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1. Introduction: crop-growth models, climate models, and bias
adjustment methods

The growing conditions and key plant physiological processes of the
most important staple crops for the human and animal food chains
depend on climate conditions and are affected by climate extremes such
as heat stress and drought (e.g. Porter and Semenov 2005; Lobell et al.,
2014; Zampieri et al., 2017a). They will therefore be highly influenced
by climate change in the coming decades (i.e. Rosenzweig et al., 2014;
Iizumi et al., 2017).

The effects of climate change on crops can be estimated by using
process-based crop models. Based on formulations of the essential
physiological plant-growth processes (Zampieri et al., 2017b), they are
used for both operational seasonal prediction of crop yields (i.e. MARS
Crop Yield Forecasting System) and assessing climate-change impacts
and adaptation measures for food production (Asseng et al., 2014;
Rosenzweig et al., 2014; Caubel et al., 2015, 2016). For the latter, crop
models rely on multi-decadal climate projections computed by global/
regional climate models, e.g. in the framework of the Climate Model
Intercomparison Projects (CMIP), or within regional initiatives such as
the Coordinated Regional Climate Downscaling Experiment (CORDEX).

It is well known that climate model simulations are affected by both
systematic and random errors, which prevent them from correctly

simulating the occurrence and the intensity of extreme events such as
droughts, heat waves, and extreme precipitation. Model bias normally
refers to only one component of the error, i.e. the average difference
between the modelled and observed values (e.g. glossary in clima-
te4impact, Potempski and Galmarini, 2009). In climate science, how-
ever, the term has a broader meaning and it is used to represent the
systematic errors (mean and higher moments) of a given variable
(Teutschbein and Seibert, 2013; e.g. Liu et al., 2014; Maraun, 2016;
Maraun and Widmann, 2018). Prior to using climate model simulations
for (among many other applications) crop modeling, an adjustment of
the variables is required so that their statistical properties are more
similar to the ones observed. Bias-correction, or more properly adjust-
ment (B-A) methods, developed as generic statistical techniques, have
also been devised in large varieties for climate applications.

Even in the presence of the perfect uncertainty-free crop model
(which is hardly the case, unfortunately), the adjustment of the climate
data would not lead to improved usability. In fact B-A techniques are
frequently applied independently on one or few variables thus con-
stituting a serious burden for crop models which are based on highly
non-linear formulations and therefore are particularly sensitive to
variable inconsistencies that would lead to non realistic solutions.
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2. One workshop, four questions

In May 2017 a workshop was organized at the European
Commission Joint Research Centre, in Ispra, Italy, to discuss the role
and effect of climate data B-A on crop models as introduced above. The
discussion developed around four crucial research questions:

Q1: What is the impact on crop models of independent B-As of
coupled variables?

Q2: What can B-A offer to suit crop models specifically?
Q3: What can B-A not solve?
Q4: What next?
The result of the discussion and possible answers to the questions

are presented hereafter. The latter may not be definitive or generally
agreed upon but yet they can be the stimuli for a more general dis-
cussion within the widespread community of climate scientists, agri-
cultural modelers and statisticians. Each of the next four section titles
addresses a question and includes a synthetic answer to it.

3. Q1: What is the impact on crop models of independent B-As of
coupled variables? A sensitivity yet to be quantified.

The susceptibility of crops to unfavorable weather conditions and
extreme events during the growing season is very well known (e.g.
Lobell et al., 2011; Lesk et al., 2016). Crop models typically require data
on soil, crop characteristics, daily (or sub-daily) precipitation, down-
welling short- and long-wave radiation, air temperature, relative hu-
midity/partial water vapor pressure, wind speed (e.g. Zampieri et al.,
2017a; Ewert et al., 2015; Boote et al., 2013), and information on crop
management. Errors in the mean, extreme values, and time variability
of climate parameters greatly affect crop models regardless of the
spatial resolution of RCMs or dynamical downscaling of GCMs.

An example of the effect of independent adjustment of variables is
presented in Fig. 1, where the observed, biased, and bias-adjusted va-
lues of Heat-Degree-Days (HDD), defined as the time integral of tem-
peratures above 30 °C during the summer period, vs precipitation in
Romania are shown. The univariate B-A (Dosio, 2016) slightly corrects
the offset of the simulation from the observation, while the decoupled
treatment of the variable produces an almost constant reduction

throughout the precipitation range. Precipitation and temperature are
key factors for crop growth (Ceglar et al., 2018) and one can expect
important consequences when these data are used within a crop model.
Similar problems may arise when direct radiation affecting the plant
growth and correspondingly the air temperature, or soil moisture and
precipitation are not adjusted jointly.

Alongside the bias adjustment of coupled variables, another critical
and very relevant point in relation to climate and crop models was
raised during the discussion. It relates to the capacity of the climate
models to capture large-scale weather features and extremes and their
effects during different phases of the crop growth (Casanueva et al.,
2014; Ceglar et al., 2017; Zampieri et al., 2017a). In fact, capturing the
conditions preceding and during the growing season plays a role in
surface-related processes like soil moisture. Summer heat waves in
Europe, for example, were shown to be often preceded by dry springs
(Zampieri et al., 2009; Mueller and Seneviratne, 2012; Prodhomme
et al., 2016) which affect crop yields (Ceglar et al., 2018). This issue
was outlined as relevant to B-A for agricultural applications and in
many cases an issue to be addressed prior to B-A of climate data (see
Section 5).

Although several studies have been performed in the past to de-
termine the importance of B-A in crop modeling (e.g. Liu et al., 2014;
Hawkins et al., 2013; Ceglar and Kajfež-Bogataj, 2012), few efforts have
systematically assessed the existing B-A methods and the impact of the
treatments of the data on crop models. The need to systematically and
quantitatively estimate the impact of these two issues on crop models
has therefore been recognized and acknowledged, as well as the need to
organize community activities involving statisticians, climate modelers,
and crop modelers to address them.

4. Q2: What can B-A offer to suit crop models specifically?
Classification and characterization of B-A methods

Having identified B-A of coupled variables as a potentially im-
portant issue for agricultural use of climate model results, the workshop
provided an opportunity to survey the existing B-A methodologies and
categorize them in relation to agricultural applications.

Bias-adjustment of climate variables for crop modeling has a multi-
dimensional character that can be treated in different ways, namely:

• Multi-variable B-A: in addition to adjusting the marginal distribution
of each variable, the dependencies between variables can also be
adjusted.
• Multi-site B-A: climate variables are often needed at multiple loca-
tions; one could therefore correct not only the marginal distributions
of a variable at the various sites, but also the spatial (inter-site)
dependence structure.
• Multi-variable and multi-site B-A: in addition to correcting both the
spatial and inter-variable dependency structures, the cross-de-
pendencies of a variable at different locations could also be corrected.

For crop model applications one may also need to include temporal
dependencies in the adjustment, whether in univariate B-A (Johnson
and Sharma, 2012), a multi-site B-A (Mehrotra and Sharma, 2015), or a
multi-variable B-A (Mehrotra and Sharma, 2016). Most of the B-A
methods currently used work in a univariate context, wherein the dis-
tribution of a univariate time series at a single spatial location is ad-
justed independently from every other variable and location. Recently a
few multivariate methodologies have been proposed and applied to
climate model data (e.g., Bardossy and Pegram, 2012; Piani and
Haerter, 2012; Mao et al., 2015; Vrac and Friederichs, 2015; Cannon,
2016, 2018; Dekens et al., 2017; Li et al., 2017; Vrac, 2018). The in-
creased detail in treating multiple variables and locations by any mul-
tivariate B-A method can modify the temporal sequencing and prop-
erties of the adjusted data and, depending on the method, may produce
a loss of coherence with the driving climate model or observations.

Fig. 1. Loess-fit of observed and simulated summer HDD and Precipitation.
HDD is defined as the time integral of temperatures over 30 °C. RCA4 regional
climate model, driven by MPI-M-MPI-ESM-LR GCM, provided data over the
period between 1981 and 2010.
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In the remainder of this section we provide a brief overview of the
most relevant methodologies as they were presented at the workshop so
that one can appreciate the spectrum of the different approaches and
how they fit in the general categories listed above. Unless specified
otherwise, these methods are applied to multiple locations in-
dependently, and use a monthly, seasonal, or moving-window approach
to handle seasonality.

The Parametric quantile-quantile mapping (PQ-QM) is a univariate
method based on the calculation of a transfer function (TF) such that
the marginal cumulative distribution function (CDF) of the adjusted
variable matches the observed one. The TF is usually estimated as a
function of up to four parameters for precipitation, and linearly for
temperature (Piani and Haerter, 2012; Dosio and Paruolo, 2011). It has
been applied to projections of mean and extreme climate variables over
Europe and used for climate change impact assessment (Dosio et al.,
2012; Ruiz-Ramos et al., 2016; Dosio and Fischer, 2018).

The Kernel Density Distribution Mapping (KDDM, McGinnis, et al.,
2015) operates similarly to PQ-QM. It adjusts data values by trans-
forming them into probabilities according to the model output CDF,
then transforming those probabilities back into data values using the
observed-data inverse CDF. PQ-QM constructs its TF by fitting para-
metric distributions to the datasets and composing closed-form ex-
pressions for the corresponding CDFs; KDDM estimates the probability
density functions (PDFs) of the datasets non-parametrically, integrates
them to get CDFs, and constructs a TF by fitting a spline to corre-
sponding CDF quantiles (details in McGinnis, et al., 2015).

A variant of the empirical quantile-mapping method is the CDF-t
technique (Vrac et al., 2012). It first estimates the CDFs of “pseudo”
reference data over the projection time period (either future or eva-
luation time period) before applying a distribution-derived quantile-
mapping between the CDF of the model simulations and that of pseudo-
references, both for the projection period. Then, based on this estima-
tion and on the projection model data CDF, a distribution-based
quantile mapping is performed. This places the B-A within the appro-
priate time period. CDF-t then performs a quantile-mapping technique
based on the CDFs over the projection time period and therefore ac-
counts for changes of CDF within the calibration period. CDF-t has been
already applied to feed crop models (Oettli et al., 2011) and for various
other applications (e.g., Lavaysse et al., 2012; Vautard et al, 2013;
Vigaud et al., 2013). A version was also designed specifically for ex-
treme events (Kallache et al., 2011).

Another parametric version of the QQ mapping developed at the
Swedish Meteorological and Hydrological Institute (SMHI) for climate
simulations in hydrological applications is the Distribution-Based Scaling
(DBS, Yang et al., 2010). DBS adjusts precipitation and other extremes
separately from the rest of the distribution, and temperatures con-
ditionally on the adjusted precipitation. Conditional correction of
temperatures is a step towards bias adjustment of multiple variables, for
example as introduced by the final two general purpose multivariate
methods.

The N-dimensional Multivariate Bias Correction (MBCn; Cannon,
2018) is a form of multivariate quantile mapping that is based on an
image processing technique proposed by Pitié (2005, 2007). MBCn
adjusts the simulated dependence structures to match observations
while modifying the temporal sequencing of the climate simulations
enough to match the observed multivariate distribution. This is
achieved by iteratively applying a random orthogonal rotation to the
datasets followed by univariate-quantile-mapping of the rotated mar-
ginal distributions. Multi-sites and multi-variables can be adjusted si-
multaneously. A caveat is that loss of temporal coherence with the
climate simulations becomes larger as the number of dimensions in-
creases. MBCn has been applied in event attribution studies of extreme
fire weather risk in western Canada (Kirchmeier-Young et al., 2017,
2018).

The Rank-Resampling for Distributions and Dependencies (R2D2, Vrac,
2018) is a multivariate B-A procedure working with multi-sites and

variables. R2D2 adjusts the univariate marginal distributions and the
dependence structures separately based on a rank resampling algo-
rithm. R2D2 introduces stochasticity by iterating across all possible
dimensions and generating as many multivariate adjustments as the
number of statistical dimensions of the simulations to be corrected. The
rank-dependence-stationarity assumption allows treating several thou-
sands of statistical dimensions and reconstructing spatial and inter-
variable structures.

It is clear that although these techniques are all variants of classical
methods, they are not expected to give identical results because the
assumptions, the approaches, and the data treatments are all different.
It is therefore important to compare the various methods when applied
to a common case, and most importantly, to evaluate the effect of uni-
vs multi-variate methods on crop models. These and other methods are
part of the activity organized as main result of the workshop as de-
scribed in Section 6.

5. Q3: What can B-A not solve? B-A is not a panacea!

The issues presented in Section 2 in relation to the simulation of
large-scale climate features and their relevance to agricultural model-
ling application were expanded when discussing the limits of B-A. The
following considerations were brought forward and a suggestion pre-
sented.

B-A does not correct for models’ deficiencies in representing fun-
damental physical processes (Dosio, 2016; Stocker et al., 2015; Maraun
et al., 2017). Furthermore, the attempt to bias-adjust and remove large
errors may not only fail, but introduce severe new artefacts (Maraun
et al., 2017). For instance, a climate model may under-represent the
occurrence and duration of very long dry spells. In some cases, e.g.
when the climate model does not resolve the particular orographic
shielding of a valley from rain, B-A may indeed be successful. But if the
model’s planetary scale dynamics produces a too weak persistence of
blocking highs, B-A will not remove the problem. Further, even if a wet-
day adjustment corrects the overall wet-day frequency, the resulting
spell distribution might be further distorted.

For a successful B-A, a climate model has to represent the relevant
climatic processes sufficiently well in the first place. Any bias adjust-
ment should therefore be preceded by a careful evaluation of the re-
levant process representation by the model to be used, and a careful
selection of the climate models to adjust (Maraun et al., 2017). As it is
evident that a model that fundamentally misrepresents the ENSO dy-
namics should not be used to assess rainfall changes over Peru, it should
also be evident that caution should be applied when using and B-A data
from models that fail in representing key large-scale climatic processes.
An additional relevant issue is the quality and temporal coverage of the
observational reference data series, which will not be tackled here.

At this stage, it is therefore clear that a well-defined model eva-
luation protocol is needed that identifies the climatic features whose
representation within the simulation must be checked and determines
their occurrence, interactions, and impacts on the data to be bias-ad-
justed. Such a protocol should be specific for the subsequent use of the
climate model data in impact models and therefore should be fit-for-
purpose (Steyn and Galmarini, 2008).

6. Q4: What next? From words to action – DECIFER and BAD-JAM

All the considerations presented above point toward:

1. Designing tailor-made activities finalized at the definition and ap-
plication of climate model evaluation protocols and practices.

2. Determining the sensitivity of crop models to B-A techniques and
identifying those most suited for the treatment of climate predic-
tions and projections for agricultural model applications.

Toward these ends, two activities were proposed at the workshop:
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DECIFER and BAD-JAM, the latter being already in progress.
DECIFER (Distilling Ensemble Climate Information for Food sEcuRity)

aims at deriving robust information on agricultural impacts of climate
change and extremes in the Greater Mediterranean region. Specifically,
it aims at understanding how climate model quality affects B-A and
subsequent crop model simulations. Such an activity will develop over a
number of years. It is presently in search of financial support, as it will
involve a great deal of scientific research and the development of sound
protocols and procedures for model evaluation and selection.

Within BAD-JAM (Bias ADJustment for Agricultural Models), started
in Fall 2017, a community of climate modelers and statisticians (au-
thoring this article) has used 13 B-A methods (variations of the methods
described in Section 3.) to produce B-A time series of 7 agro-relevant
variables from 8 EURO-Cordex models at 21 locations across Europe
and Northern Africa from 1980 to 2100. Historic data were adjusted for
the evaluation period 1980–1985 based on the training period
1985–2005. The B-A was thereafter applied to the projections for
2006–2100. The adjusted climate data are being analyzed at the Joint
Research Centre and are also being made available to 32 members of
the AgMIP-wheat modeling community (Asseng et al., 2014) who will
use them to determine wheat-yield-related variables. The results will
then be inter-compared and critically analyzed in the light of the B-A
technique used (i.e. uni- vs multi-variate) and the differences in the
climate data used. The number of methods, climate model sets, and
crop models applied at the designated locations (∼70,000 data sets) is
expected to provide good statistics and a good overview of the sensi-
tivity of crop models to B-A techniques. Subsequent publications will
detail the results of this ongoing activity.

In a second phase, BAD-JAM will be extended to gridded data to
address the multi-location dimension of the adjustment and B-A will be
performed only on model sets identified by DECIFER as fit-for-purpose.

7. Conclusions

The relevance of the agricultural sector in sustaining society, as well
as the threats presented by climate change, require cautious use of
modelling systems and the possibility of controlling the quality of the
modelling chains at each step. The verification of the quality of the
different components that lead to an impact assessment is of paramount
importance when the assessment is used as a tool for policy or decision
making (Solazzo et al., 2018). That is the case of climate model pro-
jections used to for agricultural impact assessments. Bias-adjustment of
climate model data requires credible simulations and will have to
produce self consistent adjustment of variables given the high sensi-
tivity of crop models to input data. A survey of the problem and the
proposed activities in an attempt to improve the quality of the modeling
chain have been presented and are currently being carried out as results
of a workshop held in 2017.
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