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Abstract (300 words) 

Electrophysiological signals (electroencephalography, EEG, and magnetoencephalography , 

MEG), as many natural processes, exhibit scale-invariance properties resulting in a power-

law (1/f) spectrum. Interestingly, EEG and MEG differ in their slopes, which could be 

explained by several mechanisms, including non-resistive properties of tissues. Our goal in 

the present study is to estimate the impact of space/frequency structure of source signals as 

a putative mechanism to explain spectral scaling properties of neuroimaging signals.  

We performed simulations based on the summed contribution of cortical patches with 

different sizes (ranging from 0.4 to 104.2 cm2). Small patches were attributed signals of high 

frequencies, whereas large patches were associated with signals of low frequencies, on a  

logarithmic scale. The tested parameters included i) the space/frequency structure (range of 

patch sizes and frequencies) and ii) the amplitude factor c parametrizing the spatial scale 

ratios. We found that the space/frequency structure may cause differences between EEG 

and MEG scale-free spectra that are compatible with real data findings reported in previous 

studies. We also found that below a certain spatial scale, there were no more differences 

between EEG and MEG, suggesting a limit for the resolution of both methods. 

Our work provides an explanation of experimental findings. This does not rule out other 

mechanisms for differences between EEG and MEG, but suggests an important role of 

spatio-temporal structure of neural dynamics. This can help the analysis and interpretation 

of power-law measures in EEG and MEG, and we believe our results can also impact 

computational modeling of brain dynamics, where different local connectivity structures 

could be used at different frequencies. 
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Introduction 

Electrophysiological signals, as many other natural processes, exhibit scale-free 

characteristics expressed as a      spectrum (Freeman 2005). In practice, this implies that a 

spectrum is piece-wise linear in a log-log representation, the slope of which (parameter ϒ) 

could be an important marker of brain state (He 2014). In the case of local field potentials, 

several mechanisms have been proposed in order to explain these scale-free properties, as 

reviewed in (G. Buzsaki et al. 2012) and (Pesaran et al. 2018): low-pass frequency properties 

of dendrites, capacitive properties of tissues, network properties including relationships 

between phase coherence and distance, noise from evenly distributed ion channels across 

dendrites. Other putative mechanisms are more generic, taken from the domain of 

spatiotemporal pattern formation on the cortex (Jirsa 2009). 

An interesting observation is that EEG and MEG have different 1/f profiles, with EEG having a 

steeper slope in a log-log representation. This was shown clearly in  the work of Dehghani 

and colleagues, which interpreted these findings as resulting from non-resistive tissue 

properties (Dehghani et al. 2010). In this study, a theoretical investigation was conducted 

that predicts similar frequency dependence for MEG and EEG within a purely resistive1 

medium, thus suggesting an impact of non-resistive aspects of the volume conductor on the 

difference between slopes. The authors develop there a mathematical framework that 

describes the electric and magnetic field in a linear but not purely resistive framework, 

where the measures at sensor level depend on the frequency. This can explain why EEG and 

MEG are differently filtering brain activity.  

An alternative - and not exclusive - hypothesis would be a dependence between the size of 

coherent cortical active regions and the frequency of oscillatory activity, as proposed in early 

works (Pfurtscheller and Cooper 1975). Indeed, the fact that EEG and MEG have different 

levels of spatial smearing (due to the little influence of skull on magnetic signals (Hämäläinen 

et al. 1993)) could result in different levels of spatial signal cancellation at different 

frequencies (such cancellation effects are illustrated very schematically in Figure 1). Different 

scenarios (resistive, non-resistive, with or without dependence of extent of active tissue on 

frequency) are shown in a schematic manner on Figure 2. 

In order to test this latter hypothesis, within a resistive medium, we conducted a series of 

simulations where the "granularity" of signals at the cortical level (i.e. the size of coherent 

cortical activity) was varied across frequencies, with higher level of spatial coherence for low 

frequencies. Our objective was to show that such spatio-temporal coupling - resulting from 

pure geometrical considerations within a resistive medium – may result in differences in EEG 

and MEG spectra that are consistent with observations done on real signals. 

                                                           
1
 In a purely resistive medium, the propagation of electromagnetic fields only depends on the electrical 

resistance of the different components (here, brain, skull, CSF, scalp…). Importantly, in this case, there is no 
dependency of the observed fields on frequency. In other words, there is no filtering effect of the tissues, in 
contrast with non-resistive tissues where signals may be attenuated at high frequencies. 



 

Materials and methods 

Cortex parcellation and EEG/MEG forward modeling  

We used the geometry for cortex, MEG sensor placement and EEG electrode localization 

from a patient recorded for source localization of epileptic discharges (Gavaret et al. 2014). 

The MEG system was a CTF system with 151 z-gradiometers and EEG was recorded using a 

64 channel MEG-compatible system. The cortical surface (grey/white matter interface) was 

segmented with the Brainvisa software (Cointepas et al. 2010). Sensor location and cortical 

surface were imported into the BrainStorm toolbox (Tadel et al. 2011) within Matlab 

(Mathworks, Naticks, MA), and  the cortical surface was then downsampled to 15004 

vertices. The resolution of the EEG/MEG forward model provided the gain matrix linking the 

amplitude of each cortical dipole, located at each vertex and normal to the surface, to the 

EEG/MEG sensors. Forward model was estimated using the Boundary Element Model 

method implemented  within the OpenMEEG (Gramfort et al. 2010) plugin of Brainstorm.  

The forward model implemented in OpenMEEG is based on equations that only depend on 

resistivity of the medium, considering that the quasistatic assumption holds at low 

frequencies. Details are in Gramfort et al. 2010, a summary follows. For the electric field and 

potential, this results in the law of electrostatics: 

                   (1) 

where σ is the conductivity of the medium, V is the electric potential, and Jp dipolar source 
distribution within the domain. The boundary condition at the interface between piecewise 
linear conductive regions (between brain and skull, skull and scalp, scalp and air) is: 
 
              (2) 
 
With j the normal current and n the vector normal to the surface. 
The magnetic field has a dependence on both the electric potential and on the current 
source distribution, as described by the Biot and Savart law: 
 

     
  

  
                  

    

            (3) 

 
This formalism assumes that there is no dependence on frequency for the propagation of 

electric and magnetic fields. This allows computing two gain matrices GMEG and GEEG that link 

the amplitude of a dipole on the brain surface to the MEG and EEG measures respectively, 

which then do not depend on the frequency. 

A more generic formulation was proposed by Deghani and colleagues (2010), in which the 

medium is considered to be linear but not purely resistive. This is expressed by equations 

(10) and (12) in (Dehghani et al. 2010): 

              
       (4) 



     
               

     
      (5) 

With a complex valued conductivity            , which depends on pulsation ω=2πf and 

permittivity εf, and ‘inv’ denoting the inverse. This formulation that prevents from using a 

single gain matrix for all frequencies, and would require more detailed modelling of the 

biophysics of the problem at hand, was not considered in our study. 

We considered three layers, scalp, outer skull and inner skull, with skull conductivity set as 

1/40 of scalp and brain conductivities. This resulted in two gain matrices: GMEG of size 151 

channels x 15004 dipoles and GEEG of size 64 channels x 15004 dipolar sources.  

Our goal was to generate realistic simulated datasets exhibiting an interaction between 

spatial scale and temporal frequencies, with high frequencies recruiting small brain areas, 

and low frequencies recruiting spatially large areas. The dependence between frequency and 

extent of active cortex has been observed in animal studies (Destexhe et al. 1999). Our 

working hypothesis was that such spatio-temporal structure alone would exhibit     

spectral densities differing between EEG and MEG signals due to different spatial ‘blurring’ 

properties. To do so, we used the random parcellation function of Brainstorm, with a fixed 

number of regions ns (i.e., number of brain patches at scale s), varying the spatial scale s of 

the parcellation by successive factors of two: s=15, 30, ... 7680.  

In a given configuration, we chose the specifics scales to be included in the simulation, as 

well as the frequency ranges to be attributed to each scale. Three scales of parcellation are 

illustrated in Figure 3 for two configurations (detailed configurations are listed in Table 1). 

The contribution of a given region to the MEG sensors was obtained by summing the unit 

contribution of the dipoles within the region (given by the corresponding columns of the 

gain matrix). We thus obtained at each scale s coarse gain matrices Gs
MEG of size 151 

channels x ns and Gs
EEG of size 64 channels x ns , with ns being the number of regions at scale 

s.  

 

Dimensionality of gain matrix 

In order to quantify the variations of dimensionality of the gain matrix across scales, we 

computed for each scale a singular value decomposition of the EEG and MEG gain matrices. 

Importantly, each row was standardized (removal of mean and division by standard 

deviation) in order to compensate for impact of the depth of the source on channel-level 

amplitudes. We estimated the subspace dimension by finding the first dimension explaining 

more than 90%, 95% or 99% of the total variance (computed as the cumulative sum of the 

singular values normalized by the sum of all singular values). 

 

Generation of signals 

At each parcellation level, a single random time course was applied to each region, and the 

time course at sensor level was obtained by multiplying the summed contribution of the 



dipoles in a given region  (obtained from simplified gain matrices Gs
MEG and Gs

EEG) with its 

corresponding time course. 

We chose heuristically the range of spatial scales to be considered, either s = 15 to 480 or s= 

30 to 3840. The number of regions at scale s is given by 

                 (6) 

with n1 number of regions at scale 1. 

The time course of each region was generated as a white noise (function rand of Matlab) 

considered to be sampled at a frequency Fs of 1250 Hz, with a length of 30s. Importantly, we 

standardized each signal (removal of mean and normalized by standard deviation) in order 

to remove the influence of the filter bandwidth on signal amplitude. 

The total band of interest was subdivided logarithmically between two bounds that may vary 

across configurations (details in table 1). Configurations were designed in order to span a 

range of possibilities 

- Configuration 1: mostly low frequencies (1-100Hz) and larges patches (which mimics 

non-REM sleep-like behavior with large synchronies and dominant low frequencies) 

- Configuration 2: higher frequencies and smaller patches, which simulates the awake 

state 

- Configuration 3: spans a large range of sizes and frequencies 

- Configuration 4: only one scale, in order to verify that there is no difference on the 

spectra between EEG and MEG in that case. 

Finally, a random offset of +-20% was applied to the limits of each frequency band across 

regions at a given scale, in order to avoid systematic effects in the spectrum (e.g., notches at 

frequency boundaries). Large patches were attributed a signal with low frequency contents, 

while small patches were matched with a signal with high frequency content (see left 

column of Figure 3 for illustration). The band limited noise Es
i for each patch i and each scale 

s was obtained by filtering white noise in the frequency band FBs (with offset) adapted to the 

scale s. We used the function fftfilt of the EEGlab toolbox (Delorme and Makeig 2004), which 

is based on Fourier filtering. For each patch i, we compute the corresponding contribution 

on EEG and MEG by projecting the random activity to the sensors though the corresponding 

gain matrix: 

    
         

      
       (7) 

with i the index of the patch, Es
i a white noise filtered in band FBs, j a channel index and t 

time. The simulated MEG or EEG data M(j,t) was obtained by summing over the scales the 

contributions from all regions i at a given scale. In this summation, the data from each scale s 

was scaled by a multiplicative coefficient equal to the sth power of a scaling parameter   

ranging from 1 to 1.9: 



               
      

    
   

   
          (8) 

The signal M is at the sensor level. The parameter c allows a fine tuning of the slope of the 

resulting 1/f spectrum. It can be seen as representing the ‘local’ level of synchrony on each 

patch (Cosandier-Rimélé et al. 2007) as a function of frequency. The range of c was chosen in 

order to result in a realistic range of spectrum slopes. 

Computation of power spectra 

We computed the spectrum S(f) of each channel of the simulated MEG and EEG data using 

the Welch estimator (spectrogram function of Matlab). Thus, the FFT was computed with a 

window size of 1s (resulting in a frequency resolution of 1Hz), a Hanning tapering, and an 

overlap of 50% between consecutive windows. The mean spectra across channels were then 

computed separately for EEG and MEG, and normalized with respect to the higher frequency 

value, as suggested in (Dehghani et al. 2010).  This normalization was necessary in order to 

compare the shape of the spectra independently of the actual values (differing between EEG 

and MEG).  

If we assume that in a given frequency range the spectrum has a 1/fα shape, then a simple 

linear regression in a log-log representation will provide an estimation of α: 

                      (9) 

The slopes α of the spectra were estimated with linear regression and compared to one 

another with a t-test.  

 

Results 

Figure 4a and 4b present the spectra obtained in configuration 1 (low frequencies 

configuration) and 2 (high frequencies configuration) respectively. In both cases, the slope 

between EEG and MEG differ, with MEG presenting less attenuation with increasing 

frequencies that EEG as hypothesized (i.e., a smaller α in (9)). For configuration 1, EEG slope 

was -1.55 and MEG slope -1.27, and in configuration 2,EEG slope was  -1.73 and MEG slope -

1.47. 

Figure 4c, corresponds to configuration 3, where we tested a large range of scales, which 

permits to see that above a particular scale, corresponding to 480 regions, the difference 

between EEG and MEG spectra seem to disappear. 

In Figure 4d, we show the results of configuration 4, with only one scale. As expected, in this 

minimal space/frequency structure, there is no difference between EG and MEG spectra. 

In Figure 5, we illustrate the impact of the scaling parameter c on the slope of the spectra, 

varying the values around the ‘absence of scaling factor’ (c=1, i.e. same amplitude at each 



scale). For a small c (0.6), we obtain large slopes (around -3) and a smaller difference 

between the EEG and MEG spectra than with c=1. Conversely, with a high value of c (1.4), we 

obtain smaller slopes and large differences between EEG and MEG 

We show in Figure 6 the dimensionality of the gain matrix, as a function of the spatial scale 

(i.e; number of regions). For a percentage of explained variance of 90%, i.e. at a coarse level 

of description, EEG and MEG exhibited very similar profiles of dimensionality as a function of 

number of regions involved in the simulations. For higher levels, i.e. when considering a 

'finer' explanation of data at sensor level, the dimensionality of the EEG and MEG behave 

differently. In particular, we found that EEG dimensionality "saturates" for a number of 

regions above 480. For 90% of explained variance, there was no notable difference between 

EEG and MEG. For higher levels, and in particular when accounting for 99% of explained 

variance, the dimensionality of MEG was higher than EEG, suggesting that it can capture 

finer spatial details than EEG.  

Discussion 

Several mechanisms have been proposed for explaining the 1/f spectrum in MEG-EEG data. 

Some arise from the structure of the spatio-temporal dynamics. For instance, Jirsa 

demonstrated that spatially continuous dynamic systems with homogeneous (gray matter) 

connectivity always generate      characteristics in the power spectrum. (Jirsa 2009). Other 

are related to the non-resistive aspect of the tissues, which lead to filtering effects 

(Dehghani et al. 2010; see review in Pesaran et al. 2018). 

In the present study, we implemented a model with scale-free properties both in the time 

domain (tuned with a scaling factor c) and in the spatial domain (patch size that differ by a 

factor of two across different scales). This model has both phenomenological aspects, as we 

used filtered noise, in contrast to computational models, and mechanistic aspects, by relying 

on a specific space/frequency structure. Importantly, we explicitly introduced a dependence 

between the size of the patch (spatial scale) and the frequency range and bandwidth it is 

endowed with: the smaller the patch, the higher the frequency. The model shows that such 

dependence resulted in differences between EEG and MEG scale-free spectra, in agreement 

with previous findings obtained both theoretically and in real data (Dehghani et al. 2010). 

This shows that a specific space/frequency structure of brain activity could generate self-

similarity and can can explain differences between spectra, resulting in different slope of the 

1/f processes when comparing EEG and MEG. Such a behavior is not exclusive of other 

mechanisms that are more likely also play a role on real data (Dehghani et al. 2010; G. 

Buzsaki et al. 2012), but it is to be noted that this mechanism alone seems sufficient to 

explain the observed differences between the spectra. The full magnitude of the proposed 

mechanisms requires a systematic quantification of the various contributions, which has so 

far not been performed, but remains a future task to be performed.  



A key assumption of our model is that the spatial extent of temporally coherent sources 

decreases and scales with frequency, i.e. that high frequencies tend to be more spatially 

local, whereas low frequencies tend to involve larger spatial cortical regions. This 

assumption is physiologically plausible, and was specifically stated in the influential Buszaki 

book “rhythms of the brain” (G Buzsaki 2006): “Long term observations consistently show 

that coherence of neuronal activity rapidly decreases as a function of distance at high 

frequency but deceases less for low frequencies.”. An intuitive explanation is that it is easier 

to synchronize oscillators at a low frequency compared to high frequencies, as a small time 

delay will have a much stronger influence on phase shift at high frequencies compared to 

low frequencies. Again, from Buszaki book (p. 122) “when the rhythm is fast, only small 

groups can follow the beat perfectly because of the limitation of axon conductance and 

synaptic delays. Slower oscillations spanning numerous axon conduction delay periods, on 

the other hand, allow the recruitment of very large number of neurons. Thus, the slower the 

oscillation, the more neurons can participate; hence, the integrated mean field is larger.” 

Differences in local and global processing, and effect of distance on spatial coherence was 

discussed in (P. L. Nunez 2000). 

Still, we have to acknowledge that there are only a few observations on real data that 

support this phenomenon.  

Bullock an McClune have reported data from rodent’s brain surface recording 

(electrocorticography, ECoG), that coherence  (on temporal signals) decreased more rapidly 

with frequency when increasing electrode distance (Bullock and McClune 1989). A study 

performed in humans by the same group, confirmed these findings (Bullock et al. 1995). 

Destexhe and colleagues have measured the spatial decay of coherence for two different 

states (slow wave sleep and wake) that involve different frequency content, on the cortex of 

cat (Destexhe et al. 1999). They found that on, the correlation between LFP signals 

decreased from 1 to 0.25 over 7mm, whereas the decrease was only from 1 to 

approximately 0.7 in slow wave sleep (<1Hz) 

In (von Stein and Sarnthein 2000), a relationship was suggested from surface EEG between 

the extent of functional integration and the synchronization frequency.  

However, one has to note that observations in human data are challenging. Firstly,  it is 

necessary to have a sufficient spatial coverage (e.g., high density sampling of ECoG 

electrodes). Secondly, one needs to deal with the convoluted folding of the cortex, which 

does not allow recording within sulci and could produce abrupt changes when going from 

one gyrus to another. Volume conduction issues may take place, which make it difficult to 

assess where the signal actually come from. 

The current progress in multi-electrode arrays, and in particular highly conformable ECoG 

arrays based on polymer thin sheets (Khodagholy et al. 2011), should allow recording across 

large surfaces and may assess accurately the space/frequency structure of coherent activity, 



resulting in estimates of extent of coherent cortex and signal attenuation across scales. 

Interestingly, recent work based on structural MRI has proposed to describe the anatomical 

connectivity by the eigenvectors of the Laplacian performed on diffucsion tensor imaging 

graphs. This results in basic spatial patterns (an equivalent of the Fourier basis set, but in the 

spatial domain), with harmonics representing different spatial extent. These spatial 

harmonics could be the physical substrate for oscillators at different frequencies, and would 

fit nicely into our proposed framework. More work is needed based on electrophysiology 

data, in order to link structure to function within a scale-free framework (Ciuciu et al. 2014). 

It was noted from early work, using simultaneous subdural and scalp EEG recordings, that 

different frequency contents when comparing direct recordings on the brain surface and 

scalp recordings could originate from the spatial filtering properties of EEG (Pfurtscheller and 

Cooper 1975). The authors ruled out impedance effects of the skull, which are similar across 

the frequency range of interest. They proposed instead that the blurring effect of the skull 

produces summation of activities at different phases, which is particularly visible at high 

frequencies where a small temporal jitter between different oscillators causes high phase 

dispersion and thus high signal cancellation (see schematic illustration in Figure 1). Previous 

modeling studies, investigating signal space/frequency scales reported that " EEG amplitude 

in each frequency band can be related to the synchrony of the underlying current sources" 

(Srinivasan et al. 2007), this topic being presented in details in (P. Nunez and Srinivasan 

2005). The influence of the geometry on cancellation effects is investigated in (Ahlfors et al. 

2010). It is interesting to note that summation do not occur over an infinite number of 

oscillators (which would result in perfect cancellation), which means that high frequencies 

still have a chance to 'express' themselves at the surface, as suggested in (von Ellenrieder et 

al. 2016). 

In this context, it is plausible that different spatial filtering properties of MEG and EEG (with 

EEG being more 'blurred' than MEG because of higher impact of skull conductivity (and more 

selective impact of dipolar sources orientations on MEG data) can produce different 

temporal filtering properties. This is indeed what we observed in our simulated data, 

resulting in a steeper     profile for EEG when compared to MEG. Interestingly, a better 

sensitivity to (relatively high frequency) gamma-band activity in MEG when compared to EEG 

has been observed during visual stimulation (Muthukumaraswamy and Singh 2013). These 

results are compatible with differential     profiles in the two modalities.  

In our simulation study, the differential effects are lost after a certain level of granularity, i.e. 

when considering synchronicity over only small patches. This finding is also consistent with 

our study on dimensionality of gain matrix, which demonstrated that the dimension 

saturates for small patches sizes, although not as fast in MEG when compared to EEG).  

Interestingly, this saturation of the effect results in a change of slope on the MEG spectra 

which could be potential explanations for previous observations of abrupt changes of slopes 

in the spectrum (Miller et al. 2009).  



We have simulated a uniform spatio-temporal structure by using an unique scaling 

parameter c across the whole brain. However, it has been observed regional differences in 

alpha. In (Dehghani et al. 2010), three main regions are highlighted, parieto-temporal, vertex 

and frontal areas. These differences could be reproduced by local variations in frequency to 

scale mapping, or simply with different c parameter across different brain regions. 

Finally, it is worth to note that the real-life MEG spectra are usually contaminated by 

ambient noise, which we do not model in the present study. The study by Deghani and 

colleagues (Dehghani et al. 2010) , based on empty room recordings, gives an indication of 

the correction factor that can be applied to the slopes of spectra in order to take into 

account the contribution of the ambient noise. In this later study, it is shown that the 

correction will lower the alpha band and thus would amplify the differences between EEG 

and MEG described in the present work.  

 

Conclusion 

In conclusion, we demonstrated that the combination of the spatio-temporal structure of 

brain activity and biophysical effects is a putative mechanism to explain differences in     

spectra between EEG and MEG. Thus, our simulations provide a phenomenological 

explanation to previous experimental findings. This is relevant for signal processing, where 

    properties of EEG or MEG signals need to be properly accounted for (Roehri et al. 2016), 

as well as for recording, as different electrode sizes (resulting in different impedances) 

integrate brain activity over different volumes (Nelson and Pouget 2012). The scale-free 

properties of signals attract increasing interest as new biomarkers of brain state. This goes 

beyond the classical analysis of frequency peaks in the spectrum, by quantifying the non-

oscillatory (“arrhythmic”) part of the signals (He 2014), which is reflected in the overall slope 

of the spectrum, independently of the presence of local peaks. Our findings highlight a 

putative mechanism that could be important to take into account in the interpretation of 

results in MEG and EEG. In particular, they would need to be corrected for if one wants to 

integrate EEG and MEG into a common view of scale-free properties of brain signals. Our 

findings may also potentially have a strong impact on computational modeling of brain 

signals (Sanz Leon et al. 2013; Sanz-Leon et al. 2015). Indeed, our results suggest that it 

could be interesting to model the space/frequency properties of neuronal activity, with 

different local connectivity matrices at different frequencies, which could for example be 

based on decomposition of tractography-based connectivity matrices (Atasoy et al. 2016).  

The processes that we describe here are not exclusive of other possible mechanisms. More 

investigation should be conducted in evaluation the range of activated cortex as a function 

of frequency, in varying brain states (in particular awake versus sleep). Future work could 

address the different contributions of these mechanisms to the observed signals, as well as 

improvement in biophysical modelling (Bangera et al. 2010). The study of the relationships 



between structure and function, which is currently attracting much interest, would be 

particularly relevant in this context (Atasoy et al. 2016; Wirsich et al. 2016). 
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Figure 1: Schematic illustration of differential effect of spatial smoothing at different 

frequencies. The top row shows realizations of a sine wave with random jitter (taken 

uniformly in 0-100ms). These signals can be seen as representing neighboring neuronal 

oscillators from a small brain region.  The bottom row is the average across realizations. The 

cancellation resulting from averaging is smaller for the low frequency (left column, 3 Hz 

oscillations) than for high frequency (right column, 15 Hz oscillations). This effect was 

discussed in (Pfurtscheller and Cooper 1975).  

  



 

 

 

Figure 2: Schematic view of different biophysical scenarios for explaining differences 

between EEG and MEG spectra. a) the conductive medium is purely resistive (i.e., the 

electric potential follows Ohm’s law U= σ I with U potential, σ resistance and I intensity), and 

propagation of electric and magnetic does not depend on frequency. Two schematic patches 

of cortex are represented, with synchronous activity involving equal surfaces, one for the 

low frequencies (LF) and one for high frequencies. The arrows represent equivalent current 

dipoles corresponding to the activity of pyramidal cells. Here, the spectra for EEG and MEG 

are the same. b) The patches of active cortex remain of equal size for high and low 

frequencies, but the medium is not purely resistive, i.e. propagation of electromagnetic 

fields depend on frequency (as proposed by Deghani et al 2010). Here, EEG and MEG spectra 

differ due to the properties of the conductive medium. c) Low frequencies involve large 

patches of cortex, while high frequencies involve synchrony over smaller regions. Here, the 

spectra also differ, but this time because of the different smoothing properties of EEG and 

MEG,  as EEG integrates activity over larger volumes. This is the hypothesis proposed in the 

current study. 

 

  



Figure 3: Illustration of the simulation framework. a) Examples of levels of brain parcellation. 

At each level, a single time course is applied to all the dipoles within a given region. The 

bandwidth of the random noise that is applied to each region varies with the patch size, low 

frequencies for large regions and high frequencies for small regions (see Table a) b) Signals 

corresponding to configuration 1 (low frequencies, only three scales are shown here) c) 

Signals corresponding to Configuration 2 (high frequencies, only three scales are shown 

here)  The resulting data for each configuration is the sum of the simulated MEG signals 

generated across levels. 

  



 

 

 

 

 

 

 

Figure 4: EEG and MEG spectra obtained for the different configuration, with a scale 

parameter c=1 (only 1/3 of channels are shown). a) Configuration 1 (low frequencies) b) 

Configuration 2 (high frequencies) c) Configuration 3 (large range of scales) d) Configuration 

4 (only one scale). All the configuration presenting a space/frequency structure (1-3), there 

is a difference between EEG and MEG spectra, at least below a certain scale (corresponding 

to 480 regions). 

  



Figure 5: Comparison of the slopes of EEG and MEG average spectra across sensors, in 

Configuration 1 (see Table 1), for different parameters of the amplitude scaling coefficient c. 

The absolute value of the slope increases with smaller c, as expected, with alpha ranging 

between 3.08 and 0.35. Differences between EEG and MEG are higher for higher c.  



Figure 6: Dimensionality analysis of the EEG and MEG gain matrices as a function of the 

spatial scale (number of regions), for different values of explained variance  (90%, 95%, 

99%). For 90% of explained variance, there was no notable difference between EEG and 

MEG. For higher levels, and in particular when accounting for 99% of explained variance, the 

dimensionality of MEG was higher than EEG, suggesting that it can capture finer spatial 

details than EEG. 
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