods L1 and L2, and a PET variable, Y3PET integrated

over the period L3. By developing a statistical model

with these variables and soil moisture, we look to answer

the following three questions:

1) What are the individual contributions of the meteo-

rological variables Yi to the estimation of soil mois-

ture h on time scales related to meteorological

drought and heat waves?

2) What relevance does the dependence between ante-

cedent precipitation (Y2PL) and recent PET (Y3PET)

have for the estimation of low soil moisture values?

3) What relevance does PET have for the estimation of

soil moisture over varying integration lengths L3?

To answer these questions, we propose two sets of Y

variables, S1 and S2. Questions 1 and 2 are then ap-

proached using variable set S1 while Question 3 is ap-

proached using variable set S2. The difference between

S1 and S2 is the integration L3 chosen at each site. A

short integration period is considered for PET in S1,

while a long integration period is considered for PET in

S2. For each value of Li used, the contributing meteo-

rological variable Yi may be defined as

Y
1PS
(t)5 �

t

t2L111

p(t) ,

Y
2PL

(t)5 �
t2L1

t2(L11L2)11

p(t) , and

Y
3PET

(t)5 �
t

t2L311

pet(t) , (9)

where p(t) and pet(t) are daily precipitation and PET,

respectively.

We address the first two questions with variable set S1.

The selected Li for S1 must result in Y variables that

provide satisfactory estimates of soil moisture h, hold

physically meaningful dependencies, and capture time

scales relevant for both meteorological drought and

heat waves. Physically meaningful dependencies are

obtained by constraining Li such that L1 5 L3 and

through ensuring that there is no overlap between L2

and the short-term integrations.

Based on the analysis described below, we find a dif-

ference between grassland sites and forest sites. Forest

sites require a longer integration L1. This is possibly

explained by the deeper root systems at forest sites,

which filter the influence of short-term variability in

rainfall on the integrated soil column. We therefore
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choose two sets of L: LG and LF, for grassland and

forest sites, respectively. At all grassland (forest) sites,

the same LG (LF) are used.

We choose integrations of LG15 LG35 7 and LG25
63 for grassland sites. For forest sites, we choose in-

tegrations of LF15 LF35 30 andLF25 60. We thus use

information of precipitation over the previous 70 and

90 days for each daily soil moisture observation at

grassland and forest sites, respectively.

To select LGi (LFi) in S1, we first calculate the

Spearman correlation between Yi(t) and h(t) for mul-

tiple integrations within a window of 120 days prior to

day t. We then choose the integration length that

maximizes the Spearman correlation for each Yi. In-

tegration periods are then constrained such that LG15
LG3 (LF1 5 LF3). This ensures physically meaningful

dependencies and avoids arbitrary dependencies that

would otherwise arise between differing LG1 (LF1) and

LG3 (LF3).

The sensitivity of the conditional model’s perfor-

mance, in representing h conditioning on Y, to changes

in LF (LG) is tested by varying the short-term LG (LF)

by 64 days while the long-term integration LG (LF) is

varied by 610 days. Changes in performance are found

to beminimal (not shown). Assuming the same LG (LF)

at all grassland (forest sites) and constraining the in-

tegration periods is therefore expected to have little

weight in the outcome of this analysis.

We acknowledge in S1 that the influence of most re-

cent daily temperature extremes on soil moisture is

potentially filtered out at forest sites by setting LF35 30.

This is addressed in variable set S2 where we assess the

relevance of the selection of L3 to the estimation of h

(question 3). In S2, two models are constructed using a

short- and long-term integration of L3. The same LG1,

LF1, LG2, and LF2 as S1 are used while LG3 and LF3 are

set to 7 and 70 days and 7 and 90 days, respectively.

As the variables are all calculated on a daily reso-

lution, from day t to day t 1 1, there will be an overlap

of LGi 2 1 or LFi 2 1 mutual days used in the in-

tegration periods associated with two consecutive

days. We thus violate the assumption that data are

independent and identically distributed, which the

statistical methods used here are based upon. It should

therefore be noted that the performance of the model

as well as any estimated dependence between vari-

ables may be overestimated.

2) STATISTICAL INFERENCE OF THE

MULTIVARIATE PDF

The parameters of each bivariate copula in Eq. (3)

are estimated based on the marginal variables ui drawn

from the marginal CDFs Fi. We use a kernel density

estimate for all marginal distributions. All marginal

densities are estimated using the ks R package (Duong

2017), which employs the bandwidth selector of Wand

and Jones (1994).

The estimation of copula parameters requires that no

equal ranks are present in ui. We follow the approach

used in Pham et al. (2016) to remove ties from the data.

In this approach, a small random noise is drawn from a

uniform distribution on [20.001, 0.001] and added to

Y1PS and Y2PL values greater than zero. For values equal

to zero, we add a random noise drawn from the uniform

distribution on [0, 0.001].

The use of kernel density estimates provides a con-

venient way of estimating the marginal distribution of h.

Soil moisture has natural upper and lower bounds, ac-

cording to its wilting and saturation points, respectively,

and can also exhibit a bimodal distribution (Porporato

and D’Odorico 2004; D’Andrea et al. 2006).

The selection of the D-vine decomposition in Eq. (3)

is based on an initial test in which we assess the per-

formance of each of the six possible decompositions in

their ability to represent h when conditioning on the

observed Y. At all sites we fit a PCC for each of the six

decompositions and use the Akaike information crite-

rion (AIC) when selecting the type of copulas to be

used. The selection of copula families and the estima-

tion of their parameters is carried out at each site sep-

arately. Each copula is chosen from a range of copulas

provided by the VineCopula R package (Schepsmeier

et al. 2017). To assess each of the six possible de-

compositions, a probabilistic forecast of h consisting of

1000 members is produced at all sites. These are com-

pared with observed soil moisture using the root-mean-

square error. We then select the decomposition that

generally shows the highest explanatory power of h at

all sites.

After selecting the decomposition to apply, the

goodness of fit (GoF) of the selected copulas is tested.

Copulas initially selected according to the AIC did not

always provide a satisfactory fit. For this reason we use

two criteria in the selection of a copula for each pair in

the PCC. This procedure is carried out sequentially as

outlined in section 2d(1), where unconditional copulas

are first selected followed by the conditional copulas.

For each pair, we first select the top three copulas ac-

cording to the AIC and second test the GoF of each

using K plots (Genest and Favre 2007; Bevacqua et al.

2017). We then select the highest ranked copula ac-

cording to theAIC that shows satisfactory compliance in

the K plots.

A K plot is a plot of the Kendall function K(w) 5
P[Ci,j(Ui,Uj)#w] obtained from the fitted copula against

K(w) computed with the empirical copula obtained
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using the observed data. Similarly to a Q–Q plot for

univariate distributions, the K plot indicates good

quality of fit when points follow the diagonal. These

plots provide uncertainties around the empirical copula

as well as a qualitative idea of the quality of fit of each

copula (Bevacqua et al. 2017). Most selected copulas

show good agreement according to the K plots (not

shown) where parametric K(w) values generally follow

the mean of the empirical values and mostly remain

within the uncertainty intervals calculated from 1000

simulations. Some small problems are found with the

copulas at sites e and f, which may limit the strength of

conclusions drawn from these sites.

f. Model evaluation metrics

The model simulations are evaluated overall and in

their ability to represent low values of soil moisture h.

Using the Brier score (BS), we evaluate the accuracy of

probabilistic predictions of low h values defined as those

below the 15th percentile of observed soil moisture. The

closer BS is to zero, the better the predictions. The BS is

defined as:

BS5
1

N
�
N

t51

(p
t
2 o

t
)2 , (10)

where pt is the probability of getting a simulated value of

h below the observed 15th percentile from the model at

time t, while ot is 1 if observed soil moisture hobs(t) is

below the 15th percentile and 0 otherwise. Along with BS

we calculate the associated Brier skill score (BSS) that

evaluates the model relative to a reference model BSref:

BSS5 12
BS

BS
ref

, (11)

We consider the climatology as the reference model in

which the probability of a value occurring below the

15th percentile is always 0.15.

Themodel is also evaluated in its ability to capture the

persistence of drought conditions by comparing the

autocorrelation function (ACF) and using an empirical

order 1 persistence probability (PP). Both are derived

from the observed values and the mean of the simulated

values. We choose an order 1 persistence after assessing

partial autocorrelation function (PACF) at each site,

which only showed significant correlations for order 1.

The quantity PP is defined as

PP5Pr[h
t11

,F21
h (0:15) j h

t
,F21

h (0:15)] . (12)

The PP may be interpreted as the probability that ht11

will be below the 15th percentile given that ht is below

the 15th percentile.

3. Results

The set of variables S1, described in section 2e(1), are

employed to evaluate the contributions of the individual

Y variables and that of their dependence structure to

soil moisture. To achieve this we perform a number of

sensitivity simulations and compare them with a control

simulation (CTRL). All simulations carried out are

done through a K-fold cross validation to avoid over-

fitting. Parameter K here is the number of summers in a

time series at a given site. In each simulation, we thus

remove one summer at a time when fitting the copula

parameters but use the same marginal PDFs for each

period. In this way we only cross-validate the PCC

rather than the entire multivariate statistical model. For

each simulation, we then produce a probabilistic fore-

cast of h consisting of 1000 members through condi-

tioning on specified values of Y.

a. Model performance

The CTRL simulation is performed through sampling

h conditioned on observed values of Y [Eq. (8)]. The

performance of CTRL may be qualitatively gauged

from Fig. 3. Plots shown in Figs. 3a–e are results from

wet sites while those from Figs. 3f–k are results from dry

sites. The mean value of h from CTRL at each time step

can be seen to follow the temporal evolution of ob-

served soil moisture (hobs) quite well, while hobs is

generally found within the 95% confidence interval of

CTRL. Also shown within each panel in Fig. 3 are the

order 1 persistence probabilities of low h for observed

(PPobs) and mean simulated h (PPsim). The quantities

PPsim and PPobs are found to be very similar at all wet

sites and most dry sites, although PPsim is generally less

than PPobs at dry sites. A comparison of the observed

ACF, estimated up to order 10, with the ACF derived

from the mean of the simulation also showed close

correspondence at each site (not shown). Such results

indicate good agreement between the observed h and

simulated mean h in terms of temporal evolution and

the persistence of low values.

To provide information of the performance of the

model in terms of the probabilistic forecast, we calcu-

late BS and BSS for CTRL at each site (Table 2). In

general we see good BS and positive BSS that range

from 0.06 to 0.12 and 0.04 to 0.51, respectively, with

medians of 0.09 and 0.25. These BSS indicate that the

model is better than the climatology at predicting low

soil moisture values. Low BSS values are seen at site c,

where we also see poor correspondence between hobs

and the mean of CTRL. Optimizing the performance of

the model at this site through changing integration

periods does not bring a noticeable improvement,
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indicating that the proposed model and variables in-

cluded do not predict soil moisture correctly at all sites.

However, with satisfactory results generally obtained

at most sites, we employ the model for use in sensitivity

analysis in a number of tests presented below.

b. Assessment of contributing variables to soil
moisture

We test the contribution of Y1PS (short-term pre-

cipitation), Y2PL (long-term precipitation), and Y3PET (PET)

to the estimation of h in three sensitivity simulations

FIG. 3. Observed time series (red) alongside the cross-validation time series of the CTRLmean (black) and the 95% prediction interval

(gray), obtained from 1000 simulations, at (a)–(e) wet sites and (f)–(k) dry sites. Also provided within each panel are the order 1 per-

sistence probabilities calculated from the observed (PPobs) and CTRL mean (PPsim) time series.
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SENS-Y1PS, SENS-Y2PL, and SENS-Y3PET, respectively.

For each sensitivity simulation, h is sampled conditioning

on the median value of the respective variable to be

tested and the observed values of the other two Y vari-

ables. To assess the contributions of all variables, we

compare the mean of each simulation with the CTRL

mean. We also compare the probabilistic forecasts from

SENS-Yi with CTRL using the BS, BSS, and the mean

ensemble bias computed for values of h below the ob-

served 15th percentile (Table 2).

At wet sites, precipitation is generally seen to have the

most influence on low soil moisture values, while PET

can act to amplify the low soil moisture anomaly during

drought periods. Comparing the means of the three

sensitivity simulations with the mean of CTRL (Fig. 4),

larger overestimations of low h values with respect

to CTRL are generally seen in either of the simula-

tions assessing the influence of a precipitation variable,

SENS-Y1PS or SENS-Y2PL, than is, seen in SENS-Y3PET.

Underlining this are larger changes in positive bias of low

soil moisture values seen from SENS-Y1PS or SENS-Y2PL

than from SENS-Y3PET (Table 2). A comparison of BSS

for each simulation in Table 2 also shows a larger re-

duction in skill of forecasting values below 15th per-

centile in either SENS-Y1PS or SENS-Y2PL than in

SENS-Y3PET. Focusing on drought events at wet sites a,

b, and d in 2003 and 2006, years in which heat waves

have also occurred (Ciais et al. 2005; Rebetez et al.

2009), we see from the mean of the simulations (Fig. 5)

that removing the influence of precipitation can lead to

the misspecification of a drought event with the green

line largely above the black line (CTRL). On the other

hand, removing the influence of PET can result in the

underestimation of the severity of the event, with the

blue line only just higher than the black during a

drought event.

At dry sites, we see that precipitation again holds

the main influence over soil moisture while PET gen-

erally offers little added benefit to the estimation of

soil moisture. The main differences of CTRL with

SENS-Y1PS and SENS-Y2PL are found for high values of

soil moisture (Fig. 4). Low values in these sensitivity

simulations are generally equivalent with CTRL, as the

medians of Y1PS and Y2PL are associated with relatively

low values due to the positively skewed nature of the

variables’ distributions. Little or no difference is seen

between SENS-Y3PET and CTRL simulations for low

values of soil moisture. Large percentage changes in bias

for low soil moisture values are seen at sites f and i,

though the actual changes in soil moisture are relatively

low (Table 2). This would be expected at dry sites during

summer where soil moisture normally reaches low levels

such that ET is moisture-limited and will diverge from

PET. Extremes of PET driven by extreme temperatures

would then have little added effect to the severity of soil

moisture drought in dry locations.

c. Assessing the relevance of Y dependence structure

The contribution of the dependence between Y2PL and

Y3PET to the estimation of low h values is assessed using the

sensitivity simulation IND-Y2PL, which is used to highlight

where interactions between drought and heat wave con-

ditions, arising through land–atmosphere interactions,

act to amplify drought conditions. To illustrate the de-

pendence betweenY2PL andY3PET, we calculate Spearman’s

r and a measure of tail dependence lq, calculated as

TABLE 2. BS, BSS, and mean bias for CTRL, SENS-Y1PS,

SENS-Y2PL, and SENS-Y3PET simulations calculated for soil mois-

ture values below the observed 15th percentile. Bias values

for SENS-Y1PS, SENS-Y2PL, and SENS-Y3PET are given as percent-

age change relative to CTRL.

Site Score CTRL SENS-Y1PS SENS-Y2PL SENS-Y3PET

a BS 0.09 0.10 0.12 0.10

BSS 0.25 0.21 0.01 0.18

Bias 3.89 15% 1113% 145%

b BS 0.11 0.13 0.10 0.11

BSS 0.15 20.01 0.17 0.15

Bias 4.33 1107% 21% 133%

c BS 0.12 0.14 0.11 0.12

BSS 0.04 20.1 0.13 0.06

Bias 10.66 151% 224% 12%

d BS 0.06 0.06 0.09 0.08

BSS 0.51 0.49 0.26 0.39

Bias 3.52 145% 1149% 183%

e BS 0.09 0.10 0.09 0.12

BSS 0.28 0.25 0.27 0.03

Bias 3.62 215% 178% 181%

f BS 0.08 0.07 0.06 0.13

BSS 0.36 0.43 0.53 20.01

Bias 0.37 2215% 1207% 1720%

g BS 0.09 0.09 0.11 0.09

BSS 0.31 0.24 0.15 0.30

Bias 1.48 143% 186% 16%

h BS 0.12 0.13 0.12 0.13

BSS 0.04 0.00 0.05 0.003

Bias 3.28 19% 23% 14%

i BS 0.12 0.13 0.12 0.13

BSS 0.07 0.002 0.04 20.06

Bias 1.24 29% 15% 152%

j BS 0.12 0.12 0.12 0.12

BSS 0.09 0.10 0.05 0.06

Bias 2.8 28% 110% 116%

k BS 0.08 0.13 0.12 0.08

BSS 0.36 0.01 0.09 0.37

Bias 1.05 1205% 1146% 110%
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, (13)

where q 5 0.9 in this case. The quantity l90 can be in-

terpreted as the fraction of days when Y3PET was greater

than its observed 90th percentile whenY2PL was less than

its 10th percentile. For two independent variables, the

expected value of lq is 12 q. Values of r and lq for each

site are given in Fig. 6. At many sites we observe a

negative dependence between Y2PL and Y3PET, as mea-

sured by r, and an increased probability of extreme PET

(Y3PET) when antecedent precipitation (Y2PL) had been

extremely low.

To test the relevance of such dependence in

IND-Y2PL, we break the dependence between Y2PL and

the short-term variables Y1PS and Y3PET. This is achieved

by shuffling Y2PL such that it is randomly associated

with them. A probabilistic forecast of h, consisting of

1000 members, is then produced, sampling from the

multivariate distribution where we condition on the ob-

served values of Y1PS and Y3PET and the shuffled Y2PL. To

account for sampling variability of the shuffling process,

we produce 1000 IND-Y2PL probabilistic forecasts.

We obtain a kernel density estimate of the PDF

produced from each of the 1000 IND-Y2PL simulations.

The mean density and the 95% confidence interval of

IND-Y2PL PDFs are calculated and presented alongside

the PDFs of CTRL and hobs (Fig. 6). The statistical

significance of the difference between the CDFs of

CTRL and IND-Y2PL is assessed at the 5th, 10th, and

15th percentiles of observed soil moisture. CTRL is

considered significantly different for a given percentile if

the associated soil moisture value of CTRL is less than the

lower bound of 95% confidence interval of that percentile

from IND-Y2PL. This would signify that the probability

FIG. 4. Comparison of the mean of the cross-validation simulations of CTRL with SENS-Y1PS (gray dots), SENS-Y2PL (green dots), and

SENS-Y3PET (blue dots) at (a)–(e) wet sites and (f)–(k) dry sites. Values are ordered according to CTRL from low to high such that the closer

the correspondence of points to the diagonal, the smaller the change in the estimation of soil moisture in the given sensitivity simulation.
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of values below that percentile are underestimated when

the dependence between Y2PL and Y3PET is broken.

Statistically significant differences are found between

all three percentiles at site d, where we also see a no-

ticeable difference between PDFs (Fig. 6d). A negative

dependence as well as a significant dependence in the tails

is also observed here. Site d lies in a transitional region

where land–atmosphere interactions can lead to the

mutual reinforcement of drought and heat wave events

(Seneviratne et al. 2010). This result highlights the im-

portance of the interplay between drought and heat wave

conditions, driven by land–atmosphere interactions, to

the reinforcement of drought conditions in such locations.

Statistically significant differences between the per-

centiles tested are also found at wet sites a, b, and e and

dry sites g and j, though relatively little difference is

observed between CTRL and IND-Y2PL PDFs at these

sites for values below the tested percentiles (Fig. 6).

We observe negative dependencies (r) and tail depen-

dencies (lq) at these sites, which highlights that the con-

currence of such conditions may be important for the

estimation of low values of soil moisture. These

dependencies are also observed at other dry sites, but

no significant differences between assessed percentiles

are found. Such dependencies at these sites are perhaps

of little relevance for soil moisture during summer, as

extremes of PET may be energy limited in wet climates

while soil in dry climates may have little available mois-

ture for ET. In dry conditions then, extremes of PET in

combination with extremely low antecedent precipitation

will have little effect on moisture levels in soil.

d. Relevance of PET over short and long
integration periods

The variable set S2, as described in section 2e(1), is

used to demonstrate the relevance of PET, integrated

over various durations LG3 and LF3, to the estimation of

soil moisture h. We fit twomodels at wet sites a, b, and d,

where we see contributions of PET to the estimation of

soil moisture drought in variable set S1 (Fig. 5). The

integration periods used for precipitation variables Y1PS

and Y2PL in S1 remain the same. For the simulation

PET-INTS, we set LG35LF35 7, and for the simulation

PET-INTL, we set LG3 5 70 andLF3 5 90.

Based on the mean of the simulations (Fig. 7), better

representation of drought onset can be seen at sites a

and d in the PET-INTS simulations where the black line

generally follows red (observed) at the beginning of an

event when initial drying is taking place. On the other

hand, drought persistence is generally captured better

FIG. 5. Mean cross-validated time series of simulations assessing the contributions of precipitation and PET to the estimation of soil

moisture and CTRL (black) for the summers (JJA) of (top) 2003 and (bottom) 2006 at wet sites a, b, and, d. Time series of mean simulated

values are presented for SENS-Y2PL (green) and SENS-Y3PET (blue) at wet sites a and d while time series of SENS-Y1PS (green) and

SENS-Y3PET (blue) are presented for site b.
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by the PET-INTL simulation where the blue line re-

mains low with the red line in comparison to the black.

Better BSSs are found for simulations using a long-term

integration of PET at sites a and b. Increases of BSS,

from PET-INTS to PET-INTL, from 0.24 to 0.36 and

from 0.18 to 0.25 are found at each site, respectively,

while little difference is seen between simulations at site

d with BSS equal to 0.51 and 0.52.

Although these results are somewhat qualitative, they

highlight that both short- and long-term integrations of

PET are important for the estimation of drought events in

this framework. Longer integrations are generally better

in capturing the persistence of drought conditions as they

can account for the memory soil moisture holds of drying

during the event. Short-term integrations, however, are

better in capturing drought onset as they are able to ac-

count for short intense periods of drying that can accel-

erate the propagation of meteorological drought to soil

moisture drought. With drought events expected to set in

quicker in a warming climate (Trenberth et al. 2014), it

will be important to detect such changes in the intensity of

drying over short periods in spring and summer that are

filtered out in longer integrations of PET. This may be of

particular relevance in Europe, where early onset of

drought conditions can have large implications for ex-

treme temperatures in summer (Vautard et al. 2007).

4. Summary and conclusions

Compound events are multivariate extreme events in

which the contributing variables need not be extreme

themselves, but their joint dependent concurrence pro-

duces an extreme impact (Leonard et al. 2014; Bevacqua et

al. 2017). We have analyzed soil moisture drought over

Europe as a compound event of variables employed in

common drought indices, namely, precipitation and PET,

and assessed the individual roles of these variables and that

of their dependence structure to the estimation of soil

FIG. 6. Kernel density estimates of observed soil moisture (red) and soil moisture simulated via cross-validation from probabilistic

forecasts CTRL (black) and IND-Y2PL (blue) simulations. The blue line and shading respectively represent the mean density and 95%

confidence interval obtained from the 1000 IND-Y2PL simulations.
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moisture. The overall aim was to explore the compound

nature of soil moisture drought and the differences that

exist between wet and dry climates.

To achieve our aim, we developed a statistical model

based on pair copula constructions. Within the model we

considered precipitation and PET over time scales related

to meteorological drought and heat waves, respectively.

These time scales were considered to assess the influence

of heat wave conditions on soil moisture, as well as de-

pendencies driven by land–atmosphere interactions that

can cause a mutual reinforcement between drought and

heat wave events inEurope.We applied themodel to data

from 11 FluxNet sites situated in wet, transitional, and dry

climates in Europe and generally found satisfactory per-

formance of the model. We thus employed it in a number

of sensitivity experiments to assess the relevance of con-

tributing variables and their dependence structure to the

estimation of soil moisture drought.

Results obtained from sensitivity experiments were in

linewith previous studies. Precipitationwas found to hold

the main control over soil moisture drought. PET was

required only when it departs from normal conditions

(Vicente-Serrano et al. 2010) to partly explain the se-

verity of drought conditions in wet climates (Seneviratne

et al. 2012b; Teuling et al. 2013), while little or no con-

tribution was found in dry climates (Luo et al. 2017)

during summer. The concurrence of extremely low an-

tecedent precipitation with extremely high PET was

found to be most relevant at a site situated in a transi-

tional climate region betweenwet and dry climates where

land–atmosphere interactions are most relevant for the

development of soil moisture drought (Seneviratne et al.

2006, 2012a). The concurrence of these conditions was

also seen at many dry sites, though they were found to

have little relevance for soil moisture. This lack of rele-

vance at dry sites is presumably related to the limited

availability ofmoisture in soil for actual ET to occur, such

that PET and extremes of PET could have little influence

to a low soil moisture anomaly.

The aforementioned contribution of PET is based

on a short-term integration period that was used to

capture the influence of heat waves on soil moisture. At

wet sites, this short integration period is found to be

effective in describing the onset of drought events as it

can capture initial drying that occurs on a daily basis. It

can, however, be ineffective in capturing the persistence

of drought conditions, which longer integrations can

better account for, as it neglects the memory soil mois-

ture may hold of PET and the intense drying that may

have occurred throughout a drought event. The differ-

ences found between short and long integrations of PET

may become relevant in the analysis of changes in the

FIG. 7. Mean cross-validation time series of simulations from models PET-INTS, in which PET is considered over a short integration

period (black), and PET-INTL, in which PET is considered over a long integration period (blue), along with the observed time series (red)

for the (top) 2003 and (bottom) 2006 drought events at wet sites a, b, and d.
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onset of drought events using drought indices. A warmer

climate may cause droughts to set in quicker (Trenberth

et al. 2014) and lead to flash droughts (Mo andLettenmaier

2016). Such dryingmay be hidden through the use of longer

integration periods of PET in an index such as the SPEI or

through a recursive model used for the PDSI that retains

memory of PDSI values from previous time steps.

Advantages of using drought indices include the sim-

plicity they offer and the widespread availability of me-

teorological datasets compared to those of soil moisture.

Although they are not specifically designed to represent

soil moisture (Seneviratne et al. 2010), indices such as the

SPEI, PDSI, and RDI provide a convenient means of

combining precipitation and PET into a kind of impact

function that may be implicitly linked to soil moisture.

However, soil moisture drought is not a simple phe-

nomenon to characterize with drought indices due to

differing contributions and relevant integration periods of

meteorological variables in wet and dry climates. The use

of a climatic water balance (precipitation 2 PET) in the

SPEI and PDSI assumes oversimplified relationships be-

tween precipitation, PET, and soil moisture (Seneviratne

2012) and implies that the statistical relevance of pre-

cipitation and PET to the estimation of soil moisture are

the same over a given integration period. With such sim-

plifications comes a loss of information, such as short in-

tense periods of drying that may be filtered out through

the inclusion of redundant information when using a long

integration period for PET.

Through the inclusion of PET, these indices are ex-

pected to provide a better picture of changes in drought

conditions in a warming climate than indices that use

precipitation alone such as the standardized precipitation

index (SPI). Ubiquitously applying indices that in-

corporate PET across different climates can provide a

general overview of the response of drought conditions to

global warming. It is, however, important to note that

severe drought, as depicted by these indices, will have a

different meaning for soil moisture drought in wet and

dry climates. ET is limited by moisture availability and

so will diverge from PET in dry conditions, leading to an

overestimation of the actual drying taking place with re-

spect to soil. In contrast, land surface models account for

this moisture limitation by capturing the physical re-

lationship between PET and soil moisture; they can

therefore provide a more reliable estimate. Their use

within coupled climate models to study changes in soil

moisture drought is particularly advocated for by Berg

et al. (2017), who also demonstrate the added complexity

of diverging changes to soil moisture at different soil

depths that cannot be disentangled using drought indices.

Despite discrepancies between PET and ET in dry

conditions, extremes of PETwill still be indicative of the

drying potential of the atmosphere, provided it is cal-

culated using a reliable physically based method such

as the Penman–Monteith equation. Such atmospheric

drying potential may possibly have adverse effects on

crop yields and contribute to other environmental haz-

ards such as wildfires that are mediated by the avail-

ability of moisture in vegetation (Gudmundsson et al.

2014; Ruffault et al. 2016).

Much information of soil moisture and other drought

impacts may be deduced from drought indices and their

response to a warming climate. To do so requires careful

interpretation and detailed knowledge of the involved

variables’ influence on soil moisture in a given climate. It

is therefore important that drought indices incorporating

PET are interpreted within the context of the climate in

which they are applied, while also keeping in mind the

applications they are designed for.

In our impact focused approach, we have made use of

the little soil moisture data that are available across dif-

ferent locations and climate types in Europe to demon-

strate the compound nature of soil moisture drought

during summer. These results provide further insight into

the relationship between soil moisture and drought in-

dices that incorporate PET. It is hoped that this insight

will aid with the interpretation of drought indices in a

given climate and season so that as much information as

possible may be gained from their application.

Acknowledgments. Colin Manning received funding

from the Volkswagen Foundation’s CE:LLO project

(Az.: 88469), which also supported project meet-

ings. The authors thank Prof. Arnoldo Frigessi and

Prof. Ingrid Hobaek Haff for fruitful discussions and the

hosting of a projectmeeting at theNorwegian Computing

Center. The authorswould also like to sincerely thank the

anonymous reviewers for their constructive comments

that have enhanced the quality of the manuscript.

REFERENCES

Aas, K., C. Czado, A. Frigessi, and H. Bakken, 2009: Pair-copula

constructions of multiple dependence. Insur. Math. Econ., 44,
182–198, https://doi.org/10.1016/j.insmatheco.2007.02.001.

Acar, E. F., C. Genest, and J. Nelehov, 2012: Beyond simplified

pair-copula constructions. J. Multivariate Anal., 110, 74–90,

https://doi.org/10.1016/j.jmva.2012.02.001.

AghaKouchak, A., L. Cheng, O. Mazdiyasni, and A. Farahmand,

2014: Global warming and changes in risk of concurrent cli-

mate extremes: Insights from the 2014 California drought.

Geophys. Res. Lett., 41, 8847–8852, https://doi.org/10.1002/

2014GL062308.

Baldocchi, D., and Coauthors, 2001: FluxNet: A new tool to

study the temporal and spatial variability of ecosystem-scale

carbon dioxide, water vapor, and energy flux densities. Bull.

Amer. Meteor. Soc., 82, 2415–2434, https://doi.org/10.1175/

1520-0477(2001)082,2415:FANTTS.2.3.CO;2.

AUGUST 2018 MANN ING ET AL . 1269

Unauthenticated | Downloaded 06/11/21 07:23 AM UTC

https://doi.org/10.1016/j.insmatheco.2007.02.001
https://doi.org/10.1016/j.jmva.2012.02.001
https://doi.org/10.1002/2014GL062308
https://doi.org/10.1002/2014GL062308
https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2


Berg,A., J. Sheffield, andP.C.Milly, 2017:Divergent surface and total

soil moisture projections under global warming. Geophys. Res.

Lett., 44, 236–244, https://doi.org/10.1002/2016GL071921.

Bernard, C., and C. Czado, 2015: Conditional quantiles and tail

dependence. J. Multivar. Anal., 138, 104–126, https://doi.org/

10.1016/j.jmva.2015.01.011.

Bevacqua, E., 2017: CDVineCopulaConditional: Sampling from con-

ditional C- and D-vine copulas. R package, version 0.1.0, https://

CRAN.R-project.org/package5CDVineCopulaConditional.

——, D. Maraun, I. Hobk Haff, M. Widmann, and M. Vrac, 2017:

Multivariate statistical modelling of compound events via

pair-copula constructions: Analysis of floods in Ravenna

(Italy).Hydrol. Earth Syst. Sci., 21, 2701–2723, https://doi.org/

10.5194/hess-21-2701-2017.

Ciais, P., and Coauthors, 2005: Europe-wide reduction in primary

productivity caused by the heat and drought in 2003. Nature,

437, 529–533, https://doi.org/10.1038/nature03972.

Dai, A., 2011: Drought under global warming: A review. Wiley

Interdiscip. Rev.: Climate Change, 2, 45–65, https://doi.org/

10.1002/wcc.81.

——, 2013: Increasing drought under global warming in obser-

vations and models. Nat. Climate Change, 3, 52–58, https://

doi.org/10.1038/nclimate1633.

——, K. E. Trenberth, and T. Qian, 2004: A global dataset of

Palmer drought severity index for 1870–2002: Relationship with

soil moisture and effects of surface warming. J. Hydrometeor.,

5, 1117–1130, https://doi.org/10.1175/JHM-386.1.

D’Andrea, F., A. Provenzale, R. Vautard, and N. De Noblet-

Decoudr, 2006: Hot and cool summers: Multiple equilibria of

the continental water cycle. Geophys. Res. Lett., 33, L24807,

https://doi.org/10.1029/2006GL027972.

Duong, T., 2017: ks: Kernel smoothing. R package, version 1.10.7,

https://CRAN.R-project.org/package5ks.

Fischer, M., D. Kraus, M. Pfeuffer, and C. Czado, 2017: Stress testing

German industry sectors: Results from a vine copula based

quantile regression. arXiv, 12 pp., https://arxiv.org/abs/1704.00953.

Ford, T. W., and S. M. Quiring, 2014: In situ soil moisture coupled

with extreme temperatures: A study based on the Oklahoma

Mesonet. Geophys. Res. Lett., 41, 4727–4734, https://doi.org/

10.1002/2014GL060949.

Genest, C., and A.-C. Favre, 2007: Everything you always wanted

to know about copula modeling but were afraid to ask.

J. Hydrol. Eng., 12, 347–368, https://doi.org/10.1061/(ASCE)

1084-0699(2007)12:4(347).

Gudmundsson, L., F. Rego, M. Rocha, and S. I. Seneviratne, 2014:

Predicting above normal wildfire activity in southern Europe

as a function of meteorological drought.Environ. Res. Lett., 9,

084008, https://doi.org/10.1088/1748-9326/9/8/084008.

Hegerl, G. C., H. Hanlon, and C. Beierkuhnlein, 2011: Climate sci-

ence: Elusive extremes.Nat. Geosci., 4, 142–143, https://doi.org/

10.1038/ngeo1090.

Hillier, J. K., N. Macdonald, G. C. Leckebusch, andA. Stavrinides,

2015: Interactions between apparently primary weather-

driven hazards and their cost. Environ. Res. Lett., 10, 104003,

https://doi.org/10.1088/1748-9326/10/10/104003.

Hirschi, M., and Coauthors, 2011: Observational evidence for soil-

moisture impact on hot extremes in southeastern Europe.Nat.

Geosci., 4, 17–21, https://doi.org/10.1038/ngeo1032.

Joe, H., 1997: Multivariate Models and Multivariate Dependence

Concepts. CRC Press, 424 pp.

Kraus, D., and C. Czado, 2017: D-vine copula based quantile re-

gression. Comput. Stat. Data Anal., 110, 1–18, https://doi.org/

10.1016/j.csda.2016.12.009.

Kurowicka, D., and R. M. Cooke, 2005: Distribution-free contin-

uous Bayesian belief. Modern Statistical and Mathematical

Methods in Reliability, Series on Quality, Reliability and En-

gineering Statistics, Vol. 10, World Scientific, 309–322, https://

doi.org/10.1142/9789812703378_0022.

Leonard, M., and Coauthors, 2014: A compound event framework

for understanding extreme impacts. Wiley Interdiscip. Rev.:

Climate Change, 5, 113–128, https://doi.org/10.1002/wcc.252.

Lorenz, R., E. B. Jaeger, and S. I. Seneviratne, 2010: Persistence of

heat waves and its link to soil moisturememory.Geophys. Res.

Lett., 37, L09703, https://doi.org/10.1029/2010GL042764.

Luo, L., D. Apps, S. Arcand,H. Xu,M. Pan, andM.Hoerling, 2017:

Contribution of temperature and precipitation anomalies to

the California drought during 2012–2015.Geophys. Res. Lett.,

44, 3184–3192, https://doi.org/10.1002/2016GL072027.

Martius, O., S. Pfahl, and C. Chevalier, 2016: A global quantification

of compound precipitation and wind extremes. Geophys. Res.

Lett., 43, 7709–7717, https://doi.org/10.1002/2016GL070017.

Mazdiyasni, O., and A. AghaKouchak, 2015: Substantial increase

in concurrent droughts and heatwaves in the United States.

Proc. Natl. Acad. Sci. USA, 112, 11 484–11 489, https://doi.org/

10.1073/pnas.1422945112.

Miralles, D. G., A. J. Teuling, C. C. van Heerwaarden, and

J. Vil-Guerau de Arellano, 2014: Mega-heatwave tempera-

tures due to combined soil desiccation and atmospheric heat

accumulation. Nat. Geosci., 7, 345–349, https://doi.org/

10.1038/ngeo2141.

Mitchell, K. E., and Coauthors, 2004: The multi-institution North

American Land Data Assimilation System (NLDAS): Utiliz-

ing multiple GCIP products and partners in a continental

distributed hydrological modeling system. J. Geophys. Res.,

109, D07S90, https://doi.org/10.1029/2003JD003823.

Mo, K. C., and D. P. Lettenmaier, 2016: Precipitation deficit flash

droughts over the United States. J. Hydrometeor., 17, 1169–

1184, https://doi.org/10.1175/JHM-D-15-0158.1.

Mueller, B., and S. I. Seneviratne, 2012: Hot days induced by pre-

cipitation deficits at the global scale.Proc. Natl. Acad. Sci. USA,

109, 12 398–12 403, https://doi.org/10.1073/pnas.1204330109.

Noh, H., A. E. Ghouch, and T. Bouezmarni, 2013: Copula-based

regression estimation and inference. J. Amer. Stat. Assoc., 108,

676–688, https://doi.org/10.1080/01621459.2013.783842.

Palmer, W. C., 1965: Meteorological drought. U.S. Weather

Bureau Research Paper 45, 58 pp., http://www.ncdc.noaa.gov/

temp-and-precip/drought/docs/palmer.pdf.

Pham, M. T., H. Vernieuwe, B. De Baets, P. Willems, and

N. Verhoest, 2016: Stochastic simulation of precipitation-

consistent daily reference evapotranspiration using vine cop-

ulas. Stochastic Environ. Res. Risk Assess., 30, 2197–2214,

https://doi.org/10.1007/s00477-015-1181-7.

Porporato, A., and P. D’Odorico, 2004: Phase transitions driven by

state-dependent Poisson noise. Phys. Rev. Lett., 92, 110601,

https://doi.org/10.1103/PhysRevLett.92.110601.

Rebel, K. T., R. A. M. de Jeu, P. Ciais, N. Viovy, S. L. Piao,

G. Kiely, and A. J. Dolman, 2012: A global analysis of soil

moisture derived from satellite observations and a land

surface model. Hydrol. Earth Syst. Sci., 16, 833–847, https://

doi.org/10.5194/hess-16-833-2012.

Rebetez, M., O. Dupont, and M. Giroud, 2009: An analysis of the

July 2006 heatwave extent in Europe compared to the record

year of 2003. Theor. Appl. Climatol., 95, 1–7, https://doi.org/

10.1007/s00704-007-0370-9.

Ruffault, J., V. Moron, R. Trigo, and T. Curt, 2016: Objective

identification ofmultiple large fire climatologies:An application

1270 JOURNAL OF HYDROMETEOROLOGY VOLUME 19

Unauthenticated | Downloaded 06/11/21 07:23 AM UTC

https://doi.org/10.1002/2016GL071921
https://doi.org/10.1016/j.jmva.2015.01.011
https://doi.org/10.1016/j.jmva.2015.01.011
https://CRAN.R-project.org/package=CDVineCopulaConditional
https://CRAN.R-project.org/package=CDVineCopulaConditional
https://doi.org/10.5194/hess-21-2701-2017
https://doi.org/10.5194/hess-21-2701-2017
https://doi.org/10.1038/nature03972
https://doi.org/10.1002/wcc.81
https://doi.org/10.1002/wcc.81
https://doi.org/10.1038/nclimate1633
https://doi.org/10.1038/nclimate1633
https://doi.org/10.1175/JHM-386.1
https://doi.org/10.1029/2006GL027972
https://CRAN.R-project.org/package=ks
https://arxiv.org/abs/1704.00953
https://doi.org/10.1002/2014GL060949
https://doi.org/10.1002/2014GL060949
https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(347)
https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(347)
https://doi.org/10.1088/1748-9326/9/8/084008
https://doi.org/10.1038/ngeo1090
https://doi.org/10.1038/ngeo1090
https://doi.org/10.1088/1748-9326/10/10/104003
https://doi.org/10.1038/ngeo1032
https://doi.org/10.1016/j.csda.2016.12.009
https://doi.org/10.1016/j.csda.2016.12.009
https://doi.org/10.1142/9789812703378_0022
https://doi.org/10.1142/9789812703378_0022
https://doi.org/10.1002/wcc.252
https://doi.org/10.1029/2010GL042764
https://doi.org/10.1002/2016GL072027
https://doi.org/10.1002/2016GL070017
https://doi.org/10.1073/pnas.1422945112
https://doi.org/10.1073/pnas.1422945112
https://doi.org/10.1038/ngeo2141
https://doi.org/10.1038/ngeo2141
https://doi.org/10.1029/2003JD003823
https://doi.org/10.1175/JHM-D-15-0158.1
https://doi.org/10.1073/pnas.1204330109
https://doi.org/10.1080/01621459.2013.783842
http://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf
http://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf
https://doi.org/10.1007/s00477-015-1181-7
https://doi.org/10.1103/PhysRevLett.92.110601
https://doi.org/10.5194/hess-16-833-2012
https://doi.org/10.5194/hess-16-833-2012
https://doi.org/10.1007/s00704-007-0370-9
https://doi.org/10.1007/s00704-007-0370-9


to a Mediterranean ecosystem. Environ. Res. Lett., 11, 075006,

https://doi.org/10.1088/1748-9326/11/7/075006.

Salvadori, G., C. DeMichele, N. T. Kottegoda, andR. Rosso, 2007:

Extremes in Nature: An Approach Using Copulas. Water Sci-

ence and Technology Library, Vol. 56. Springer, 292 pp.

Schepsmeier, U., J. Stoeber, E. C. Brechmann, B. Graeler,

T. Nagler, and T. Erhardt, 2017: VineCopula: Statistical in-

ference of vine copulas. R Package, version 2.1.1, http://

CRAN.R-project.org/package5VineCopula.

Seneviratne, S. I., 2012: Climate science: Historical drought trends

revisited. Nature, 491, 338–339, https://doi.org/10.1038/491338a.

——, D. Lthi, M. Litschi, and C. Schr, 2006: Land–atmosphere

coupling and climate change in Europe. Nature, 443, 205–209,

https://doi.org/10.1038/nature05095.

——, T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner,

B. Orlowsky, andA. J. Teuling, 2010: Investigating soil moisture–

climate interactions in a changing climate: A review. Earth Sci.

Rev., 99, 125–161, https://doi.org/10.1016/j.earscirev.2010.02.004.

——, and Coauthors, 2012a: Changes in climate extremes and their

impacts on the natural physical environment. Managing the

Risks of Extreme Events and Disasters to Advance Climate

Change Adaptation, C. B. Field et al., Eds., Cambridge Uni-

versity Press, 109–230.

——, andCoauthors, 2012b: Swiss prealpineRietholzbach research

catchment and lysimeter: 32 year time series and 2003 drought

event.Water Resour. Res., 48, W06526, https://doi.org/10.1029/

2011WR011749.

Serinaldi, F., B. Bonaccorso, A. Cancelliere, and S. Grimaldi, 2009:

Probabilistic characterization of drought properties through

copulas. Phys. Chem. Earth, 34, 596–605, https://doi.org/

10.1016/j.pce.2008.09.004.

Sheffield, J., E. F.Wood, andM. L. Roderick, 2012: Little change in

global drought over the past 60 years. Nature, 491, 435–438,

https://doi.org/10.1038/nature11575.

——, and Coauthors, 2014: A drought monitoring and forecasting

system for sub-Sahara African water resources and food se-

curity. Bull. Amer. Meteor. Soc., 95, 861–882, https://doi.org/
10.1175/BAMS-D-12-00124.1.

Sklar, M., 1959: Fonctions de repartition an dimensions et leurs

marges. Publ. Inst. Stat. Univ. Paris, 8, 229–231.

Stagge, J. H., I. Kohn, L. M. Tallaksen, and K. Stahl, 2015: Modeling

drought impact occurrence based on meteorological drought

indices inEurope. J.Hydrol., 530, 37–50, https://doi.org/10.1016/

j.jhydrol.2015.09.039.

——, D. G. Kingston, L. M. Tallaksen, and D. M. Hannah, 2017: Ob-

served drought indices show increasing divergence across Europe.

Sci. Rep., 7, 14045, https://doi.org/10.1038/s41598-017-14283-2.

Teuling, A. J., and Coauthors, 2013: Evapotranspiration amplifies

European summer drought. Geophys. Res. Lett., 40, 2071–
2075, https://doi.org/10.1002/grl.50495.

Törnros, T., and L. Menzel, 2014: Addressing drought conditions

under current and future climates in the Jordan River region.

Hydrol. Earth Syst. Sci., 18, 305–318, https://doi.org/10.5194/

hess-18-305-2014.

Trenberth, K. E., A. Dai, G. d. Schrier, P. D. Jones, J. Barichivich,

K.R. Briffa, and J. Sheffield, 2014: Global warming and changes

in drought. Nat. Climate Change, 4, 17–22, https://doi.org/

10.1038/nclimate2067.

Tsakiris, G., and H. Vangelis, 2005: Establishing a drought index

incorporating evapotranspiration. Eur. Water, 9, 3–11, https://
www.ewra.net/ew/pdf/EW_2005_9-10_01.pdf.

Vautard, R., and Coauthors, 2007: Summertime European heat

and drought waves induced by wintertime Mediterranean

rainfall deficit.Geophys. Res. Lett., 34, L07711, https://doi.org/
10.1029/2006GL028001.

Vicente-Serrano, S.M., S. Beguera, and J. I. López-Moreno, 2010: A

multiscalar drought index sensitive to global warming: The

standardized precipitation evapotranspiration index. J. Climate,

23, 1696–1718, https://doi.org/10.1175/2009JCLI2909.1.

——, and Coauthors, 2012: Performance of drought indices for

ecological, agricultural, and hydrological applications. Earth

Interact., 16, 1–27, https://doi.org/10.1175/2012EI000434.1.

——, andCoauthors, 2014: Evidence of increasing drought severity

caused by temperature rise in southern Europe. Environ. Res.

Lett., 9, 044001, https://doi.org/10.1088/1748-9326/9/4/044001.
Wahl, T., S. Jain, J. Bender, S. D. Meyers, and M. E. Luther, 2015:

Increasing risk of compound flooding from storm surge and

rainfall for major US cities. Nat. Climate Change, 5, 1093–
1097, https://doi.org/10.1038/nclimate2736.

Wand, M. P., and M. C. Jones, 1994: Multivariate plug-in band-

width selection. Comput. Stat., 9 (2), 97–116.

Whan, K., J. Zscheischler, R. Orth, M. Shongwe, M. Rahimi, E. O.

Asare, and S. I. Seneviratne, 2015: Impact of soil moisture on

extreme maximum temperatures in Europe. Wea. Climatre

Extremes, 9, 57–67, https://doi.org/10.1016/j.wace.2015.05.001.

Zarch, M. A. A., B. Sivakumar, and A. Sharma, 2015: Droughts in a

warming climate:Aglobal assessment of standardizedprecipitation

index (SPI) and reconnaissance drought index (RDI). J. Hydrol.,

526, 183–195, https://doi.org/10.1016/j.jhydrol.2014.09.071.
Zotarelli, L., M. D. Dukes, C. C. Romero, K. W. Migliaccio, and

K. T. Morgan, 2010: Step by step calculation of the Penman-

Monteith evapotranspiration (FAO-56 method). IFAS Publ.

AE459, 10 pp., http://edis.ifas.ufl.edu/ae459.

Zscheischler, J., and S. I. Seneviratne, 2017: Dependence of drivers

affects risks associated with compound events. Sci. Adv., 3,

e1700263, https://doi.org/10.1126/sciadv.1700263.

——, and Coauthors, 2014: Impact of large-scale climate extremes

on biospheric carbon fluxes: An intercomparison based on

MsTMIP data. Global Biogeochem. Cycles, 28, 585–600,

https://doi.org/10.1002/2014GB004826.

——, R. Orth, and S. I. Seneviratne, 2017: Bivariate return periods

of temperature and precipitation explain a large fraction of

European crop yields. Biogeosciences, 14, 3309–3320, https://

doi.org/10.5194/bg-2017-21.

AUGUST 2018 MANN ING ET AL . 1271

Unauthenticated | Downloaded 06/11/21 07:23 AM UTC

https://doi.org/10.1088/1748-9326/11/7/075006
http://CRAN.R-project.org/package=VineCopula
http://CRAN.R-project.org/package=VineCopula
https://doi.org/10.1038/491338a
https://doi.org/10.1038/nature05095
https://doi.org/10.1016/j.earscirev.2010.02.004
https://doi.org/10.1029/2011WR011749
https://doi.org/10.1029/2011WR011749
https://doi.org/10.1016/j.pce.2008.09.004
https://doi.org/10.1016/j.pce.2008.09.004
https://doi.org/10.1038/nature11575
https://doi.org/10.1175/BAMS-D-12-00124.1
https://doi.org/10.1175/BAMS-D-12-00124.1
https://doi.org/10.1016/j.jhydrol.2015.09.039
https://doi.org/10.1016/j.jhydrol.2015.09.039
https://doi.org/10.1038/s41598-017-14283-2
https://doi.org/10.1002/grl.50495
https://doi.org/10.5194/hess-18-305-2014
https://doi.org/10.5194/hess-18-305-2014
https://doi.org/10.1038/nclimate2067
https://doi.org/10.1038/nclimate2067
https://www.ewra.net/ew/pdf/EW_2005_9-10_01.pdf
https://www.ewra.net/ew/pdf/EW_2005_9-10_01.pdf
https://doi.org/10.1029/2006GL028001
https://doi.org/10.1029/2006GL028001
https://doi.org/10.1175/2009JCLI2909.1
https://doi.org/10.1175/2012EI000434.1
https://doi.org/10.1088/1748-9326/9/4/044001
https://doi.org/10.1038/nclimate2736
https://doi.org/10.1016/j.wace.2015.05.001
https://doi.org/10.1016/j.jhydrol.2014.09.071
http://edis.ifas.ufl.edu/ae459
https://doi.org/10.1126/sciadv.1700263
https://doi.org/10.1002/2014GB004826
https://doi.org/10.5194/bg-2017-21
https://doi.org/10.5194/bg-2017-21

