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Recent years have seen a fast growth in the number of applications of Machine

Learning algorithms from Computer Science to Robotics. Nevertheless, while most such

attempts were successful in maximizing robot performance after a long learning phase,
to our knowledge none of them explicitly takes into account the budget in the algorithm

evaluation: e.g. budget limitation on the learning duration or on the maximum number

of possible actions by the robot. In this paper we introduce an algorithm for robot
spatial localization based on image classification using a sequential budgeted learning

framework. This aims to allow the learning of policies under an explicit budget. In this
case our model uses a constraint on the number of actions that can be used by the

robot. Our approach enables to reduce the problem to a classification task under budget
constraint. We apply this algorithm to a localization problem in a simulated environment.
We compare it first to simple neural networks for the classification part and second to
different techniques of policy selection. The results show that the model can effectively

learn an efficient active sensing policy (i.e. alternating between sensor measurement and
movement to get additional information in different positions) in order to optimize its

localization performance under each tested fixed budget. We also show that with this
algorithm the simulated robot can transfer the learned policy as well as knowledge about
which budget gives the best performance/budget ratio in a given environment to other
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environments with similar properties. We finally test the algorithm with real navigation
data acquired in an indoor environment with the PR2 robot. Altogether, these results

suggest a promising framework for enabling budgeted localization in robots and avoiding

to make robots relearn everything from scratch in each new environment.

1. Introduction

Spatial localization is one of the most challenging problems in Robotics. The main

problem consists in taking a spatial decision in the environment in order to localize

itself on a map using the different sensors that are available to the robot. The

processing of these data is generally difficult because of their multimodality. The

problem is made even more difficult by the mutual dependency of the localization

and mapping steps: in order to localize itself, the robot needs to recognize cues

and features which characterize a particular place and which have previously been

perceived and stored. Conversely, to build a reliable map and correctly situate

features within it, the robot needs to be able to localize itself relative to these

features [10].

While several mapless robot navigation solutions exist [4], the problem of robotic

localization has been classically and widely studied using the Self Localization and

Mapping framework (SLAM, [18]; [21]; [17]), which proposes to simultaneously real-

ize the localization and mapping steps. While SLAM methods may have difficulties

during long navigation experiments – facing the loop closure problem where the

robot needs to reset its estimations when recognizing a previously visited place, or

having difficulties satisfying the hypothesis of a static world on which SLAM is an-

chored (see [2] for discussion) –, they can produce robust and efficient localization

when no limit is set on the amount of data and sensors which can be processed by

the robot. However, while SLAM usually works with multiple sensors (lasers, RGB

or RGBD cameras, whiskers, etc.), to our knowledge no method currently exists to

autonomously learn which sensor is sufficient to localize in tasks where a limited

budget does not permit to use all sensors ad libitum. Moreover, SLAM is not con-

cerned with action selection, and thus cannot tell how information gathering for

the localization process should be integrated within the global policy of the robot

to maximize or minimize a given objective function.

Machine Learning research has recently come up with formal solutions to take

into account an explicit budget for image recognition or data classification [24, 9, 6].

In particular, specific algorithms called Sequential Budgeted Learning algorithms

are used in order to learn sequences and representations from limited amounts of

data, which offers the possibility of adding an explicit budget to limit the model.

One of the goals of these approaches is to limit the number of costly accesses to

data to the minimum required for successful classification. One way to do that is to

incorporate the decision to access or not to access data in the policy of the agent,

so that it learns to timely access data among other possible actions.

The idea of data acquisition considered as an action is also at the core of the

active sensing field, mainly developed in the 2000s. However, these techniques are
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limited by the fact that the systems learn action sequences after having already

learned the task specificities, which leads to learn the task twice (task represen-

tation first and actions as a second step). As shown in [16], the main technique

used in the active sensing field is based on maximizing a weighted sum of rewards

associated to a sequence of actions executed by a robot and minimizing the cost of

each choses action. This approach is close to the one we describe in this paper in

the way that we try to minimize an error function associated to a learned action

sequence by constraining the model with an explicit budget instead of punishing

each chosen action. Nevertheless, the sequential budgeted learning framework offers

the advantage of simultaneously learning task representations and action selection.

In this paper, we propose a model that makes a robot use as minimal data as

possible to learn representations from the environment and to learn an optimal pol-

icy in order to accomplish a localization task. Hence, our problem is defined within

a mapless navigation framework: the robot uses only the perceptions obtained via

its sensors to take a spatial decision and is not based on an explicit map. We more-

over show in simulation that this approach allows the robot to transfer the learned

policy as well as knowledge about which budget gives the best performance/budget

ratio in a given environment to other environments with similar properties. Hence

the robot can generalize learned active sensing policies to new but similar environ-

ments, and is only required to learn the new classification task (i.e. localization)

specific to each environment.

The paper is organized as following: the next section presents and discusses

related work. Then we describe the model, the learning algorithm and the experi-

mental setup. Section 4 presents numerical experiments in simulation. Then Section

5 presents an application of the model to real navigation data collected within an

indoor environment with the PR2 robot. The manuscript finishes by discussing the

results and concluding.

2. Related Work

The mapless navigation problem has been widely investigated since the late 90s.

Different techniques are used and can be divided into three main subsets: optical

flow, appearance or object recognition based navigation [7]. The first category re-

sumes the techniques that are based on the motion of all the surface elements from

the visual world. The robot navigates by using the velocity of the different images

[3, 8, 22, 13, 14]. The second category describes the techniques that rely on mem-

orizing the working environment: the idea is that in a way or another the robot

stores images of the environment and then compares the received images in an on-

line phase with the stored memory ([5]). The last category is based on objects and

landmarks recognition in the environment ([19]).

Our approach belongs to the second category: appearance-based navigation, usu-

ally consisting in two different phases. First, a training phase where the robot learns

the places in the environment from the recorded images. Second, a navigation phase



July 21, 2017 14:42 WSPC/INSTRUCTION FILE main

where the robot has to recognize the places by comparing them to the images stored

during the training phase. In this context, [15] performs indoor route construction

by comparing the current image with the training data set, simply calculating a

distance between them. In [11] the robot creates a sequence of images by storing

the motion associated to each image. [25] uses a histogram representation for the

images encountered in a training phase and during the inference they compare the

new images to the training samples with a quadratic distance to localize the robot

in its environment. Our case is slightly different from these previous proposals since,

in the training phase, we do not manually extract informations that are specifically

describing the images, but directly use the image as is (in the simulated case).

The machine learning field has developed new ways of analyzing data by building

models that learn autonomously how to interpret, describe and treat them. The

recent deep learning state-of-the-art has many promising results on how data can

be processed in order to make agents learn representations, policies or both. More

specifically, algorithms in the budgeted learning field have been studied in order to

make agents learn from limited amounts of data. In [24] the authors have proposed

a sequential architecture, where the model learns representations at each time step

using sequentially provided data, but the available amount of data is unlimited.

A budgeted version of this model was recently proposed in [12]. It is specified

in both articles that data are given between each transformation step. A similar

architecture has been presented in [6], where the authors used an explicit budget

(that stops the data acquisition after a certain number of steps), however the model

does not acquire data at each time step but rather treats it as a classical supervised

classification task.

Our model proposes a version where we mix both approaches described above.

The model uses an explicit budget and observations are returned given the action

that the agent performs.

3. Model

3.1. Principles

We propose a model applied to a localization task, which aims at learning which

action to choose in a set of possible actions (movement or acquisition of new infor-

mation) at each time step. The model is restricted by a budget B that limits the

number of actions allowed in order to complete the task in a given environment.

We aim at learning to alternate between movements and data acquisition in order

to collect relevant information and thus to localize efficiently. Our algorithm relies

on the Deep Reinforcement Learning paradigm i.e learning a neural network-based

policy by using reinforcement learning techniques, more precisely by using policy

gradient techniques [23], where the model will reinforce the sequence of actions that

allowed it to successfully complete the task. However in our case, the policy learning

is not driven by a reward signal but by a defined loss function ∆ that computes the

quality of the system, resulting in a model different than classical RL approaches.
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Fig. 1. Scheme of the model architecture. zt is a latent state of the model. From zt an action at
is sampled. The sampled action returns an observation ot that is used to compute the next zt+1

that is an aggregation of zt and ot. At the end of the given budget B and after computing the last

zB the model predicts the equivalent ŷ.

Model Description

Let us denote X the set of all the possible positions of the robot in a particular

given environment. At the beginning of each episode, when t = 0, the robot will be

at a particular unknown position denoted x, Then, by sequentially choosing actions

at at each time step t in the set of all possible actions A, the robot will either

gather a new information by using one of its sensor, or move in the environment.

At the end of the process, the robot will predict its position y. The quality of the

prediction will be measured through a differentiable loss function ∆(x, y) ∈ R+.

Let us denote ot the observation acquired by choosing action at such that ot ∈
Rnat , nat being the size of the observation space corresponding to action at i.e

the size of the acquired information if at is a sensor acquisition action, or 0 if

at corresponds to a robot movement. Note that this assumption is different from

the classical assumption of Reinforcement Learning, where an agent receives at

each time step an observation from the same observation space. The value of ot is

defined by the unknown probability P (ot|at, at−1, ..., a1, x) which depends on the

environment. We will denote π(at|at−1, ot−1, ..., a1, o1) the policy of the robot, i.e

the probability of choosing action at knowing the previously acquired information

ot−1, .., o1 and the previously chosen actions at−1, ..., a1. The final decision function

which will predict the robot position w.r.t acquired information will be denoted

f(at, ot, at−1, ot−1, ..., a1, o1, x).

Learning Algorithm

Let us denote (x1, ..., xm) the set of training positions i.e. the m robot positions

that will be used during training. Let us denote B the maximum number of actions
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allowed to the robota. The learning objective is to find both the policy π∗ and the

prediction function f∗ that minimize the prediction error:

π∗, f∗ = arg min
π,f

L(π, f) (1)

where

L(π, f) = Eπ[∆(f(aB , oB , ..., a1, o1, x), y)] (2)

where the trajectories aB , oB , ..., a1, o1 are sampled following π. The minimization

of this objective will be made by using policy gradient techniques proposed in [6].

Let us denote T a trajectory, where T = aB , oB , ..., a1, o1, the previous objective

function can be rewritten as:

L(π, f) =

∫
(P (T |x)∆(f(x, T ), y)dTdxdy (3)

and its gradient can be written as:

∇π,fL(π, f) =

∫
∇π,f (P (T |x)∆(f(x, T ), y))P (x, y)dTdxdy (4)

We can expand this gradient such as:

∇γ,θL(γ, θ) =

∫
∇γ,θ(P (T |x))∆(f(x, T ), y))P (x, y)dTdxdy (5)

+

∫
P (T |x)∇γ,θ∆(f(x, T ), y))P (x, y)dTdxdy (6)

=

∫
P (T |x)

P (T |x)
∇γ,θ(P (T |x))∆(f(x, T ), y))P (x, y)dTdxdy (7)

+

∫
P (T |x)∇γ,θ∆(f(x, T ), y))P (x, y)dTdxdy (8)

=

∫
P (T |x)∇γ,θ(logP (T |x))∆(f(x, T ), y))P (x, y)dTdxdy (9)

+

∫
P (T |x)∇γ,θ∆(f(x, T ), y))P (x, y)dTdxdy (10)

This gradient can be estimated by using Monte Carlo sampling techniques over

the set of training positions where M is the number of trajectories (total of action

sequences):

∇π,fL(π, f) ≈ 1

n

n∑
i=1

[
1

M

M∑
k=1

∇π(logP (T |xi))∆(f(xi, T ), yi) +∇f∆(f(xi, T ), yi)

]
(11)

aWe consider that B is fixed, the extension of this model to variable number of steps being the

object of a future research.



July 21, 2017 14:42 WSPC/INSTRUCTION FILE main

The gradient is then composed by two terms. The first one aims at correcting

trajectories by penalizing the trajectories with high loss and the second one is the

gradient for the prediction part. Note that:

∇ logP (T |xi) = ∇
B∑
t=1

logP (at|at−1, ot−1, ..., a1, o1) (12)

This estimation of the gradient can have a high variance that has been corrected

by replacing ∆(f(xi, T ), yi) with ∆(f(xi, T ), yi)−b where b = Ex,T,y [∆(f(x, T ), y)]

that can be estimated from the training set.

Recurrent Neural Network-based Policy

From these definitions we have: (i) to model π(at, at−1, ot−1, a1, o1) and (ii) to model

f(at, ot, at−1, ot−1, a1, o1). In these two cases, we have to aggregate the information

gathered by the robot i.e the ots. This will be handled by using a classical recurrent

neural network mechanism: at each time step, the current trajectory will be captured

through a latent vector zt in a latent space RN where N is the dimension of this

space.

We denote ha(z, o) : RN × Rna → RN the aggregation function associated with

action a and which computes the latent vector zt+1 from zt using the information ot
collected at time t by choosing action a. Moreover, we denote g(a, zt) the function

that computes the probability of each possible action from zt. Given these two

functions, the inference algorithm can be written as Algorithm 1 . In this algorithm,

at each time step t, g(a|zt) is computed from the latent state zt and the action at is

sampled from g(a|zt). An observation ot associated to at is then returned that will

be used to compute the next latent state zt+1 such that:

ha(zt, ot) = tanh(Wzzt +Waot) (13)

Where Wz and Wa are matrices associated to z and o.

The resulting gradient can be computed by using back-propagation techniquesb.

4. Numerical experiments

We tested the capacity of this model in two different setups: the first in a simplified

simulated environment, and the second on data recorded with a PR2 robot navi-

gating indoor within a local experimental room. We ran three different experiments

in total: (1) the first experiment in simulation serves as proof-of-concept that the

algorithm enables an agent to autonomously learn a policy (e.g. turn, check camera

information, check laser information) within a fixed budget (that limits the number

bThe source code in Torch7 can be found at: https://github.com/nassim5/torch_ws/tree/

master/recurrentSequentialActionSelection

https://github.com/nassim5/torch_ws/tree/master/recurrentSequentialActionSelection
https://github.com/nassim5/torch_ws/tree/master/recurrentSequentialActionSelection
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Algorithm 1 Inference

1: for t← 1, B do

2: p = g(a/zt) . Compute the action distribution

3: Apply action at
4: Acquire observation ot
5: zt+1 ← hat(zt, ot) . Compute next latent vector

6: end for

7: ŷ ← f(zB) . Prediction

of allowed actions) while providing the agent with sufficient information to localize

itself within the environment. Preliminary results of this first experiment have been

presented at the IEEE Robotic Computing 2017 Conference [1]. The second exper-

iment is performed again in simulation in order to test the ability of the algorithm

to transfer acquired knowledge from an environment to another. The idea is that

the algorithm can learn a general active sensing policy for different families of envi-

ronments (e.g. large vs. narrow environment, or environments with a small vs large

number of obstacles) and then reuse this policy for other environments from the

same family while only learning the classification (i.e. localization) task specifically

in each new environment. Finally, the third experiment is performed with real data

collected with the PR2 robot in order to test offline the ability of the algorithm to

autonomously learn to neglect unreliable sensors and to exploit reliable ones in a

given environment.

Fig. 2. Simulated data. The black square represents the robot. The dotted lines represent the
range of the camera. The plain colored lines represent randomly placed walls. The horizontal and

vertical lines represents the spatial discretization.

4.1. Simulated case

We first validate the algorithm in a set of experiments using a simulated 2D envi-

ronment. This environment corresponds to a 50× 50 grid where each position can

be empty or occupied by a colored wall. We consider an agent moving within this

environment with 2 possible move actions (turn left, turn right), and one acquisi-



July 21, 2017 14:42 WSPC/INSTRUCTION FILE main

Budget

Data acquisition 1 3 5 7

Image classification 44.4 52.8 56.7 58.1

Forced Policy
Recurrent 58.8 70.2 75.2 76.1

Non Recurrent 55.8 60.8 61.2 65.3

Free Policy
Recurrent 43.6 71.6 75.2 79.2

Non Recurrent 46.8 69.4 70.4 73.2

Table 1. Results for simulated experiment. The results represent the performance on test set (in

percentage).

tion action where the robot can acquire a 1D image through a virtual camera. This

image corresponds to a partial observation of what is in front of the robot. The goal

of the agent is to predict its position (i.e. to localize itself within the environment)

using a limited number B of actions. Hence, this corresponds to an active sensing

task where an explicit budget is taken into account for the classification.

An example of such a maze is given in Figure 2. Note that the position prediction

problem has been casted in a 4× 4 classification problem as it is illustrated on the

figure. When at is a movement action, the agent receives an empty observation ot
while when at is an image acquisition action, the agent receives a vector of values

corresponding to the RGB-pixels in front of the robot. Note that when choosing

to turn right or left, the robot changes its angle by π/4. For the training phase,

we have sampled 5000 training positions (and 2500 validation positions to tune

the parameters of the model) and the quality of the model has been evaluated in

term of accuracy on 2500 different testing positions. A position is characterized by

the coordinates of the robot in the maze and its orientation, sampled in the set of

{0, π/2, π, 3π/2}.
We have compared our approach with 2 different baselines, and for different

values of B:

• The image classification baseline corresponds to a classical classification

model (i.e multilayer perceptron) where 1, 2, 3 or 4 images are acquired by

turning the agent on the left at each time step. The collected images are

then concatenated and given to the classification model

• The Forced policy model is a model where π has been manually chosen

in order to alternate between image acquisition and turn left action. The

resulting trajectory for B = 5 is thus (image, turn, image, turn, image).

• The Learned policy corresponds to the case where the agent can freely

choose which action to apply, and where our model learns the optimal

active sensing policy in parallel to learning the classification task for the

tested environment.

We explored the values of the different parameters with a grid search paradigm:



July 21, 2017 14:42 WSPC/INSTRUCTION FILE main

Budget Run Policy Performance

1

1 Image 46.4

2 Image 45.3

3 Image 43.3

4 Image 42.1

5 Image 41.3

3

1 Image-Right Turn-Image 75.2

2 Image-Right Turn-Image 73.8

3 Image-Right Turn-Image 70.5

4 Image-Left Turn-Image 69.8

5 Image-Right Turn-Image 68.8

5

1 Image-Left Turn-Image-Left Turn-Image 78.8

2 Image-Left Turn-Image-Left Turn-Image 77.2

3 Left Turn-Image-Right Turn-Right Turn-Image 74.8

4 Image-Right Turn-Image-Image-Image 73.7

5 Image-Image-Image-Right Turn- Image 71.6

7

1 Right Turn-Image-Right Turn-Image-Right Turn-Image-Image 80.7

2 Image-Image-Left Turn-Left Turn-Image-Left Turn-Image 80.6

3 Image-Image-Right Turn-Image-Image-Right Turn-Image 79.7

4 Image-Image-Left Turn-Image-Left Turn-Image-Image 79.4

5 Image-Image-Left Turn-Image-Left Turn-Image-Image 75.5

Table 2. Individual performances in a Learned Policy case (in percentage) with the recurrent

model. The table is classified from best performance to worst in respect to each budget with the

equivalent learned policy.

• The learning rate for both the policy learning and the representation learn-

ing: {0.0001, 0.001, 0.01, 0.1}
• Size of latent space z: {10, 50, 100}
• The sensor resolution: {10, 30, 50}

For the Forced policy and the Learned policy, we have explored two variants i.e

recurrent and non recurrent. In the first case, the ha function is reused at every time

step while in the second case, one uses an hta function at each time step resulting

in a model with more parameters to learn. the parameters (size of the latent space,

learning rate, etc...) have been chosen by cross-validation. The results presented in

Table 1 have been averaged over 5 different runs.

First, the quality of the classification model improves when the number of ac-

quired images increases. This confirms that providing more information to the agent

helps him to compute a better localization. Moreover, when using the Forced policy,

the model is able to achieve 75.2% when collecting 3 images (B = 5) and thus

to increase its performance by 16.4 points (corresponding to a 28% increase) w.r.t

using only 1 image. The Learned policy model is able to achieve a 75.2% accuracy
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on the same task showing that the agent has learned a relevant policy and has been

able to discover how to move and when to acquire information. We also note that

the model improves by 31.6 points (a 72% increase) between B = 1 and B = 5 and

only improves it by 4 points from B = 5 to B = 7 (a 5% increase). Note that the

recurrent versions of the two models give a better performance since they need to

estimate a smaller number of parameters than the non-recurrent versions, allowing

a better generalization. In Table 2 we see that for B = 1 and B = 3 the model

reaches the best policy 5 times out of 5 simulated runs. In the case of B = 1, the

model always asks for an image in order to examine the surroundings. In the case

of B = 3, the agent learns to alternate between the data acquisition and the ex-

ploration actions. However, in the case of B = 5 and B = 7 we see that the agent

tends to take redundant actions by repeating the data acquisition step (without

moving, thus aquiring twice the same image) and/or actions related to exploration

(not acquiring images after movements).

This first set of results shows that the model can learn an efficient policy for

localization provided that a sufficient budget is available. Moreover, tests with in-

creasing budgets show that the model tends to converge to a maximum performance

of classification in a given environment, as increasing from B = 5 to B = 7 does

not improve it much. This suggests that finding a compromise between the per-

formance and the budget may be useful in order to find an optimal budget by

environment. Furthermore, the model could be useful for real-world robotics if it

could learn a policy and an optimal budget transferable to other environments with

similar properties (e.g. similar size, similar number of obstacles), rather than having

to exhaustively relearn a policy under different budgets in each new environment

experienced by a robot. This is what we explore in the next section.

4.2. Transfer Learning in the simulated case

In the previous experiments, a virtual agent controlled with our algorithm had to

learn both an efficient active sensing policy (e.g. acquire image with camera, then

turn left, then acquire another image with camera, etc.) and a classification task

(i.e. localize itself) in a simulated environment with obstacles. Moreover, we have

tested this process exhaustively for different budgets. However, a more efficient and

generalizable process would consist in having the agent learn a single general active

sensing policy for a whole family of environments with similar properties (i.e. similar

sizes, similar number of obstacles), and only learn the specific classification task for

each environment. Moreover, our approach could be promising for robotics if we

could automatically learn the optimal budget – optimal in the sense of maximizing

a certain cost-benefit function – for a family of environments without having to

exhaustively explore all possible budgets when experiencing a new environment

from the same family.

In order to test the ability of the model to learn an effective and general active

sensing policy, we developed here an experimental protocol where an agent learns a
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Fig. 3. Example of different mazes used for the transfer learning task. Maze A and Maze B are
the learning environments and Maze A’ and Maze B’ are the testing environments.

policy in an environmentA, then transfers the learned policy in an environmentA′ of

same family, i.e. same size than A and same number of obstacles however rearranged.

The model learns the policy and the classification task in the environment A but

only the classification task in the environment A′, while re-using the policy learned

in A.

We created four different mazes in order to test this protocol: A and A′ of size

50× 50 px, B and B′ of size 20× 20 px (see figure 3). A and B are the ”Learning

environments”, A′ and B′ are the ”Testing environments”. The actual protocol is

equivalent to applying a ”free policy” learning in the learning environments and a

”forced policy” learning in the testing environments, with the best policy learned

in the previous environments.

Environment A is more difficult to learn than B (compare the first two rows of

table 3), the policies learned in the learning environments give good results, when

applied in the testing ones (table 3, third and fifth rows). This suggests that the

model learns policies that are very efficient and can be transfered to other environ-

ments without re-learning the policies all over again at each environment. Moreover

we tested the ability of the learned policy to be validated in cross environments i.e.

that the policies achieved in the learning environment A and B have been respec-

tively transfered to the testing environments B′ and A′. When the policy learned
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Budget

Type Env 1 3 5 7

Train Env (A) 46.4 75.2 78.8 80.7

Train Env (B) 81.5 89.5 93.6 96.3

Train Env (A) → Test Env (A′) 51.6 56 69.1 75

Train Env (B) → Test Env (A′) 56.4 57.5 61.7 66.6

Train Env (B) → Test Env (B′) 72.2 75.7 90.7 96.4

Train Env (A) → Test Env (B′) 74.6 81.4 89.2 95.2

Table 3. Transfer learning performances (in percentages) between environments of same or different

nature.

from the environment A (50 × 50px) is transfered to B′ (20 × 20px), the perfor-

mances are similar to those obtained after training in B, which is not the case in

the reverse situation, where performance at high budgets (5 or 7) are clearly lower

(table 3, fourth and sixth rows). This is due to the fact that in environments more

difficult to learn, like A, the model is forced to learn more efficient policies, which is

not the case in simpler environments B, where the model learns redundant policies

that are efficient enough. This suggests that having a high budget in a simple envi-

ronment may lead to policies that do not bring significantly more information than

policies corresponding to smaller budgets. Thus under strong budget constraint,

one may want to find the smallest possible budget bringing enough information for

classification. We will define this as an optimal budget hereafter, in the sense that

such a budget maximizes a certain cost-benefit function.

In order to quantify how much each tested increase in budget contributed to a

more or less important improvement of the classification performance, we define a

function RG which computes the relative gain in performance from using a budget

B = i compared to the preceding one (B = i− 2) according to:

RG(i) =
(Perf(B = i)− Perf(B = i− 2))

(1− Perf(B = i− 2))
(14)

While the RG function provides us with a quantitative evaluation of the relative

efficiency of learning under different tested budgets, it does not explicitly penalize

high budgets. Alternatively, one may prefer to divide the performance by a certain

function of the budget, so that high budgets are evaluated as relatively less ad-

vantageous than low budgets, unless they really lead to a strong improvement in

classification performance.

The choice of a function which penalizes the model as a function of the budget

is somehow arbitrary. Ideally, we would like a function as general as possible, so

that the human experimenter remains free to either accept high budgets for a given

performance x if the priority is put on maximizing performance, or to reject high

budgets for the same performance x if the priority is put on limiting the budget.
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As proof-of-concept, we thus define the following simple cost-benefit function CB

which computes a compromise between the performance and the budget:

CB(i) =
Perf(B = i)

n
√

(B = i)
(15)

where n is a parameter (n ∈ N+) determining the budget pressure. The higher

n, the more one is ready to accept a higher budget for a small improvement of

performance.

Figure 4 illustrates the results obtained when applying these two criteria with a

budget pressure parameter n = 3 on the data simulated in the training environments

A and B: the best cost-benefit ratio and relative gain both correspond to a policy

with a budget of 3 in large environments (A) and with a budget of 1 in smaller (B).

This can be used as a criterion to decide a priori which budget is the most useful

in environments of same nature without re-learning the task from the beginning.

To summarize, in the second simulation experiment we have studied how dif-

ferent types of information could be transferred from one environment to another.

We have found that an active sensing policy learned in an environment from a size

family (A or B) could be transferred to another environment from the same size

family (here A′ and B′ respectively). Moreover, we found that a policy learned in

a large environment could be successfully transferred to a smaller one. Finally, we

found that different families of environments have a different optimal budget which

maximizes some cost-benefit function. These properties would enable a navigating

robot to save time by re-using previously learned active policies and optimal budgets

when experiencing new environments recognized as belonging to the same family.

4.3. Real Data case

The experiment to test the model described above has been extended to a real world

data case, where the robot tries to localize itself within a real environment. The

protocol is very similar to the one described in the simulated case.

A PR2 robot (figure 5) has been used for data acquisition. We used the wide

stereo camera available in order to extract the images that will feed the model with

information about the environment.

The problem being kept as a classification one, we needed to create classes for

the model to learn from. For that purpose, the environment has been divided into a

fixed number of 16 ”cells”. Each cell is a square of 4m2 of surface (2m×2m). Within

each cell we randomly selected 40 coordinates, from which data was acquired. At

each coordinate, we acquired a whole panorama of images with the camera (an

image every 45o for a 360o panorama). This leads us to a database of 16 × 40 × 8

images which makes a total of 5120 images where each image is associated to a

given cell (i.e. class), a set of coordinates and an orientation (example images on

figure 6).
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Fig. 4. Cost-Benefit/Relative performance gain: blue lines show the cost-benefit/relative perfor-

mance gain in maze A and green lines in maze B. Thick lines are the Cost-benefit (15) and dotted
lines are the relative performance gain (14).

We ran a grid search algorithm on the same parameters that have been listed

in the section 4.1 for the learning rates and the size of the latent space z.

The extracted images have been preprocessed with an already learned Convo-

lutional Neural Network (CNN) developed in [20] called OverFeat, which provides

image representations as vectors of 4096 dimensions. This preprocessing is used to

generate meaningful representations that will be used as inputs for the model.

We compared the three different data acquisition methods as done in the simu-

lated case (4.1) i.e. concatenation of images, forced policy and free policy.

The conclusions that have been drawn from the simulated protocol are still valid

in this case (table 4). The bigger the budget, the better the performance. However,

the average performance is not as satisfying as the performances observed in the

simulated case: this is due to the fact that the model takes time to converge to

the policies that alternate between data acquisition and exploration actions. This

is due to several factors: the first one is the high dimensionality of the data, where

an image is represented with a vector of 4096 features. This problem of dimension-

ality affects the convergence of the model. For example, in the case of B = 3, the
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Fig. 5. The PR2 robot, used for data extraction in a real-world indoor environment.

Budget

Data acquisition 1 3 5

Image classification 49 52.2 53

Forced Policy Recurrent 42 43 44.2

Free Policy Recurrent 43 46 47

Table 4. Results for real case experiment. The results represent the performance on test set (in
percentage).

model converges sometimes to a policy of {Image, Image, Image}, which is due

to the reach of a local minimum that is hard to overcome with data of such large

dimensions and a sample of data as small as 2560 training positions. Second, we

faced a problem of over fitting, where in the training phase we observe high scores
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Fig. 6. Examples of data extracted with the wide stereo camera of the PR2 robot.

that can reach 99%. This is either due to the lack of data or to the fact that the

image representations obtained with the OverFeat CNN are not accurate enough

for these data. However, in Table 4 the performances in the free policy protocol

are as high as the ones obtained in the forced policy case which reflects that the

model tends to learn efficient policies, alternating between data acquisition and ex-

ploratory actions, equivalent to the ones forced by the experimenter. The obtained

results reflects the non capacity of the model to generalize on these specific data,

not its capacity at learning efficient policies.

In the following discussion we will sketch a series of possible extensions of the

model that could be attempted in future work to improve its performance with real

data.

5. Conclusion and discussion

We have introduced in this paper a new learning model, where an agent can decide

when to acquire information for a given localization task. It corresponds to an

original problem where the information acquisition has a cost, which is different

to the classical paradigm used in the machine learning field, where information is

gathered at each time step and in the robotic field, where the data are acquired

without limitations. We have proposed a set of experiments in a simulated case

showing the interest of this approach, and preliminary results in a real case, that

require further investigation.

We also developed an experimental protocol that shows in simulation the ca-

pacity of the model to learn active sensing policies that can be generalized to en-

vironments with similar properties (e.g. size, number of obstacles). One particular

interest of this approach for robotics is that it could enable robots to avoid re-
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learning everything from scratch in each new encountered environment. Instead,

the robot can re-use previously learned active sensing policies for localization which

turned out to be efficient in environments with similar properties than the new

environment.

Moreover we have tested explicit cost/benefit functions that can be used a priori

as criteria to choose which budget is the most adequate to which environment in

order to balance between the used budget and the gain in performance that each

budget brings to the model. These functions constitute a simple way for the robot

to generalize knowledge about which budget is sufficient in each type or family of

environments, so that it does not need to re-explore exhaustively all possible budgets

in each new environment. Although these functions are somehow arbitrarily defined,

we have tried to make them as general as possible so that the human experimenter

can parameterize the cost-benefit function depending on whether he is short on

budget or not. Besides, both functions casted a different optimal budget for the

two tested families of environments A and B, which suggests that these different

environments can be robustly distinguished by different budget functions.

Future research for this model aims at testing the capacity of the transfer proto-

col to different navigation environments to which human experimenters classically

assign different labels (e.g. open space, corridor, junction, indoor vs outdoor). An-

other future investigation would be the improvement of the real dataset: as seen

here, the performances of the real data case are less conclusive than the simulated

one. As discussed in section 4.3, this is either due to the lack of data or to the fact

that OverFeat does not return meaningful representations of the images. It would

be useful to train a new CNN that learns new representations only on the images

extracted from the robot by defining different sizes of the representation vector and

to augment the dataset by dividing the images into patches. Another possible way of

improving the performance with the real data could be to dynamically allocate the

budget, so that the robot starts learning with a high budget and progressively tries

to reduce the budget and see whether a smaller budget is acceptable or whether it

dramatically impairs the performance. This somehow would be equivalent to having

the robot learn when to stop acquiring new data and provide a classification. One

potential advantage of this would be that an initialized high budget could allow a

richer policy that the robot would later reduce, avoiding the robot from being stuck

in local optima when starting from a small budget and trying to extend the policy,

as we found in some cases.
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