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We consider the tetrahedral three-loop diagram in Ed exceptional field theory

evaluated as a scalar diagram for four external gravitons. At lowest order

in momenta, this diagram contributes to the ∇6R4 term in the low-energy

effective action for M-theory. We evaluate explicitly the sums over the discrete

exceptional field theory loop momenta that become sums over 1/2-BPS states

in the compact exceptional space. These sums can be rewritten as Eisenstein

series that solve the homogeneous differential equations that supersymmetry

implies for the ∇6R4 coupling. We also show how our results, even though

sums over 1/2-BPS states, are consistent with expected 1/4-BPS contributions

to the couplings.
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1 Introduction

Determining the low-energy effective action of type II string theory compactified on a torus T d−1

from 10 to D = 11 − d space-time dimensions has been an on-going research topic for many

years [1–21]. The low-energy effective action is interesting since one can hope to understand

better how string theory improves the ultraviolet behaviour of point particle theories like grav-

ity and supergravity through infinite towers of massive particles that restore unitarity at high

energy. Taking various limits of the exact couplings also provides important information on non-

perturbative objects in string theory, like D-branes, membranes or black holes. They include in

particular helicity supertraces or partition functions associated to solitons or instantons, respec-

tively. The effective action includes, besides the standard two-derivative action, an infinite set

of higher-derivative corrections, e.g. of the form ∇2kR4 in the case of four-graviton scattering.

These couplings were originally obtained from the computation of the perturbative string scatter-

ing amplitudes of states belonging to the massless graviton supermultiplet, and their low-energy

expansion in α′ = ℓ2s [2, 6, 11]. With the (conjectural) discovery of non-perturbative U-duality

Ed(Z) for the maximally supersymmetric compactifications on tori T d−1 [22], non-perturbative

contributions to the higher-derivative corrections could be determined and are often related to

automorphic forms. Together with an analysis of supersymmetry constraints [17, 18, 20, 23],

one can sometimes prove uniqueness of the perturbative and non-perturbative contributions to

certain higher-derivative corrections [24].

Using the above methods together with consistency relations coming from various pertur-

bative and decompactification limits, it has been possible to pin down the Ed(Z)-dependence

of the correction terms R4 and ∇4R4 on the moduli Φ parametrising the symmetric space

Ed(R)/K(Ed), where Ed(R) is the split real form Ed(d) and K(Ed) its maximal compact sub-

group. The Dynkin diagram of Ed(d) is shown in Figure 1. One has to distinguish the cases

d ≤ 7 where the U-duality symmetry Ed(Z) follows naturally from charge quantisation, and the
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Figure 1: Dynkin diagram of Ed.

lattice of charges support the spectrum of BPS particles, from the cases d = 8, 9 for which there

is no such interpretation. In these cases one has nonetheless conjectured U-dualities following

the same pattern [22, 25] and one can define a field theory in D = 3 and D = 2 dimensions,

respectively, with a low-energy two-derivative action that exhibits Ed(R) symmetry. By E9 we

denote the affine Kac–Moody extension of E8. For the indefinite hyperbolic and Lorentzian

Kac–Moody symmetries E10 and E11, the dynamical theory is less clear and the definition and

separation of massless amplitudes is ill-defined, but one can still formally use automorphic forms

on them that are a book-keeping device in that they decompactify correctly to the cases Ed(d)

with d ≤ 9 [16]. In general, these corrections are given by certain Eisenstein series on the groups

Ed(d). Speaking in the language of automorphic representations, the 1
2 -BPS correction R4 be-

longs to the minimal unitary representation of Ed(R) while the 1
4 -BPS correction ∇4R4 belongs

to a next-to-minimal unitary representation [13, 15] (that is unique for d ≥ 7). The next case

∇6R4 has also attracted attention in the last years and has been treated using different methods

in [8, 9, 19, 20, 26, 27]. The corresponding function multiplying the ∇6R4 term in the effective

action, often denoted E(0,1), is generally the sum of two functions that correspond to two distinct
1
8 -BPS supersymmetry invariants [20]. One is an Eisenstein series attached to a next-to-minimal

representation for d ≤ 6 (and next-to-next-to-minimal for d = 7), while the other satisfies an

inhomogeneous differential equations with sources quadratic in E(0,0) [8]. Consequently, the lat-

ter is not an automorphic form and cannot be attached to an automorphic representation in

the standard sense. Despite this, one can prove that its Fourier coefficients and the differential

equations it satisfies are naturally associated to a nilpotent orbit [28].

The coefficient functions E(0,1) multiplying the R4 term and E(1,0) multiplying the ∇4R4 term

for compactifications on T d−1 were determined indirectly using consistency arguments. A direct

calculation was undertaken recently in [29] and based on the framework of exceptional field

theory. Exceptional field theory [30–41] in D space-time dimensions uses an extended ‘internal’

space whose coordinates Y M transform in a representation Rαd
of the symmetry group Ed(R)

where d = 11 − D. In order to eliminate extra degrees of freedom compared to supergravity,

any field of the theory (and product of fields) is required to satisfy a section constraint that

transforms in a different representation Rα1 of Ed(R). These representations are tabulated for

the various values of 0 < d ≤ 8 in Table 1. More precisely, one demands

∂

∂Y M
A(x, Y )

∂

∂Y N
B(x, Y )

∣

∣

∣

∣

Rα1

= 0 (1.1)

for any two fields A(x, Y ) and B(x, Y ), where xµ are the standard D-dimensional coordinates

and Y M the extended coordinates. The representation Rα1 is contained in the tensor product

2



Space-time dimension Hidden symmetry coordinates Y M Section constraint

D = 11− d Ed(R) Rαd
Rα1

9 GL(2,R) 1(−4) ⊕ 2(3) 2(−1)

8 SL(2,R)× SL(3,R) (2,3) (1,3)

7 SL(5,R) 10 5

6 SO(5, 5,R) 16 10

5 E6(R) 27 27

4 E7(R) 56 133

3 E8(R) 248 3875

Table 1: Coordinate representation Rαd
and strong section constraint representation Rα1 for hidden

symmetry groups Ed(d) in dimension D = 11− d for 2 ≤ d ≤ 8.

of two representations Rαd
and can be interpreted as a 1

2 -BPS constraint. When the theory is

defined on D-dimensional Minkowski space times the exceptional torus (i.e. in a background

independent of the Y coordinates), the Fourier modes of momentum Γ satisfying the 1
2 -BPS

constraint can be interpreted as massive 1
2 -BPS supermultiplets of states. The exceptional field

theory Lagrangian permits to describe the three-point interactions of these multiplets, and their

coupling to the massless supermultiplet.

Using this formalism and explicit one- and two-loop calculations in exceptional field theory,

together with a reduction to scalar diagrams as in [42,43], we recovered from a direct calculation

the R4 and ∇4R4 correction functions in [29], confirming the previous indirect results. We

also obtained a form of the ∇6R4 correction function consistent with its differential properties

described above. Nonetheless, the consistency of our result required to neglect the one-loop

contribution to the ∇4R4 correction to avoid divergences and the doubling of the coefficient.

Moreover, it is expected that the latter does not get contributions from higher loops but it is

known that ∇6R4 is corrected at three-loop. The calculations in [29] can be seen as a U-duality

completion of supergravity loop calculations carried out in [44, 45] by including full multiplets

of 1
2 -BPS states [7].

In the present paper, we extend this analysis to the three-loop contribution to the E(0,1)

coupling in exceptional field theory. As is known from [42, 43], there are several topologies of

scalar diagrams that arise at three-loop order in maximal supergravity. Not all of them are

amenable to the exceptional field theory techniques developed in [29]. However, only one of

them is relevant for the ∇6R4 correction and it is treatable in perturbative exceptional field

theory. The skeleton graph in this case has tetrahedral structure [27].

By a careful analysis of the solutions of the section constraint and exploiting the symmetries

of the tetrahedron, we shall derive automorphic functions that solve the relevant differential

equations and we shall also see how our calculation exhibits a cancellation of divergences in the

various dimensions, with a dependence in a renormalisation scale consistent with the known and

expected ultraviolet divergences in supergravity.
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Figure 2: The skeletons graphs at three-loop order. The tetrahedral graph on the left starts contributing

at order∇6R4 in the derivative expansion whereas the ladder diagram on the right has its first contribution

at order ∇8R4.

We shall also discuss in detail aspects of the regularisation of the exceptional field theory

amplitudes, expanding on our proposal in [29]. As mentioned above, the one-loop exceptional

field theory contribution to the ∇4R4 coupling must be renormalised to zero to give the correct

finite result. The cancelling contribution was argued in [29] to come from the contributions of 1
4 -

BPS states that are neglected in exceptional field theory. In Section 3, we shall argue that one can

obtain these 1
4 -BPS contributions by U-duality covariantisation of the ∇4R4 coupling obtained

from perturbative string theory at one-loop. We shall exhibit a formal cancellation of the 1
2 -BPS

states (coming from exceptional field theory) and the 1
4 -BPS states contributions (from string

theory), confirming the validity of the picture in [29]. We also extend these arguments and

discuss more generally the systematics of BPS corrections up to ∇6R4 in Section 4 where we

also discuss non-renormalisation properties of BPS solitons and instantons. This will allow us

to exhibit that our framework provides a consistent approach to determining the low-energy

behaviour of the four-graviton scattering process up to order ∇6R4.

2 The tetrahedral diagram and its symmetries

Up to two loops, all the Feynman diagrams contributing to the four-graviton scattering ampli-

tude involves internal momenta that satisfy the strong section constraint Γi × Γj = 0. Here, Γi

for i = 1, 2 are the discrete charges of the supermultiplet circulating in the loops. The discrete

charges are in the lattice Zd(αd) in the Ed(R) representation Rαd
of dimension d(αd) shown in

Table 1. As explained in [29], each contribution is then necessarily in the U-duality orbit of a

supergravity amplitude in two more dimensions on RD × T 2. It then follows that the reduction

of the amplitudes derived in supergravity in [42, 43] applies, and the exceptional field theory

amplitude reduces to the U-duality covariantisation (i.e. Poincaré sum over U-duality orbits)

of the supergravity amplitude. At three loops this is no longer the case in general, and for

example for the ladder diagram shown on the right of Figure 2, the momenta do not necessarily

satisfy the strong section constraint. Moreover, the amplitude includes then a priori four-point

vertices between four massive states of charges satisfying the strong section constraint, and the

non-associativity of the convolution product subjected to the section constraint implies that

one cannot neglect the 1/4 BPS states multiplets in this computation. Nonetheless, we shall

argue that the ∇6R4 coupling is still determined by the tetrahedral diagram contribution only

in exceptional field theory.
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There are two skeleton diagrams that arise at three-loop order, the tetrahedral graph (a.k.a.

Mercedes diagram) and the ladder diagram depicted in Figure 2. The ladder diagram does not

give any contribution to order ∇6R4 in supergravity [43]. When all internal momenta satisfy

the strong section constraint Γi × Γj = 0, one can always use an element of the U-duality

group to consider an equivalent representative in eleven-dimensional (or type IIB) supergravity,

such that the same reduction of the diagrams computed in [43] also applies in exceptional field

theory. At one loop and at two loops, the fact that the three-point vertices satisfy the section

constraint implies that all momenta Γi have to satisfy the strong section constraint consistently in

a pairwise manner. But at three loops one can have diagrams (like the ladder diagram) for which

among the three momenta satisfying Γi × Γi = 0, two of them fail to satisfy the strong section

constraint, say Γ1 × Γ2 6= 0 while Γ1 × Γ3 = Γ2 × Γ3 = 0, see also [29]. Such a configuration is

not Ed(Z) equivalent to a configuration of momenta in supergravity and one cannot rely on [43]

to deduce that they could only contribute to higher order derivative couplings. Nonetheless,

these contributions with two momenta failing to satisfy the section constraint can be moved to

a frame where one can see them as momenta and winding of perturbative strings on the torus.

In this case indeed one can always find an element of Ed(Z) to rotate the element Γ1 × Γ2 in

Rα1 to the highest weight representative. In the string perturbative parabolic decomposition P1

of Ed(R)1

ed(d)
∼= (Λd−7V )(−2) ⊕ S(−1)

− ⊕ (gl1 ⊕ so(d− 1, d− 1))(0) ⊕ S
(1)

− ⊕ (Λd−7V )(2) ,

R(Λd)∼= · · · ⊕ (Λd−8V ⊕ Λd−6V )(2
d−8
9−d

) ⊕ S
( d−7
9−d

)

+ ⊕ V ( 2
9−d

) ,

R(Λ1)∼= · · · ⊕ (Λd−7V ⊗ S−)
( 3d−23

9−d
) ⊕ (Λd−7V ⊕ Λd−5V )(

2d−14
9−d

) ⊕ S
(d−5
9−d

)

− ⊕ 1
( 4
9−d

) , (2.1)

the only solutions Γi to the section constraints compatible with the property that Γ1×Γ2 ∈ 1
( 4
9−d

)

are such that all Γi ∈ V ( 2
9−d

). One can always choose the representative such that Γ1 + Γ2 ∈
V ( 2

9−d
), and the constraint that Γ3 × (Γ1 + Γ2) = 0 and (Γ1 − Γ2)× (Γ1 + Γ2) = 0 impose that

they both belong to V ( 2
9−d

) as well.

The low-energy expansion of the three-loop 4-graviton scattering amplitude computed in

[46] can be extended straightforwardly to toroidal compactifications [19]. The resulting string

theory contribution to the ∇6R4 coupling is simply the integral over the genus-3 moduli space

Sp(6,Z)\Sp(6,R)/U(3) of the SO(d − 1, d − 1) genus-3 Narain partition function. It follows

that the only string states contributing to ∇6R4 at 3-loop are level matched, and so satisfy

the strong section constraint. One can check in particular that this contribution is the SO(d−
1, d − 1,Z) covariantisation of the ten-dimensional supergravity amplitude as written in [27].

We conclude therefore that there are no contributions to the ∇6R4 coupling that fail to satisfy

the strong section constraint at 3-loops. In the following we shall therefore consider that the

unique contribution comes from the tetrahedral diagram.

Here we assume therefore that the exceptional field theory integrand is identical to the one

deriving from supergravity. The 3-loop supergravity amplitude was evaluated in [42, 43] and

1With V we denote the vector representation of so(d − 1, d − 1) while S± denote the chiral spinors with the

convention that S− has its non-zero highest weight label on the node attached to node 1 when embedded in ed.

For even d one has S−
∼= S− while for odd d the isomorphism is S−

∼= S+.
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it was shown in [27] that one can use several integrations by part to simplify the three-loop

tetrahedral diagram integrand to a manifestly SL(3,Z) invariant integrand in nine dimensions.2

The dual graph of the tetrahedral skeleton is the regular tetrahedron, making obvious that the

symmetric group S4 is a symmetry of the configuration and we will see below that the amplitude

can be written in a way that is manifestly symmetric under this group [27]. Extrapolating this

result to exceptional field theory, one obtains the contribution to the effective action at order

∇6R4

E (3-loop)

(0,1) =
5

6

∑

Γi∈Z
3d(αd)

Γi×Γj=0

∫

S+

d6Ω

(detΩ)2−
d−5
2

expµ

(

− πΩijg(Γi,Γj)
)

. (2.2)

Here, each of the three internal charges Γ1, Γ2 and Γ3 is an integral charge in Zd(αd) ⊂ Rαd
.

The Ed(Z) invariant
3

g(Γi,Γj) = ΓT
i VVTΓj =

1

2

(

|Z(Γi + Γj)|2 − |Z(Γi)|2 − |Z(Γj)|2
)

(2.3)

appearing in the exponential is formed using the coset representative V(Φ) ∈ Ed(R)/K(Ed), and

|Z(Γ)| is the mass of a 1/2 BPS state of charge Γ satisfying the section constraint Γ × Γ = 0.

The integration domain S+ = (R+)
6 denotes the positive Schwinger parameter space. The six

Schwinger parameters LA at three-loop order for the tetrahedral skeleton have been arranged in

the symmetric (3× 3)-matrix

Ω = Ωij =







L1 + L3 + L5 L3 + L5 L5

L3 + L5 L2 + L3 + L5 + L6 L5 + L6

L5 L5 + L6 L4 + L5 + L6






. (2.4)

Note that Ω is a symmetric and positive definite matrix on Schwinger parameter space S+.

There are three internal charges Γi propagating in the diagram and they all have to mutually

satisfy the strong section constraint Γi × Γj = 0. This is due to the structure of the tetrahedral

graph; generally only adjacent charges have to satisfy the section constraint [29].

Since the ∇6R4 contribution is the lowest contribution from the tetrahedral skeleton there is

no dependence on the external momenta and dependence on the Schwinger parameters except

for the overall scale and the BPS-mass through the exponential. We have also included an index

µ on the exponential to indicate that the amplitude has to be regulated through the introduction

of a mass term µ. We will be more explicit on this regularisation below when we have rewritten

the integral in a different form. The integral (2.2) also exhibits the primitive divergence for

d = 5 (corresponding to six space-time dimensions) that corresponds to the known supergravity

3-loop logarithmic divergence [42,43].

2Note that the individual non-amputated diagrams underlying the tetrahedral skeleton are not just of scalar

φ3 type since they have non-trivial momentum dependence in the numerators.
3Here VT = (V−1)‡, where ‡ is the Cartan involution. There always exists a matrix representation of real split

groups Ed(R) on R(Λd) such that VT is the transpose of the matrix V.
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A first step in evaluating (2.2) consists in showing that the action of SL(3,Z) on the sym-

metric matrices

Ω → AΩAT , (2.5)

that preserves Schwinger parameter space S+ generates a finite S4 subgroup of SL(3,Z). Be-

cause the action of SL(3,Z) is transitive on S+, any SL(3,Z) transformation that preserves

Schwinger parameter space acts by permuting fundamental domains of SL(3,Z) in S+. Among

all the S6 permutations of the Schwinger parameters, one computes straightforwardly that only

a subgroup S4 ⊂ S6 can be realised in SL(3,Z). We have furthermore checked that among hun-

dred thousand SL(3,Z) matrices the only ones that preserve S+ all belong to this S4 subgroup,

so that there are no other SL(3,Z) transformations acting by permutations. One further check

consists in computing the integral4

∫

S+

d6Ω

(detΩ)2−s e
−πdet Ω ≈ 24

πs
Γ(s)ξ(2)ξ(3) = 24

∫

H+
3×3/SL(3,Z)

d6Ω

(detΩ)2−s e
−πdetΩ , (2.6)

where we have done the integral on the left numerically on a subset of values for s ≥ 0. The

approximation is such that 24 is always the closest integer to the resulting value. The integral

on the right-hand side contains the space H+
3×3 of all symmetric positive definite (3×3)-matrices

and the integral is known (see (A.2) in the appendix).

One concludes therefore that the subgroup of SL(3,Z) that stabilises Schwinger parameter

space is S4 of order 24, such that the amplitude (2.2) reduces to

E (3-loop)

(0,1) = 20
∑

Γi∈Z
3d(αd)

Γi×Γj=0

∫

H+
3×3/SL(3,Z)

d6Ω

(detΩ)2−
d−5
2

expµ

(

− πΩijg(Γi,Γj)
)

. (2.7)

The constrained sum over the three internal charges Γi can be rewritten by a suitable

parabolic decomposition of the Ed(d) duality group. This is a generalisation of the discus-

sion in [29] where a similar decomposition was performed at two-loop order. Consider a single

charge Γ1 ∈ Zd(αd) satisfying Γ1 × Γ1 = 0, using [47], one has for d ≤ 7 that one can always use

an element of the Chevalley subgroup Ed(Z) to rotate the discrete charge in the highest degree

component 1(10−d) in the decomposition

ed(d)
∼= R(d−9)

αd−1
⊕
(

gl1 ⊕ ed−1(d−1)

)(0) ⊕R
(9−d)

αd−1
,

Rαd
∼= δ

(−3)

d,7 ⊕R(d−8)
α1

⊕R(1)
αd−1

⊕ 1(10−d) ,

Rα1
∼= . . . ⊕ δ

(4(d−7))

d≥6 ⊕R(d−7)
α2

⊕R(2)
α1

, (2.8)

Using this one straighforwardly checks that a second charge Γ2 such that Γ1 × Γ2 = 0 must

belong to R
(1)

αd−1
⊕ 1(10−d). Using furthermore Γ2 × Γ2 = 0, one can use the same property to

conclude that the second charge belongs to the highest level decomposition of ed−1(d−1) under

4The function ξ(s) appearing here and in many other places in this paper is the completed Riemann zeta

function defined by ξ(s) = π−s/2Γ(s/2)ζ(s) that satisfies the functional identity ξ(s) = ξ(1− s).
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ed−2(d−2). The two charges can then be chosen to be in the highest degree component 2(11−d) in

the decomposition

ed(d)
∼= R(2d−18)

α1
⊕ (2⊗Rαd−2

)(d−9) ⊕
(

gl1 ⊕ sl2 ⊕ ed−2(d−2)

)(0) ⊕ (2⊗Rαd−2
)(9−d) ⊕R

(18−2d)

α1
,

Rαd
∼= (δd,72)

(d−11) ⊕R(2d−16)
α2

⊕ (2⊗Rα1)
(d−7) ⊕R(2)

αd−2
⊕ 2(11−d) ,

Rα1
∼= . . . ⊕ (δd,7(1⊕ 3)⊕Rα3)

(2d−14) ⊕ (2⊗Rα2)
(d−5) ⊕R(4)

α1
. (2.9)

Assuming that the two charges Γ1,Γ2 are linearly independent, one finds by inspecting the

decomposition of the representations above that any third charge Γ3 satisfying that Γ3 ×Γi = 0

must belong to the component R
(2)

αd−2
⊕ 2(11−d). Because the component of Γ3 in R

(2)

αd−2
again

satisfies the same constraint, one can therefore conclude that the three charges belong to the

highest degree component 3(12−d) in the decomposition

ed(d)
∼= . . .⊕

(

gl1 ⊕ sl3 ⊕ ed−3(d−3)

)(0) ⊕ (3⊗Rαd−3
)(9−d) ⊕ (3⊗Rα1)

(18−2d) ⊕R
(27−3d)

α2
,

Rαd
∼= . . .⊕ (3⊗Rα2)

(2d−15) ⊕ (3⊗Rα1)
(d−6) ⊕R(3)

αd−3
⊕ 3(12−d) ,

Rα1
∼= . . .⊕ (3⊗Rα2)

(d−3) ⊕R(6)
α1

, (2.10)

where for d ≤ 6 the algebra ed−3(d−3) has to be interpreted as the correct hidden symmetry

obtained from decompactification and the representation Rαa has to be interpreted accordingly.5

The same argument generalises to e8(8) using [48], and one proves in the same way that three

charges belonging to the corresponding lattice belong to the highest degree component 3(4) in

e8(8)
∼= . . .⊕

(

gl1 ⊕ sl3 ⊕ so(5, 5)
)(0) ⊕ (3⊗ 16)(1) ⊕ (3⊗ 10)(2) ⊕ 16

(3) ⊕ 3(4) ,

3875 ∼= . . .⊕ (3⊗ 16)(5) ⊕ 10(6) . (2.11)

The salient point here is that the tensor product of two top components in 3(12−d) always satisfies

the strong section constraint (for d ≤ 8) and is moreover stabilised by the upper parabolic

subgroup Pd−2 with the chosen Levi factor Ed−3(d−3)×SL(3)×GL(1). We can bring any triplet

of charges satisfying the strong section constraint into three copies of the 3(12−d), i.e. represent

them by a (3× 3)-matrix M and conversely any such triplet can be represented as an image of

such an M under the action of Ed(d) modulo the stabiliser Pd−2.

This construction can be understood more generally from the Bruhat decomposition of a

Kac–Moody group, and, as a consequence, that any group element defined over Q can be de-

composed as the product of an element in the Chevalley group defined over Z and an element in

the Borel subgroup over Q , i.e. G(Q) = B(Q)G(Z). We discuss this is some details in Appendix

C, in which we show that the same construction can be generalised to Kac–Moody groups and

in particular to E9(9).

5In particular for d = 4 one must consider the sum of the two contributions associated to the type IIA and IIB

decompactification. For d = 3 the decompactification is necessarily to eleven-dimensional supergravity for three

linearly independent charges, and they cannot be linearly independent for d < 3.
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One can therefore rewrite the threshold function (2.2) as a sum of four terms corresponding

to the possible ranks of the matrix M

E (3-loop)

(0,1) = 20

∫

H+
3×3/SL(3,Z)

d6Ω

(detΩ)2−
d−5
2









∑

γ∈Pd−2\Ed

∑

M∈Z3×3

detM 6=0

exp
(

− πTr (ΩMτGL(3)

γ MT )
)

+
∑

γ∈Pd−1\Ed

∑

M∈Z3×2

rkM=2

exp
(

− πTr (ΩMτGL(2)

γ MT )− πµ2R2(Ω)
)

+
∑

γ∈Pd\Ed

∑

m∈Z3

m6=0

exp
(

− πTr (ΩmτGL(1)

γ mT )− πµ2R1(Ω)
)

+ exp
(

−πµ2R0(Ω)
)









(2.12)

Here, τGL(n)
γ is theGL(n) symmetric matrix representating the Ed(d) representative in the top com-

ponent n(9−d+n) in the decomposition of Rαd
, after the action of the discrete γ ∈ Pd+1−n\Ed(Z)

coset representative τGL(n)
γ (V) = τGL(n)(γV). Note indeed that the representatives of the charges

only contract into this part of the full Ed(R) coset element, such that with the corresponding

embedding of M ∈ Zn×d(αd), MτGL(n)(V)MT = MVVTMT . Rn(Ω) are some functions of Ω that

we shall specify below, that regulate the infrared divergence with the infrared regulating mass

µ. The specific contributions in log µ that will be relevant in the following should not depend on

the specific choice of function Rn(Ω), so we shall choose them such as to make the computation

as simple as possible.

We will now unfold the integral over H+
3×3/SL(3,Z) for each orbit in the above equation.

For non-degenerate three by three matrices the stabiliser of SL(3,Z) is trivial so that we can

unfold the integral to H+
3×3. For simplicity we shall consider twice the sum over non-degenerate

matrices in Z3×3/GL(3,Z) (rather than once the matrices in Z3×3/SL(3,Z)).

For rank two three by two matrices, the stabiliser is Z2 ⊂ SL(3,Z), and SL(3,Z) allows

to rotate M to two by two representatives of non-vanishing determinant in Z2×2/GL(2,Z).

This choice distinguishes the decomposition of the symmetric matrix of Schwinger parameters

in block form as

Ω =

(

Ω2×2 Ω2×2u

uTΩ2×2 u
TΩ2×2u+ t

)

⇒ detΩ = t detΩ2×2 , (2.13)

and

d6Ω = (detΩ2×2) d
3Ω2×2 d

2u dt , (2.14)

such that Tr (Ω3×3M3×2τ
GL(2)
γ MT

3×2) = Tr (Ω2×2M2×2τ
GL(2)
γ MT

2×2), and the Z2 stabiliser acts as a

shift of u. Choosing for convenience R2(Ω) = t to regularise the integral, the integral of u simply

gives a unit volume contribution.

For non-zero vectors m ∈ Z3 the stabiliser is SL(2,Z) ⋉ Z2 ⊂ SL(3,Z), and SL(3,Z)

permits to rotate m to a positive integer in the first component. This choice distinguishes the

9



decomposition of the symmetric matrix of Schwinger parameters in block form as

Ω =

(

Ω1×1 Ω1×1u
T

uΩ1×1 t2×2 + uΩ1×1u
T

)

⇒ detΩ = det t2×2 Ω1×1 , (2.15)

and

d6Ω = (det t2×2) dΩ1×1 d
2u d3t2×2 , (2.16)

such that Tr (Ω3×3mτGL(1)
γ mT ) = Ω1×1τ

GL(1)
γ m2, and the SL(2,Z)⋉Z2 stabiliser acts as a shift of

u, and linearly on u and t. Choosing for convenience R1(Ω) = det t2×2 to regularise the integral,

the integral of u simply gives a 1
2 volume contribution (because of the −1 ∈ SL(2,Z) that does

not act on t). The remaining integral over the matrix t2×2 is over H+
2×2/PSL(2,Z), which is

twice the integral over H+
2×2/PGL(2,Z), so we reabsorb the factor of 1

2 of the integral over u

by this halving of the integration domain of t2×2.

For the trivial orbit the stabiliser is of course SL(3,Z) = PGL(3,Z). For convenience we

write the variable as t3×3, since the integral contribution is defined by its infrared divergence,

and we use R0(t3×3) = det t3×3 for simplicity.

So to conclude, the orbit method permits to reduce the threshold function to

E (3-loop)

(0,1) = 40
∑

γ∈Pd−2\Ed

∑

M∈Z3×3/GL(3,Z)
det (M)6=0

∫

H+
3×3

d6Ω

(detΩ)2−
d−5
2

exp
(

− πTr (ΩMτGL(3)

γ MT )
)

+ 20
∑

γ∈Pd−1\Ed

∑

M∈Z2×2/GL(2,Z)
det (M)6=0

∫

H+
2×2

d3Ω

(detΩ)
3
2
− d−4

2

∞
∫

0

dt

t1−
d−7
2

× exp
(

− πTr (ΩMτGL(2)

γ MT )− πµ2t
)

+ 20
∑

γ∈Pd\Ed

∑

m>0

∞
∫

0

dΩ

Ω1− d−3
2

∫

H+
2×2/PGL(2,Z)

d3t

(det t)
3
2
− d−6

2

× exp
(

− πΩτGL(1)

γ m2 − πµ2det t
)

+ 20

∫

H+
3×3/PGL(3,Z)

d6t

(det t)2−
d−5
2

exp
(

− πµ2det t
)

. (2.17)

In this formula we have suppressed the subscripts on the sub-blocks in Ω, M and t in order to

ease the notation. Their size is evident from the summation and integration ranges.

In the next step, we carry out the integrals over Ω and t using the formulæ of Appendix A.

These reduce the expressions for each rank into a power of det τγ multiplied by a power of the
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regulator µ and d-dependent numerical factors involving Γ and ξ factors. The result is

E (3-loop)

(0,1) = 40ξ(d − 5)ξ(d− 6)ξ(d − 7)
∑

γ∈Pd−2\Ed

(det τGL(3)

γ )−
d−5
2

+ 20Γ

(

d− 7

2

)

(πµ2)−
d−7
2 ξ(d− 4)ξ(d − 5)

∑

γ∈Pd−1\Ed

(det τGL(2)

γ )−
d−4
2

+ 20ξ(2)Γ

(

d− 6

2

)

(πµ2)−
d−6
2 ξ(d− 3)

∑

γ∈Pd\Ed

(τGL(1)

γ )−
d−3
2

+ 20ξ(2)ξ(3)Γ

(

d− 5

2

)

(πµ2)−
d−5
2 . (2.18)

The γ-sums over the duality group can be carried out to yield the final result

E (3-loop)

(0,1) = 40ξ(d − 5)ξ(d− 6)ξ(d − 7)Eαd−2,
d−5
2

+ 20Γ

(

d− 7

2

)

(πµ2)−
d−7
2 ξ(d− 4)ξ(d− 5)Eαd−1,

d−4
2

+ 20ξ(2)Γ

(

d− 6

2

)

(πµ2)−
d−6
2 ξ(d− 3)Eαd,

d−3
2

+ 20ξ(2)ξ(3)Γ

(

d− 5

2

)

(πµ2)−
d−5
2 , (2.19)

where the Langlands Eisenstein series coming from the maximal parabolic cosets sums have been

labelled by the node associated with the maximal parabolic subgroup of Ed(d) together with the

parameter of the inducing determinant.

Before explaining the derivation (2.19) in more detail, we make a small parenthesis on our

different conventions for denoting Eisenstein series. More precisely, we have used for 1 ≤ n ≤ 3

Eαd+1−n,s =
∑

γ∈Pd+1−n\Ed

(

det τGL(n)
γ

)−s
, (2.20)

such that the identity coset term has numerical coefficient equal to one. We shall also encounter

Eisenstein series associated with non-maximal parabolic subgroups and in this case it is con-

venient to either label the series by putting the corresponding weight {si}di=1 on the Dynkin

diagram (for a fixed symmetry group Ed(d)) or by writing the weight
∑d

i=1 siΛi in the basis of

the fundamental weights {Λi}di=1. Note that the Eisenstein series are instead commonly labeled

by the weight λ = 2
∑d

i=1 siΛi − ρ =
∑d

i=1(2si − 1)Λi defining the infinitesimal character on

which the Weyl group acts in functional relations. For ease of notation it will be nonetheless

useful to label them by
∑d

i=1 siΛi for short, since most of the si vanish in practice. Concretely,

we write for maximal parabolic Eisenstein series

Eαi,s = EsΛi (2.21)

indicating that the fundamental weight Λi occurs with coefficient s in the weight. Moreover,

we use the Ed labelling for the fundamental weights and the standard labelling for the Dynkin

11



diagrams, such that we would write for example for E5(5) = SO(5, 5) of type D5

E∑d
i=1 siΛi

= E[

ss sss

] . (2.22)

In deriving the final expression (2.19), we have used the identities for the matrix integrals and

Eisenstein series naively and without paying attention to their convergence. In fact one can

check that the integral over t only converges absolutely for the rank n orbit if d > 5 + n and

the integral over Ω for the rank n orbit if d > 1 + 2n. To take care of the convergence of the

Langlands Eisenstein series we consider the analytic continuation of the parameter by replacing

d by d + 2ǫ, which corresponds formally to dimensional regularisation. In this case one checks

that the Eisenstein series Eαd+1−n,
d−2−n

2 + ǫ converges absolutely for Re(ǫ) > n2−(d−2)n+7d−3
2(9+n−d) , using

the convergence criterion that EsΛi is absolutely convergent if and only if 〈Λi, sΛi − ρ〉 > 0 for

a maximal parabolic Eisenstein series.6 These expression are therefore generally divergent at

ǫ = 0, but are absolutely convergent for Re(ǫ) satisfying the above inequality. Using Langlands’

construction these functions can then be analytically extended to meromorphic functions in ǫ to

the whole complex plane, where one also continues the numerical prefactors appropriately. We

shall use this analytic continuation as a dimensional regularisation as in [29]. Each individual

expression is then finite for a dense set of ǫ ∈ C, but the expressions involve individually poles at

ǫ = 0. These divergences are also to be expected on physical grounds and signal the appearance of

ultra-violet divergences of amplitudes or form factors in supergravity, or equivalently, ambiguities

in the decomposition of the non-perturbative string amplitude into analytic and non-analytic

components due to the logarithmic behaviour of the latter in the Mandelstam variables. We

will now discuss the treatment of these divergences in the different dimensions, and show that

all poles cancel in the complete expression for the amplitude for all d.

2.1 D = 6

For six space-time dimensions (d = 5) one has to interpret the Eisenstein series from the various

orbits as follows where we also introduce the dimensional regularisation d = 5 + 2ǫ:

Eαd−2,ǫ = E[

ǫ
0ǫ0

0

] , Eαd−1,
1
2+ǫ = E[

0
00

1
2
+ǫ

0

] , Eαd,1+ǫ = E[

0
000

+ǫ

] . (2.23)

In particular, the series Eαd−2,ǫ is not a maximal parabolic Eisenstein series and converges

absolutely for Re(ǫ) > 5
2 . Considering the factors multiplying the various terms we see that the

contributions from the rank-one orbit and rank-two orbit give only finite contributions for ǫ → 0

that vanish when sending the IR regulator µ to zero. The rank-three and rank-zero orbits on

the other hand give divergent contributions that we now analyse.7

Let us first analyse the series coming from the non-degenerate orbit. This term is divergent

due to the ξ(d − 5) → ξ(2ǫ) prefactor. To analyse it, we note the following functional relations

6The case d = 5 and n = 3 has to be treated separately since it is not a maximal parabolic series and we will

give its convergence condition below after (2.23).
7For the Eisenstein series themselves one has E

SO(5,5)
αd,1+ǫ = O(ǫ0), E

SO(5,5)

αd−1,
1
2
+ǫ

= O(ǫ2) and E
SO(5,5)
αd−2,ǫ = O(ǫ0).
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of Eisenstein series

E[

0
0ǫ0

0

] =
ξ(5− 2ǫ)ξ(6 − 2ǫ)ξ(7 − 2ǫ)ξ(8 − 4ǫ)

ξ(1− 2ǫ)ξ(2 − 2ǫ)ξ(3 − 2ǫ)ξ(7 − 4ǫ)
E[

0
0

7
2
-ǫ0

0

] ,

E[

ǫ
000

0

] =
ξ(6− 2ǫ)ξ(8 − 2ǫ)

ξ(1− 2ǫ)ξ(3 − 2ǫ)
E[

0
000

-ǫ

] . (2.24)

Using the property that

E[

ǫ
0ǫ0

0

] = E[

0
0ǫ0

0

] + E[

ǫ
000

0

] − E[

0
000

0

] +O(ǫ2) , (2.25)

one deduces therefore that the rank-three contribution becomes

ξ(2)ξ(3)ξ(2ǫ)E[

ǫ
0ǫ0

0

] = ξ(2)ξ(3)ξ(2ǫ) + ξ(5)ξ(6)ξ(8)Ê[

0
0

7
2
0
0

] + ξ(2)ξ(6)ξ(8)Ê[

0
000



] +O(ǫ) ,

(2.26)

where the hat on the Eisenstein series indicates that the pole in 1
ǫ has been removed before

taking the limit ǫ → 0, e.g.

Ê[

0
000



] = lim
ǫ→0

(

E[

0
000

+ǫ

] − ξ(1 + 2ǫ)ξ(3 + 2ǫ)

ξ(6 + 2ǫ)ξ(8 + 2ǫ)

)

,

Ê[

0
0

7
2
0
0

] = lim
ǫ→0

(

E[

0
0

7
2
+ǫ0

0

] − ξ(1 + 2ǫ)ξ(2 + 2ǫ)ξ(3 + 2ǫ)ξ(7 + 4ǫ)

ξ(5 + 2ǫ)ξ(6 + ǫ)ξ(7 + 2ǫ)ξ(8 + 4ǫ)

)

. (2.27)

The remaining explicit divergence in (2.26) associated with ξ(2ǫ) ∼ − 1
2ǫ , cancels precisely the

leading part in the IR divergence in the last term of (2.19) coming from the rank-zero orbit.

Putting everything together we therefore obtain (for some irrelevant constant c1)

E (3-loop)

(0,1) = 40ξ(5)ξ(6)ξ(8)Ê[

0
0

7
2
0
0

] + 40ξ(2)ξ(6)ξ(8)Ê[

0
000

4

] − 20ξ(2)ξ(3)(log(πµ2) + c1) . (2.28)

The two series are the two homogeneous solutions to the differential equation for the ∇6R4

term and the combination is the one displayed in [28]. The constant logarithmic term in

ξ(2)ξ(3) log(πµ2) exhibits the need of introducing a renormalisation scale in the non-analytic

component of the amplitude, which is a consequence of the logarithmic divergence in the super-

gravity four-graviton scattering amplitude at 3-loop [43].

2.2 D = 5

For five space-time dimensions (d = 6+2ǫ) one has to perform a similar analysis to above. The

only interesting terms are the rank-three and the rank-one orbit in this case

E (3-loop)

(0,1) = 40ξ(2 − 2ǫ)ξ(1 + 2ǫ)ξ(2ǫ)E[

0
00

1
2
+ǫ00

] + 20ξ(2)Γ(ǫ)(πµ2)−ǫξ(3 + 2ǫ)E[

0
0000

3
2
+ǫ

] . (2.29)
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Using the functional relations

ξ(1 + 2ǫ)E[

0
00

1
2
+ǫ00

] = ξ(3− 2ǫ)E[

ǫ
0ǫ00 3

2
-ǫ

] , (2.30)

E[

-ǫ
000 0

3
2
+ǫ

] =
ξ(6 + 2ǫ)ξ(9 + 2ǫ)

ξ(1 + 2ǫ)ξ(3 + 2ǫ)
E[

0
0000

9
2
+ǫ

] ,

E[

0
0ǫ00 3

2
-ǫ

] =
ξ(2 + 2ǫ)

ξ(3− 2ǫ)
E[

1+ǫ
00 0 00

] =
ξ(6− 2ǫ)ξ(7 − 2ǫ)ξ(8− 4ǫ)ξ(9 − 2ǫ)

ξ(2ǫ)ξ(2 − 2ǫ)ξ(3 − 2ǫ)ξ(7 − 4ǫ)
E[

9
2
-ǫ

00 0 00

] ,

one can simplify the rank-three orbit contribution similarly as for (2.26)

ξ(2ǫ)ξ(1 + 2ǫ)E[

0
00

1
2
+ǫ00

] = ξ(2 + 2ǫ)ξ(2ǫ)E[

1+ǫ
00 0 00

] + ξ(3− 2ǫ)ξ(2ǫ)E[

0
0000

3
2
+ǫ

]

− ξ(2ǫ)ξ(3 − 2ǫ)

ξ(−2ǫ)ξ(3 + 2ǫ)
ξ(6 + 2ǫ)ξ(9 + 2ǫ)E[

0
0000

9
2
+ǫ

] +O(ǫ) . (2.31)

The divergent second term in (2.31) cancels against the rank-one contribution, leaving only

finite pieces and logarithms of the IR regulator µ. With a similar appropriate definition of the

regularised Eisenstein series one obtains

E (3-loop)

(0,1) = 40ξ(6)ξ(8)ξ(9)Ê[

9
2

00000

]+40ξ(2)ξ(6)ξ(9)Ê[

0
0000

9
2

]−20ξ(2)ξ(3) log(πµ2)E[

0
0000

3
2

] . (2.32)

Once again, the two series defining the µ independent contribution are the two homogeneous

solutions to the differential equation for the ∇6R4 term and the combination is the one displayed

in [28]. The constant logarithmic term in ξ(2)ξ(3) log(πµ2) exhibits the need of introducing a

renormalisation scale in the non-analytic component of the amplitude, which is a consequence

of the logarithmic divergence in the supergravity form factor of the E(0,0)R
4 type invariant with

four external gravitons at 2-loop.

2.3 D = 4

For d = 7+ 2ǫ, it is the rank 2 orbit that is divergent in the limit µ → 0, and one gets together

with the rank 3 orbit

E (3-loop)

(0,1) = 40ξ(2 + 2ǫ)ξ(1 + 2ǫ)ξ(2ǫ)E[

0
000+ǫ 00

] + 20Γ(ǫ)(πµ2)−ǫξ(2 + 2ǫ)ξ(3 + 2ǫ)E[

0
0000

3
2
+ǫ 0

] ,

(2.33)

Using successive Weyl group transformations one proves the identities

E[

0
000+ǫ 00

] =
ξ(3− 2ǫ)ξ(4 − 2ǫ)ξ(7 − 4ǫ)ξ(8− 6ǫ)

ξ(1 + 2ǫ)ξ(2 + 2ǫ)ξ(3 − 4ǫ)ξ(7− 6ǫ)
E[

0
0ǫ00ǫ 4-3ǫ

] (2.34)

and

E[

0
0000ǫ4-2ǫ

] =
ξ(9− 2ǫ)ξ(12 − 2ǫ)

ξ(1− 2ǫ)ξ(4− 2ǫ)
E[

0
-ǫ00000

] ,

E[

0
0ǫ0004-2ǫ

] =
ξ(2 + 2ǫ)ξ(3 + 2ǫ)ξ(3 − 4ǫ)

ξ(4− 2ǫ)ξ(3− 2ǫ)ξ(8 − 4ǫ)
E[

0
0000

3
2
+ǫ 0

] , (2.35)
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which imply that

E[

0
0ǫ00ǫ 4-3ǫ

] =
ξ(9− 2ǫ)ξ(12 − 2ǫ)

ξ(1− 2ǫ)ξ(4 − 2ǫ)
E[

0
-ǫ00000

] +
ξ(2 + 2ǫ)ξ(3 + 2ǫ)ξ(3 − 4ǫ)

ξ(4− 2ǫ)ξ(3− 2ǫ)ξ(8 − 4ǫ)
E[

0
0000

3
2
+ǫ 0

]

− E[

0
00000 4-ǫ

] +O(ǫ2) . (2.36)

Substituting this last expression in (2.33), one gets that the poles in E[

0
0000

3
2
0

] cancel between

the rank three and the rank two orbits, and using (2.35) that the poles in E[

0
000004

] cancel as

well, such that the final expression is finite. Using moreover the identities

ξ(8− 2ǫ)ξ(4 − 2ǫ)ξ(−2ǫ)E[

0
00000 4-ǫ

] = ξ(2 + 2ǫ)ξ(6 + 2ǫ)ξ(10 + 2ǫ)E[

0
00000 5+ǫ

] , (2.37)

and

ξ(3)E[

0
0000

3
2
0

] = ξ(5)E[

05
2
00000

] , (2.38)

one obtains finally

E (3-loop)

(0,1) = 40ξ(8)ξ(9)ξ(12)Ê[

0
00000

] + 40ξ(2)ξ(6)ξ(10)Ê[

0
000005

] − 20ξ(2)ξ(5) log(πµ2)E[

05
2
00000

] ,

(2.39)

where the hatted functions are defined to be the finite part of the corresponding divergent

Eisenstein series, for which the pole (1ǫ + cE)E
[

05
2
00000

]

has been removed for a given choice of

constant cE . Here we do not define a precise subtraction scheme (defining cE), since this would

only become meaningful if we were also considering the appropriately regularised non-analytic

part of the amplitude such that the complete amplitude would match correctly the perturbative

string theory three-loop amplitude. The full 3-loop non-analytic amplitude is not known. The

two series defining the µ independent contribution are the two homogeneous solutions to the

differential equation for the ∇6R4 term and the combination is the one displayed in [28]. The

constant logarithmic term in ξ(2)ξ(5) log(πµ2) exhibits the need of introducing a renormalisation

scale in the non-analytic component of the amplitude, which is a consequence of the logarithmic

divergence in the supergravity form factor of the E(1,0)∇4R4 type invariant with four extrenal

gravitons at 1-loop in four dimensions.

2.4 D = 3

For D = 3 (d = 8) there is not much to do. The non-degenerate orbit satisfies the functional

relation

E[

0
0000

3
2
+ǫ00

] =
ξ(2− 2ǫ)ξ(3 − 2ǫ)ξ(4 − 2ǫ)ξ(6− 4ǫ)ξ(7 − 4ǫ)ξ(11 − 6ǫ)

ξ(1 + 2ǫ)ξ(2 + 2ǫ)ξ(3 + 2ǫ)ξ(3 − 4ǫ)ξ(4− 4ǫ)ξ(7 − 6ǫ)
E[

0
00ǫ000 11

2
-ǫ

] , (2.40)

and so directly relates in a regular way to the adjoint function at s8 =
11
2 that solves the homo-

geneous supesrymmetry differential equations and that comes with a finite overall coefficient.

In dimensions D > 3 we always had combinations of adjoint and fundamental Eisenstein series.

For E8, these two notions coincide and that is why the presence of only one function here agrees

with the expectations. The two classes of supersymmetry invariants with couplings satisfying
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two distinct sets of differential equations also coincide in D = 3 and there is a unique class of

supersymmetry invariant [20].

The final answer obtained from our 3-loop calculation is then

E (3-loop)

(0,1) = 40ξ(8)ξ(9)ξ(11)E[

0
000000

11
2

] . (2.41)

As in the other cases the non-degenerate orbit provides the homogeneous solution to the differ-

ential equations of [20] and it was shown in particular in [28] that the above Eisenstein series

encodes all the relevant information about supergravity divergences up to three loops.

2.5 D < 3

We can also treat the expression (2.19) formally in dimensions when the hidden symmetry is

thought to be of Kac–Moody type [49–51]. A full exceptional field theory has not been developed

in these cases. For D = 2 one can define the four-scalar amplitude in supergravity and the two-

derivative effective theory is known to admit a Kac–Moody E9 symmetry [52]. A closed algebra

of generalised diffeomorphisms for the corresponding exceptional field theory has been defined

in [53], and it involves exceptional coordinates in the expected highest weight module Rαd
. As

we explain in Appendix C, the situation is then essentially as much in control as for D = 3,

so that one arrives to the same formula (2.19). For d ≥ 8, this formula indicates that one can

neglect the lower rank contribution in the limit µ → 0, so that one only gets the maximal rank

contribution with a finite coefficient. In this section we shall also extrapolate these formulas for

d > 9, although there is no clear scattering amplitude defining the coupling in this case.

From the analysis of the D = 3 case above, we anticipate that there should only be a

‘fundamental’ series on the last node of the Ed Dynkin diagram in Figure 1. Using the properties

of Kac–Moody Eisenstein series [16,54–56] we can address this question. As we discuss in more

detail in Appendix C one can relate the constrained Epstein sums over 1/2-BPS charges to

Langlands Eisenstein series on the completed Kac–Moody group that are also discussed in the

appendix.

For D = 2 (d = 9) we are in the affine E9 case. Due to the degenerate Cartan matrix one

has to treat the derivation (that is used to desingularise the Cartan matrix) separately [54,55].

There is a parameter v associated with the derivation direction in the affine Lie algebra that is

dual to the null root. We discuss more details related to this subtlety in Appendix C. One has

that the fundamental series for E9 satisfies

EsΛ9 =
ξ(2s − 13)ξ(2s − 14)ξ(2s − 15)

ξ(2s)ξ(2s − 6)ξ(2s − 10)
v14−4sE(s−6)Λ3+(8−s)Λ7

, (2.42)

where we use the notational conventions discussed around (2.21). For s = 6 one deduces then

that the non-degenerate orbit contribution in (2.19) is

40ξ(2)ξ(3)ξ(4)v2Eα7,2 = 40ξ(2)ξ(6)ξ(12)v12Eα9,6 (2.43)

and this agrees with the one-loop result of [29], see also Appendix C.
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As stressed in the introduction the cases E10 and E11 are more formal, but we will now show

that they work in an exactly parallel manner.

For D = 1 (d = 10) the conjectured symmetry group is the hyperbolic E10 and we have

formally that an Eisenstein series on the fundamental node satisfies the functional relation

EsΛ10 =
ξ(2s − 15)ξ(2s − 16)ξ(2s − 17)

ξ(2s)ξ(2s − 7)ξ(2s − 11)
E

(s−
13
2 )Λ3+(9−s)Λ8

(2.44)

so that the non-degenerate orbit in (2.19) is related to a fundamental series by

40ξ(3)ξ(4)ξ(5)Eα8 ,5/2 = 40ξ(2)ξ(6)ξ(13)Eα10 ,13/2 = E (1-loop)
(0,1) , (2.45)

where the last step shows that this is formally equal to the contribution from the one-loop

exceptional field theory amplitude in [29, Eq. (3.9)].

For D = 0 (d = 11) the conjectured symmetry group is the Lorentzian E11. The functional

relation in this case reads

EsΛ11 =
ξ(2s − 17)ξ(2s − 18)ξ(2s − 19)

ξ(2s)ξ(2s − 8)ξ(2s − 12)
E(s−7)Λ3+(10−s)Λ9

. (2.46)

At s = 7 this gives the desired relation between the non-degenerate orbit in (2.19) and the

one-loop calculation:

40ξ(4)ξ(5)ξ(6)Eα9 ,3 = 40ξ(2)ξ(6)ξ(14)Eα11 ,7 = E (1-loop)
(0,1) . (2.47)

3 One-quarter BPS contributions

One way to extract the 1/4 BPS states contribution is to consider the superstring amplitude.

Ed(Z) relates all 1/2 BPS states to 11-dimensional supergravity torus Kaluza–Klein states.

Similarly, Ed(Z) relates all 1/4 BPS states to perturbative string theory states with torus winding

and momenta that are not orthogonal (do not satisfy level matching). The 1-loop string theory

contribution to the ∇4R4 coupling is given by an integral of a modular graph function against

the Narain theta function Γd−1,d−1 associated with the torus T d−1. The modular graph function

in this case is well-known to be proportional to the real analytic Eisenstein series E2 [5, 12, 57]

and this leads to

EString (1-loop)
(1,0) = 4πg

−2 d+1
9−d

s

∫

F1

d2τ

τ 2
2

ξ(4)E2(τ)τ
d−1
2

2

∑

Q∈Zd−1,d−1

e−πτ2g(Q,Q)+iπτ1〈Q,Q〉 . (3.1)

F1 denotes the fundamental domain of the inequivalent toroidal world-sheets parametrised by

the world-sheet modulus τ . Q denotes the momentum and winding charges of the string on

T d−1.

The standard unfolding procedure, including an appropriate regulator [58, 59], permits to

compute the integral (3.1) and to recover the O(d − 1, d − 1) vector Eisenstein series of weight
d+1
2 . This computation suggests that only 1/2 BPS states contribute to the amplitude, because

the integral over τ1 then enforces the level matching condition 〈Q,Q〉 = 0 satisfied by 1/2 BPS
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string states. However, we know that 1/4 BPS states contribute as well when d > 0 [6, 15]. To

recover the complete set of states contributing to the amplitude from (3.1) we substitute the

formal identity

1 = lim
ǫ→0

∑

γ∈Z\PSL(2,Z)

τ ǫ
2,γ (3.2)

by analytic continuation of the function for Re(ǫ) > 1. As a consequence, we are saying that

(3.1) is formally equal to the same integral over a complete unit strip in the upper complex half-

plane H+ when we freely unfold this coset sum and then take the limit again. In the integral

over H+ we can then substitute the Fourier expansion of E2(τ) and obtain for the non-zero

Fourier coefficients8

8πg
−2 d+1

9−d
s

∑

n 6=0

∑

Q∈Zd−1,d−1

∫

Z\H+

dτ

τ22
τ
d/2
2 σ3(n)|n|−3/2K 3

2
(2π|n|τ2)e2πinτ1−πiτ1〈Q,Q〉−πτ2g(Q,Q)

=8πg
−2 d+1

9−d
s

∫ ∞

0

dτ2
τ2

∑

Q∈Zd−1,d−1

〈Q,Q〉6=0

σ3(| 〈Q,Q〉
2 |)

| 〈Q,Q〉
2 | 32

K 3
2
(2πτ2| 〈Q,Q〉

2 |)τ
d−2
2

2 e−πτ2g(Q,Q)

=2π
5−d
2 Γ(d−5

2 )
∑

Q∈Zd−1,d−1

〈Q,Q〉6=0

σ3(| 〈Q,Q〉
2 |) g

4
9−d
s g(Q,Q) + (d− 3)g

4
9−d
s | 〈Q,Q〉

2 |

(g
4

9−d
s | 〈Q,Q〉

2 |)3(g
4

9−d
s g(Q,Q) + 2g

4
9−d
s | 〈Q,Q〉

2 |) d−3
2

. (3.3)

The integral over the Bessel function can be carried out for example using the exact asymptotic

expansion around τ2 → ∞: K 3
2
(x) =

√

π
2xe

−x(1+ 1
x). Note that the integral over τ1 has produced

the constraint 〈Q,Q〉 = 2n 6= 0 corresponding to 1/4 BPS states.

The quantities involving Q appearing in the last expression in (3.3) can be reinterpreted

in terms of specific representatives of charges Γ in U-duality multiplets of 1/4 BPS states as

follows. For all 1/4 BPS charges Γ there is an element γ ∈ P1\Ed such that Γ lies in the vector

representation highest degree component of the corresponding decomposition of the represen-

tation R(αd) of Ed(d) under O(d − 1, d − 1). We denote this component in Zd−1,d−1 by Q and

have

|Z(Γ)|2 = g
4

9−d
s g(Q,Q) , ∆(Γ) = g

8
9−d
s

∣

∣

〈Q,Q〉
2

∣

∣

2
. (3.4)

Taking the Poincaré sum of this contribution under the full Ed(Z), one obtains the manifestly

U-duality invariant ∇4R4 threshold function corresponding to 1/4 BPS states from the T-duality

invariant string expression (3.3) as

E (1-loop) 1/4-BPS
(1,0) = 2

ξ(d− 5)

ζ(d− 5)

∑

Γ∈Zd(αd)

Γ×Γ6=0
I′4(Γ)=0

σ3(Γ× Γ)

∆(Γ)
3
2

|Z(Γ)|2 + (d− 3)
√

∆(Γ)

(|Z(Γ)|2 + 2
√

∆(Γ))
d−3
2

. (3.5)

8The general expansion of Es(τ ) for τ = τ1 + iτ2 is

Es(τ ) =
∑

γ∈Z\SL(2,Z)

(Im τγ)
s = τ s

2 +
ξ(2s− 1)

ξ(2s)
τ 1−s
2 +

2

ξ(2s)
τ
1/2
2

∑

n6=0

|n|s−1/2σ1−2s(n)Ks−1/2(2π|n|τ2)e
2πinτ1 .

Here, σk(n) =
∑

d|n dk is the divisor sum of n; the variable d runs over the positive divisors of n.
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The constraint on the sum is exactly the 1/4 BPS constraint [60]. The superscript ‘1-loop’ for

this U-duality invariant function refers to the loop order from the point of view of the effective

field theory analysis.

The amplitude (3.5) is indeed consistent with the expected result: The factor of (|Z(Γ)|2 +
2
√

∆(Γ))
d−3
2 is the 1/4-BPS mass to the power corresponding to a 1-loop box diagram in 11−d

dimensions and σ3(Γ× Γ) is the twelfth helicity supertrace of the 1/4 BPS states computed in

perturbative string theory [48, 61]. The numerator is determined by supersymmetry such that

the function 1

∆(Γ)
3
2

|Z(Γ)|2+(d−3)
√

∆(Γ)

(|Z(Γ)|2+2
√

∆(Γ))
d−3
2

satisfies the differential equations imposed by supersymmetry on

E (1-loop) 1/4-BPS
(1,0) . In particular, the full E (D)

(1,0) must satisfy a Laplace equation of the form (D = 11−d

as always)

(

∆Ed
− 5

(d+ 1)(4 − d)

9− d

)

E (D)

(1,0) = 40ζ(2)δd,4 + 7E (6)

(0,0)δd,5 (3.6)

that is homogeneous away from D = 6 and D = 7. Considering the ‘theta kernel’ function

appearing in (3.1) one finds indeed that9

(

∆Ed
− 5

(d+ 1)(4 − d)

9− d

)(

g
−2 d+1

9−d
s τ

d−1
2

2 e−πτ2g(Q,Q)+iπτ1〈Q,Q〉
)

=
1

2
(∆τ − 2)

(

g
−2 d+1

9−d
s τ

d−1
2

2 e−πτ2g(Q,Q)+iπτ1〈Q,Q〉
)

. (3.7)

This implies that the function that this kernel is integrated against in a ‘theta lift’ must be

an eigenfunction of the upper complex half plane Laplacian ∆τ of eigenvalue 2. The same

construction can be used to show that all the Casimir differential operators on Ed(d)/K(Ed) take

the correct eigenvalues imposed by supersymmetry, provided that the source function satisfies

this Laplace equation. The only two solutions associated to 1/4 BPS charges with a non-trivial

dependence in e2πiτ1n with n 6= 0 are e±2π|n|τ2+2πinτ1(1 − 1
2π|n|τ2

), where the minus sign occurs

for the Fourier coefficient of E2(τ) and the other, exponentially growing, solution is normally

eliminated by moderate growth conditions. This second solution gives a function of the form
1

∆(Γ)
3
2

|Z(Γ)|2−(d−3)
√

∆(Γ)

(|Z(Γ)|2−2
√

∆(Γ))
d−3
2

that is singular at finite values of the moduli and does not reproduce the

expected mass term for a 1/4 BPS state contribution. We have checked in [29] that these are

indeed the two unique solutions to the tensorial equations imposed by supersymmetry for d = 4.

To evaluate (3.5), we go back to its form before integration written as the Ed(Z) Poincaré sum

of the perturbative string theory contribution. For this purpose we note that for any 1/4 BPS

charge, there exists an Ed(Z) element to bring the cross product Γ× Γ into the highest weight

component of the highest weight representation Λ1 of stabiliser P1(Z) ⊂ Ed(Z). This is precisely

the decomposition in which the charge Γ is represented by the highest weight component vector

Q ∈ Zd−1,d−1 and Γ × Γ is 〈Q,Q〉
2 . We conclude that we have a representation of the 1/4 BPS

threshold function as a theta lift of an E2(τ) Fourier mode

E (1-loop) 1/4-BPS
(1,0) = 8π

∑

γ∈P1\Ed

g
−2 d+1

9−d
s,γ

∑

n 6=0

σ3(|n|)
n2

∫

Z\H+

d2τ

τ 2
2

√

|n|τ2K 3
2
(2π|n|τ2)e2πinτ1Γd−1,d−1(τ, gγ)

(3.8)

9For which ∆Ed
= (9−d)(31−3d)

32
gs

∂
∂gs

gs
∂
∂gs

− 42+d(d−27)
8

gs
∂
∂gs

+ 1
2
(g(Q,Q)2 − 〈Q,Q〉2) ∂2

∂g(Q,Q)2
+ d−1

2
∂

∂g(Q,Q)
.
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with the Narain genus-one partition function

Γd−1,d−1(τ, g) = τ
d−1
2

2

∑

Q∈Zd−1,d−1

e−πτ2g(Q,Q)+πiτ1〈Q,Q〉 . (3.9)

We shall formally now fold this integral by defining the Eisenstein series from the Poincaré sum

of the Whittaker function

∑

γ∈P1\PSL(2,Z)

√

|n|τ2Ks− 1
2
(2π|n|τ2)e2πinτ1

∣

∣

∣

γ
=

π

(2s− 1) cos(πs)ξ(2s − 1)

σ2s−1(|n|)
|n|s−1

Es(τ) .

(3.10)

Formally, the left-hand side defines an SL(2,Z) invariant function with eigenvalue s(s−1) under

the Laplacian and thus should be proportional to the Eisenstein series Es(τ) for real s. The

above equation provides the proportionality factor in a formal way but the actual Poincaré

sum does not converge for any s. It can be written as the difference of two Niebur–Poincaré

series that are absolutely convergent on two different domains (Re(s) > 1 and Re(1 − s) > 1

respectively), see [57]

∑

γ∈P1\PSL(2,Z)

√

|n|τ2Ks− 1
2
(2π|n|τ2)e−2πinτ1

∣

∣

∣

γ
=

√
π

2 cos(πs)

( F(s, n, 0)

4sΓ(s+ 1
2)

− F(1− s, n, 0)

41−sΓ(32 − s)

)

.

(3.11)

The limit s → 2 is nevertheless regular and one obtains from (3.10) that

E (1-loop) 1/4-BPS
(1,0) = 480

ξ(4)

ξ(3)

∑

γ∈P1\Ed

g
−2 d+1

9−d
s,γ

∑

n>0

σ 2
3 (n)

n3

∫

F1

d2τ

τ 2
2

E2(τ)Γd−1,d−1(τ, gγ) , (3.12)

where the Fourier sum is now only over n > 0. The sum
∑

n>0
σ 2
3 (n)
n3 still diverges, but using a

zeta function regularisation via the Ramanujan identity (see Appendix B)10

∑

n>0

σ2
3(n)

n3
→ −ζ(3)

240
(3.13)

one obtains that

E (1-loop) 1/4-BPS
(1,0) = −4πξ(4)

∑

γ∈P1\Ed

g
−2 d+1

9−d
s,γ

∫

F1

d2τ

τ 2
2

E2(τ)Γd−1,d−1(τ, gγ)

= −8πξ(4)ξ(d + 1)
∑

γ∈P1\Ed

g
−2 d+1

9−d
s,γ E

SO(d−1,d−1)

V, d+1
2

(gγ)

= −8πξ(4)ξ(d + 1)Eαd,
d+1
2

(3.14)

where we have first carried out the (regularised) theta lift using for instance the results of [59] to

obtain a vector Eisenstein series on the T-duality group SO(d− 1, d− 1)11 and then performed

10The dimensional regularisation gives naturally E2+ǫ(τ ) and the sum
∑

n>0

σ 2
3+2ǫ(n)

n3+2ǫ = ζ(3+2ǫ)ζ(−3−2ǫ)ζ(0)

does not converge either.
11In our notation, the general formula is

∫

F1

d2τ
τ2
2
Es(τ )Γd−1,d−1(τ ) = 2ξ(2s+ d− 3)E

SO(d−1,d−1)

V,s+ d−3
2

.
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the Poincaré sum over the U-duality group starting from the constant term in the expansion of

Eαd,
d+1
2

along the T-duality subgroup.

Recalling that E (1-loop) 1/2-BPS
(1,0) = 8πξ(4)ξ(d + 1)Eαd ,

d+1
2

from [29], this formally proves a claim

that was made there: The 1/4 BPS state contribution cancels precisely the divergent 1/2 BPS

amplitude, such that the contributions of all states with gcd(Γ × Γ) = n give the same contri-

bution with a weight that gives a divergent overall factor

E (1-loop) 1/2-BPS+1/4-BPS
(1,0) = 8π

(

1 +
240

ζ(3)

∑

n>0

σ 2
3 (n)

n3

)

ξ(4)ξ(d + 1)Eαd ,
d+1
2

, (3.15)

which formally vanishes in zeta regularisation.

Although we have been manipulating several expressions formally in this section in order to

regularise infinite sums without defining a proper analytic continuation from absolutely conver-

gent sums, it seems reasonable to assume that there could be proved using well-defined analytic

continuation in an appropriate regularisation scheme. Assuming this is the case, one would con-

clude that the ∇4R4 threshold function E(1,0) comes entirely from the exceptional field theory

2-loop 1/2 BPS contribution. Note that the same argument at string two loops exhibits that

there is no contribution from 1/4 BPS states to the ∇4R4 threshold function since the genus 2

integrand is just the Narain partition function.

Let us note finally that the computation above can be interpreted in perturbative string

theory also as follows. The function E2(τ) appearing in the theta lift (3.1) has three distinct

pieces in its Fourier expansion, namely two constant terms and the non-zero Fourier modes, see

footnote 8. The two constant terms give twice the contribution in 8πξ(4)ξ(d + 1)E
SO(d−1,d−1)
V,(d+1)/2

(using the Langlands functional relation for vector series for the second), whereas the 1/4-BPS

sum over strings with non-orthogonal winding and momenta gives formally the same contribution

with a minus sign (cf. (3.15)), to eventually reproduce the correct perturbative contribution. If

one were to compute the one-loop amplitude within an effective field theory with all massive

states in string theory, this is the infinite sum one would need to regularise. Modular invariance

of string perturbation theory permits to combine all these states in a manifestly finite form,

which regularises the infinitely many Feynman diagrams one would find instead in field theory.

Such infinite sums are therefore also expected in the non-perturbative effective theory. One

may expect that a consistent formulation of M-theory would provide the appropriate integral

regularising this sum, with an appropriate notion of modular invariance.

4 Comments on systematics of BPS corrections

We have seen above in (3.15) that the 1/4 BPS contribution that follows from the perturbative

string theory one-loop calculation and completed to a U-duality invariant ∇4R4 threshold func-

tion as in (3.5) cancels formally the one-loop 1/2 BPS contribution computed in exceptional

field theory in [29]. It follows that the entire contribution to the ∇4R4 coupling in the loop

expansion involving all BPS states appears at 2-loop. In this section we shall discuss the analo-

gous structures that one expects for the ∇6R4 coupling, and how they are compatible with the

result of the 3-loop computation we have carried out in this paper.
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Before embarking on this discussion we want to clarify the distinction between BPS solitons

and BPS instantons, and their respective ‘non-renormalisation theorems’. The BPS solitons that

contribute to the low-energy effective action are the BPS black hole solutions in supergravity.

In type II string theory, they correspond to fundamental strings, Dp-branes, NS5-branes and

KK-branes that wrap the T d−1 torus such that they are effectively point-like particles in the

uncompactified D dimensions. The BPS instantons depend on the perturbative frame. In type

II string theory they are the Euclidean Dp-branes and NS5-brane that wrap the T d−1 torus

along all their directions. In D = 11 supergravity they can be defined as M-theory instantons

described by Euclidean M2- or M5-branes wrapping the T d torus.12 One can also formally

consider the large radius limit as a perturbative theory in the inverse radius, in which case the

instantons can sometimes be identified as black holes in D+1 dimensions compactified over the

thermal time circle [15,48,62–64].

The set of instantons that can contribute to a higher-derivative coupling is mathematically

equivalent to the so-called wave-front set of the corresponding automorphic function of the

U-duality group [13, 15, 65]. The wave-front set in mathematical terms is a description of all

non-vanishing Fourier coefficients an automorphic function or form has. More precisely, an

automorphic form belongs to an automorphic representation, and the wave-front set is attached

to the automorphic representation. One says that an automorphic representation is small, if

most of the Fourier coefficients vanish. For a given representation, the wave-front set is the

closure of typically a single nilpotent orbit of the hidden symmetry group Ed(C) in the Zariski

topology.13 As instanton corrections are associated with non-trivial Fourier coefficients of the

automorphic threshold function [3, 5, 12, 13, 15, 65], the wave-front set encodes which types of

instantons contribute to a given threshold function ED
(p,q). The wave-front set can equivalently be

defined from a set of differential equations satisfied by the automorphic forms belonging to a given

representation [68, 69]. For the first few couplings in the low-energy expansion, R4, ∇4R4 and

∇6R4, supersymmetry constrains the couplings to satisfy differential equations, which imply that

the only instanton corrections contributing to them are at most respectively 1/2 BPS, 1/4 BPS,

or 1/8 BPS, respectively [17,18,20]. The differential equations following from the supersymmetry

Ward identities, and the property that only certain supersymmetric instantons can possibly

contribute to a protected coupling, are two aspects of the same mathematical concept, the wave-

front set discussed above. More precisely, there are two types of ∇6R4 supersymmetry invariants

in dimensions 4 ≤ D ≤ 7 [20], one that we shall call chiral and that satisfies a homogeneous

differential equation and a second one that we shall refer to as non-chiral and that satisfies

an inhomogeneous differential equation. The chiral invariant is associated to an automorphic

representation of Bala–Carter type 2A1 forD ≥ 5, i.e. 1/4 BPS, and of Bala–Carter type 3A1 for

D = 4, i.e. 1/8 BPS (chiral), while the homogeneous solution to the equation of the non-chiral

12In D = 3 one has moreover Kaluza–Klein instantons that contribute, but the general interpretation of the

various contributions is less clear in this case since the solitons do not have a charge in the discrete lattice in three

dimensions, but the scalar fields instead admit a non-trivial monodromy in Ed(Z)\Ed(R)/K(Ed).
13Below we will label the nilpotent orbits by their Bala–Carter type [66, 67]. Type A1 describes the minimal

nilpotent orbits, type 2A1 the next-to-minimal and the orbits can be arranged on a Hasse diagram. The minimal

orbit characterises a unique automorphic representation for d ≥ 5 and the next-to-minimal orbit characterises a

unique automorphic representation for d ≥ 7.
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invariant is associated to a Bala–Carter type A2 automorphic representation, i.e. 1/8 BPS.14 The

unique automorphic form satisfying the corresponding homogeneous differential equation of the

chiral invariant is the ‘fundamental’ Eisenstein series Eαd,
d+3
2

of Bala–Carter type 2A1 (or 3A1

for d = 7) while the unique homogeneous solution of the inhomogeneous equation for the non-

chiral invariant is the Eisenstein series associated to the adjoint representation at a particular

value of the weight parameter (i.e. EE7
α1,6

, EE6

α2,9/2
, ED5

α2,7/2
, EA4

[3 0 0 5/2])
15 of Bala–Carter type

A2. The full inhomogeneous solution can be constructed formally (up to regularisation issues

discussed below) from the particular solution provided by the two-loop exceptional field theory

calculation in D > 3 [29], i.e. it is determined by the 2-loop 1/2 BPS states contribution. The

quadratic source term in the inhomogeneous equation of the 1/8 BPS coupling has as maximal

orbit in the wave-front set the orbit of Bala–Carter type A2, so it is natural to consider the

full inhomogeneous non-chiral solution to be characterised by this wave-front set [28] even if it

does not belong to an automorphic representation in the strict mathematical sense. The chiral

contribution to the coupling has the maximal orbit 3A1 in four dimensions, so that the full ∇6R4

coupling wave-front set then has two maximal orbits.

There is no clear non-renormalisation theorem for the BPS solitons, but one can get some

insights from string perturbation theory. The type of BPS states that can contribute to a given

coupling in string perturbation theory does not depend only on the type of coupling but also

on the loop order. At genus 1 ≤ g ≤ 3, the g-loop contribution to such couplings is defined

in perturbation theory as the theta lift of a particular automorphic form of Sp(2g) with the

genus g Narain theta function. For the R4 coupling at 1-loop, the ∇4R4 coupling at 2-loops,

and the ∇6R4 coupling at 3-loops, the automorphic form is a constant, so that the only states

that contribute in the loop satisfy the level matching condition and are 1/2 BPS string states.

Since perturbative 1/4 BPS states do not contribute in this case, one concludes using U-duality

that the same is true for non-perturbative 1/4 BPS states, so that these couplings only receive

corrections from 1/2 BPS solitons at these loop orders. A similar argument using U-duality and

the string amplitude cannot be applied for the 1/8 BPS states, but it is legitimate to assume

that the absence of 1/4 BPS corrections implies the absence of 1/8 BPS corrections at the

same order. The mechanisms responsible for the cancellation of contributions coming from BPS

multiplets not preserving enough supersymmetry are indeed always ordered, because they are

usually associated with the matching of a certain number of fermion zero modes with the number

of supercharges that annihilate an operator.

At one loop one can identify the perturbative 1/4 BPS states contributions to the ∇4R4

coupling as we did in the last section. The same argument can be applied to the ∇6R4 coupling

where we recall that the exceptional field theory one-loop calculation gives the 1/2 BPS con-

tribution proportional to the (fundamental) Eisenstein series Eαd,
d+3
2

[29]. Repeating for ∇6R4

14One can often think of the Bala–Carter type nA1 as being associated to a multiple intersection of n orthogonal

1/2 BPS instantons, which therefore preserves 1/2n of the supersymmetry, and the Bala–Carter type A2 as being

associated to special intersections of 1/2 BPS instantons, as for a D0-D6 type IIA bound state [70–72], which

preserves 1/8 of the supersymmetry.
15Here, we have used the Bourbaki labelling of the algebras D5 and A4. If one used instead the induces

‘exceptional’ labelling of E5 and E4 that comes from diagram 1, the functions would be EE5
α3,7/2

and EE4
[3 5/2 0 0].
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the same steps as performed in Section 3 for ∇4R4, one extracts from the string theory one-loop

amplitude the 1/4 BPS contribution by U-duality completion, such that

E (1-loop) 1/2-BPS+1/4-BPS
(0,1) = 40

(

1− 504

ζ(5)

∑

n>0

σ 2
5 (n)

n5

)

ξ(2)ξ(6)ξ(d + 3)Eαd ,
d+3
2

= 0 , (4.1)

Again, these two contributions cancel formally using zeta regularisation. Similar to (3.5), one

can relate the divisor sum to helicity supertraces Bn of 1/4 BPS states, where [61]

Bn(Γ) =
(−1)

n
2

n!
Tr′Γ (−1)2J3(2J3)

n , (4.2)

is the supertrace over the space of states with charge Γ and the prime indicates that the bosonic

zero mode corresponding to the center of mass has been removed. The multiplicity of the 1/4

BPS contributions to the ∇6R4 above is then the contribution of 1/4 BPS multiplets of charge

Γ to the helicity supertrace 6B14 + 2B12 = σ5(Γ× Γ). It is rather natural that the contribution

to these couplings is related to the helicity supertrace, because they are the unique observables

that preserve these precise fractions of supersymmetry. Extrapolating this structure to the 1/8

BPS solitons contribution in D = 4 and 5 (there are no 1/8 BPS black hole solutions in D ≥ 6),

one expects that they should not contribute to the ∇4R4 coupling, and that the contribution to

the ∇6R4 coupling of 1/8 BPS states of charge Γ should be proportional to its contribution to

the helicity supertrace B14, that is proportional to the Fourier coefficient of the Jacobi function

−ϑ1(z, τ)
2/η(τ)6 in D = 4 [73].

Extrapolating this structure to 2-loops, and consistently with the non-renormalisation the-

orem for the instanton corrections discussed above, one concludes that the R4 coupling receives

perturbative corrections only from 1/2 BPS states at 1-loop, the ∇4R4 coupling receives cor-

rections from 1/4 BPS states only at 1-loop and 1/2 BPS states up to 2-loop, and the ∇6R4

coupling receives 1/8 BPS states contributions only at 1-loop, 1/4 BPS states contributions up to

2-loop, and 1/2 BPS states contributions up to 3-loop. Summarising the possible contributions

to ∇6R4, including the ones we have already computed, one obtains the table

∇6R4 1
2 BPS 1

4 BPS 1
8 BPS

one-loop Ef -Ef ?

two-loop EEFT ? 0

three-loop Ef + Eadj 0 0

where the question marks stand for contributions we have not computed, and EEFT is the two loop

contribution from exceptional field theory computed in [29]. For simplicity we have absorbed

the numerical coefficients of these functions in their definition in the table, such that e.g Ef =

40ξ(2)ξ(6)ξ(d+3)Eαd ,
d+3
2
, where the label ‘f’ stands for fundamental. Typically, the fundamental

and adjoint functions are divergent at the values of their parameters (like (d + 3)/2) and we

employ minimal subtraction of the pole when continuing in this parameter to obtain regularised

series Êf and Êadj and write the ‘hat’ when we want to insist on this fact.
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We therefore see from supersymmetry arguments that there is a potential contribution from

1/8 BPS states at one-loop that should correspond to a finite contribution compatible with the

homogeneous differential equation satisfied by the threshold function [8, 20]. 1/8 BPS black

hole solutions in D = 4 come in two forms: either with vanishing or with finite horizon area.

As argued in [29], relying on [74], the finite size solitons should be exponentially suppressed

in perturbation theory and therefore should not contribute to the low-energy effective action.

This argument might be invalidated by the fact that they are expected to contribute with

an exponentially growing multiplicity proportional to B14. The vanishing size solitons should

not arise separately from the generic 1/8 BPS solitons from the point of view of automorphic

representations. Indeed, 4-dimensional solitons can be thought as 3-dimensional instantons [62],

and there is no E8 automorphic form with a wave front set of Bala–Carter type 3A1 that would

not include Fourier coefficient (intantons corrections) of Bala–Carter type A2 [75], since the 3A1

orbit is not special. In simpler terms, there is no E8 automorphic form that gets contributions

from zero size 4D black holes but not from finite 4D black holes. In five space-time dimensions

there are no vanishing size 1/8 BPS black hole solitons, and there are no 1/8 BPS black hole

solitons in D ≥ 6. Since all contributions to the effective action come in a rather uniform way in

all dimensions, it seems plausible that there is no one-loop contribution from 1/8 BPS solitons to

the ∇6R4 coupling. One cannot justify this absence of contribution from the analysis of [74] or

by supersymmetry arguments, but we shall argue below that it must be the case if one assumes

the loop expansion involving all BPS states to be consistent as an effective theory.

The two-loop exceptional field theory calculation in [29] gives a function EEFT that satisfies

the correct tensorial inhomogeneous differential equation. The only automorphic solution to the

homogeneous part of the tensorial differential equation for the non-chiral invariant is the adjoint

Eisenstein series Eadj discussed above. Since we have not analysed the perturbative limit of the

function EEFT, we only know that it must reproduce the function E satisfying the same equation

that appears in string theory, modulo a free coefficient

E = EEFT − αEadj . (4.3)

The adjoint Eisenstein series does not have a perturbative string theory expansion along the T-

duality group O(d−1, d−1) that is compatible with string perturbation theory,16 so one could in

principle determine α by extracting the perturbative component in the string coupling constant

of the exceptional field theory integral. It is important to note that these functions are divergent

for D = 4, 5, 6 and must be regularised appropriately. The logarithmic divergences of the string

theory coupling E computed in [19] coincide with the divergences of the adjoint Eisenstein

series [28]. They satisfy the same differential equations with the same linear inhomogeneous

terms associated to the supergravity divergences. This implies in particular that their difference

E − Eadj is well-defined and finite.

The tree level supersymmetry Ward identities imply the homogeneous differential equations,

and so the linear inhomogeneous terms must be compensated by the non-analytic component of

16This means that they have powers of gs appearing that do not correspond to a positive integer genus calcu-

lation, most notably they contain näıve −1/2-loop order terms.
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the amplitude. In six dimensions the constant source term is associated to the 3-loop divergence,

and so should only be present at 3-loop. In five dimensions the linear source term is associated

to the 2-loop form-factor of the exact R4 coupling that appears at 1-loop. So once again it only

contributes at 3-loop order. In four dimensions the linear source term is associated to the 1-loop

form-factor of the exact ∇4R4 coupling. But we have seen in the preceding section that the

∇4R4 coupling comes entirely from the 2-loop contribution in our construction, so once again

the source term to the differential equation only appears at 3-loop order.

At three loops, we have calculated the 1/2 BPS contribution from exceptional field theory

in this paper in (2.28), (2.32) and (2.39) and have found a combination of the adjoint function

together with the other homogeneous solution Ef, so schematically

E3-loop
(0,1) = Êadj + Êf (4.4)

This combination was shown to be precisely such that its divergences compensate the ones of

the non-analytic component of the 3-loop amplitude, and it satisfies the differential equations

involving the inhomogeneous source terms consistent with the supergravity divergences discussed

above [28]. Moreover, together with the contributions from lower loops one should obtain the

correct full answer that has the schematic form

ED
(0,1) = Ê + Êf (4.5)

as a combination of the regularised inhomogeneous solution and a regularised homogeneous

solution. This is precisely consistent with the assumption that the amplitude should be finite to

all orders, since the difference E −Eadj is finite and satisfies the inhomogeneous equation with a

quadratic source term, but no linear source terms associated to threshold effects. We note that

the fact that our homogeneous one-loop result Êf appears with exactly the same coefficient as

in the proposal in [19] for D = 6 suggests that α vanishes.

If we assume that the loop expansion involving all BPS states of the theory is indeed finite

and well-defined order by order in the loop expansion, the couplings at 1-loop and 2-loop must be

regular finite automorphic functions satisfying the differential equations with zero linear source

terms associated to supergravity divergences. Êadj and Êf satisfy differential equations with

constant source terms, and their linear combination for which these source terms compensate

for D = 4, 5, 6 is not consistent with the decompactification limit. Indeed, using the formulas

derived in [28], one can check that their appropriate linear combination such that the source

terms compensate is 7Ef − (10 − d)Eadj,
17 whereas the normalisation must be independent of

the dimension for them to be compatible in the decompactification limit, i.e. such that the

large radius limit of the D = 4 function reproduces at leading order the D = 5 function, and

idem from D = 5 to D = 6. So assuming moreover that the loop expansion involving all

BPS states is compatible with the decompactification limit, one concludes that there cannot

be any contribution from these functions to the ∇6R4 coupling at one loop, and that the 2-

loop contribution must be precisely the well-defined finite combination Ê − Êadj. This implies

17One computes that for d = 5, ∆Êadj =
70
3
ζ(3) and ∆Êf =

50
3
ζ(3); for d = 6 that (∆+ 18)Êadj =

35
3
E(0,0) and

(∆ + 18)Êf =
20
3
E(0,0); and for d = 7 that (∆ + 60)Êadj =

35
π
E(1,0) and (∆ + 60)Êf =

15
2π

E(1,0).
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that the 3-loop contribution to the ∇6R4 coupling we have computed in this paper is indeed

the expected answer, despite the fact that it is by itself inconsistent with string perturbation

theory. As the same inconsistency appears the the two-loop level with opposite sign, the overall

perturbative answer is perfectly compatible with string theory. The result of this discussion can

be summarised by the following table.

∇6R4 1
2 BPS 1

4 BPS 1
8 BPS

one-loop Ef -Ef 0

two-loop E − αEadj (α− 1)Eadj 0

three-loop Ef + Eadj 0 0

Let us summarise the discussion of this section. By the supersymmetry arguments of [20]

reviewed above there are only three types of functions that can arise in this table. Because of

the quadratic source term, the function E can only appear once at 2-loop order. Considering

in more detail the linear source terms associated to threshold effects one finds that the unique

linear combination of these three functions compatible with the decompactification limit that

can appear before 3-loop order is E − Êadj. We conclude that the total 1-loop contribution must

vanish, the total 2-loop contribution must be E − Êadj, and the 3-loop contribution must be

Ef + Eadj as we have obtained in this paper. This implies in turn that there should be no 1/8

BPS contributions at 1-loop order, and that the 2-loop contributions involving 1/4 BPS states

should be proportional to the adjoint series with the correct coefficient. For this we have assumed

that the loop expansion is finite and consistent with supersymmetry and the decompactification

limit order by order in the loop expansion. It would be good to be able to confirm these

predictions for the 1-loop contribution of 1/8 BPS states and the 2-loop contribution of 1/4

BPS states. For the second one could in principle apply the same tricks as in this paper, and

U-dualise the 2-loop string theory amplitude contribution to the ∇4R4 coupling [76,77].
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A Some matrix integrals and volumes of fundamental domains

For the determination of the three-loop diagram we require a number of identities of integrals

over the space H+
n×n of symmetric positive definite (n × n)-matrices or quotients of this space.

We collect these identities in this appendix.
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The first identity is useful for the Schwinger Ω-integrals and can be found for example

in [78, (1.1)]:

∫

H+
n×n

dn(n+1)/2Ω

(detΩ)
n+1
2

−s
e−πTr (ΩX) = |detX|−s

n−1
∏

j=0

π−(s− j
2
)Γ

(

s− j

2

)

. (A.1)

A similar identity for the t-type integrals in the text is of Γ-type (for n > 1) and also involves

the ζ-function:

∫

H+
n×n/PGL(n,Z)

dn(n+1)/2t

(det t)
n+1
2

−s
e−πµ2det t =





n
∏

j=2

ξ(j)



 ·
∫ ∞

0

dt

t1−s
e−πtµ2

= (πµ2)−sΓ(s)
n
∏

j=2

ξ(j) , (A.2)

where we have separated out the determinant of t and used the volume of unit determinant,

symmetric, positive definite matrices up to action by PGL(n,Z) given by a product of completed

Riemann zeta functions ξ(k) = π−k/2Γ(k/2)ζ(k) given for example in [79, Sec. 4.4, Thm. 4].18

For our application we need the formula (A.1) above for X = MτγM
T , where M is summed

over cosets of full rank matrices of the form

∑

M∈Zn×n/GL(n,Z)
detM 6=0

∫

H+
n×n

dn(n+1)/2Ω

(detΩ)
n+1
2

−s
e−πTr (ΩMτγMT )

= (det τγ)
−s





n−1
∏

j=0

π−(s− j
2
)Γ

(

s− j

2

)





∑

M∈Zn×n/GL(n,Z)
detM 6=0

|detM |−2s

= (det τγ)
−s





n−1
∏

j=0

π−(s− j
2
)Γ

(

s− j

2

)

ζ(2s − j)





= (det τγ)
−s

n−1
∏

j=0

ξ (2s − j) , (A.3)

where we have used a special case of the Koecher zeta function in the next-to-last step [79, Sec.

4.4]. An elementary way of understanding the appearance of the product of Riemann zeta

functions is to use the property that a representative of each GL(n,Z) orbit is realized by

an upper triangular matrix with generic positive diagonal entries mii and off-diagonal entries

0 ≤ mij < mjj for i < j. Since the determinant does not depend on the off-diagonal entries,

they simply give an additional factor of m i−1
ii , which after summing over mii gives the ζ function

terms with increasing arguments.

18We note that on the real line the function ξ(k) has simple poles at k = 0 and k = 1 with residues −1 and +1,

respectively. It also satisfies the functional relation ξ(k) = ξ(1− k).
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B Ramanujan identity

We here provide a brief proof of the Ramanujan identity that appears in (3.13), using standard

methods of Dirichlet series and Euler products. If a series a(n) for n ∈ N is multiplicative, i.e.,

satisfies a(mn) = a(m)a(n) whenever m and n are co-prime, one can express the corresponding

Dirichlet series as an Euler product

∑

n>0

a(n)n−s =
∏

p prime

P (p, s) , (B.1)

where

P (p, s) =
∑

k≥0

a(pk)p−ks . (B.2)

The identity of the sum and product form follows formally from prime factorisation of integers.

The divisor sum σa(n) =
∑

d|n d
a can easily be seen to be multiplicative. Moreover,

σa(p
k) =

k
∑

m=0

pma =
1− pa(k+1)

1− pa
. (B.3)

The product σa(n)σb(n) is also multiplicative. The (Bell) series (B.2) becomes in this case

∑

k≥0

σa(p
k)σb(p

k)p−ks =
1− pa+b−2s

(1− p−s)(1 − pa−s)(1− pb−s)(1 − pa+b−s)
. (B.4)

Using the Euler product of the Riemann zeta series ζ(s) =
∏

p(1− p−s)−1 one therefore obtains

∑

n>0

σa(n)σb(n)n
−s =

ζ(s)ζ(s− a)ζ(s− b)ζ(s− a− b)

ζ(2s − a− b)
. (B.5)

Putting a = b = k one obtains (3.13).

C On affine Eisenstein series and Epstein series

Garland has studied in detail affine Eisenstein series and their functional relation [54, 55]. We

adapt his conventions and define an affine Eisenstein series for E9 through an infinitesimal

quasi-character given by a weight

λ =

9
∑

i=1

2siΛi − ρ+ tδ , (C.1)

where ρ =
∑9

i=1Λi is a standard choice of Weyl vector in terms of the fundamental weights Λi

and δ the primitive null root. For E9 there are nine simple co-roots hi and one more Cartan

subalgebra element that we denote by d [80]. We define the fundamental weights by

Λi(hj) = δij for i, j,= 1, . . . , 9 and Λi(d) = 0 . (C.2)
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Simple Weyl reflections wi (i = 1, . . . , 9) act on weights λ by

wi(λ) = λ− 〈λ|αi〉αi , (C.3)

where αi are the simple roots.

An Eisenstein series is now defined on elements g of the centrally extended loop group and

a variable v associated with the direction d.19 In other words, torus elements are written as avd

for a =
∏9

i=1 r
hi
i and the pairing with the weight λ of (C.1) is by

exp〈λ+ ρ|H(avd)〉 = (avd)λ+ρ = vt
9
∏

i=1

r2sii , (C.4)

where H denotes the logarithm map from the affine group to the split torus. The Eisenstein

series is then given by

E(λ, gvd) =
∑

γ∈B̂(Z)\G(Z)

e〈λ+ρ|H(γgvd)〉 =
∑

γ∈B̂(Z)\G(Z)

γ
[

(gvd)λ+ρ
]

(C.5)

as a sum over a discrete group of the centrally extended loop group, i.e. the affine group E9 with-

out the d-direction. Convergence requires restricting also the group element gvd, in particular

the v coordinate [54].

The functional relation for Weyl related weights λ and wλ is

E(λ, gvd) = M(w, λ)E(wλ, gvd) (C.6)

for

M(w, λ) =
∏

α>0
wα<0

ξ(〈λ|α〉)
ξ(〈λ|α〉 + 1)

(C.7)

as usual. An important point now is that wλ can also alter the coefficient of δ in (C.1) thus

changing the overall power of v. This explains the different powers of v appearing in relations

such as (2.42).

From the point of view of a putative E9 exceptional field theory, some of the E9 Eisenstein

series should arise from Feynman diagrams. The coordinates are expected to lie in the highest

weight representation representation R(Λ9 + δ) [53], such that the dual discrete charges Γ are

in the conjugate R(Λ9 + δ). The shift in δ corresponds to factors of v appearing in the BPS

19There are different definitions of groups in the Kac–Moody case. The minimal definition is as the group

generated from the one-parameter subgroups associated with all the real roots [81]. The complete Kac–Moody

group is obtained by a certain completion with respect to a positive (or negative) Borel subgroup. In the affine

case, the difference between these groups can be phrased as follows: The minimal definition corresponds to

allowing only rational maps from C
× to the finite-dimensional Lie group (e.g., E8) while the completed group

allows infinite power series in the positive (or negative) powers of the variable on C
× [54,55]. This complete group

is the one that we are using here and should also be the one that is relevant in two-dimensional supergravity [82].
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mass and also follows from the decomposition of the fundamental representation R(Λ11) of

E11 [83, 84].20 Considering the non-linear sigma model with the three-dimensional metric

ds2 = e2σ(−dt2 + dx2) + v2dy2 , (C.8)

with y a circle coordinate, the E8(8) non-linear sigma model action involves the Lagrangian

L = vTr (PtPt − PxPx − (v−1Py)(v
−1Py)) . (C.9)

The second term implies indeed that, after reduction to two space-time dimensions, the mass

formula for a charge Γ ∈ R(Λ9 + δ) is v−1|Z(Γ)| where Z(Γ) is defined in the representation

R(Λ9). In the Feynman amplitude, one must also take into account the power of v due to the

overall v factor in the Lagrangian. Each vertex contributes a factor of v, and each internal line

a factor of v−1, such that at L-loop one gets an overall factor of v1−L.

The relevant lattice in R(Λ9 + δ) in which the charge Γ is defined is the smallest lattice in

R(Λ9 + δ) that includes the canonical lowest weight representative vector Γ0 with an arbitrary

integer coefficient and that is preserved by the Chevalley group E9(Z). Its elements are linear

combinations over Z of charge vectors obtained from the canonical lowest weight representative

by the action of the Chevalley group E9(Z). The same definition applies for the module defined

over Q. According to [81], the solution to the constraint Γ×Γ = 0 in the module R(Λ9 + δ) over

Q defines a single orbit of E9(Q) of the canonical lowest weight vector representative. Because

of the Bruhat decomposition of E9(Q)

E9(Q) =
⋃

w∈W

B(Q)wB(Q) , (C.10)

one can prove recursively using the property that SL(2,Q) = SL(2,Z)B(Q) that

E9(Q) = E9(Z)B(Q) , (C.11)

where B(Q) is the Borel subgroup of E9(Q). Let us sketch a proof of this statement that is

standard for finite-dimensional simple groups. Bruhat decomposition implies that any element

g ∈ G(Q) belonging to a given Bruhat cell B(Q)wB(Q) is the product of certain elements gα for

each positive root α ∈ ∆+ in certain SL(2,Q)α subgroups associated to a Weyl word w. More

explicitly, let w = wiℓ · · ·wi1 be a reduced expression of a Weyl word of length ℓ in terms of

simple reflections such that w−1 = wi1 · · ·wiℓ . Then, for k = 1, . . . , ℓ, the negative roots

βk = wi1 · · ·wikαik (C.12)

with αik the ikth simple root parametrise all roots α < 0 such that wα > 0 (see, e.g., [85]). In

particular β1 = −αi1 . Any element g ∈ B(Q)wB(Q) can then be written uniquely as

g = w

[

1
∏

k=ℓ

n̄βk

]

b (C.13)

20One useful observation for checking this is that δ is related to minus Λ10.
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with n̄βk
∈ N̄βk

= {exp(qEβk
) | q ∈ Q}, the lower unipotent inside SL(2,Q)βk

and b ∈ B(Q).

We choose to order the factors starting with βℓ on the left as indicated by the limits on the

product. Note that we can think of the Weyl word w as an element of E9(Z). The equality

SL(2,Q) = SL(2,Z)B(Q) then implies that we can write21

n̄βℓ
= hβℓ

bβℓ
, (C.14)

with hβℓ
∈ SL(2,Z)βℓ

and bβℓ
∈ Bβℓ

(Q), and then

g = whβℓ

[

bβℓ

1
∏

i=ℓ−1

n̄βi

]

b = whβℓ

[

1
∏

i=ℓ−1

(bβℓ
n̄βi

b−1
βℓ

)

]

bγℓb = whγ1

[

1
∏

i=ℓ−1

n̄′
βi

]

b′ (C.15)

with b′ ∈ B(Q) and new elements n̄′
βi

in the same roots spaces. The last statement is true

because the Borel conjugation with bγℓ scales an element n̄βi
and produces contributions to n̄βj

for j < i (according to our ordering assumptions) as well as elements in the Borel B(Q). In b′

we have collected all possible such contributions. Recursively one gets

g = w

[

1
∏

i=ℓ

hβi

]

b̃ (C.16)

with b̃ ∈ B(Q). Thus any element g ∈ BwB can be written as E9(Z)B(Q). Since E9(Q)

is the union of its Borel cells and the statement is true for all Weyl words w, we obtain the

claim (C.11). A similar argument that is also valid for arbitrary (completed) Kac–Moody group

can be constructed using Theorem 8.15 of [86] that directly gives representatives for the Bruhat

cells of the desired form.22

Since the lowest weight vector is by definition stabilised by the conjugate (lower) Borel

subgroup B(Q)T up to the multiplication by a rational number, it follows that any solution to

the constraint Γ× Γ = 0 in the discrete lattice in R(Λ9 + δ) is in the E9(Z) orbit of a canonical

lowest weight representative Γ0 = gcd(Γ)|Λ9〉. Such elements of the above lattice are associated

to 1/2-BPS multiplets of states, and the 1-loop amplitude for four massless scalar fields in the

putative two dimensional exceptional field theory are therefore formally Epstein series of the

form

E(2sΛ9 + 2sδ − ρ) =
1

2ζ(2s)
v2s

∑′

Γ∈Z
d(α9)

Γ×Γ=0

|Z(Γ)|−2s , (C.17)

where the coefficient of δ is fixed by the shifted representation of the charges. On the right-

hand side, the charges are given in the standard lattice in R(Λ9) and we have written the δ

21Explicitly, we have for co-prime p and q
(

1 0

p/q 1

)

=

(

q b

p d

)(

1/q −b

0 q

)

,

where b, d ∈ Z are any solution to qd − pb = 1. The ambiguity in this solution can be absorbed in the Borel

matrix on the right. We do not require this explicit form, however, for the argument.
22We are grateful to M. Patnaik and G. Savin for explaining this general proof to us.
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shift by extracting the power of v2s. This formal definition defines an absolutely convergent

sum provided the moduli are restricted to (a slice of) the Tits cone in K(E9)\E9(9) and the

Re(s) is sufficiently large, and is then mathematically sound. We expect a similar rewriting of

the Langlands Eisenstein series as an Epstein for general Kac–Moody algebras, but note that

the convergence and analytic continuation have not been established rigorously, see [56] for

recent results. The functional relation of the Langlands Eisenstein series was proven by Garland

in [54,55].

These powers of v and coefficients are consistent with the results found in [16] when applying

an appropriate functional relation (C.6). More precisely, we have from [29, Eq. (3.9)] at one

loop the following threshold functions

R4 : 4πξ(6)E(2 · 3Λ9 + 6δ − ρ) = 4πξ(3)E(2 · 3
2Λ1 + δ − ρ) = 2ζ(3)vE(2 · 3

2Λ1 − ρ) ,

∇4R4 :
4π3

45
ξ(10)E(2 · 5Λ9 + 10δ − ρ) =

4π3ξ(2)ξ(5)

45ξ(4)
E(2 · 5

2Λ1 + δ − ρ) = ζ(5)vE(2 · 5
2Λ1 − ρ)

(C.18)

and these are exactly the functions with the correct v powers found in [16].

Let us also consider formally the two- and three-loop amplitudes to be constructed E9 excep-

tional field theory. The 2-loop contribution to the ∇4R4 coupling computed in [29, Eq. (4.47)]

defines an Epstein sum over the wedge product of the two 1/2-BPS charges, that give rise to

an Epstein sum in the largest module R(Λd−1) in the wedge product R(Λd) ∧R(Λd). Similarly,

the 3-loop contribution to ∇6R4 computed in (2.19) gives an Epstein sum in the largest module

R(Λd−2) in the 3-form wedge product R(Λd)∧R(Λd)∧R(Λd). Applying the same argument for

E9, and taking into account the δ shift, one obtains

R(Λ9 + tδ) ∧R(Λ9 + tδ) = R(Λ8 + (2t− 1)δ) ⊕ . . . ,

R(Λ9 + tδ) ∧R(Λ9 + tδ) ∧R(Λ9 + tδ) = R(Λ7 + (3t− 2)δ) ⊕ . . . , (C.19)

such that L(t−1)+1 = 1 forR(Λ9+δ) and one expects the L-loop contribution in exceptional field

theory to give a contribution proportional to the Eisenstein series v1−LE(2s(Λ10−L + δ)− ρ) =

E(2sΛ10−L + (2s − L + 1)δ − ρ) for the appropriate value of s. In other words, the correct

function at two loops should be with weight λ = 2 · 5
2Λ8 + (2 · 5

2 − 1)δ − ρ and for three-loops

with weight λ = 2 · 2Λ7 + (2 · 2− 2)δ − ρ, where the former corresponds to the ∇4R4 threshold

arising at two loops [29, Eq. (4.47)] and the latter to the homogeneous solution for the ∇6R4

threshold arising at three-loops (2.19).

We can verify these expectations by applying functional relations of the type (C.6). For the

∇4R4 threshold function one finds

8πξ(4)ξ(5)E(5Λ8 + 4δ − ρ) = 8πξ(2)ξ(5)E(2 · 5
2Λ1 + δ − ρ) = ζ(5)vE(2 · 5

2Λ1 − ρ) (C.20)

as required for ∇4R4 [16].

The homogeneous solution for ∇6R4 deduced in this paper from the three-loop calculation

is

40ξ(2)ξ(3)ξ(4)E(2 · 2Λ7 + 2δ − ρ) = 40ξ(2)ξ(6)ξ(12)E(2 · 6Λ8 + 12δ − ρ) , (C.21)

which is the result found at one-loop in [29] with (C.17) at s = 6.
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