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ABSTRACT 

A detailed understanding of radiative and nonradiative processes in peptides containing an 

aromatic chromophore requires the knowledge of the nature and energy level of low-lying 

excited states that could be coupled to the bright 1* excited state. Isolated aromatic amino 

acids and short peptides provide benchmark cases to study, at the molecular level, the 

photoinduced processes that govern their excited state dynamics. Recent advances in gas phase 

laser spectroscopy of conformer-selected peptides have paved the way to a better, yet not fully 

complete, understanding of the influence of intramolecular interactions on the properties of 

aromatic chromophores. This review aims at providing an overview of the photophysics and 

photochemistry at play in neutral and charged aromatic chromophore containing peptides, with 

a particular emphasis on the charge (electron, proton) and energy transfer processes. A 

significant impact is exerted by the experimental progress in energy- and time-resolved 

spectroscopy of protonated species, which leads to a growing demand for theoretical supports 

to accurately describe their excited state properties.  
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1. Introduction 

Photochemistry and photophysics are at the heart of the interaction between light and 

molecules, and reveal a particular importance for biological systems, as evidenced for instance 

in the photosynthesis of green plants or the photostability of DNA. Fascinating developments 

in this field is fueled by applications for biomedical imaging based on fluorescent proteins (FP). 

The unique properties of green fluorescent protein (GFP)1–4 have revolutionized many areas in 

the life sciences by enabling in vivo observations of proteins localization and interactions. The 

field of fluorescent proteins of GFP family is covered by excellent recent reviews and we shall 

refer the interested reader to them.5–11 The photoinduced process is initiated by the absorption 

of a single photon by a UV chromophore, allowing the promotion of the system from the 

ground, stable state to an electronic excited state. Regarding applications in biology, it is worth 

mentioning that the knowledge of the initial dynamics of the excited chromophore is crucial to 

the possible control of a chemical reaction. It has generally been accepted that the photolytic 

degradation of peptides and proteins proceeds by interaction involving residues of cysteine and 

the aromatic amino acids and support for this has been deduced from studies of ultraviolet 

spectra. It is indeed the aim of this review to provide the description of the photochemistry and 

photophysics involved in the nonradiative deactivation processes at play at the molecular level 

in amino acid building blocks and short peptides. In comparison to the ground state reactions, 

excited state processes are much more complex with many competitive deactivation pathways 

such as radiative and non-radiative transitions, intersystem crossing (ISC), charge 

(electron/proton) transfer, energy transfer and photofragmentation. One of the most fascinating 
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aspect of the photochemistry of biomolecules is the high sensitivity of the chromophore subunit 

upon the local environment, where intra- and inter molecular interactions can drastically disturb 

its intrinsic properties. At the molecular level, a good description of the excited states Potential 

Energy Surfaces (PESs) is the starting key point for the understanding of the photoinduced 

processes. We won’t specifically address in this review all the challenges of the computation 

photochemistry. Among them, the multi configurational character and non-adiabatic behavior 

of the excited state dynamics have very recently been reviewed in this journal.12–14 It should be 

stressed here that while many theoretical works have been devoted to the electronic properties 

and nonradiative deactivation processes in nucleic acids and DNA strands,15–17 computational 

studies focusing on the excited state properties of amino acids and peptides containing aromatic 

residues have attracted less attention. We have restricted this review to gas phase spectroscopic 

studies of relatively small molecular species. A deep understanding of the photophysics of 

peptides indeed requires an optimal degree of control of the initial and final states of the 

reaction, which can be achieved in the gas phase through the combination of mass spectrometry 

with laser spectroscopy on conformer-selected molecular systems. 

The study of biomolecular conformation in the gas phase has attracted great attention thanks 

to the advent of matrix-assisted laser desorption ionization (MALDI)18 and electrospray 

ionization (ESI)19 sources coupled to mass spectrometer. Mass spectrometry has indeed many 

attractive features for studying peptides, such as isolation of bare, unsolvated ions, mass- and 

charge-selection, and a set of methods available for obtaining conformational information. 

Some methods can be considered as passive: hydrogen-deuterium exchange,20–22 (non)-

covalent tagging of biomolecules based on surface accessibility of specific moieties,23,24 ion 

mobility mass spectrometry which indirectly measures the cross section that relies upon the 

global shape of the peptide.25–27 Other techniques are active, in which an external excitation 

such as collisions with rare buffer gas28,29 or electron attachment30–32 lead to fragmentation. 
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More recently, optical spectroscopy has emerged both in the infrared33–35 and ultraviolet36–39 

ranges. One of the great advantages of such optical methods is the control of the deposited 

energy and the localization of the initial excitation.  

We will restrict our review on relatively small systems following a bottom-up approach, in 

which the parameters of the photochemistry are, preferably and ideally, controlled. As in any 

photoreaction, the entrance, exit channels and the energetic must be properly defined. Among 

these parameters, the charge state, the initial internal energy, the UV wavelength and the 

number of absorbed photons can be accurately determined. Ideally, the investigated molecules 

should adopt a well-defined 3-D structure in order to reveal the influence of the local 

interactions upon the photophysical properties. This is clearly one of the most challenging 

experimental conditions to fulfill, even in the gas phase. For these floppy biomolecules with 

low-frequency modes, cooling techniques as supersonic expansion for neutral and cryogenic 

ion traps for ionic species coupled with laser spectroscopy are required to record well-resolved 

spectroscopic data that can thus be directly compared to quantum chemistry calculations. In 

time domain, when several time constants are observed, it is crucial to know that only one well 

defined species is excited to differentiate between conformers having specific properties or if 

the different time constants are associated to separate relaxation pathways.  

In this review, we will focus on fundamental concepts in excited state properties of aromatic 

chromophores at play in the photoinduced processes in peptides. Starting from the bare UV 

chromophores of the amino acid building blocks (section 2), we will underline the role of the 

coupling of different electronic excited states with the locally excited 1* state on the 

deactivation mechanisms. We will show how the basic picture of the photodynamics could be 

transposed to neutral amino acids and short peptides (section 3). This will serve as ground for 

investigating chemical processes as photodissociation triggered by electron and proton transfer 

of protonated molecules (section 4) and protonated peptide chains (section 5). We finally focus 
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on electronic energy transfer processes in bi-chromophore systems (section 6). We conclude 

with general remarks and an overview of future prospects.  

2.  The  1*  state:  a  paradigm  for  nonradiative  decay  in  aromatic 
chromophores 
 

The excited state dynamics of the aromatic amino acid chromophores (benzene, phenol and 

indole) has been investigated in great detail and the main outcomes are summed up in this 

chapter. As it will be seen, the excited state dynamics of the aromatic amino acids is governed 

both by its chromophore properties and by the interaction of the locally excited chromophore 

with the side chain amino acid. The overall description of the model (see Figure1) can be found 

in the paper of Sobolewski, Jouvet and coworkers.40 The authors state that “The combined 

results of ab initio electronic-structure calculations and spectroscopic investigations of jet-

cooled molecules and clusters provide strong evidence of a surprisingly simple and general 

mechanistic picture of the nonradiative decay of biomolecules such as nucleic bases and 

aromatic amino acids. The key role in this picture is played by excited singlet states of * 

character, which have repulsive potential-energy functions with respect to the stretching of OH 

or NH bonds. The 1* potential-energy functions intersect not only the bound potential-energy 

functions of the 1* excited states, but also that of the electronic ground state”. The S1 surface 

typically exhibits a local minimum of 1* character in the vicinity of the equilibrium geometry 

of the ground state. The second excited state is a dissociative 1*, which induces a barrier on 

the S1 surface, which separates the local 1* minimum from the Conical Intersection (CI) with 

the 1* state. The excited state lifetime is governed by the tunneling through the barrier from 

the * to * states.41,42 This barrier is also responsible for pronounced isotope effects on the 

fluorescence lifetime and quantum yield.40,43,44 The * state crosses at longer distance the 

ground state leading to a second CI. Classically, at this point, the H atom can pursue on the * 
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potential curve and will have quite high kinetic energy, or be trapped on the ground state surface 

leading to a hot molecule which undergoes statistical evaporation of the H atom. From the 

theoretical point of view, the potential energy surfaces calculated by different methods are quite 

similar and vary only on details.40,45–49     

 

Figure 1. Potential Energy (PE) profiles of the lowest 1* states (squares and diamonds), the 

lowest 1* state (triangles) and the electronic ground state (circles) as a function of the OH 

stretch (phenol) or NH stretch (indole, pyrrole) reaction coordinate. Geometries have been 

optimized in the excited electronic states at the CASSCF level; the PE profiles have been 

obtained with the CASPT2 method. Reproduced with permission from ref 40. Copyright 2002 

The Royal Society of Chemistry.  

 

2.1. Phenol chromophore 

The H atom loss dissociation in photo excited phenol has been well characterized by the 

measurements of the kinetic energy of the H atom. A bimodal distribution is observed. For the 
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fast H atoms, the kinetic energy reflects the vibrational progression in the remaining PhO• along 

the out of plane vibration (out of plane vibrations are necessary in order to couple the * and 

the * states which have a different symmetry).50–52 Such a well-defined and structured kinetic 

energy distribution is characteristic of bond rupture on a dissociative potential. The detection 

of the PhO• radical by VUV ionization is also a demonstration of the H loss process.53 The 

second component of the distribution, the slow H atoms, is assigned to a statistical 

fragmentation which occurs after Internal Conversion (IC) following the crossing of the * 

and ground states. By measuring both the picosecond transients of parent and fragment and the 

total translational energy distribution of products as a function of the reaction time, it was 

evidenced that both the slow and fast components of the H fragment have the same tunneling 

origin and that the ground state is populated at the second *-S0 crossing and not through a 

direct *-S0 IC process.54  

Using picosecond laser, a complete survey of the evolution of the excited lifetime of phenol 

as a function of the excess energy has shown that the lifetime changes from 2 ns at the band 

origin 00
0 to 600 ps at 3500 cm-1 above.54,55 These surveys show that the excitation of A” 

symmetry vibrational levels in the S1 state shortens the lifetime, mainly through S1-S2 vibronic 

coupling. At high energy, the direct excitation of the * state leads to a very fast dynamics of 

about 150 fs at 207 nm (excess energy of 12 000 cm-1).56,57  

Basically the whole concept developed in 2002 by Sobolewski and coworkers has been shown 

to be correct. An alternative model neglecting the tunneling mechanism, proposed by Ashfold 

and collaborators58 has been dismissed since. Experimentally, the H-atom transfer mechanism 

was somehow fortuitously evidenced by trying to characterize the excited state proton transfer 

in Phenol-(NH3)n clusters.59–63 It was found that the reaction was indeed an H transfer by 

detection of NH4 radical clusters64–66 and supported by ab-initio calculations.67 It appears only 
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very recently that the excited state proton transfer was in fact responsible for the lowering of 

the barrier height and for the acceleration of the H transfer as the size of the ammonia cluster 

increases.68,69  

The role of the initial excitation of the OH vibration has been investigated by looking at the 

energy distribution of the fragments.70 Dissociation of phenol with an initially excited O–H 

stretching vibration produces significantly more fragments with low recoil energies than does 

one-photon dissociation at the same total energy, implying that one quantum in the OH stretch 

mode induces more fragmentation through the statistical fragmentation in the ground state.  

This system has become a textbook example to test different theoretical methods for the 

excited state dynamics such as quantum wave packet propagation method45,71 or multistate semi 

classical trajectory method.49 Xu clearly confirms that hydrogen tunneling is the main reaction 

mechanism of phenol photodissociation at the 00
0 band origin and agrees with experiments for 

the bimodal nature of the kinetic energy spectra for the photodissociation of phenol. They also 

show that the low kinetic energy release is due to both statistical dissociation to ground state 

and direct dissociation to the first excited state of the phenoxyl radical. Experimentally, the 

translational energy distributions and branching ratio of the phenoxyl radicals produced in the 

different electronic states have been reported.72 It should be noticed that at very high energy 

(193 nm), the other channels such as OH, CO and H2O losses have been detected, which are 

issued from statistical fragmentation occurring in the ground state.73  

The excitation of phenol with a side chain reveals interesting side-chain size-dependent 

dissociation properties.73,74 At 248 nm (5.17 eV), the photoexcitation of p-methylphenol, p-

ethylphenol, and p-(2-aminoethyl) phenol shows that the decay of the excited phenyl ring is 

very different between these three molecules. For both p-methylphenol and p-ethylphenol, the 

major relaxation channel is through the coupling between the ππ* and πσ* states leading to H 

atom elimination from a repulsive state. As the side chain changes from H, CH3 or C2H5 to 
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C2H4NH2, the dissociation properties change drastically implying a new channel, the C-C 

bond rupture (vide infra). The effect of the side chain is the increase of the S1-S0 IC rate and/or 

S1-T1 ISC rate which competes with the predissociation from the repulsive potential energy 

surface.  

2.2. Benzene and phenyl chromophores 

Radiationless processes from the 1B2u state of benzene in the range 245-260 nm involves 

ISC.75–77 Predissociation (CH dissociation) does not seem to play a role in the nonradiative 

decay of the excited state. At higher energy (< 244 nm), the so called “channel 3” opens.78 The 

fluorescence quantum yield is about 30% below the opening of “channel 3” and just below it, 

isomerization has been suggested.79 At the opening of “channel 3”, the excited state lifetimes 

become very short, in the order of hundreds of fs.80,81 This is due to IC which occurs through a 

CI between the ground and first excited states in a geometry that lies along the reaction 

coordinate linking benzene and prefulvene biradical species with a non-planar geometry.82,83  

More appropriate systems to the amino acids discussion is provided by substituted benzene 

such as toluene or alkyl benzene. Photoexcitation of alkylbenzenes at 248 nm (5 eV) leads to 

fragmentation, the main fragment coming from the C-C bond rupture leading to the benzyl 

radical C6H5CH2 and its counterpart.74 The translational energy distribution of the fragments 

were measured. Two distinct components have been observed. A slow one is due to dissociation 

after IC to the ground state and a fast component. The later one implies a late barrier and 

dissociation from a triplet state with an exit channel barrier following a two-step mechanism 

S1→T1→S0. Ab initio calculations showed that the lowest triplet state is dissociative along the 

C-C bond through a barrier of 1.3 eV (∼30 kcal/mol). Then, dissociation from the triplet state 

was the reasonable explanation for the Cα−Cβ bond breaking with the fast kinetic energy 

component. In ethylbenzene and n-propylbenzene, the dissociation via the triplet channel 

characterized by the fast translational energy represents around 75% of the fragmentation 
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processes.84 For larger molecules such as phenylethylamine, N-methyl-phenylethylamine, and 

N-acetyl phenylalanine methyl ester, the main fragmentation channel is still the Cα−Cβ bond 

cleavage. However, as the size of the molecule increases, the contribution of the fast component 

in the translational energy distribution decreases, indicating that IC begins to dominate, due 

probably to the increase of the state density in S0.74  

2.3. Indole chromophore 

Excited state dynamics of the indole chromophore is probably one of the most studied systems 

due to the strong variation of its fluorescence lifetime and emission wavelength with the 

environment, which is used to get information on the protein structure.85–88 The electronic 

relaxation of the chromophore is governed by the interplay of at least three singlet electronic 

states along with the ground state: S1 (Lb ππ*), S2 (La ππ*), and S3 (πσ*) (La and Lb from the 

Platt notations).89 The oscillator strength from the ground to the 1Lb state is weak with the 

transition dipole moment parallel to the long-axis. For the 1La state, the transition moment is 

large and along the short-axis of the molecule. The (1Lb ππ*) state has a low dipole moment 

(1.55 D), similar to the ground state (1.81 D), while the (1La ππ*) one is high (6.07 D), more 

than three times larger with respect to the former.90 In the gas phase, the 1Lb state is the adiabatic 

minimum but due to its high dipole moment, the 1La state becomes the fluorescent state in 

condensed phase. 

Number of experimental91–99 and theoretical90,100–103 papers have studied the coupling and the 

relaxation of the La/Lb states. The Lb state is the first electronic state, its band origin being at 35 

231 cm-1 (283.8 nm) with many vibronic bands observed up to ∼271 nm (+1700 cm-1). At 

shorter excitation wavelengths, the spectrum becomes increasingly unstructured due to the 

onset of excitation to the La state, its origin seems to be located close to 273 nm (+1500cm-1) 

although it has not been observed directly. The lack of observable vibronic structure in the La 

state may be attributed to its short lifetime due to the La/Lb relaxation.96,97 A CI connecting the 
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Lb and La states, which can be accessed via different Herzberg–Teller active modes, is found 

approximately 2000 cm-1 above the Lb minimum.97 Using time resolved dynamics,98,99,104 the 

ultrafast IC of the La state toward the lower Lb minimum is detected at threshold energies, in 

the range of 1000/1500 cm-1 above the origin of the Lb. The 40 fs time constant measured points 

out the involvement of a CI, as predicted by calculations. At excitation wavelengths shorter 

than 263 nm (2800 cm-1 above the Lb minimum), the relaxation through the * state in the 

hundreds of fs time scale is observed.  

The role of the dissociation on the NH bond along the * state has been evidenced both 

theoretically90,101 and experimentally.95,98,105–108 In stark contrast to phenol, the tunneling effect 

does not seem to be important in this molecule since the fast H atoms are not observed on the 

00
0 band. The onset of a structured, high kinetic energy H atom elimination channel, attributed 

to direct dissociation on the πσ* state along the N-H coordinate, was observed at excitation 

wavelengths shorter than 263 nm (+2800 cm-1).107 However, it will be seen later that these 

nonradiative pathways does not seem to be the dominant processes in tryptophan (Trp). 

3. Neutral aromatic amino acids and conformer‐selected peptides 

3.1. Tryptophan fluorescence: the rotamer model  

The knowledge of the photophysical properties of fluorophores has become crucial in 

biochemical research by virtue of the extensive use of fluorescence spectroscopy to monitor 

unfolding transitions in proteins.109,110 Among the three fluorescent amino acid constituents of 

proteins, tryptophan (Trp), and in a less extent tyrosine (Tyr), is the most popular probe, the 

contribution of phenylalanine (Phe) being negligible due to its very low absorption yield. The 

analysis of fluorescence decay of protein has been long and difficult especially in proteins with 

more than one Trp.111,112 The spectroscopic properties of Trp are indeed quite complex, in 

particular the high sensitivity of the indole chromophore to the local environment. It is currently 
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admitted that in most of the proteins, Trp emission originates from the 1La state of the indole 

chromophore.113,114 Its large excited state dipole moment and ionic character result in large 

shifts due to electric field imposed by the protein and the solvent. Not only the magnitude but 

also the field direction determine the sign of the shifts relative to in vacuo experiments.86 

Fluorescence quenching by electron transfer to the backbone amide group has been invoked in 

Trp because it can easily donate an electron, which is directly related to its low ionization 

potential as compared to the other aromatic amino acids.115 The coupling of the 1La state with 

weakly emitting charge transfer (CT) states is highly sensitive to the electrostatic field imposed 

by the environment, which causes the large variability of fluorescence quantum yield, emission 

wavelength and lifetime.116–118 In addition to fluorescence emission, the variation of the Trp 

fluorescence quantum yield (from nearly 0 to 0.35)87,119,120 points out to the complex 

photophysics and nonradiative processes that compete with emission for deactivation of the 

excited state. These nonradiative processes include IC, ISC,121 solvent quenching,122 excited 

state proton transfer123 and excited state electron transfer121 with common quenchers of Trp 

fluorescence which are water molecules, peptide bonds and acid/basic amino acids.85 For 

zwitterionic Trp in water, the protonated amino group seems to be key side chain group for 

excited state deactivation involving intramolecular proton transfer from NH3
+ to the indole 

chromophore.124,125  
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Figure 2. χ1 rotamers of the indole chain of Trp. The projections indicates the rotation of the 

indole group about the C-C bond. The χ1=-60° (g-) is assigned to a lifetime component  

ranging from 2.7 to 5.5 ns, the χ1=180° (a) rotamer with =0.5 ns.126  

 

Although these processes are responsible for the dramatic variation of the Trp lifetime, they 

do not explain the existence of multiple lifetimes for a single residue. The most often suggested 

origin of the multi-exponential decay relies on the rotamer model of Trp, which states that 

ground state heterogeneity leads to different conformations with specific properties that do not 

interconvert on the time scale of the fluorescence lifetime.127 These rotamers correspond to 2/3 

rotation around the C-C bond, leading to different configurations of the alanyl side chain in 

reference to the indole chromophore (see Figure 2). Because the local environment of Trp can 

be disordered and quite complex in proteins with multiple ground state populations, Barkley 

and coworkers126,128 have used a series of cyclic hexapeptides with rigid backbone to assign the 

three fluorescence lifetimes to the corresponding rotamers of the Trp side chain. Since in these 

cyclic peptides, the peptide bond is the only efficient quenching group,121 a straight correlation 

can thus be made between Trp rotamers, excited state electron transfer rates and fluorescence 

lifetimes.  
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3.2. Intrinsic properties of gas‐phase neutral aromatic amino acids and short peptides 

3.2.1. The locally excited 1* state 

As stated above, the complex photochemistry of Trp has been the subject of extensive 

investigations in the condensed phase, pointing out the role of solvent and local interactions 

which are still difficult to properly model. Understanding the behavior of isolated species in the 

gas phase, from single amino acids to short peptide chains, should in fact highlight their intrinsic 

properties without the effects due to the solvent. Besides, by studying cold molecules streamed 

in a cold molecular beam through laser spectroscopy techniques, one should be able to decipher 

the electronic properties of each individual conformers. However, only a few studies have 

focused on the electronic spectroscopy of neutral species, mainly due to the difficulties to 

evaporate these fragile molecules without degradation. The combined use of laser-desorption 

techniques with a supersonic expansion129–131 leads to an efficient cooling that nevertheless 

enables conformational relaxation towards the lowest energy structures of the system but 

remains limited in size to few hundreds Dalton (Da).132,133 

Levy and coworkers134 first reported the dispersed fluorescence of cold, isolated Trp in the 

gas phase. Several conformers were observed that do not interconvert in the excited state during 

the fluorescence lifetime, in perfect agreement with the rotamer model. The different 

fluorescence patterns, in particular a broad, red-shifted emission observed only for a specific 

conformer, were qualitatively explained by relaxation of the locally excited state (1Lb) towards 

a dark, low-lying state not accessible from the ground state. Besides, this particular conformer 

has the shortest fluorescence lifetime (10.4 ns) among all the conformers (12.9 ns).135 The 

assignment of the broad, red-shifted emission has been subject to a long debate. Levy first 

suggested that this could be an indication of exciplex formation following charge transfer from 

the indole ring to the amino acid backbone. In the excited state, the zwitterionic form would 

result from proton transfer from the carboxylic to the amino groups through a small energy 
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barrier. This model was tested by looking at the deuterated species, which indeed exhibits a less 

extensive exciplex formation by a factor of 1.8, consistent with a slower tunneling rate upon 

deuteration. Several Trp derivatives were further investigated showing that both the amine and 

acid groups are necessary for the observation of the red-shifted emission.136,137 However, the 

existence of a zwitterionic form in the excited state of bare Trp, in absence of solvent 

environment, raised several issues, in particular the large amount of energy required to stabilize 

this state. It was proposed an alternative mechanism based on an excited state perturbation 

through a dipole-dipole interaction between the amino acid backbone and the indole ring, 

switching the ordering of the 1La and 1Lb states.138 Such interaction depends on the amplitude, 

distance and relative orientation of the dipole moments that varies from one conformer to the 

others, leading to relative shifts of the dipolar S2 (1La) state compared to the S1 (1Lb) state. Ten 

years later, Snoek et al.139 provided a qualitative evaluation of the dipole-dipole interactions 

between the glycine side chain and the indole ring that did not support the initial suggestion of 

the 1La/1Lb state switching. The authors finally proposed that the broad, red-shifted emission 

reflects the unresolved vibronic activity of one specific conformer.  

Ab initio calculations140,141 confirm that the locally excited 1Lb state has the lowest vertical 

excitation energy. However, to the best of your knowledge, geometry optimization of the 

excited states (1*, 1*, 1n*) of bare Trp has never been reported. More experimental and 

theoretical works have been devoted to tryptamine (Tryp), a close analogue of Trp by 

decarboxylation. High-resolution ultraviolet spectroscopy along with ab initio excited state 

geometry optimization have unequivocally demonstrated that the 1Lb state is the adiabatic S1 

state for all the conformers, the origin of the 1La state being predicted few hundreds 

wavenumbers higher in energy.142–144 However, the close vicinity of the two excited states 

causes an efficient mixing with a CI not far above the minima of the two states.  
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3.2.2. The 1* state of the heteroaromatic chromophores 

According to the seminal work of Sobolewski and Jouvet,40 the photophysical properties of 

these heteroaromatic amino acids containing an O-H/N-H bond should be influenced by a third, 

dissociative 1* excited state (see section 2.3). In tryptamine,136,145 tryptophan131 and 

tyrosine,146 the electronic spectra of all conformers are sharp, extend at least one thousand 

wavenumbers above the band origin with no sign of efficient deactivation process in the vicinity 

of the minimum of the locally excited 1* state. The first experimental evidence for the 

existence of the 1* state was provided by the complete absence of indole NH stretch band in 

the IR spectrum of the S1 state in tryptamine.95 Instead, a broad absorption appeared, ascribed 

to the strong coupling of the 1Lb state NH stretch (v=1) level to the 1* state, dissociative 

along the NH bond. H-atom elimination dynamics from tyrosine, p-ethylphenol and tyramine 

following excitation at 200 nm, almost 2 eV above the band origin, was investigated by Iqbal 

and Stavros.147 The analysis of the total kinetic energy release (TKER) spectra of these three 

molecules derived from the time-resolved H+ velocity map images confirms that H-atom 

elimination is mediated by the 1* state of the phenolic O-H site rather than from the O-H/N-

H groups of the amino acids backbone. At this excitation energy, the time constants associated 

to the H-atom release were found on the order of 100 fs or less. Ovejas et al.148 reported the 

relaxation channels of Trp using fs pump-probe ionization at different excitation energies, from 

the band origin up to 220 nm (see Figure 3). The signal transients showed different time scales 

that depend on the excitation wavelength. At the band origin (287 nm), a nanosecond relaxation 

time is observed, ascribed to the 1Lb lifetime. At 280 nm, an ultrafast time constant of about 50 

fs was assigned to 1La-1Lb IC while at wavelengths shorter than 272 nm, a third time constant 

of 200-300 fs was extracted and assigned to the dynamics on the 1* potential energy surface 

along the indole N-H coordinate, as already observed in the bare indole chromophore.104 
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Finally, excitation at wavelengths shorter than 250 nm revealed an ultrafast sub-50 fs lifetime 

not present in indole which was thus ascribed to relaxation via excited states localized on the 

amino acid backbone.  

 

Figure 3. a) and b) Trp photoionization transients recorded at two different excitation 

wavelengths with individual exponential components of the fitting. c) Schematic representation 

of the pump-probe wavelengths used by Ovejas et al.148 together with the electronic structure 

of Trp. Adapted with permission from ref 148. Copyright 2013 American Chemical Society. 

 

3.2.3. The influence of locally excited states of the peptide backbone 

Capped aromatic amino acids provide the simplest molecular systems to highlight the role of 

excited states localized on the peptide backbone on the photophysics of aromatic amino acids 



19 

 

containing peptides.149 N-acetyl tryptophan amide (NATA) and N-acetyl tryptophan methyl 

amide (NATMA) were studied by Zwier and coworkers through laser-induced fluorescence150 

and fluorescence-dip infrared spectroscopy.95 These peptide mimics can adopt two kinds of 

conformation, an extended, -like peptide backbone structure (C5) or a folded, -turn type (C7 

H-bond between the amide NH and CO carbonyl).151 In such systems, the H-bonding interaction 

between the amide NH group of one residue and the carbonyl CO group of another residue not 

only dictates the conformational preferences but also influences the photophysical properties of 

the peptides. First, the excitation spectrum of the C5 structures show well-resolved vibronic 

transitions while the C7 conformers are characterized by a highly congested spectra involving 

a long progression of low frequency modes extending several hundred wavenumbers to the red 

of the band origin, suggesting that the locally excited 1* state decays towards a second, low-

lying state. Second, in all conformers are missing the indole NH stretch transition in the IR 

spectra of the locally excited 1* state, as already observed for tryptamine. This finding points 

out to the coupling of the 1* NHind (v=1) state with the predissociative 1* state. Finally, 

for the C7 conformers, all the infrared transitions are washed out in the excited state, replaced 

by a broad, unresolved background absorption. The authors suggested that the broad congested 

spectra of the -turn conformers are indicative of a switch in the ordering of the 1Lb with the 

1La/1* states. Without theoretical support, it was rather difficult at that times to decipher the 

exact nature of the low-lying excited states.  

In order to theoretically investigate the role of hydrogen bonds on the electronic properties of 

short peptides, the photochemistry of small polyglycines was first studied by Sobolewski and 

Domcke.152 Small polyglycine peptides (trimer and pentamer) provide the smallest molecular 

models of -turn (C10 type HB) and -helix (C13 type HB), respectively. The authors showed 

that two electronically excited states are at play in the photophysics of these peptides. First, a 
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locally excited (1LE,1n*) state involves the excitation from the nonbonding (n) orbital of the 

hydrogen-bonded carbonyl group to an antibonding molecular orbital localized on the same 

branch of the backbone. Second, a charge transfer (1CT) state, which corresponds to electronic 

excitation from the amide to the carbonyl involved in the H-bond. This 1CT state is strongly 

stabilized by proton transfer from the amide to the carbonyl and crosses the 1LE state and the 

S0 ground state in the course of the proton transfer reaction. Such photoinduced electron-driven 

proton transfer has also been invoked (CASSCF/PT2) in a model glycine dimer mimicking a 

-turn motif found in protein.153  

This nonradiative deactivation model has been proposed to explain the different excited state 

properties of the extended and folded conformers of NATMA.154 The authors found that 

geometry optimizations (at the ADC2 level) of the lowest excited 1* states reversed the 

ordering of the 1Lb and 1La state, and that the C7 conformer has the largest energy gap. The 

authors also locate the dissociative 1* state along the indole NH stretch, which crosses the 

1Lb state not far above the indole NH stretching energy level, in agreement with the 

experimental findings. Besides, while the vertical excitation energies of the electronic states of 

the backbone are rather high in energy, they are strongly stabilized upon geometry optimization, 

becoming the adiabatic energy minimum of the S1 state. The locally excited state of the 

backbone (1LE) corresponds to an excitation from the nonbonding orbital to the * orbital of 

the peptide backbone (1n* transition) and lies only 1.7 eV or 1.2 eV above the ground state in 

the C5 and C7 conformers, respectively. In the -turn conformer, the barrier on the 1*/1LE 

reaction path is smaller by 0.1 eV compared to the extended conformer, which might thus 

explain the conformer selectivity experimentally observed. Finally, an additional reaction 

channel is energetically open from the 1LE state only for the folded conformer that involves a 

proton transfer along the N-H...O=C C7 H-bond triggered by the electron transfer to the 
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carbonyl. The proton transfer strongly stabilizes the charge transfer state (1CT), in a structure 

with a small 1CT/S0 energy gap allowing efficient IC.  

Short peptides containing a Trp residue (TrpGly, GlyTrp, TrpGlyGly)129,155 or a 

phenylalanine residue (PheGlyGly, GlyPheAla)156,157 were investigated by laser spectroscopy. 

As explained above, the photophysics of the indole chromophore by itself complicates the 

understanding of the nonradiative decays at play in peptides containing Trp. In phenylalanine, 

neither the 1La/1Lb state switching nor the 1* state of the indole NH group are relevant to the 

photophysics, so the influence of the hydrogen bonds and secondary structure of the peptide 

backbone on the deactivation mechanism of the Phe residue can be investigated in an easier 

way. The vibronic spectra of these peptides can change drastically, showing either weak or 

dense vibrational progressions, as already observed in NATMA. Interestingly, all conformers 

which exhibit a strong hydrogen bond between the carboxylic acid group and the carbonyl of 

the peptide bond (-turn type) were not detected although being among the lowest energy 

structures. This raises the question of the potentially efficient radiationless decay processes 

which render the lifetime of the excited 1* states too short (sub-ps) to be probed through ns 

multiphoton ionization scheme (REMPI). This pitfall has already been documented in case of 

DNA bases for instance, for the first three lowest energy tautomers of guanine158,159 or for 

selected conformations of DNA base pairs such as the Watson-Crick guanine-cytosine 

structure.160 It could be stressed here that in the latter case, an electron-driven proton transfer 

process was already thought to be at play as proposed for the polyglycines.152 Shemesh et al.161 

suggested that the same electron/proton transfer process could explain the unobserved 

conformer L of GlyPheAla that exhibits a strong intramolecular H-bond.  
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Figure 4. (a) Most stable conformer of NAPA. The label a/g-/g+ refer to the Phe χ1 rotamer of 

the benzyl chromophore. (b) R2PI spectrum of NAPA in the region of the band origin of the 

first * transition of the three observed conformers. (c) Time dependence of the potential 

energy of the ground (blue) and the excited states along a nonadiabatic trajectory involving n* 

excitation of the second peptide bond. Adapted with permission from ref 162. Copyright 2012 

American Chemical Society.   

 

In the tripeptides PheGlyGly and GlyPheAla mentioned above, the conformational 

heterogeneity is already quite large and some conformers are suspected to have too short excited 
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state lifetimes to be probed through ns laser spectroscopy. According to the previous study of 

Zwier et al. on NATA,150 Mons and Ljubic162–164 chose an isolated peptide chain model 

containing a Phe residue, N-Acetyl Phenylalanine Amide (NAPA) to explore the dynamics of 

the deactivation processes through a joint experimental and theoretical collaboration (see Figure 

4). 1* excited state lifetimes were measured for the three lowest energy conformers through 

ns and ps REMPI spectroscopy. Interestingly, the folded L(g+) conformer with a strong C7 H-

bond between the amide group and carbonyl group of the peptide bond has its lifetime (1.5 ns) 

reduced by a factor of 50 compared to the extended L(a) conformer (70 ns). The third 

conformer L(g-), with the same C7 H-bond but with another orientation of the benzyl residue 

(no NH- bond between the amide peptide and the  cloud of the aromatic ring), has an 

intermediate lifetime of 35 ns.  

Two main deactivation mechanisms have been deduced from the nonadiabatic simulations 

performed at the TD-DFT level to account for this conformer selected shortening of the excited 

state lifetimes and efficient IC to the ground state. The first one implies an H-transfer from the 

Phe NH to the ring triggered by an electron transfer from the ring. A rather large barrier of 0.48 

eV is estimated at the CC2 level for the H-transfer, which might be compensated by the large 

zero point energy of the NH stretch mode. However, the absence of significant deuteration 

effect (Phe NH vs ND) in the lifetime of all conformers, in stark contrast to the phenol case (see 

section 2.1), dismisses such process. In the second mechanism, a nonadiabatic transition occurs 

from the initial * state to the n* states of the first (localized on the N-acetyl group) or second 

(the CONH2 group) peptide bonds. It should be noted that the */n* CI is reminiscent of the 

first step of the seminal mechanism introduced by Soboleswki and Domcke for NATMA.154 

Geometry optimizations of the two n* states have been performed at the CC2 level. These n* 

states are found about 0.7 eV below the * minimum and are separated from the ground state 
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through small energy barriers, providing an efficient way for nonradiative processes. The 

barrier for the 1*/n* transition was predicted slightly lower for the L conformers, in good 

agreement with the experimental findings. However, the question remained on which peptide 

bond is responsible for the efficient nonradiative deactivation of the initially excited *. This 

has been disclosed by the same group of authors165,166 by comparing the excited state properties 

of the vibrationless level (adiabatic transition) of NAPA and NAPMA (methyl amide). 

Experimentally, the excited state lifetime of L(g+) NAPMA, in which the second peptide bond 

is methylated, is much longer (48 ns) than in NAPA (1.5 ns), which clearly does not support 

the involvement of the first peptide bond in the rapid deactivation process. Besides, they 

demonstrated that the accessibility to the 1*/n* CI of the second peptide bond strongly 

depends on the molecules, pointing out the effect of the zero point energy and enhanced rigidity 

of the terminal amide group of the */n* transition. These experimental results and 

nonadiabatic dynamics simulations clearly emphasize the high sensitivity of the nonradiative 

deactivation processes to the backbone environment of the aromatic ring. Such rapid 

radiationless decay processes may be essential to rationalize the photostability of larger peptides 

and proteins under UV irradiation.167 

4. Protonated aromatic amino acids: Charge does matter 

While thermal or matrix assisted laser desorption (MALD) source cannot vaporize large 

neutral biomolecules without degradation, the advent of soft and efficient vaporization 

techniques such as electrospray ionization (ESI) has undeniably opened new opportunities for 

gas phase studies of fragile biomolecules. UV photofragmentation has become the most 

efficient method for studying the photochemistry of electronically excited biologically relevant 

molecules, according to the fact that fluorescence detection within an ion trap is much harder 

to set up (see section 6). The principle of the photofragment spectroscopy is rather simple: the 
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(resonant) absorption of a UV photon by the aromatic chromophore is detected by the apparition 

of photofragments at lower masses. While, from a spectroscopic point of view, the only 

adjustable and important parameter would be the laser wavelength, the full description and 

understanding of the photofragmentation mechanism should provide insights into the 

underlying photophysics of the deactivation process.  

4.1. Protonated aromatic amines:  the H loss, specific photofragmentation channel  

Protonated tryptamine, an intermediate derived by decarboxylation of Trp, has provided a 

benchmark system for the understanding of the photoinduced process at play in this protonated 

aromatic molecules. Following 266 nm excitation, protonated tryptamine (TrypH+ m/z 161) 

fragments by loss of H atom (m/z 160) along with its two secondary fragments at m/z 130 and 

131 (C-C bond break) and ammonia loss (m/z 144). The excited state dynamics of TrypH+ 

was recorded through a fs pump-probe photodissociation scheme.168 The striking result was the 

ultrafast transient recorded only on the H loss channels (m/z 160, 130 and 131) with a time 

constant of 250 ± 50 fs, within the experimental time resolution of the fs lasers. The excited 

state potential energy surfaces (PESs) of protonated tryptamine were calculated at the coupled-

cluster level CC2.169 The excited state calculations have pointed out the role of the * state 

dissociative along the NH stretch of the protonated ammonium group. This * notation is 

somewhat not strictly exact since TrypH+ doesn’t have a Cs symmetry. If the  orbital refer to 

the plane of the chromophore, the * orbital is located on the NH3
+ group and has a  symmetry 

in the amino acid part. The coupling between the optically excited * state and the * state 

induces an electron transfer from the aromatic ring to the NH3
+ group, resulting in the formation 

of a hypervalent, neutral radical species C-NH3
•, dissociative along the C-N and the N-H 

coordinates. The Minimum Energy Path (MEP) for the detachment of the hydrogen atom and 

for the elimination of ammonia directly in the excited state have been calculated at the CC2 
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level. For both cases, a small energy barrier in the excited state of 0.05 eV and 0.25 eV for H 

loss and ammonia loss, respectively, is predicted. Although the ammonia loss has a larger 

exothermicity than the H loss reaction, the higher energy barrier and the larger mass of the 

ammonia compared to the hydrogen atom is in agreement with the experimental observation of 

the H loss reaction in the excited state following 266 nm excitation. In the course of the H loss 

reaction, the * energy surface crosses the electronic ground state, point where competition 

between direct dissociation in the excited state and hydrogen recombination and ammonia loss 

following IC occurs.  

It should be stressed here that the H loss reaction channel, mediated by the dissociative 

1* state, was initially developed for substituted aromatic molecules such as phenol and 

indole (see sections 2.1 and 2.3). In protonated amino species, the dissociative 1* state 

involves an electron transfer from the aromatic ring toward the protonation site (the NH3
+ group 

of the amino acid) leading to an hypervalent (NH4 like) moiety dissociative along the NH 

coordinate. So the main difference between protonated and neutral species is the coordinate of 

the dissociation asymptote of the , * and * states. For the neutrals, the reaction leads to 

the M• (radical) + H and for the protonated species, it leads to M++H, as depicted in Figure 5. 
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Figure 5. Comparison between the dissociation driven by the * state in neutral molecule 

(phenol) and protonated one (anilinium).  

A model based on the */* energy gap has been proposed to explain the excited state 

dynamics of other protonated aromatic amines.170 Depending on the length of the alkyl chain 

bearing the ammonium group, the photofragmentation pattern of protonated aniline, 

benzylamine and phenylethylamine drastically changes. In anilinium, the H loss channel is 

detected along with the ammonia loss at the band origin of the *, while only the ammonia 

loss channel is open in protonated benzylamine. The competition between the H and NH3 loss 

channels is determined by the */* coupling and the crossing of the dissociative * along 

the N-H stretch with the electronic ground state. The H and NH3 loss reactions are related to 

the dynamics on the * state reached from the locally excited state through a barrier. When 

the dissociation limit of the H loss reaction (M+ + H) is lower than the 00
0 energy, then the H 

loss fragmentation channel is open, as observed and predicted for aniline and para-

aminophenol. Otherwise, due to the exit barrier along the N-H stretch, an aborted H loss 

reaction occurs at the second */S0 curve crossing resulting in IC and fragmentation in the 

ground state leading to the NH3 loss. 



28 

 

For protonated phenylethylamine, the fragmentation channel changes abruptly within 500 

cm-1 from the band origin, which clearly evidences that two competitive deactivation processes 

in the excited state exist. The C-C bond break channel is first open up to 500 cm-1 and then 

the fragmentation channel shifts to the NH3 loss to be the only one 700 cm-1 above the 00
0 

transition. By substituting the benzyl by a phenol chromophore, the overall picture of the 

photochemistry of protonated tyramine remains the same.171 In these cases, the C-C bond 

break is triggered by a proton transfer to the ring, which can only occur when the length of the 

alkyl chain is long enough to insure an efficient overlap of the molecular orbitals centered on 

the ammonium and  cloud. The proton transfer reaction is further confirmed by the mass of 

the ionic fragments associated to the C-C bond cleavage, which bears an extra hydrogen as 

compared to the simple bond cleavage. This proton transfer reaction happens through a small 

barrier and competes with the */* electronic coupling leading to the NH3 loss channel 

after IC.  

4.2. Protonated aromatic amino acids 

4.2.1. Protonated tryptophan 

Among the three naturally occurring aromatic amino acids, tryptophan has been the most 

studied owing to its high fluorescence yield and extreme sensitivity to the environment. The 

first photofragmentation experiments on protonated aromatic amino acids have thus been 

performed on protonated tryptophan (TrpH+) almost at the same time by five independent 

groups. In the special issue “bio-active molecules in the gas phase” of PCCP in 2004,172 

Andersen et al.,173 Kang et al.174 and Nolting et al.140 report the first UV photoinduced 

dissociation experiments on TrpH+, followed by Talbot et al.175 in 2005 and Boyarkin et al.176 

in 2006. The outcomes of the photophysics of TrpH+ were indeed much more complex than 

expected. IC to the ground state was initially supposed to be the main deactivation mechanism 
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in competition with fluorescence. Indeed, the resonant photo fragmentation spectrum of TrpH+, 

cooled at liquid nitrogen temperature in a Paul ion trap, is very similar to the absorption 

spectrum of the neutral, with the band origin around 285 nm, but somehow broader than 

expected at this temperature.140 Interestingly, the electronic spectroscopy of TrpH+ cooled at 

much lower temperature (6K) still shows a broad band origin although a well-resolved vibronic 

spectrum could be recorded for protonated tyrosine (TyrH+) in the same conditions.176 

Complementary photo fragmentation results were obtained at 266 nm with the observation of a 

new fragmentation channel not detected at the band origin, the H atom loss leading to the 

formation of radical cation Trp+.174 The photo specific H loss channel, never detected in 

collision induced dissociation (CID) experiments where fragmentation occurs in the ground 

electronic state, points out the role of dissociative excited states in the deactivation mechanism 

of photo excited TrpH+. A comprehensive photodissociation spectroscopy study done by Talbot 

et al.175 confirmed that the branching ratio between the different fragmentation channels 

changes with the excitation energy in the excited state. In particular, the H loss channel opens 

10 nm to the blue of the band origin and has a maximum intensity at 250 nm.  

One of the unexpected results is the rather large number of fragmentation channels for such 

simple molecule within this given excess energy, around 4-5 eV: H loss (m/z 204), the C-C 

bond break (m/z 130 and m/z 132), NH3 loss (m/z 188) and the formation of immonium ion 

m/z 159 (CO + H2O loss) are the primary fragmentation channels in competition. Other detected 

photofragments are secondary or tertiary fragmentation channels: m/z 130 from the radical 

cation Trp+, m/z 170, m/z 146, m/z 144 and m/z 118 from m/z 188. A comprehensive 

understanding of the photochemistry of TrpH+ has indeed been quite challenging, in part 

because these different primary fragmentation channels in competition are related to several 

deactivation pathways involving excited states of different electronic characters. Besides, the 
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solely detection of the ionic fragment of a given m/z is not unambiguously associated to a 

unique deactivation process, as revealed by the ion/neutral coincidence experiment. 

Detecting in coincidence the ionic and neutral fragments using position and time sensitive 

detectors is a powerful means for a comprehensive understanding of the fragmentation 

mechanisms. The multi coincidence analysis allows to differentiate between direct (two 

fragments) or sequential (more than two fragments) fragmentation processes. In the case of a 

two-step process, the sequential order can also be precisely determined. Contrary to 

conventional mass spectrometry techniques based on the sole identification of the mass-to-

charge ratio of the ionic fragments, this technique allows an additional indirect identification of 

the neutral fragment mass. 

In the past decade, the strength of the multi coincidence technique has been demonstrated in 

the study of the photostability of numerous biomolecules in the gas phase.177–184 Here, we take 

the example of the photoexcitation of TrpH+ which leads to C-C bond breakage and 

production of ionic fragments with m/z 130, among other fragmentation channels. The latter 

ionic fragment was long considered as resulting solely from a two-step mechanism following 

H loss. The discrimination of fragmentation events occurring on different fragmentation time 

scales allowed to evidence the existence of two distinct deactivation pathways (see Figure 6) 

leading to the same m/z 130 ionic fragments. This fragment is produced either in a sequential 

or binary fragmentation as indicated in the schemes below: 

 

Scheme (a): Step 1: m/z 205 → m/z 204 + H; Step 2: m/z 204 → m/z 130 + 74 

Scheme (b):  m/z 205 → m/z 130 + 75  
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Figure 6. Two mechanisms associated to the m/z 130 photoproduct of TrpH+ based on the 

ion/neutral coincidence experiment: (a) slow C-C bond breakage subsequent to H-loss and 

(b) fast C-C bond breakage subsequent to proton transfer to CO group of the carboxylic acid 

moiety.  

 

In scheme (a), the coupling of the optically excited ππ* state and the π* state induces an 

electron transfer from the aromatic chromophore to the NH3
+ group, as described earlier in the 

text. Rapid H atom loss leads to the formation of the m/z 204 radical cation, which produces 

m/z 130 with a decay time constant > 1 µs. In scheme (b), the coupling of the optically excited 

ππ* state and the ππCO* state induces a proton transfer to the CO group, which triggers a fast 

binary fragmentation (C-C bond rupture), as corroborated by the VV plot (correlation 

between the speeds of the neutral and ionic fragments) of rapid m/z 130 fragment ions.177 The 

interpretation of the fast C-C bond breakage was supported by calculations as due to the 

dissociation in the excited state after a concerted electron-proton transfer toward the carbonyl 

group in a comparative study of protonated tryptophan with tryptamine and protonated tyrosine 

with tyramine, i.e. in the presence or absence of the -COOH group, respectively (see Figure 

7).178 Events in the bottom right side of the two-dimensional plots of Figure 7 (a-d) are related 

to binary fragmentation occurring in less than 150 ns and are denoted as fast fragmentation. 

The striking point is that no fast fragmentation is observed for the decarboxylated amino acids. 
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Thus, UV photofragmentation studies with multi-coincidence detection of fragments resulting 

from C-C bond breakage unraveled the role of the -COOH group in the fast fragmentation 

process. 

 

 

Figure 7. Two dimensional plots N(ti-tn,yi) for the four protonated molecules: (a) tryptophan, 

(b) tryptamine, (c) tyrosine, and (d) tyramine. The open squares indicate the calculated positions 

of the fragment ions issued from a fast fragmentation process. Only the m/z 130 are produced 

by a slow fragmentation (open circle) following secondary fragmentation of the tryptophan (a) 

and tryptamine (b) radical cations. Reproduced with permission from ref 178. Copyright 2008 

American Institute of Physics. 

 

The fragment at m/z 132, which was initially assigned to a secondary fragment of the 

immonium ion according to CID studies,185 is in fact related to the proton transfer reaction from 

the ammonium group to the indole ring followed by the C-C bond cleavage. This ionic 

fragment, which had been unambiguously demonstrated to originate from the emission of a 

single neutral fragment of 73 Da,177 is still present in the absence of the -COOH group. Hence, 
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regarding TrpH+, one can conclude that the ππCO* state is not involved in this fragmentation 

mechanism after photoexcitation. Regarding the mechanism, formation of m/z 132 fragments 

in TrpH+ after C-C bond breakage in a binary fragmentation, has been rationalized as a 

hydrogen and proton transfer onto the indole chromophore moiety following UV excitation. 

Studies of supramolecular complexes with 18-crown-6 ethers can provide essential clues on 

proton driven fragmentation.179,186 In such complexes, the crown ether is anchored onto the 

protonated ammonium group and prevents interaction between the latter group and the aromatic 

chromophore, as discussed further in this review article. The immediate effect is the absence of 

CID-like fragmentation after IC to the ground state, while C-C bond breakage is still observed 

but not through production of m/z 132 ions. 

The excited state dynamics of TrpH+ has been studying through the same pump-probe 

photodissociation scheme as for tryptamine.187,188 A fast decay with two time constants of 400 

fs and 15 ps are observed following excitation at 266 nm. The sub-picosecond lifetime suggests 

that the unresolved vibronic spectrum of TrpH+ at the band origin (284 nm) may be due to 

lifetime broadening. This was rather surprising since the lifetime of the first excited state of 

neutral Trp is in the nanosecond range.135 Although the presence of an excess proton barely 

shifts the band origin of the 1* excited state, it strongly affects the nonradiative deactivation 

process. Interestingly, the pump-probe photodissociation signals obviously change for each 

fragment (see Figure 8), i.e. the amplitude and sign of the pre exponential factors of the bi 

exponential decay function. In particular, the NH3 loss channel is first depleted within the first 

400 fs and then, its fragmentation yield increases during the second time scale of 15 ps.188 This 

clearly evidences that one can control the fragmentation channels and branching ratio using 

suitable laser pulses (here at the femtosecond time scale) with the right delay between the pump 

and probe lasers. Besides, the fragment ion m/z 132 associated to the proton transfer to the ring 

and C-C bond break is the only channel insensitive to the probe laser. The absence of pump-
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probe signal of one specific channel indicates that this latter fragmentation channel is not in 

competition with the other ones, neither in the excited state nor in the ground state. 

 

Figure 8. Time-resolved pump-probe photodissociation signals recorded on m/z 130 (C-C 

bond cleavage) and m/z 188 (NH3 loss) fragment channels of TrpH+ following 266 nm 

excitation. Both transients share the same time constant of 1 = 400 fs (green line) and 2 = 15 

ps (blue line) assigned to different nonradiative deactivation process in TrpH+ but with different 

pre exponential factors (sign and amplitude), reflecting the effect of the probe photon upon the 

fragmentation yield of each channel. Adapted with permission from ref 188. Copyright 2005 

American Chemical Society. 

 

Excited state calculations on TrpH+ have shown that several low-lying excited states with *, 

* andCO* electronic configurations were present within 0.5 eV and their relative position 

changes according to the Trp rotamer.140,189 The precise labelling of these states is somehow 

difficult due to lack of symmetry and the large mixing of the molecular orbitals. Ideally, the 

electronic structure of the excited states could be defined as two * states (Lb and La as for 
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indole) and two charge transfer states of NH3* and CO* characters. While the relative 

position of the charge transfer states compared to the locally excited state depends on the 

conformation of the molecule, in any case, S1 is the optically bright * state. It should be noted 

that the NH* state (where the  symmetry refer to the indole plane) involved in the 

deactivation of the indole chromophore is not predicted to play a significant role in TrpH+. 

 

 

Figure 9. General scheme showing the connection between the electron localization (excited 

state) and the fragmentation channels in TrpH+. Adapted with permission from ref 190. 

Copyright 2009 EDP Sciences. 
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Optimization of the S1 * excited state leads for the four lowest energy conformers to an 

unexpected result in stark contrast to the other protonated aromatic molecules: a barrierless 

proton transfer reaction from the NH3
+ group to the indole chromophore. The proton transfer 

reaction involves rather large nuclear displacements, an out-of-plane CH bend and a ring 

puckering at the proton accepting carbon atom, leading to a small S1/S0 energy gap and possible 

path for IC through a CI. It is thus believed that this deactivation process is responsible for the 

ultrafast excited state lifetime of TrpH+. Hydrogen transfer to the ring (coupled proton and 

electron transfer) was previously proposed124 to rationalize the fluorescence quenching of 

zwitterionic tryptophan. 

The H loss fragment is related to the dynamics on the * state that is dissociative along the 

N-H stretch coordinate. Experimentally, this channel opens with some excess energy in the S1 

state.175 The MEP of the H loss reaction exhibits a small barrier of 0.2 eV, in qualitative 

agreement with the experimental finding.189 Geometry optimization of the higher excited states 

(* and CO*) leads to barrierless hydrogen transfer from the protonated ammonium to the 

carboxylic oxygen. The hydrogen transfer reaction can be viewed as an electron-driven proton 

transfer process triggered by an electron transfer from the indole ring to the carboxylic acid 

group and then a proton transfer from the ammonium to the negatively charged acidic group. 

The H atom transfer leads to a biradical ion with a positive hole on the indole ring and an 

unpaired electron on the aliphatic carbon. Minimum Energy Path along the C-C bond in 

TrpH+ suggests that the hydrogenated carboxylic form leads to a barrierless C-C 

dissociation.178 Finally, excited state calculations suggest that the H atom transfer is conformer 

dependent since it depends on the overlap of the  orbitals of the indole and carboxyl groups.190 

However, the unresolved vibronic spectrum of TrpH+ precludes more definitive statements 

about the conformer selectivity. The overall picture of the excited state dissociation pathways 

in TrpH+ is presented in Figure 9. 
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4.2.2. Protonated tyrosine and phenylalanine: conformer selectivity in the photofragmentation 

process 

TyrH+ and PheH+ are very similar in essence to TrpH+, with the same protonation site on the 

amino group and S0-S1 electronic transitions barely shifted from their neutral analogues. 

However, their excited state dynamics are drastically different from TrpH+. Cold TyrH+ and 

PheH+ show well-resolved vibronic photodissociation spectra at the band origin.191–194 Besides, 

the excited state lifetime of TyrH+ has been measured as a function of the excess energy in the 

* state,195 from a few ns at the band origin (284 nm) down to 22 ps for room temperature 

ions with large excess energy in the S1 state (266 nm).187 While in TrpH+ the coupling between 

the * state and the locally excited state governs the excited state dynamics, the larger 

*/* energy gap in TyrH+ and PheH+ precludes an ultrafast deactivation process (see Figure 

10), as confirmed by ab initio calculations.189 It is also interesting to note that simple 

thermodynamics considerations (Ionization Potential and Proton Affinity of amino acids) used 

to estimate the asymptotic limit of the H loss reaction from the ammonium group of protonated 

aromatic amino acids (see Figure 5) provide a very satisfying qualitative picture of the excited 

state properties of these compounds.187 This model considers that the electron removed from 

the aromatic part (IP of the neutral molecule) and added onto the NH3
+ group (electron affinity 

of the ammonium group) leads to constant electron-binding energy of the ammonium group 

attached to the aromatic moiety of 3.2 eV.196 This crude model allows estimating the relative 

energy of the * and * states as a function of the ionization potential of the aromatic amino 

acids, the */* energy gap being smaller as the IP decreases.  
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Figure 10. Comparison between protonated tyrosine (TyH+) and protonated tryptophan 

(TrpH+). CC2 vertical excited state energies along with the molecular orbital representation and 

pump-probe photodissociation transients at 266 nm recorded on the same fragment channel, the 

C-C bond break. The larger */* energy gap in TyrH+ explains the longer excited state 

lifetime (22 ps) than in TrpH+ (400 fs). The constant signal at long delay in TrpH+ reveals the 

formation of the radical cation following H-loss which further absorbs the probe photons 

leading to the C-C bond break. Adapted with permission from ref 187. Copyright 2005 The 

Royal Society of Chemistry.  

 

The excited state properties of these two protonated aromatic amino acids have extensively 

been studied. Two main experimental findings were particularly interesting. First, the 

fragmentation branching ratio strongly evolves with the excess energy in the S1 state, as already 

observed in protonated aromatic amines (see section 4.1). Second, a conformer-selectivity in 

the photodissociation spectroscopy has been observed, providing a direct link between gas 

phase structure and photo reactivity.197  
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Figure 11. UV Photodissociation spectra of cold TyrH+ recorded on different fragmentation 

channels depending on the excitation energy along with the nonradiative deactivation processes 

predicted from ab initio calculations.  

 

In PheH+, the C-C bond break is the unique fragmentation channel from the band origin to 

about 700 cm-1 above. From this excess energy, this pathway closes and the immonium ion at 

m/z 120 becomes the unique fragmentation channel. In TyrH+, the situation is even more 

complicated, as reported in Figure 11. At the band origin, the main fragmentation channel (10-

fold more intense than the others) is related to the C-C bond break. From 800 cm-1, this 

reaction becomes in competition with the other fragmentation channels associated to the 

ammonia and water loses (m/z 147) and the immonium ion (m/z 136) but only for the rot 

conformer (vide infra). Finally, from 6000 cm-1 above the band origin, the H-loss channel 
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opens. Here again, as for the aromatic amines and tryptophan, the C-C bond break is related 

to the proton transfer from the ammonium to the aromatic ring. The corresponding ionic 

fragment bears an extra hydrogen (m/z 108) as compared to the mass of the aromatic 

chromophore cation. The MEP of the S1 * state along the N-H stretch pointing to the ring 

confirms that this proton transfer reaction is energetically allowed, with a barrier of less than 

0.15 eV and 0.25 eV for all conformers of tyrosine and phenylalanine, respectively. 

 

Figure 12. Conformation-selected photofragmentation spectra of TyrH+. The stack conformer 

preferentially fragments through m/z 136 ionic fragment (CO + H2O loss) following proton 

transfer to the carbonyl while excitation of the rot conformer leads mainly to the C-C bond 

cleavage following proton transfer to the ring. Adapted with permission from ref 191. Copyright 

2007 American Chemical Society. 
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The most striking result is the strong conformer selectivity in the fragmentation of TyrH+. 

Four low-lying conformers, which can be sorted in two main groups according to the backbone 

orientation (rotamer along the C-C bond), were assigned by Stearn et al.191 through IR/UV 

hole burning photodissociation spectroscopy. In the first group, both ammonium and carboxylic 

acid lie above the  cloud (stack/gauche conformer) while in the rot/anti rotamer, only the 

ammonium is in direct interaction with the aromatic ring, the carboxylic acid group being in an 

anti-position to the ring. This latter one leads preferentially to the C-C bond breaking, as 

reported in Figure 12.  

Geometry optimizations of the CO* state of the stack and rot conformers have revealed that 

the */CO* curve crossings occur at lower energy for the stack isomer (0.4 eV) than for the 

rot one (0.6 eV). The barrier for the charge transfer from the aromatic ring to the carboxylic 

group is thus conformer dependent, with an optimal */CO* orbital overlap in the stack 

conformer. For both conformers, the dynamics on the CO* state leads to a proton transfer 

from the ammonium to the negatively charged carboxylic group.197 Along the proton transfer 

coordinate, a second crossing with the ground state occurs leading to the immonium ion (loss 

of H2O + CO).198 Although two deactivation processes in the excited state are clearly in 

competition with different yields for the two rotamers, it should be reminded here that the 

excited state lifetimes of the two rotamers of TyrH+ were almost identical and continuously 

decreased as a function of the excess energy in the S1 state, from 1.5 ns at the band origin to 

few hundreds ps at 2000 cm-1 above.195  

In conclusion, during the last ten years, a tremendous effort has been undertaken to decipher 

the excited state properties of single aromatic amino acids. Although being rather simple 

molecular systems, their photophysics and photochemistry are very rich and much more 

complicated than expected. In these model systems, following electronic excitation, several 
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deactivation pathways can be in competition, some of them leading to specific photofragments, 

i.e. not related to statistical type fragmentation as observed in low energy collision induced 

dissociation experiments. Besides, conformer selectivity has been documented, which paves 

the way for a better understanding of the photochemistry of small peptides for which structures 

can be assigned through laser spectroscopy. 

5. Protonated peptides containing an aromatic amino acids 

As for single aromatic amino acids, the photochemistry of protonated peptides is largely 

influenced by the coupling of the locally excited * state with the  and CO* charge 

transfer states localized on the peptide backbone. In small peptides, both the primary and 

secondary structures should impact the strength of the interaction between the aromatic ring 

with the ammonium and carbonyl groups. In order to establish a relationship between peptide 

conformations and specific photo reactivity, a very useful bottom-up approach is to consider 

the effect of local interactions on the aromatic chromophore. As it will be presented hereafter, 

the understanding of the photophysics of small peptides remains quite challenging due to 

inherent complexity and the difficulty of getting accurate theoretical supports. 

5.1. The / coupling in peptides: NH3
+ ‐  cloud interaction 

5.1.1. Excited state dynamics of di‐ and tri‐peptide 

Excited state dynamics of small protonated peptides were studied on a very few systems. The 

short excited state lifetimes of isolated aromatics amino acids (TrpH+ and TyrH+) were 

attributed to the interaction of the protonated ammonium group with the aromatic ring, leading 

to the electronic / coupling larger in Trp than in Tyr. In dipeptides, depending on the 

primary sequence, one would expect that the position of the aromatic amino acid in N or C 

termini changes the interaction of the UV chromophore with the NH3
+ moiety. Protonated 

TrpLeuH+ indeed exhibits similar excited state lifetimes than TrpH+, with two time constants 
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of 1 and 10 ps.199 Interestingly, for the complementary peptide LeuTrpH+ where the Trp is not 

directly linked to the protonated ammonium group, the excited state lifetimes were also very 

short, in the order of 0.5 and 10 ps, as for bare TrpH+.200 In a last example, Gregoire et al.201 

have investigated two glycine tripeptides containing a Trp or Tyr residues in the middle of the 

sequence. Here again, the excited state lifetimes were similar to the bare aromatic amino acids, 

in the order of 500 fs and 5 ps for GlyTrpGlyH+ and GlyTyrGlyH+, respectively. The excited 

state lifetime of GlyTyrGlyH+ is ten times longer than for GlyTrpGlyH+, which matches the 

ratio measured for the bare amino acids. It turns out that the / model initially proposed 

to explain the excited state lifetimes of bare aromatic amino acids can be applied to small 

protonated peptides, independently of the primary sequence. All these experiments were 

performed on room temperature ions at fixed excitation energy (266 nm), well above the band 

origin of the peptides. So one should consider that the measured transients were an average of 

the excited state lifetimes at large excess energy of all the possible conformers populated at this 

temperature. No direct correlation could thus be made between excited state properties and 

specific conformation of the peptides. 

5.1.2. Statistical vs non statistical fragmentation process 

Although the excited state dynamics seems to be independent of the peptide sequence, 

differences in their photochemistry were identified. First, in Trp containing peptides, the H loss 

reaction leading to the formation of radical Trp+ was not detected following excitation at 266 

nm, in stark contrast to bare Trp. However, in GlyTrpGlyH+, one of the UV deactivation 

pathways leads to the formation of TrpGly•+ radical cation that further dissociates into specific 

secondary fragments. Such radicals are thought to be generated in the excited state since they 

are not observed in CID. More generally, the photofragmentation patterns can differ according 

to the localization of the aromatic amino acid. In C terminus, the photodissociation mass spectra 

resemble those obtained under CID conditions, suggesting that IC followed by statistical 
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fragmentation occurs. No mechanism for IC was proposed, but the absence of specific 

photofragments reveals the lack of direct dissociation in the excited state. However, when Trp 

is at the N terminal part, specific photofragmentation channels were observed and assigned to 

a non-statistical fragmentation directly from the excited state. In TrpLeuH+, the m/z 130 

fragment is the only one with a predominant short time component of 500 fs, which was 

interpreted as a direct dissociation in the excited state enhanced by the absorption of the probe 

photon.199 It should be stressed here that in this case, the m/z 130 fragment is not issued from 

the Trp radical cation, because the H atom loss is not observed and the transient recorded on 

this specific channel does not exhibit a plateau as expected if a stable Trp+ radical cation were 

formed and excited by the probe laser.168 As previously explained in the case of bare aromatic 

amino acids, the m/z 130 fragment is also related to the coupling of the locally excited state 

with the CO* state leading to the C-C bond cleavage. This reaction indeed happens quite 

often in peptides and will be further described in section 5.3. 

The interaction between the ammonium group and the aromatic ring has also been studied 

through photodissociation spectroscopy of cold peptides ions for which structural assignments 

can be made. In Trp containing dipeptides, as for bare Trp, the electronic spectra of AlaTrpH+ 

or TrpGlyH+ are broad, whatever the position of the Trp residue. The main difference between 

the two species is the spectral shift of the absorption band towards longer wavelengths in 

AlaTrpH+.202 A similar trend was observed in AlaTyrH+ dipeptides by Stearn et al.203 This red 

shift has been interpreted as a stronger proton- interaction due to higher flexibility of the 

peptide chain with a larger number of bonds between the chromophore and the ammonium 

group. However, for the two AlaX-H+ (X=Trp, Tyr) dipeptides, there is no indication of excited 

state fragmentation which would be evidenced by photofragments different than those observed 

in CID. When the ammonium group gets closer to the aromatic ring, one has to suppose that 

the / coupling responsible for the non-statistical fragmentation is altered, with a higher 
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rate for IC. However, it is quite difficult to establish a direct link between the cation- 

interaction and the increased flexibility of the ammonium group with the length of the peptide 

chain since in AlaAlaTyrH+ tripeptide, the band origin is blue shifted by about 800 cm-1 as 

compared to bare tyrosine, but in AlaAlaTyrAlaAlaH+, the spectral shift is less than few tens 

of wavenumbers.204  

5.2. Impeding the interaction between NH3
+ and the aromatic chromophore 

In the small size peptides depicted so far, due to the strong proton- interaction, the distance 

between the aromatic chromophore and the NH3
+ terminal group remains quite short, even 

though the aromatic amino acids is not at the N terminal position. In larger peptides, the 

protonated ammonium could be involved in H-bond with the carbonyl group of the peptide 

bonds, preventing interaction with the  cloud.205 It is thus expected that the secondary structure 

of the peptide would have an influence on the relaxation processes following the electronic 

excitation. Antoine et al.206 reported the photodissociation of singly and doubly protonated 

AlaGlyTrpLeuLys pentapeptide which contains a Trp in the middle of the sequence. At 266 

nm, the photoinduced dissociation mass spectrum of the singly protonated species is composed 

of b-type ions, as observed under CID, plus an ionic fragment corresponding to the loss of the 

Trp side chain (loss of 130 Da). At 220 nm, two main fragments are detected corresponding to 

the H loss channel along with the 130 Da loss channel. Both fragments are issued from a non-

statistical dissociation occurring in the excited state. The most puzzling result has been obtained 

for the doubly charged peptide, which does not fragment following excitation at 260 nor 220 

nm. The absorption is mainly due to a - transition on the indole chromophore, which is 

not so sensitive to the environment, since the absorption band is barely shifted from isolated 

Trp to Trp containing proteins in solution.113 So the absence of photofragmentation is likely 
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due to a predominant radiative deactivation process, emphasizing the weak electronic coupling 

of the locally excited  state with charge transfer states in the unfolded structures. 

 

 

Figure 13. Statistical ensemble of the structures obtained for the singly (a) and doubly (b) 

protonated AlaGlyTrpLeuLys peptide obtained from the REM simulation at 300 K. Results are 

plotted as a function of the distance between the protonated ammonium group with the nitrogen 

of the indole chromophore. (c) and (d): representation structures and the mono and di protonated 

peptide. Reproduced with permission from ref 206. Copyright 2006 John Wiley & Sons. 

 

Conformational searches were performed for the singly and doubly protonated peptide using 

Replica Exchange Method (REM)207,208 using Amber96 force field.209 For the singly protonated 

species, the most basic site is the amino group of the lysine side chain while for the doubly 

protonated peptides, the N terminal amino group bears the second proton. For the singly 

protonated peptide, the most stable structures are folded, in which the protonated ammonium 

group of the lysine residue stays in close interaction with the indole chromophore, with an 

average NLys-Nindole distance lower than 4 Å. In the doubly protonated species, due to coulombic 

repulsion between the two ammonium moieties, none of the charged groups are in contact with 
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the Trp side chain, but are mostly solvated by the carbonyl groups of the peptide chain (see 

Figure 13). According to the seminal photofragmentation mechanism, the coupling of the  

state with dissociative  state, where the active electron is localized on the ammonium group 

triggers the non-radiative process. This electronic coupling strongly depends on the distance 

between the indole ring and the protonated group, a direct link between fragmentation 

efficiency and secondary structure could thus be made. 

 

 

Figure 14. (Left) Electronic photofragmentation spectra of TrpH+-(H2O)n=0-2. (Right) Time 

evolution of photoexcited TrpH+ (a-b) and TrpH+-(H2O)2 (c-d) during TDDFT dynamics. (b/d) 

Ground (black) and excited state energies (magenta). (a/c) dominant Kohn-Sham orbital 

contributions to excited state. Adapted with permission from ref 210. Copyright 2006 American 

Chemical Society. 
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The influence of the  state on the photophysics of the indole chromophore has been 

further confirmed in the case of water cluster containing TrpH+. Mercier et al.210 report the 

dramatic micro solvation effects on the photodissociation spectroscopy of TrpH+. As reported 

in Figure 14, the vibronic spectrum of TrpH+ gets narrower by adding one water molecule and 

becomes well-resolved upon addition of the second. This dramatic effect has been interpreted 

as an unexpected lengthening of the excited state lifetime of TrpH+ embedded in small water 

clusters. In the 1-2 complex, the solvent molecules make two H-bonds with the protonated 

ammonium group, leaving the third hydrogen in interaction with the carbonyl oxygen. In such 

a structure, the proton- interaction is strongly reduced and the * orbital centered on the 

ammonium is largely destabilized, shifting the  state by up to 1.3 eV. 

Finally, the complexes of protonated amino acids and dipeptides with crown ether (CE) 

provide another examples in which the photophysics is strongly affected by the lack of 

interaction between the protonated ammonium group and the aromatic ring.211 In such 

complexes, the NH3
+ is fully solvated in the crown ring which prevents the proton- interaction 

normally occurring in bare protonated peptides. A series of photodissociation experiment has 

been conducted in the group of Steen B. Nielsen in Aarhus at the electrostatic ion storage ring 

ELISA.186,212,213 Quite surprisingly, upon CE complexation, the CID-like fragments issued from 

IC to the ground state were mostly suppressed while the aromatic side chain loss following the 

C-C bond cleavage was still detected. This latter fragment cannot be assigned to the secondary 

fragmentation channel of the radical cation following H-loss because the  state is largely 

destabilized by more than 1 eV by the CE.179 Therefore, one has to conclude that another excited 

state, probably the CO* charge transfer state, is involved in the non-statistical process leading 

to the specific C-C bond cleavage channel. 
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5.3. Specific photofragmentation channel: the C‐C bond cleavage 

Among the specific photofragmentation channels, the C-C bond cleavage is the one which 

is commonly detected in aromatic acids containing peptides. In isolated amino acids, several 

deactivation mechanisms account for this reaction which may also occur in peptides. First, the 

C-C bond break is the main secondary fragmentation channel of the radical cation formed 

after H loss. However, the H loss reaction is a very minor fragmentation channel of the peptides 

excited around the band origin,214 so it is not thought to be relevant to the photophysics of 

peptides. The H loss channel is generally detected at much higher energy, typically under laser 

excitation at 220 nm215,216 leading to direct excitation of the  state repulsive along the N-H 

stretch. The second most likely process giving rise to the C-C bond cleavage implies the 

electronic coupling of the  state with the charge transfer CO* state. Independently of the 

primary or secondary structure of the peptide, a carbonyl group will always be in the vicinity 

of the aromatic ring, making a through space or through bond electron transfer likely. However, 

Joly et al.217 have shown that the rate of C-C tyrosyl side-chain cleavage is charge and 

sequence dependent. For the singly protonated peptides, it tends to decrease as the size of the 

peptide increases. In the doubly protonated species, the rate of aromatic side-chain loss 

generally vanishes.  

In an attempt to clarify the role of the coupling between the locally excited ππ* state and 

charge transfer states, i.e. ππCO* and πNH3*, Dehon et al.218 investigated, at 263 nm using 

multi-coincidence detection, the photofragmentation pathways in small peptides containing 

tyrosine as the UV chromophore: GlyTyrH+, TyrGlyH+, GlyTyrGlyH+, AlaTyrH+ and 

TyrAlaH+. While the dominant fragmentation channels result from fragmentation of the 

vibrationally excited protonated species in the ground state, it has been shown that the UV 

photospecific channels, i.e. C-C bond breakage in TyrGlyH+ and TyrAlaH+ and direct z-type 
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bond breakage in GlyTyrGlyH+, can be rationalized upon consideration of charge transfer states 

(CC2 calculations of vertical excitation energies) accessible after absorption of one UV photon. 

In both photo specific bond ruptures, the mechanism involves a ππ*/ππCO* charge transfer to 

the CO group of the peptide bond adjacent to the tyrosyl chromophore, which is followed by a 

proton transfer from the NH3
+ moiety. For TyrGlyH+ and TyrAlaH+, C-C bond breakage leads 

to neutral loss of the tyrosyl side chain residue. In GlyTyrGlyH+, the photospecific z-type 

fragmentation mechanism leads to the formation of the same ionic fragment at m/z 222 as in 

CID experiments. The multi-coincidence detection approach allowed to disentangle the 

contributions of the two processes, because of the shorter fragmentation time of the binary (UV 

photospecific) mechanism compared with the multistep mechanism (CID). In all these studies, 

the secondary structure of the peptides was unknown and the excitation energy was set at 263 

nm, which precludes a definitive understanding of the photophysics.  

Several IR-UV double resonance spectroscopies of cold peptides ions were reported, which 

have pointed out conformation-specific photofragmentation.219 TyrAlaH+ dipeptide exhibits 

excited state fragmentation involving loss of the tyrosyl side chain radical, while the 

complementary AlaTyrH+ does not.203 This is a general trend observed in all tyrosine containing 

peptides, the C-C bond break occurs only when the aromatic residue is located at the N 

terminus. Two conformers were assigned, both having NH- and NH-CO interactions through 

a C5 type H-bond between the ammonium and, the  cloud and adjacent carbonyl, respectively. 

The two conformers differ by the rotation along the C-C bond such that the peptide bond is 

anti or gauche relative to the ring.220 These two conformers have different photofragmentation 

mass spectra, with a larger rate of tyrosyl side chain loss for the anti than for the gauche 

conformer. Such selectivity was already observed in protonated tyrosine where the C-C bond 

break is prominent in the anti conformer (also noted rot). It is worth mentioning that in the latter 

case, a proton transfer from the ammonium to the cycle leads to the m/z 108 photofragment, 
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while for the peptides, the neutral tyrosyl side chain loss (107 Da) is observed. As explained 

above, the multi coincidence experiment has shown that in TyrX-H+ dipeptides, the cleavage 

of the C-C bond is direct, leading to the tyrosyl side chain loss (107 Da) as unique neutral 

fragment. The neutral 107 Da loss is consistent with the higher ionization potential of the tyrosyl 

side chain residue than the peptide chain, thus promoting an electron transfer from the peptide 

chain back to the chromophore. 

In larger tyrosine containing peptides, the loss of neutral tyrosyl side chain is also a usual 

photofragment. Kopysov et al.221 investigated a series of tyrosine-phosphorylated peptides (Ac-

TyrAla3SerLys) through cold ion UV spectroscopy and observed that the most abundant 

photofragment corresponds to the cleavage of the C-C bond. Conformer selectivity also 

occurs in tyrosine containing pentapeptides, as pointed out by DeBlase et al.222 The UV 

photodissociation mass spectra of the diastereomer TyrAlaDProAlaAlaH+ peptides is 

conformer-specific with respect to the extent of tyrosyl side chain loss. However, for the two 

assigned conformers, the NH3
+ forms three hydrogen bonds with the phenyl ring, a carbonyl 

and the carboxylic acid group, so the reason why one conformer exclusively fragments through 

C-C bond cleavage remains unclear. Gramicidin S, a decapeptide with two phenylalanine 

residues, provides another dramatic example of fragmentation selectivity for peptide 

conformation.220 The conformers which exhibit a strong proton- interaction between the NH3
+ 

and the ring mostly fragment following IC. At contrary, when the aromatic ring is remote from 

the charged ammonium and free from the rest of the peptide, the main and unique fragmentation 

channel corresponds to the phenylalanine side chain loss.  

The photodissociation mass spectrum of Leu Enkephalin (TyrGlyGlyPheLeu) in the spectral 

region of the tyrosine chromophore also comprises CID-type fragments along with 107 Da 

loss.223 More fascinating is the increase in the rate of formation of this latter fragment at the 

expense of the CID-like fragments through the IR gain experiment. In such a scheme, the UV 
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laser is tuned to the red of the S0-S1 band origin while the IR, shined before the UV laser, is 

scanned in the 3µm region to induce photofragmentation as soon as it falls into resonance with 

a vibrational mode of the parent ion. Two tentative explanations can account for such results. 

First, the pre-heated ions through IR absorption undergo isomerization to high energy 

conformers more prone to dissociation through C-C bond cleavage. Because of the lack of 

UV selectivity in the IR gain spectroscopy, this hypothesis cannot be easily tested. One should 

nevertheless concede that in similar IR hole-filing experiments performed on neutral molecules 

streamed in a molecular beam,224 in any case, the increase of the internal energy through IR 

excitation changes the relative population of the low-lying conformers already present at low 

temperature without isomerization to new, high-lying conformers. In a second hypothesis, the 

branching ratio between the tyrosyl side chain loss and the IC leading to CID-like fragments 

changes with the excess energy in the excited state. Such evolution of the fragmentation 

branching ratio with the excess energy has already been observed and explained in the 

photodissociation spectroscopy of single amino acids. To confirm this assumption, this would 

however require quantum chemistry calculations to localize the higher charge transfer states 

responsible for the curve crossing with the locally exited state of the peptides.225 

By investigating larger and larger peptides through photodissociation spectroscopy, one 

might argue that within the observable time window of an ion trap experiment, according to a 

statistical-type of fragmentation, the energy brought by one UV photon would not be enough 

to induce the dissociation. In order to prevent this bottleneck, Rizzo et al.204,226,227 have 

developed a spectroscopic technique in which the protonated peptides, first excited by the UV 

laser, undergo infrared multiple photon excitation (IRMPE) provided by a CO2 laser. In such a 

scheme, a dramatic increase of the photofragmentation yield of two orders of magnitude was 

observed on several peptides that contain tyrosine, tryptophan and phenylalanine residues. In 

any case, the loss of the aromatic side chain through C-C bond cleavage is the main, if not 
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unique, fragmentation channel enhanced by CO2 excitation. Since the C-C bond is not, by far, 

the weakest in the ground state of protonated peptides, the large increase of the rate associated 

with this reaction is incompatible with a dissociation in the ground state. In order to gain insight 

into the fragmentation mechanism of the IRMPE method, Zabuga et al.228 performed time- and 

frequency-resolved excited state photofragmentation experiments (see Figure 15) on Phe and 

Tyr containing protonated peptides (AcXAla5LysH+)X=Phe,Tyr by replacing the CO2 laser with a 

tunable IR OPO laser. They proposed a model involving the deactivation of the  excited 

state toward a triplet state which has an exit barrier to C-C dissociation. By measuring the IR 

power dependency upon the photofragmentation rate, they deduced an upper limit of 6800 cm-

1 (2 photons excitation) for the C-C dissociation barrier in the triplet state. The triplet state 

lifetimes of 20 µs and 100 µs were reported for tyrosine and phenylalanine containing peptides, 

respectively. Besides, for AcPheAla5LysH+, a long time constant (more than 100 ms) is 

observed, which was attributed to collisional cooling of the vibrationally activated triplet state.  

It should be mentioned here that in the ion/neutral coincidence experiment, the dynamics of 

fragmentation associated with the C-C bond cleavage reaction was investigated in smaller 

peptides.183 Since the peptides were not cryogenically cooled and the UV excitation wavelength 

was set at 263 nm, a direct comparison of the time constants determined in the two experiments 

is not easy. The main outcome of the coincidence experiment is the evidence for ion-dipole 

interactions during the dissociation event between the incipient neutral and ionic fragments 

associated with the aromatic side chain loss, which results in the formation of a metastable ion-

molecule complex thus controlling the observed fragmentation time. If the two experiments 

have definitively shown that long-lived species are in play during the specific C-C 

photofragmentation, the exact nature of the latter remains either the relaxation to the triplet state 

or the formation of metastable ion-molecule complex following the initial C-C bond cleavage. 
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More theoretical works are needed in particular to understand why the C-C bond would be so 

weakened in the triplet state. 

 

Figure 15. (a) Mass spectra of AcPheAla5LysH+ without laser, with UV fixed at the band origin 

and with additional CO2 laser at time delay of 1.2 µs. (b) Schematic model explaining the non-

statistical photofragmentation in phenylalanine containing peptides. After ISC, the barrier to 

C-C bond dissociation can be overcome by absorption of IR photons (c) Time dependence of 

the infrared-induced enhancement of the C-C bond cleavage in AcXAla5LysH+, (X=Tyr, 

Phe). Adapted with permission from ref 228. Copyright 2014 American Institute of Physics. 
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6. Photoinduced processes in bi‐chromophore systems 

Electronic energy transfer (EET) is another type of photoinduced process that can be used to 

probe the local interaction in peptides. EET requires two interacting subunits which are not 

generally chemically bonded in naturally occurring peptides. Instead, many applications of EET 

use semi-rigid linkers between the donor and acceptor chromophores to keep a well-defined 

structure and to maintain some properties of the isolated chromophores but are out of the scope 

of this review. Resonance Energy Transfer (RET) has been the subject of many review 

articles229–232 and we only present few studies performed on gaseous peptides ions for which 

structural information is available.  

6.1. Fluorescence quenching 

Fluorescence-based method are widely developed in molecular biology, not only for imaging 

but also for going beyond pure photon detection, e.g. providing structural information of the 

proteins. The general principle is to follow the fluorescence emission of a probe in the presence 

of a quencher located somewhere in the peptide sequence. Trp-Cage protein is one of the 

simplest systems in which such fluorescence quenching has been extensively studied. Trp-cage 

is a small protein containing 20 residues with a single Trp close to the N terminal part.233 A 

covalently attached dye at the C terminus is responsible for the fluorescence emission that is 

quenched when the Trp residue is in strong interaction through photoinduced electron transfer, 

leading to nonradiative decay of the excited dye.234,235 In the native protein structure, the Trp 

residue is buried by three proline and as the protein is heated, unfolding occurs which releases 

Trp from its cage and becomes more exposed to intramolecular interactions with the dye.  

Parks and co-workers236 used fluorescence spectroscopy to monitor the temperature and 

charge effects on the conformational dynamics of isolated Trp-cage ions. They showed that the 

protein unfolds more readily at high temperature as the charge state increases from 2+ to 3+, 
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consistent with unfolding promoted by greater Coulombic repulsion in the higher charge state. 

Interestingly, the Trp-Cage mutant in which salt bridge between Lys8
+, Asp9

- and Arg16
+ is 

suppressed behaves essentially the same,237 suggesting that the strong salt bridge interaction is 

not critical for the stability of the protein in the gas phase, at odds with the conclusion drawn 

from the condensed phase.238 They also studied a set of polyproline peptides of different 

lengths239 and found that the fluorescence quenching was increased by the presence of a strong 

electrostatic field (charged Arginine residues) which in turns lowers the charge transfer state 

between the dye and the Trp side chain.240,241 These seminal studies have clearly demonstrated 

the ability of fluorescence methods to probe the structure of peptides in which a strong coupling 

between a fluorescent dye and a quencher occurs at short distances. However, the precise 

mechanism by which quenching occurs at short dye-Trp distances still needs to be tackled 

through high-level quantum chemistry, in particular which singlet or triplet excited states are 

involved in the photophysics of the dimer. 

6.2. Förster Resonance Energy Transfer (FRET) 

Fluorescence (or Förster) resonance energy transfer (FRET) is one of the standard optical 

method used in condensed phase to probe the energy transfer and conformation of peptides and 

proteins. Single molecule fluorescence studies of protein folding and unfolding have been 

successfully developed in molecular biology the last fifteen years.242–244 Unfortunately, in the 

gas phase, a very few groups have successfully developed such technique, mostly because of 

the inherent difficulty to collect the fluorescence emission of ionic peptides confined at low 

density in the ion trap.  

FRET involves nonradiative transfer of electronic excitation from an excited donor, D* to a 

ground-state acceptor molecule A. The efficiency of this dipole–dipole interaction depends on 

the distance between the fluorophores, the spectral overlap of the donor emission and the 

acceptor absorption (the so-called overlap integral), the refractive index of the media (unity in 
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the gas phase), the donor quantum yield, and the relative orientation of the fluorophores.245 The 

Förster radius R0, distance at which the energy transfer efficiency E is divided by two, is 

typically 20-60 Å. Note that the Förster theory relies on the point dipole approximation which 

requires that the inter chromophore distance be long compared to the size of the chromophores. 

Experimentally, the FRET efficiency can be estimated by measuring the emission spectra or 

the fluorescence decays of the donor/acceptor pair. FRET is a strongly distance sensitive 

method, so-called “spectroscopic ruler”,246 used to obtain distance constraints of a molecule 

without a precise knowledge of its structure.  

The Jockusch group in Toronto successfully developed gas phase FRET to explore the 

conformational changes of polyprolines as a function of the peptide length and charge state.247 

Such polyproline peptides were initially thought to form rigid helices in liquid,248 while more 

recent works contradict this ideal picture.249,250 The choice of the donor D and acceptor A 

fluorescent dyes, that are covalently bound to the N and C termini of the peptide, is crucial. A 

good spectral overlap between acceptor excitation and donor emission is required. FRET 

efficiency is monitored by recording the steady state emission spectra and lifetimes (of the 

donor) of the (A)-GlyGlyPronLys-(D)-NH2 peptides, n=8, 14, 20. As depicted in Figure 16, the 

FRET efficiency, which is close to unity for the shortest peptide, decreases as a function of the 

peptide length and for higher charge state, suggesting a more extended structure. Surprisingly, 

the longer peptide with 20 prolines showed almost complete RET, which is not compatible with 

an extended helical structure but more likely suggests a hairpin-like structure that brings the 

two chromophores in close proximity.  
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Figure 16. (Left) Fluorescence spectra of Pro14 based peptides excited at 470 nm containing (a) 

both donor (D) and acceptor (A), (b) only the donor and (c) only the acceptor. (Right) Influence 

of the charge state and peptide length on the emission of (A)-GlyGlyPronLys-(D) peptides. 

Adapted with permission from ref 247. Copyright 2010 American Chemical Society. 

 

Application of FRET to a gaseous protein GB1 (59 residues) has showed that the native 

structure of the protein, which is retained over a broad pH range (1.5-11), is disturbed in the 

gas phase as the charge state increases, revealing a Coulombic driven unfolding and expansion 

of its structure.251 Finally, a proof of concept of hybrid experimental setups interfacing laser-

induced fluorescence detection with ion mobility spectrometry has been established on 

rhodamine dye, which has the potential to address still open questions such as to which extent 

gas phase peptides ions retain their native structures.252,253  

6.3. Action‐FRET  

Despite the promising opportunity of gas-phase FRET to probe the conformation of mass-

selected biomolecules, the inherent difficulty of collecting the fluorescence in an ion trap has 
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hindered its dissemination in many research labs. To circumvent this drawback, Dugourd and 

coworkers have proposed an elegant variant of gas-phase FRET, the so-called action-FRET 

based on photofragmentation (see Figure 17) rather than fluorescence detection.254 As for 

FRET, action-FRET requires a good overlap of the donor emission and acceptor absorption 

spectra and RET must happen on a time scale shorter than the relaxation of the donor 

chromophore. The choice of a suitable fluorescent donor chromophore and a dark-quenching 

acceptor chromophore has been crucial for the successful achievement of action-FRET. The 

donor is rhodamine 575 (rh575) and the acceptor chromophore is N-succinimidyl ester (QSY7), 

a rhodamine derivative, which both possess a single positive charge. An additional criterion is 

however mandatory, that is the specific photofragmentation of the acceptor molecule, reflecting 

the electronic excitation of the acceptor followed by a non-statistical fragmentation process 

prior to energy redistribution in the ground state.255 By recording the action spectra monitored 

on the specific acceptor photofragments, RET is directly evidenced if the donor absorption band 

is observed. The FRET efficiency is thus defined as the ratio of the area of the peaks in the 

action spectrum due to absorption of the donor and acceptor chromophores. Action-FRET was 

first tested on polyalanine peptides of different sizes for which collision cross sections were 

also measured independently in order to provide a direct link between the secondary structure 

and the FRET efficiency254 and since then successfully applied to the study of the structural 

transition with charge state of amyloid- peptide256,257 A12-28 and its dimer258 and finally 

recently combined with ion mobility spectrometry within the same experimental setup to 

investigate the unfolding of ubiquitin.259  
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Figure 17. Principle of Action-FRET developed in the group of Ph. Dugourd. The specific 

photofragmentation yield of the acceptor chromophore is followed as a function of the donor 

distance for different alanine-based peptides which conformations are probed through ion 

mobility spectrometry. Reproduced with permission from ref 254. Copyright 2014 American 

Chemical Society. 

 

RET can also be revealed through the change in photophysics of the chromophores upon 

homodimer formation, in systems where the donor and acceptor are the same species. It turns 

out that rhodamine fluorescence quantum yield drastically decreases at high 

concentrations,260,261 a self-quenching which has been rationalized by short excited state 

lifetime (below 1 ps) and IC and ISC processes of the dimer.262,263 Because self-quenching is 

extremely sensitive to small inter chromophore distance changes and only occurs at short-

distance below 10 Å, it provides a complementary distance dependence to FRET experiments 
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which are devoted to larger conformational changes. Daly et al.264 used action-self quenching 

to probe the conformational heterogeneity of doubly-grafted A12-28
3+ peptide. Its action spectra 

is composed of two bands which are assigned to the formation of a dimer (495 nm) and the 

monomer at 435 nm. Here again, specific photofragmentation channels related to bond 

cleavages of the chromophore moiety which are not observed in CID are used to evidence self-

quenching.  

6.4. Excitation energy transfer in naturally occurring peptides containing a methionine 

or disulfide bond 

Among the amino acids, cysteine and methionine are two sulfur-containing biomolecules 

which deserve special attention as it is well established that such residues can be easily oxidized 

by various forms of reactive oxygen species to form sulfoxides, i.e. one of the post-translational 

modifications, which leads to significant changes in the behavior of these systems. Such 

oxidative modified species accumulate during aging and are responsible for a number of age-

related diseases.265 C-C bond breakage in selected methionine-containing dipeptides and their 

sulfoxide analogs with, tyrosine and tryptophan as UV chromophores, has been investigated by 

Kumar et al.266 It is shown that methionine-containing dipeptides with tryptophan and tyrosine 

undergo photospecific C-C bond breakage. Neutral side chain production is enhanced with 

sulfoxidation when the UV chromophore is on the N-terminus. Based on the relative abundance 

of fragment ions produced by C-C bond breakage, it is suggested that the presence of oxygen 

on the methionyl-sulfur enhances proton transfer from the side chain to the sulfoxide, which 

facilitates the loss of the neutral side chain. Also, no ionic side chain loss is observed with 

tyrosine-containing dipeptides. 
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Figure 18. (a) Photodissociation mass spectrum of protonated AcAla5TrpAla3CysLys-PM, * 

precursor ion, with its main photofragment associated to the loss of propyl mercaptan (PM). (b) 

Action spectra of the peptide (green line), Trp (red line) and the peptide without Trp residue 

(blue). Adapted from ref 267. Copyright 2014 American Chemical Society. 

 

While resonant energy transfer between designed, synthetic donor and acceptor 

chromophores grafted to peptides has been widely used to probe the peptide structures both in 

the condensed phase and the gas phase, excitation energy transfer (EET) is also expected to 

occur between naturally occurring amino acids with excitation bands in the near UV such as 

aromatic and disulfide chromophores. The smaller size of these chromophores, compared to the 

dye molecules commonly used in the FRET experiments, should not disrupt too much the 

secondary structure of the peptides if site-directed mutagenesis is employed to incorporate such 

residues in a peptide sequence. As for action-FRET, energy transfer would be identified by 

specific photofragment channels of the acceptor chromophore following donor excitation. 
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Hendricks et al.267 have developed an action-EET based on excitation of Trp/Tyr donors and 

direct dissociation of proximal disulfide bond. They tested this method on cysteine containing 

polyalanine and Trp-Cage peptides, in which the disulfide bond is formed with propyl 

mercaptan (PM). EET is clearly evidenced in the action spectra of the peptides showing the 

excitation bands of the aromatic chromophore while monitoring the homolytic fragmentation 

of the disulfide bond (see Figure 18). Without aromatic chromophore, the photodissociation 

yield of cysteine containing polyalanine is low and slightly increases at shorter excitation 

wavelength around 250 nm. In the presence of Tyr or Trp, the spectrum closely resembles those 

of bare protonated Tyr and Trp, consistent with fragmentation following EET.  

The distance dependence of the excitation energy transfer between Trp and the disulfide bond 

has been qualitatively evaluated in a series of alanine containing peptides. The fact that the 

photodissociation yield drops significantly within 15 Å suggest that EET is likely due to a 

Dexter exchange transfer,268 which depends exponentially on the inter chromophore distance, 

rather than a Förster mechanism. With tyrosine as donor chromophore, the distance dependence 

is even more pronounced with energy transfer occurring only at distances lower than 6 Å. The 

short distance range of EET with tyrosine provides severe structural constraints that are 

complementary to information gained through ion mobility measurements.269 Finally, the Julian 

group demonstrated a sequential two-step energy transfer from phenylalanine to tyrosine and 

to a disulfide, leading to its homolytic cleavage. It is worth mentioning that EET is only 

observed in the presence of tyrosine and at distances shorter than 6 Å.270 This two-step energy 

transfer of Phe has been tentatively explained by the poor overlap of Phe emission with the 

absorption band of the disulfide, thus requiring Tyr to bridge the gap. EET between Phe and 

Tyr has indeed been recently studied via cryogenic cold ion spectroscopy in the groups of 

Boyarkin and Rizzo in Lausanne. 
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6.5. Energy transfer between Phe and Tyr in conformer‐selected peptides 

Kopysov et al.271 employed UV fragmentation spectroscopy of cold ions to measure the 

conformer-specific resonant energy transfer efficiencies in Leu-Enk. These short peptides 

naturally contains Tyr and Phe while the high spectral resolution of the cryogenic spectroscopy 

provides conformer selectivity. The excitation spectra were generated by monitoring the Tyr 

side chain loss fragment, corresponding to the specific C-C bond cleavage, as already 

emphasized in section 5.3. The fact that UV excitation of Phe generates the specific 

photofragment of Tyr residues clearly suggests that RET has occurred. The RET efficiency can 

be evaluated by measuring the yield of the specific Tyr photofragment channel arising from 

excitation of Phe. According to the Förster formalism, the authors conclude that the distance 

between the Phe and Tyr chromophore is significantly shorter in the (DD) 

TyrAlaDGlyPheLeuDH+ stereoisomer than in the (LL) TyrAlaLGlyPheLeuLH+ and Leu-EnkH+. 

However, although the averaged inter chromophore distances in Enk and (LL) stereoisomer 

pentapeptide fit within the lower limit of the dipole-point approximation of the Förster theory 

(about 10 Å), the Phe-Tyr distance in DD stereoisomer of less than 6 Å indicates that the Dexter 

formalism is more appropriate for estimate the RET efficiency, as suggested in the previous 

studies of Hendricks et al.270 It should also be stressed here that the Förster approximation 

assumes that the donor and acceptor chromophores sample orientation space isotropically, such 

that 〈ߢଶ〉 ൌ 2/3,  being the orientation factor. In conformer selected peptides, the donor and 

acceptor are obviously limited in their orientation freedom, so the orientation factor should be 

explicitly calculated.272  

Finally, Scutelnic et al.273 have investigated EET in conformer-selected peptides containing 

a Phe and Tyr residues through double-resonance UV-IR spectroscopy of cryogenically cooled 

Ac-PheAlaTyrLysH+ peptides. In such a scheme, an IR laser probes the electronic excited 

peptides, giving the spectral fingerprint of the electronic state. The evolution of the IR spectra 
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as the function of the delay time between the pump (UV) and the probe (IR) pulses then provides 

a direct measurement of the excited state lifetime that can be related to the EET rate. At short 

delays (5 ns), the IR spectrum of the excited state of each conformer mostly differs from the 

corresponding ground state spectrum by a single transition. Excitation of phenylalanine shifts 

the Phe NH stretch by -39 cm-1 and excitation of the tyrosine chromophore induces a red-shift 

of -71 cm-1 of the hydroxyl OH stretch along with a -32 cm-1 red-shift of the vicinal Lys NH 

stretch. This indicates that within 5 ns, the electronic energy stays localized on the initially 

excited chromophore, independently of the probed conformer. Resonant energy transfer is 

monitored by looking at the emergence of transitions assigned to the excited state of tyrosine 

upon excitation of the Phe chromophore as the function of the delay between the pump UV and 

the probe IR. Interestingly, while the two conformers only differ by the relative orientation of 

the two chromophores which are virtually at the same distances (about 11 Å), their EET rate 

changes by a factor of two. Besides, the EET is nearly complete between Phe to Tyr, since the 

photo specific C-C bond cleavage of the Phe residues is not observed. 

7. Summary and outlook 

Gas phase UV spectroscopy is a powerful tool to study the dynamics of nonradiative 

processes in conformer-selected aromatic amino acids and peptides. During the last decade, 

thanks to the fruitful combination of mass spectrometry with laser spectroscopy, a wealth of 

data that shed light on the nonradiative deactivation processes of protonated species has been 

collected. With the advent of cryogenic ion spectroscopy, all the spectroscopic tools developed 

for neutrals have been transferred to protonated, mass- and conformer-selected peptides. UV 

photofragmentation has clearly emerged as a new spectroscopic technique, providing 

complementary, nonradiative information as compared to fluorescence which remains 

particularly difficult to setup in ionic trap. Excited state dynamics of single protonated aromatic 
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amino acids are indeed quite rich and complex, with conformer selectivity in the photofragment 

channels in case of tyrosine or a large range of dynamical processes ranging from fs (for the 

excited state lifetime of the locally excited state) to seconds for secondary fragmentation 

channels in tryptophan. Competition between statistical fragmentation following IC to the 

ground state, versus direct dissociation triggered by a charge or energy transfer in the excited 

state reveals a particular importance. Charge transfer and triplet states have been invoked to 

play a fundamental role in these nonradiative deactivation mechanisms. It is noteworthy that 

through photofragmentation, these optically dark states, which cannot be directly accessed 

through one-color excitation from the ground state, can be spectroscopically characterized 

through IR, visible or UV excitation thanks to their specific photofragmentation channels, for 

instance the C-C bond cleavage. Moreover, the unique ability to store ions in the ion trap for 

a long time, compared to the radiative fluorescence (ns) and phosphorescence (ms) lifetimes, 

allows deciphering the entire deactivation dynamics over ten decades or more until final IC to 

the ground state and fragmentation. This is clearly a major improvement as compared to gas 

phase laser spectroscopy of neutral molecules cooled and streamed in molecular beam. First, 

due to the higher ionization potential from these dark states, much shorter probe wavelengths 

that may fall outside the spectral range of commercial tabletop lasers are required to perform 

pump-probe photo ionization spectroscopy on neutrals.274 Second, excited state dynamics of 

neutral molecules cannot be probed for more than 1 µs or so due to the velocity of the incoming 

molecules streamed in the jet. Such multiscale time dynamics have indeed been recently 

demonstrated in which long-lived charge transfer and triplet states have been probed up to tens 

of millisecond in the case protonated DNA bases275 and related compounds,276,277 in small 

peptides containing a tyrosine and phenylalanine residues228,273 and in metal containing 

peptides278 where a sequential proton coupled electron transfer dynamics has been deciphered 

over 8 orders of magnitude.  
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The ability to control the entrance and exit channels of the photoreaction through mass 

spectrometry, the deposited excess energy through laser excitation and the structure of the 

molecules through cryogenic ion spectroscopy offer unique opportunities to precisely 

investigate photophysical and photochemical processes of conformer-selected peptides. At the 

moment, most of the reported studies have been conducted on small molecular systems, from 

single aromatic amino acids to short peptide chains. These experimental data on rather small 

molecular sizes indeed provide a natural testing ground for future benchmarking of advanced 

theoretical calculations on the excited state properties of these ions. The analysis of well-

resolved vibronic spectra recorded on the different photofragmentation channels that may be in 

competition as a function of a small amount of excess energy, typically few hundreds of 

wavenumbers, definitively requires high accuracy calculations of excited state PESs, which still 

represents a major theoretical challenge. As always, one has to find the good compromise 

between the accuracy of the quantum chemistry methods and its efficiency to treat the 

photochemical or photophysical process. It should be stressed here again that the electronic 

structure of the protonated species is exactly the same as the neutrals, i.e. closed shell electronic 

configuration. Therefore, all the recent advances in nonadiabatic quantum molecular 

dynamics12–14,279,280 could be used to disentangle their excited state properties. Obviously, the 

description of the whole deactivation process, starting for the initial excitation of the 1* state 

until the final fragmentation events requires multiscale dynamics that are still most challenging. 

Machine learning algorithms could offer great opportunities to predict excited state energies, 

forces and couplings at virtually no computational cost,281–285 as already demonstrated for 

simulations of infrared spectra of peptides.286  

While the photophysics of neutral and protonated aromatic amino acids and peptides have 

been investigated both experimentally and theoretically, studies on deprotonated aromatic 

species remain rather scarce and so mostly to be explored. Such studies are generally based on 
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photoelectron spectroscopy using time-of-flight or velocity map imaging methods that cannot 

be directly performed with anions stored in an ion trap. Besides, the cross sections for 

photodetachment of electrons near threshold are usually low,287 which requires high efficiency 

detection. Deprotonated species readily lose an electron following electronic excitation,37 with 

photoelectron spectra specific of the deprotonation site, as evidenced in case of [Tyr -H]- which 

consists of a mixture of phenoxide and carboxylate anion288 while the latter is the only tautomer 

for [Trp -H]-.289 In the GFP model chromophore, p-hydroxybenzylidene-2-

3dimethylimidazolone anion (HBDI-), competition between photodetachment and 

photofragmentation occurs at the band origin,290 emphasizing that the S1 1* is a bound state 

in the Franck-Condon region of the anion291 with a sub-picosecond dynamics followed by 

IC.292,293 Neutral reaction dynamics studied through photoelectron spectroscopy and 

photoelectron-photoion coincidence experiments of small anionic molecules and clusters have 

been well documented.294,295 Nevertheless, fundamental questions regarding the neutral radical 

issued from photodetachment of deprotonated aromatic amino acids and related compounds 

remain mostly unanswered to date,296 although a few studies have been devoted to the formation 

and fragmentation of radical peptides anions.297–299 Finally, radical peptide cations, which are 

of prime importance in catalysis in biological systems, show a rich fragmentation chemistry 

through collision activation, involving radical migration and electron transfer, sharing 

similarity with the specific photofragmentation channel observed for the protonated species, 

such as C-N and C-C bond cleavages.300–303 Pump-probe photodissociation experiments 

would certainly reveal the excited state dynamics of these radical aromatic peptides. 

 



69 

 

ACKNOWLEDGMENT 

The authors thank financial supports from the ANR Research grants ANR-2010-BLANC-

040501 and ANR-17-CE05-0005-01, the RTRA “Triangle de la Physique” (COMOVA and 

COMOVA II), the University Paris Sud, Aix-Marseille University, GDR EMIE and LUMAT 

federation (LUMAT FR 2764). The authors acknowledge discussions with C. Dedonder-

Lardeux and M. Broquier. 

Authors Information 
* Corresponding author: E-mail: gilles.gregoire@u-psud.fr 

ORCID 

Satchin Soorkia: 0000-0003-4635-2864 

Christophe Jouvet: 0000-0002-4071-6455 

Gilles Grégoire: 0000-0002-8577-3621 

 

Biographies 

Satchin Soorkia is Associate Professor in the department of Chemistry at Université Paris-Sud. 

He received his PhD degree in Chemical Physics from Université Paris-Sud - Laboratoire 

Francis Perrin CEA/DSM/IRAMIS/SPAM (2005-2008). He, then, continued as a postdoctoral 

fellow at University of California, Berkeley, to conduct laboratory research for planetary 

atmospheres at the Advanced Light Source Synchrotron, before joining the faculty at Université 

Paris-Sud and Institut des Sciences Moléculaires d’Orsay in 2010. His research is focused on 

photoinduced processes in charged molecular species of biological interest such as DNA/RNA 

bases and small peptides. 

Christophe Jouvet earned a PhD (electronic relaxation of glyoxal in a supersonic jet) at the 

University Paris-Sud in Orsay, then spent one year in 1981 as a post-doctoral fellow at the 



70 

 

University of Chicago with Prof. S. A. Rice. He completed his “thèse d’état” (reactivity and 

electronic relaxation in mercury van der Waals complexes) in 1985. He got a permanent 

position as CNRS Researcher in the Photophysics Lab in Orsay. He became Research Director 

in 1994 and move to Aix Marseille University in 2012. He is director of the International 

French-Argentina Laboratory LEMIR. His first researches were focused on the reactivity of 

small molecular clusters. Since 20 years, his research is devoted to unravel the excited state 

properties of protonated molecules. 

Gilles Grégoire got his PhD in Physics in 1999 at the University Pierre and Marie Curie in Paris. 

He spent a first post doc at the University of Paris Sud, Orsay, with Pr. Christophe Jouvet and 

a second one at the University of Georgia, USA, in the group of Mike Duncan. In 2001, he got 

a permanent research position at the French National Scientific Research Center (CNRS) at the 

Laser Physics Lab. in University Paris North. In 2013, he became a senior scientist and moved 

in 2015 to the Institute of Molecular Science of Orsay at University Paris Sud. His research 

focusses on spectroscopy, photophysics and photochemistry of molecules of biological interest 

in the gas phase and in particular on fundamental properties and dynamical processes in 

molecular excited states. 

REFERENCES 

(1)  Chalfie, M.; Tu, Y.; Euskirchen, G.; Ward, W.; Prasher, D. Green Fluorescent Protein 

as a Marker for Gene Expression. Science. 1994, 263, 802–805. 

(2)  Tsien, R. Y. The Green Fluorescent Protein. Annu. Rev. Biochem. 1998, 67, 509–544. 

(3)  Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W.; Olenych, S.; Bonifacino, 

J. S.; Davidson, M. W.; Lippincott-Schwartz, J.; Hess, H. F. Imaging Intracellular Fluorescent 

Proteins at Nanometer Resolution. Science. 2006, 313, 1642–1645. 



71 

 

(4)  Giepmans, B. N. G.; Adams, S. R.; Ellisman, M. H.; Tsien, R. Y. The Fluorescent 

Toolbox for Assessing Protein Location and Function. Science. 2006, 312, 217–224. 

(5)  Day, R. N.; Davidson, M. W. The Fluorescent Protein Palette: Tools for Cellular 

Imaging. Chem. Soc. Rev. 2009, 38, 2887. 

(6)  Zimmer, M. GFP: From Jellyfish to the Nobel Prize and Beyond. Chem. Soc. Rev. 2009, 

38, 2823. 

(7)  Meech, S. R. Excited State Reactions in Fluorescent Proteins. Chem. Soc. Rev. 2009, 

38, 2922. 

(8)  Wachter, R. M.; Watkins, J. L.; Kim, H. Mechanistic Diversity of Red Fluorescence 

Acquisition by GFP-like Proteins. Biochemistry 2010, 49, 7417–7427. 

(9)  Dedecker, P.; De Schryver, F. C.; Hofkens, J. Fluorescent Proteins: Shine on, You Crazy 

Diamond. J. Am. Chem. Soc. 2013, 135, 2387–2402. 

(10)  Mishin, A. S.; Belousov, V. V; Solntsev, K. M.; Lukyanov, K. A. Novel Uses of 

Fluorescent Proteins. Curr. Opin. Chem. Biol. 2015, 27, 1–9. 

(11)  Acharya, A.; Bogdanov, A. M.; Grigorenko, B. L.; Bravaya, K. B.; Nemukhin, A. V.; 

Lukyanov, K. A.; Krylov, A. I. Photoinduced Chemistry in Fluorescent Proteins: Curse or 

Blessing? Chem. Rev. 2017, 117, 758–795. 

(12)  Curchod, B. F. E.; Martínez, T. J. Ab Initio Nonadiabatic Quantum Molecular 

Dynamics. Chem. Rev. 2018, 118, 3305–3336. 

(13)  Crespo-Otero, R.; Barbatti, M. Recent Advances and Perspectives on Nonadiabatic 

Mixed Quantum–Classical Dynamics. Chem. Rev. 2018, 118, 7026–7068. 



72 

 

(14)  Lischka, H.; Nachtigallová, D.; Aquino, A. J. A.; Szalay, P. G.; Plasser, F.; Machado, 

F. B. C.; Barbatti, M. Multireference Approaches for Excited States of Molecules. Chem. Rev. 

2018, 118, 7293–7361. 

(15)  Barbatti, M.; Borin, A. C.; Ullrich, S. Photoinduced Phenomena in Nucleic Acids I: 

Nucleobases in the Gas Phase and in Solvents; 2015; Vol. 355. 

(16)  Barbatti, M.; Borin, A. C.; Ullrich, S. Photoinduced Phenomena in Nucleic Acids II: 

DNA Fragments and Phenomenological Aspects; 2015; Vol. 356. 

(17)  Improta, R.; Santoro, F.; Blancafort, L. Quantum Mechanical Studies on the 

Photophysics and the Photochemistry of Nucleic Acids and Nucleobases. Chem. Rev. 2016, 

116, 3540–3593. 

(18)  Tanaka, K. The Origin of Macromolecule Ionization by Laser Irradiation (Nobel 

Lecture). Angew. Chemie Int. Ed. 2003, 42, 3860–3870. 

(19)  Fenn, J. B. Electrospray Wings for Molecular Elephants (Nobel Lecture). Angew. 

Chemie Int. Ed. 2003, 42, 3871–3894. 

(20)  Zhang, Z.; Smith, D. L. Determination of Amide Hydrogen Exchange by Mass 

Spectrometry: A New Tool for Protein Structure Elucidation. Protein Sci. 1993, 2, 522–531. 

(21)  Engen, J. R.; Smith, D. L. Peer Reviewed: Investigating Protein Structure and Dynamics 

by Hydrogen Exchange MS. Anal. Chem. 2008, 73, 256 A-265 A. 

(22)  Konermann, L.; Pan, J.; Liu, Y.-H. Hydrogen Exchange Mass Spectrometry for 

Studying Protein Structure and Dynamics. Chem. Soc. Rev. 2011, 40, 1224–1234. 

(23)  Sharp, J. S.; Becker, J. M.; Hettich, R. L. Analysis of Protein Solvent Accessible 

Surfaces by Photochemical Oxidation and Mass Spectrometry. Anal. Chem. 2004, 76, 672–683. 



73 

 

(24)  Mendoza, V. L.; Vachet, R. W. Probing Protein Structure by Amino Acid-Specific 

Covalent Labeling and Mass Spectrometry. Mass Spectrom. Rev. 2009, 28, 785–815. 

(25)  Jarrold, M. F. Peptides and Proteins in the Vapor Phase. Annu. Rev. Phys. Chem. 2000, 

51, 179–207. 

(26)  Kanu, A. B.; Dwivedi, P.; Tam, M.; Matz, L.; Hill, H. H. Ion Mobility-Mass 

Spectrometry. J. Mass Spectrom. 2008, 43, 1–22. 

(27)  Bernstein, S. L.; Dupuis, N. F.; Lazo, N. D.; Wyttenbach, T.; Condron, M. M.; Bitan, 

G.; Teplow, D. B.; Shea, J.-E.; Ruotolo, B. T.; Robinson, C. V.; et al. Amyloid-β Protein 

Oligomerization and the Importance of Tetramers and Dodecamers in the Aetiology of 

Alzheimer’s Disease. Nat. Chem. 2009, 1, 326–331. 

(28)  Wysocki, V. H.; Tsaprailis, G.; Smith, L. L.; Breci, L. A. Mobile and Localized Protons: 

A Framework for Understanding Peptide Dissociation. J. Mass Spectrom. 2000, 35, 1399–1406. 

(29)  Paizs, B.; Suhai, S. Fragmentation Pathways of Protonated Peptides. Mass Spectrom. 

Rev. 2005, 24, 508–548. 

(30)  Zubarev, R. A. Electron-Capture Dissociation Tandem Mass Spectrometry. Curr. Opin. 

Biotechnol. 2004, 15, 12–16. 

(31)  Cooper, H. J.; Håkansson, K.; Marshall, A. G. The Role of Electron Capture 

Dissociation in Biomolecular Analysis. Mass Spectrom. Rev. 2005, 24, 201–222. 

(32)  Syrstad, E. A.; Turecček, F. Toward a General Mechanism of Electron Capture 

Dissociation. J. Am. Soc. Mass Spectrom. 2005, 16, 208–224. 

(33)  Grégoire, G.; Gaigeot, M. P.; Marinica, D. C.; Lemaire, J.; Schermann, J. P.; 

Desfrançois, C. Resonant Infrared Multiphoton Dissociation Spectroscopy of Gas-Phase 



74 

 

Protonated Peptides. Experiments and Car–Parrinello Dynamics at 300 K. Phys. Chem. Chem. 

Phys. 2007, 9, 3082–3097. 

(34)  Polfer, N. C.; Oomens, J.; Dunbar, R. C. Alkali Metal Complexes of the Dipeptides 

PheAla and AlaPhe: IRMPD Spectroscopy. ChemPhysChem 2008, 9, 579–589. 

(35)  Brodbelt, J. S.; Wilson, J. J. Infrared Multiphoton Dissociation in Quadrupole Ion Traps. 

Mass Spectrom. Rev. 2009, 28, 390–424. 

(36)  Reilly, J. P. Ultraviolet Photofragmentation of Biomolecular Ions. Mass Spectrom. Rev. 

2009, 28, 425–447. 

(37)  Antoine, R.; Dugourd, P. Visible and Ultraviolet Spectroscopy of Gas Phase Protein 

Ions. Phys. Chem. Chem. Phys. 2011, 13, 16494–16509. 

(38)  Dedonder, C.; Féraud, G.; Jouvet, C. Excited-State Dynamics of Protonated Aromatic 

Amino Acids. In Photophysics of Ionic Biochromophores; Brøndsted Nielsen, S., Wyer, J. A., 

Eds.; Springer, Berlin, Heidelberg, 2013; pp 155–180. 

(39)  Staniforth, M.; Stavros, V. G. Recent Advances in Experimental Techniques to Probe 

Fast Excited-State Dynamics in Biological Molecules in the Gas Phase: Dynamics in 

Nucleotides, Amino Acids and Beyond. Proc. R. Soc. A Math. Phys. Eng. Sci. 2013, 469, 

20130458–20130458. 

(40)  Sobolewski, A. L.; Domcke, W.; Dedonder-Lardeux, C.; Jouvet, C. Excited-State 

Hydrogen Detachment and Hydrogen Transfer Driven by Repulsive 1πσ* States: A New 

Paradigm for Nonradiative Decay in Aromatic Biomolecules. Phys. Chem. Chem. Phys. 2002, 

4, 1093–1100. 

(41)  Pino, G. A.; Oldani, A. N.; Marceca, E.; Fujii, M.; Ishiuchi, S.-I.; Miyazaki, M.; 



75 

 

Broquier, M.; Dedonder, C.; Jouvet, C. Excited State Hydrogen Transfer Dynamics in 

Substituted Phenols and Their Complexes with Ammonia: π∗-σ∗ Energy Gap Propensity and 

Ortho -Substitution Effect. J. Chem. Phys. 2010, 133, 124313. 

(42)  Roberts, G. M.; Chatterley, A. S.; Young, J. D.; Stavros, V. G. Direct Observation of 

Hydrogen Tunneling Dynamics in Photoexcited Phenol. J. Phys. Chem. Lett. 2012, 3, 348–352. 

(43)  Sur, A.; Johnson, P. M. Radiationless Transitions in Gas Phase Phenol and the Effects 

of Hydrogen Bonding. J. Chem. Phys. 1986, 84, 1206–1209. 

(44)  Lipert, R. J.; Colson, S. D. Deuterium Isotope Effects on S1 Radiationless Decay in 

Phenol and on Intermolecular Vibrations in the Phenol-Water Complex. J. Phys. Chem. 1989, 

93, 135–139. 

(45)  Lan, Z.; Domcke, W.; Vallet, V.; Sobolewski, A. L.; Mahapatra, S. Time-Dependent 

Quantum Wave-Packet Description of the 1σ* Photochemistry of Phenol. J. Chem. Phys. 

2005, 122, 224315. 

(46)  Vieuxmaire, O. P. J.; Lan, Z.; Sobolewski, A. L.; Domcke, W. Ab Initio 

Characterization of the Conical Intersections Involved in the Photochemistry of Phenol. J. 

Chem. Phys. 2008, 129, 224307. 

(47)  King, G. A.; Oliver, T. A. A.; Nix, M. G. D.; Ashfold, M. N. R. High Resolution 

Photofragment Translational Spectroscopy Studies of the Ultraviolet Photolysis of Phenol- d 5. 

J. Phys. Chem. A 2009, 113, 7984–7993. 

(48)  Yang, K. R.; Xu, X.; Zheng, J.; Truhlar, D. G. Full-Dimensional Potentials and State 

Couplings and Multidimensional Tunneling Calculations for the Photodissociation of Phenol. 

Chem. Sci. 2014, 5, 4661–4680. 



76 

 

(49)  Xu, X.; Zheng, J.; Yang, K. R.; Truhlar, D. G. Photodissociation Dynamics of Phenol: 

Multistate Trajectory Simulations Including Tunneling. J. Am. Chem. Soc. 2014, 136, 16378–

16386. 

(50)  Nix, M. G. D.; Devine, A. L.; Cronin, B.; Dixon, R. N.; Ashfold, M. N. R. High 

Resolution Photofragment Translational Spectroscopy Studies of the near Ultraviolet 

Photolysis of Phenol. J. Chem. Phys. 2006, 125, 133318. 

(51)  Ashfold, M. N. R.; Devine, A. L.; Dixon, R. N.; King, G. A.; Nix, M. G. D.; Oliver, T. 

A. A. Exploring Nuclear Motion through Conical Intersections in the UV Photodissociation of 

Phenols and Thiophenol. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 12701–12706. 

(52)  Dixon, R. N.; Oliver, T. A. A.; Ashfold, M. N. R. Tunnelling under a Conical 

Intersection: Application to the Product Vibrational State Distributions in the UV 

Photodissociation of Phenols. J. Chem. Phys. 2011, 134, 194303. 

(53)  Tseng, C. M.; Lee, Y. T.; Ni, C. K. H Atom Elimination from the σ* State in the 

Photodissociation of Phenol. J. Chem. Phys. 2004, 121, 2459–2461. 

(54)  Woo, K. C.; Kim, S. K. Multidimensional H Atom Tunneling Dynamics of Phenol: 

Interplay between Vibrations and Tunneling. J. Phys. Chem. A 2019, 123, 1529–1537. 

(55)  Lai, H. Y.; Jhang, W. R.; Tseng, C.-M. Communication: Mode-Dependent Excited-State 

Lifetime of Phenol under the S1/S2 Conical Intersection. J. Chem. Phys. 2018, 149, 031104. 

(56)  Schick, C. P.; Carpenter, S. D.; Weber, P. M. Femtosecond Multiphoton Ionization 

Photoelectron Spectroscopy of the S 2 State of Phenol. J. Phys. Chem. A 1999, 103, 10470–

10476. 

(57)  Livingstone, R. A.; Thompson, J. O. F.; Iljina, M.; Donaldson, R. J.; Sussman, B. J.; 



77 

 

Paterson, M. J.; Townsend, D. Time-Resolved Photoelectron Imaging of Excited State 

Relaxation Dynamics in Phenol, Catechol, Resorcinol, and Hydroquinone. J. Chem. Phys. 

2012, 137, 184304. 

(58)  Ashfold, M. N. R. The Role of * Excited States in the Photodissociation of 

Heteroaromatic Molecules. Science. 2006, 312, 1637–1640. 

(59)  Solgadi, D.; Jouvet, C.; Tramer, A. Resonance-Enhanced Multiphoton Ionization 

Spectra and Ionization Thresholds of Phenol-(Ammonia)n Clusters. J. Phys. Chem. 1988, 92, 

3313–3315. 

(60)  Syage, J. A.; Steadman, J. Picosecond Measurements of Phenol Excited‐state Proton 

Transfer in Clusters. I. Solvent Basicity and Cluster Size Effects. J. Chem. Phys. 1991, 95, 

2497–2510. 

(61)  Syage, J. A. Ultrafast Measurements of Chemistry in Clusters: Excited-State Proton 

Transfer. J. Phys. Chem. 1995, 99, 5772–5786. 

(62)  Schmitt, M.; Jacoby, C.; Gerhards, M.; Unterberg, C.; Roth, W.; Kleinermanns, K. 

Structures and Vibrations of Phenol(NH3)2−4 Clusters. J. Chem. Phys. 2000, 113, 2995–3001. 

(63)  Grégoire, G.; Dedonder-Lardeux, C.; Jouvet, C.; Martrenchard, S.; Solgadi, D. Has the 

Excited State Proton Transfer Ever Been Observed in Phenol−(NH3)n Molecular Clusters? J. 

Phys. Chem. A 2001, 105, 5971–5976. 

(64)  Pino, G. A.; Dedonder-Lardeux, C.; Grégoire, G.; Jouvet, C.; Martrenchard, S.; Solgadi, 

D. Intracluster Hydrogen Transfer Followed by Dissociation in the Phenol–(NH3)3 Excited 

State: PhOH(S1)–(NH3)3→PhO•+(NH4)(NH3)2. J. Chem. Phys. 1999, 111, 10747–10749. 

(65)  Ishiuchi, S. I.; Daigoku, K.; Saeki, M.; Sakai, M.; Hashimoto, K.; Fujii, M. Hydrogen 



78 

 

Transfer in Photoexcited Phenol/Ammonia Clusters by UV-IR-UV Ion Dip Spectroscopy and 

Ab Initio Molecular Orbital Calculations. I. Electronic Transitions. J. Chem. Phys. 2002, 117, 

7077–7082. 

(66)  Ishiuchi, S.; Daigoku, K.; Saeki, M.; Sakai, M.; Hashimoto, K.; Fujii, M. Hydrogen 

Transfer in Photo-Excited Phenol/Ammonia Clusters by UV–IR–UV Ion Dip Spectroscopy and 

Ab Initio Molecular Orbital Calculations. II. Vibrational Transitions. J. Chem. Phys. 2002, 117, 

7083–7093. 

(67)  Sobolewski, A. L.; Domcke, W. Photoinduced Electron and Proton Transfer in Phenol 

and Its Clusters with Water and Ammonia. J. Phys. Chem. A 2001, 105, 9275–9283. 

(68)  Miyazaki, M.; Ohara, R.; Daigoku, K.; Hashimoto, K.; Woodward, J. R.; Dedonder, C.; 

Jouvet, C.; Fujii, M. Electron-Proton Decoupling in Excited-State Hydrogen Atom Transfer in 

the Gas Phase. Angew. Chemie Int. Ed. 2015, 54, 15089–15093. 

(69)  Miyazaki, M.; Ohara, R.; Dedonder, C.; Jouvet, C.; Fujii, M. Electron-Proton Transfer 

Mechanism of Excited-State Hydrogen Transfer in Phenol-(NH3)n (n= 3 and 5). Chem. - A Eur. 

J. 2018, 24, 881–890. 

(70)  Hause, M. L.; Heidi Yoon, Y.; Case, A. S.; Crim, F. F. Dynamics at Conical 

Intersections: The Influence of O–H Stretching Vibrations on the Photodissociation of Phenol. 

J. Chem. Phys. 2008, 128, 104307. 

(71)  An, H.; Baeck, K. K. Quantum Wave Packet Propagation Study of the Photochemistry 

of Phenol: Isotope Effects (Ph-OD) and the Direct Excitation to the 1σ* State. J. Phys. Chem. 

A 2011, 115, 13309–13315. 

(72)  Lin, Y.-C.; Lee, C.; Lee, S.-H.; Lee, Y.-Y.; Lee, Y. T.; Tseng, C.-M.; Ni, C.-K. Excited-



79 

 

State Dissociation Dynamics of Phenol Studied by a New Time-Resolved Technique. J. Chem. 

Phys. 2018, 148, 074306. 

(73)  Tseng, C.-M.; Lee, Y. T.; Lin, M.-F.; Ni, C.-K.; Liu, S.-Y.; Lee, Y.-P.; Xu, Z. F.; Lin, 

M. C. Photodissociation Dynamics of Phenol. J. Phys. Chem. A 2007, 111, 9463–9470. 

(74)  Tseng, C.-M.; Lin, M.-F.; Yang, Y. L.; Ho, Y. C.; Ni, C.-K.; Chang, J.-L. Photostability 

of Amino Acids: Photodissociation Dynamics of Phenylalanine Chromophores. Phys. Chem. 

Chem. Phys. 2010, 12, 4989. 

(75)  Duncan, M. A.; Dietz, T. G.; Liverman, M. G.; Smalley, R. E. Photoionization 

Measurement of the Triplet Lifetime of Benzene. J. Phys. Chem. 1981, 85, 7–9. 

(76)  Stephenson, T. A.; Rice, S. A. Vibrational State Dependence of Radiationless Processes 

in 1B2 u  Benzene. J. Chem. Phys. 1984, 81, 1073–1082. 

(77)  Sekreta, E.; Reilly, J. P. Direct Observation of Intersystem Crossing in Benzene by Laser 

Photoelectron Spectroscopy. Chem. Phys. Lett. 1988, 149, 482–486. 

(78)  Callomon, J. H.; Parkin, J. E.; Lopez-Delgado, R. Non-Radiative Relaxation of the 

Excited Ã 1B2u State of Benzene. Chem. Phys. Lett. 1972, 13, 125–131. 

(79)  Féraud, G.; Pino, T.; Falvo, C.; Parneix, P.; Combriat, T.; Bréchignac, P. Intramolecular 

Processes Revealed Using UV-Laser-Induced IR-Fluorescence: A New Perspective on the 

“Channel Three” of Benzene. J. Phys. Chem. Lett. 2014, 5, 1083–1090. 

(80)  Radloff, W.; Stert, V.; Freudenberg, T.; Hertel, I. .; Jouvet, C.; Dedonder-Lardeux, C.; 

Solgadi, D. Internal Conversion in Highly Excited Benzene and Benzene Dimer: Femtosecond 

Time-Resolved Photoelectron Spectroscopy. Chem. Phys. Lett. 1997, 281, 20–26. 

(81)  Minns, R. S.; Parker, D. S. N.; Penfold, T. J.; Worth, G. A.; Fielding, H. H. Competing 



80 

 

Ultrafast Intersystem Crossing and Internal Conversion in the “Channel 3” Region of Benzene. 

Phys. Chem. Chem. Phys. 2010, 12, 15607. 

(82)  Palmer, I. J.; Ragazos, I. N.; Bernardi, F.; Olivucci, M.; Robb, M. A. An MC-SCF Study 

of the S1 and S2 Photochemical Reactions of Benzene. J. Am. Chem. Soc. 1993, 115, 673–682. 

(83)  Sobolewski, A. L.; Woywod, C.; Domcke, W. Ab Initio Investigation of Potential-

Energy Surfaces Involved in the Photophysics of Benzene and Pyrazine. J. Chem. Phys. 1993, 

98, 5627–5641. 

(84)  Huang, C.-L.; Jiang, J.-C.; Lee, Y. T.; Ni, C.-K. Photodissociation of Ethylbenzene and 

n -Propylbenzene in a Molecular Beam. J. Chem. Phys. 2002, 117, 7034–7040. 

(85)  Chen, Y.; Barkley, M. D. Toward Understanding Tryptophan Fluorescence in Proteins. 

Biochemistry 1998, 37, 9976–9982. 

(86)  Vivian, J. T.; Callis, P. R. Mechanisms of Tryptophan Fluorescence Shifts in Proteins. 

Biophys. J. 2001, 80, 2093–2109. 

(87)  Callis, P. R.; Liu, T. Quantitative Prediction of Fluorescence Quantum Yields for 

Tryptophan in Proteins. J. Phys. Chem. B 2004, 108, 4248–4259. 

(88)  Callis, P. R.; Petrenko, A.; Muiño, P. L.; Tusell, J. R. Ab Initio Prediction of Tryptophan 

Fluorescence Quenching by Protein Electric Field Enabled Electron Transfer. J. Phys. Chem. B 

2007, 111, 10335–10339. 

(89)  Platt, J. R. Classification of Spectra of Cata-Condensed Hydrocarbons. J. Chem. Phys. 

1949, 17, 484–495. 

(90)  Giussani, A.; Merchán, M.; Roca-Sanjuán, D.; Lindh, R. Essential on the Photophysics 

and Photochemistry of the Indole Chromophore by Using a Totally Unconstrained Theoretical 



81 

 

Approach. J. Chem. Theory Comput. 2011, 7, 4088–4096. 

(91)  Bersohn, R.; Even, U.; Jortner, J. Fluorescence Excitation Spectra of Indole, 3‐methyl 

Indole, and 3‐indole Acetic Acid in Supersonic Jets. J. Chem. Phys. 1984, 80, 1050–1058. 

(92)  Hager, J. W.; Demmer, D. R.; Wallace, S. C. Electronic Spectra of Jet-Cooled Indoles: 

Evidence for the 1La State. J. Phys. Chem. 1987, 91, 1375–1382. 

(93)  Arnold, S.; Sulkes, M. Spectroscopy of Solvent Complexes with Indoles: Induction of 

1La-1Lb State Coupling. J. Phys. Chem. 1992, 96, 4768–4778. 

(94)  Zwier, T. S. The Spectroscopy of Solvation in Hydrogen-Bonded Aromatic Clusters. 

Annu. Rev. Phys. Chem. 1996, 47, 205–241. 

(95)  Dian, B. C.; Longarte, A.; Zwier, T. S. Hydride Stretch Infrared Spectra in the Excited 

Electronic States of Indole and Its Derivatives: Direct Evidence for the 1* State. J. Chem. 

Phys. 2003, 118, 2696. 

(96)  Küpper, J.; Pratt, D. W.; Meerts, W. L.; Brand, C.; Tatchen, J.; Schmitt, M. Vibronic 

Coupling in Indole: II. Investigation of the 1La–1Lb Interaction Using Rotationally Resolved 

Electronic. Phys. Chem. Chem. Phys. 2010, 12, 4980–4988. 

(97)  Brand, C.; Küpper, J.; Pratt, D. W.; Meerts, W. L.; Krügler, D.; Tatchen, J.; Schmitt, M. 

Molecular Mechanisms of the Photostability of Life. Phys. Chem. Chem. Phys. 2010, 12, 4897. 

(98)  Iqbal, A.; Stavros, V. G. Exploring the Time Scales of H-Atom Elimination from 

Photoexcited Indole. J. Phys. Chem. A 2010, 114, 68–72. 

(99)  Livingstone, R.; Schalk, O.; Boguslavskiy, A. E.; Wu, G.; Bergendahl, L. T.; Stolow, 

A.; Paterson, M. J.; Townsend, D. Following the Excited State Relaxation Dynamics of Indole 

and 5-Hydroxyindole Using Time-Resolved Photoelectron Spectroscopy. J. Chem. Phys. 2011, 



82 

 

135, 194307. 

(100)  Serrano-Andrés, L.; Roos, B. O. Theoretical Study of the Absorption and Emission 

Spectra of Indole in the Gas Phase and in a Solvent. J. Am. Chem. Soc. 1996, 118, 185–195. 

(101)  Sobolewski, A. L.; Domcke, W. Ab Initio Investigations on the Photophysics of Indole. 

Chem. Phys. Lett. 1999, 315, 293–298. 

(102)  Borin, A. C.; Serrano-Andrés, L. A Theoretical Study of the Absorption Spectra of 

Indole and Its Analogs: Indene, Benzimidazole, and 7-Azaindole. Chem. Phys. 2000, 262, 253–

265. 

(103)  Brisker-Klaiman, D.; Dreuw, A. Explaining Level Inversion of the La and Lb States of 

Indole and Indole Derivatives in Polar Solvents. ChemPhysChem 2015, 16, 1695–1702. 

(104)  Montero, R.; Conde, Á. P.; Ovejas, V.; Castaño, F.; Longarte, A. Ultrafast Photophysics 

of the Isolated Indole Molecule. J. Phys. Chem. A 2012, 116, 2698–2703. 

(105)  Dedonder-Lardeux, C.; Grosswasser, D.; Jouvet, C.; Martrenchard, S. Dissociative 

Hydrogen Transfer in Indole–(NH3)n Clusters. PhysChemComm 2001, 4, 21–23. 

(106)  Lippert, H.; Stert, V.; Hesse, L.; Schulz, C. P.; Hertel, I. V.; Radloff, W. Ultrafast 

Photoinduced Processes in Indole–Water Clusters. Chem. Phys. Lett. 2003, 376, 40–48. 

(107)  Nix, M. G. D.; Devine, A. L.; Cronin, B.; Ashfold, M. N. R. High Resolution 

Photofragment Translational Spectroscopy of the near UV Photolysis of Indole: Dissociation 

via the 1σ* State. Phys. Chem. Chem. Phys. 2006, 8, 2610–2618. 

(108)  Oliver, T. a a; King, G. a; Ashfold, M. N. R. Position Matters: Competing O-H and N-

H Photodissociation Pathways in Hydroxy- and Methoxy-Substituted Indoles. Phys. Chem. 

Chem. Phys. 2011, 13, 14646–14662. 



83 

 

(109)  Eftink, M. R. The Use of Fluorescence Methods to Monitor Unfolding Transitions in 

Proteins. Biophys. J. 1994, 66, 482–501. 

(110)  Eftink, M. R. Fluorescence Techniques for Studying Protein Structure. In Methods of 

Biochemical Analysis; John Wiley & Sons, Ltd, 2006; pp 127–205. 

(111)  Lakowicz, J. R. On Spectral Relaxation in Proteins. Photochem. Photobiol. 2000, 72, 

421. 

(112)  Engelborghs, Y. The Analysis of Time Resolved Protein Fluorescence in Multi-

Tryptophan Proteins. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2001, 57, 2255–2270. 

(113)  Principles of Fluorescence Spectroscopy; Lakowicz, J. R., Ed.; Springer US: Boston, 

MA, 2006. 

(114)  Broos, J.; Tveen-Jensen, K.; de Waal, E.; Hesp, B. H.; Jackson, J. B.; Canters, G. W.; 

Callis, P. R. The Emitting State of Tryptophan in Proteins with Highly Blue-Shifted 

Fluorescence. Angew. Chemie Int. Ed. 2007, 46, 5137–5139. 

(115)  Alston, R. W.; Lasagna, M.; Grimsley, G. R.; Scholtz, J. M.; Reinhart, G. D.; Pace, C. 

N. Peptide Sequence and Conformation Strongly Influence Tryptophan Fluorescence. Biophys. 

J. 2008, 94, 2280–2287. 

(116)  Pan, C.-P.; Muiño, P. L.; Barkley, M. D.; Callis, P. R. Correlation of Tryptophan 

Fluorescence Spectral Shifts and Lifetimes Arising Directly from Heterogeneous Environment. 

J. Phys. Chem. B 2011, 115, 3245–3253. 

(117)  Callis, P. R. Binding Phenomena and Fluorescence Quenching. I: Descriptive Quantum 

Principles of Fluorescence Quenching Using a Supermolecule Approach. J. Mol. Struct. 2014, 

1077, 14–21. 



84 

 

(118)  Callis, P. R. Binding Phenomena and Fluorescence Quenching. II: Photophysics of 

Aromatic Residues and Dependence of Fluorescence Spectra on Protein Conformation. J. Mol. 

Struct. 2014, 1077, 22–29. 

(119)  Eftink, M. R. Fluorescence Techniques for Studying Protein Structure; John Wiley & 

Sons, Ltd, 1991; pp 127–205. 

(120)  Callis, P. R.; Vivian, J. T. Understanding the Variable Fluorescence Quantum Yield of 

Tryptophan in Proteins Using QM-MM Simulations. Quenching by Charge Transfer to the 

Peptide Backbone. Chem. Phys. Lett. 2003, 369, 409–414. 

(121)  Chen, Y.; Liu, B.; Yu, H.-T.; Barkley, M. D. The Peptide Bond Quenches Indole 

Fluorescence. J. Am. Chem. Soc. 1996, 118, 9271–9278. 

(122)  McMahon, L. P.; Colucci, W. J.; McLaughlin, M. L.; Barkley, M. D. Deuterium Isotope 

Effects in Constrained Tryptophan Derivatives: Implications for Tryptophan Photophysics. J. 

Am. Chem. Soc. 1992, 114, 8442–8448. 

(123)  Yu, H. T.; Colucci, W. J.; McLaughlin, M. L.; Barkley, M. D. Fluorescence Quenching 

in Indoles by Excited-State Proton Transfer. J. Am. Chem. Soc. 1992, 114, 8449–8454. 

(124)  Blancafort, L.; González, D.; Olivucci, M.; Michael A. Robb. Quenching of Tryptophan 

1(π,π*) Fluorescence Induced by Intramolecular Hydrogen Abstraction via an Aborted 

Decarboxylation Mechanism. J. Am. Chem. Soc. 2002, 124, 6398–6406. 

(125)  Sharma, D.; Léonard, J.; Haacke, S. Ultrafast Excited-State Dynamics of Tryptophan in 

Water Observed by Transient Absorption Spectroscopy. Chem. Phys. Lett. 2010, 489, 99–102. 

(126)  Pan, C.-P.; Barkley, M. D. Conformational Effects on Tryptophan Fluorescence in 

Cyclic Hexapeptides. Biophys. J. 2004, 86, 3828–3835. 



85 

 

(127)  Szabo, A. G.; Rayner, D. M. Fluorescence Decay of Tryptophan Conformers in 

Aqueous Solution. J. Am. Chem. Soc. 1980, 102, 554–563. 

(128)  Adams, P. D.; Chen, Y.; Ma, K.; Zagorski, M. G.; Sönnichsen, F. D.; McLaughlin, M. 

L.; Barkley, M. D. Intramolecular Quenching of Tryptophan Fluorescence by the Peptide Bond 

in Cyclic Hexapeptides. J. Am. Chem. Soc. 2002, 124, 9278–9286. 

(129)  Cable, J. R.; Tubergen, M. J.; Levy, D. H. Electronic Spectroscopy of Small Tryptophan 

Peptides in Supersonic Molecular Beams. J. Am. Chem. Soc. 1988, 110, 7349–7355. 

(130)  Meijer, G.; de Vries, M. S.; Hunziker, H. E.; Wendt, H. R. Laser Desorption Jet-Cooling 

of Organic Molecules. Appl. Phys. B 1990, 51, 395–403. 

(131)  Piuzzi, F.; Dimicoli, I.; Mons, M.; Tardivel, B.; Zhao, Q. A Simple Laser Vaporization 

Source for Thermally Fragile Molecules Coupled to a Supersonic Expansion: Application to 

the Spectroscopy of Tryptophan. Chem. Phys. Lett. 2000, 320, 282–288. 

(132)  Abo-Riziq, A.; Bushnell, J. E.; Crews, B.; Callahan, M.; Grace, L.; de Vries, M. S. Gas 

Phase Spectroscopy of the Pentapeptide FDASV. Chem. Phys. Lett. 2006, 431, 227–230. 

(133)  Abo-Riziq, A.; Crews, B. O.; Callahan, M. P.; Grace, L.; de Vries, M. S. Spectroscopy 

of Isolated Gramicidin Peptides. Angew. Chemie Int. Ed. 2006, 45, 5166–5169. 

(134)  Rizzo, T. R.; Park, Y. D.; Levy, D. H. Dispersed Fluorescence of Jet‐cooled Tryptophan: 

Excited State Conformers and Intramolecular Exciplex Formation. J. Chem. Phys. 1986, 85, 

6945–6951. 

(135)  Philips, L. A.; Webb, S. P.; Martinez, S. J.; Fleming, G. R.; Levy, D. H. Time-Resolved 

Spectroscopy of Tryptophan Conformers in a Supersonic Jet. J. Am. Chem. Soc. 1988, 110, 

1352–1355. 



86 

 

(136)  Park, Y. D.; Rizzo, T. R.; Peteanu, L. A.; Levy, D. H. Electronic Spectroscopy of 

Tryptophan Analogs in Supersonic Jets: 3‐Indole Acetic Acid, 3‐indole Propionic Acid, 

Tryptamine, and N ‐acetyl Tryptophan Ethyl Ester. J. Chem. Phys. 1986, 84, 6539–6549. 

(137)  Sipior, J.; Sulkes, M. Spectroscopy of Tryptophan Derivatives in Supersonic 

Expansions: Addition of Solvent Molecules. J. Chem. Phys. 1988, 88, 6146–6156. 

(138)  Tubergen, M. J.; Cable, J. R.; Levy, D. H. Substituent Effects on the Electronic 

Spectroscopy of Tryptophan Derivatives in Jet Expansions. J. Chem. Phys. 1990, 92, 51–60. 

(139)  Snoek, L. C.; Kroemer, R. T.; Hockridge, M. R.; Simons, J. P. Conformational 

Landscapes of Aromatic Amino Acids in the Gas Phase: Infrared and Ultraviolet Ion Dip 

Spectroscopy of Tryptophan. Phys. Chem. Chem. Phys. 2001, 3, 1819–1826. 

(140)  Nolting, D.; Marian, C.; Weinkauf, R. Protonation Effect on the Electronic Spectrum of 

Tryptophan in the Gas Phase. Phys. Chem. Chem. Phys. 2004, 6, 2633. 

(141)  Gindensperger, E.; Haegy, A.; Daniel, C.; Marquardt, R. Ab Initio Study of the 

Electronic Singlet Excited-State Properties of Tryptophan in the Gas Phase: The Role of Alanyl 

Side-Chain Conformations. Chem. Phys. 2010, 374, 104–110. 

(142)  Nguyen, T. V.; Pratt, D. W. Permanent Electric Dipole Moments of Four Tryptamine 

Conformers in the Gas Phase: A New Diagnostic of Structure and Dynamics. J. Chem. Phys. 

2006, 124, 054317. 

(143)  Schmitt, M.; Brause, R.; Marian, C. M.; Salzmann, S.; Meerts, W. L. Electronically 

Excited States of Tryptamine and Its Microhydrated Complex. J. Chem. Phys. 2006, 125, 

124309. 

(144)  Böhm, M.; Tatchen, J.; Krügler, D.; Kleinermanns, K.; Nix, M. G. D.; LeGreve, T. A.; 



87 

 

Zwier, T. S.; Schmitt, M. High-Resolution and Dispersed Fluorescence Examination of 

Vibronic Bands of Tryptamine: Spectroscopic Signatures for La/Lb Mixing near a Conical 

Intersection. J. Phys. Chem. A 2009, 113, 2456–2466. 

(145)  Carney, J. R.; Zwier, T. S. The Infrared and Ultraviolet Spectra of Individual 

Conformational Isomers of Biomolecules: Tryptamine. J. Phys. Chem. A 2000, 104, 8677–

8688. 

(146)  Grace, L. I.; Cohen, R.; Dunn, T. .; Lubman, D. M.; de Vries, M. S. The R2PI 

Spectroscopy of Tyrosine: A Vibronic Analysis. J. Mol. Spectrosc. 2002, 215, 204–219. 

(147)  Iqbal, A.; Stavros, V. G. Active Participation of 1σ* States in the Photodissociation of 

Tyrosine and Its Subunits. J. Phys. Chem. Lett. 2010, 1, 2274–2278. 

(148)  Ovejas, V.; Fernández-Fernández, M.; Montero, R.; Castaño, F.; Longarte, A. Ultrafast 

Nonradiative Relaxation Channels of Tryptophan. J. Phys. Chem. Lett. 2013, 4, 1928–1932. 

(149)  Zwier, T. S. Laser Probes of Conformational Isomerization in Flexible Molecules and 

Complexes. J. Phys. Chem. A 2006, 110, 4133–4150. 

(150)  Dian, B. C.; Longarte, A.; Mercier, S.; Evans, D. A.; Wales, D. J.; Zwier, T. S. The 

Infrared and Ultraviolet Spectra of Single Conformations of Methyl-Capped Dipeptides: N-

Acetyl Tryptophan Amide and N-Acetyl Tryptophan Methyl Amide. J. Chem. Phys. 2002, 117, 

10688–10702. 

(151)  Chin, W.; Piuzzi, F.; Dimicoli, I.; Mons, M. Probing the Competition between 

Secondary Structures and Local Preferences in Gas Phase Isolated Peptide Backbones. Phys. 

Chem. Chem. Phys. 2006, 8, 1033–1048. 

(152)  Sobolewski, A. L.; Domcke, W. Relevance of Electron-Driven Proton-Transfer 



88 

 

Processes for the Photostability of Proteins. ChemPhysChem 2006, 7, 561–564. 

(153)  Marazzi, M.; Sancho, U.; Castaño, O.; Domcke, W.; Frutos, L. M. Photoinduced Proton 

Transfer as a Possible Mechanism for Highly Efficient Excited-State Deactivation in Proteins. 

J. Phys. Chem. Lett. 2010, 1, 425–428. 

(154)  Shemesh, D.; Sobolewski, A. L.; Domcke, W. Role of Excited-State Hydrogen 

Detachment and Hydrogen-Transfer Processes for the Excited-State Deactivation of an 

Aromatic Dipeptide: N-Acetyl Tryptophan Methyl Amide. Phys. Chem. Chem. Phys. 2010, 12, 

4899. 

(155)  Hünig, I.; Kleinermanns, K. Conformers of the Peptides Glycine-Tryptophan, 

Tryptophan-Glycine and Tryptophan-Glycine-Glycine as Revealed by Double Resonance 

Laser Spectroscopy. Phys. Chem. Chem. Phys. 2004, 6, 2650–2658. 

(156)  Řeha, D.; Valdés, H.; Vondrášek, J.; Hobza, P.; Abu-Riziq, A.; Crews, B.; de Vries, M. 

S. Structure and IR Spectrum of Phenylalanyl-Glycyl-Glycine Tripetide in the Gas-Phase: 

IR/UV Experiments, Ab Initio Quantum Chemical Calculations, and Molecular Dynamic 

Simulations. Chem. - A Eur. J. 2005, 11, 6803–6817. 

(157)  Valdes, H.; Spiwok, V.; Rezac, J.; Reha, D.; Abo-Riziq, A. G.; de Vries, M. S.; Hobza, 

P. Potential-Energy and Free-Energy Surfaces of Glycyl-Phenylalanyl-Alanine (GFA) 

Tripeptide: Experiment and Theory. Chem. - A Eur. J. 2008, 14, 4886–4898. 

(158)  Mons, M.; Piuzzi, F.; Dimicoli, I.; Gorb, L.; Leszczynski, J. Near-UV Resonant Two-

Photon Ionization Spectroscopy of Gas Phase Guanine: Evidence for the Observation of Three 

Rare Tautomers. J. Phys. Chem. A 2006, 110, 10921–10924. 

(159)  Marian, C. M. The Guanine Tautomer Puzzle: Quantum Chemical Investigation of 



89 

 

Ground and Excited States. J. Phys. Chem. A 2007, 111, 1545–1553. 

(160)  Sobolewski, A. L.; Domcke, W.; Hättig, C. Tautomeric Selectivity of the Excited-State 

Lifetime of Guanine/Cytosine Base Pairs: The Role of Electron-Driven Proton-Transfer 

Processes. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 17903–17906. 

(161)  Shemesh, D.; Sobolewski, A. L.; Domcke, W. Efficient Excited-State Deactivation of 

the Gly-Phe-Ala Tripeptide via an Electron-Driven Proton-Transfer Process. J. Am. Chem. Soc. 

2009, 131, 1374–1375. 

(162)  Mališ, M.; Loquais, Y.; Gloaguen, E.; Biswal, H. S.; Piuzzi, F.; Tardivel, B.; Brenner, 

V.; Broquier, M.; Jouvet, C.; Mons, M.; et al. Unraveling the Mechanisms of Nonradiative 

Deactivation in Model Peptides Following Photoexcitation of a Phenylalanine Residue. J. Am. 

Chem. Soc. 2012, 134, 20340–20351. 

(163)  Dǒslić, N.; Kovǎcević, G.; Ljubić, I. Signature of the Conformational Preferences of 

Small Peptides: A Theoretical Investigation. J. Phys. Chem. A 2007, 111, 8650–8658. 

(164)  Mališ, M.; Loquais, Y.; Gloaguen, E.; Jouvet, C.; Brenner, V.; Mons, M.; Ljubić, I.; 

Došlić, N. Non-Radiative Relaxation of UV Photoexcited Phenylalanine Residues: Probing the 

Role of Conical Intersections by Chemical Substitution. Phys. Chem. Chem. Phys. 2014, 16, 

2285. 

(165)  Loquais, Y.; Gloaguen, E.; Alauddin, M.; Brenner, V.; Tardivel, B.; Mons, M. On the 

near UV Photophysics of a Phenylalanine Residue: Conformation-Dependent ππ* State 

Deactivation Revealed by Laser Spectroscopy of Isolated Neutral Dipeptides. Phys. Chem. 

Chem. Phys. 2014, 16, 22192–22200. 

(166)  Mališ, M.; Došlić, N. Nonradiative Relaxation Mechanisms of UV Excited 



90 

 

Phenylalanine Residues: A Comparative Computational Study. Molecules 2017, 22, 493. 

(167)  Domcke, W.; Sobolewski, A. L. Spectroscopy Meets Theory. Nat. Chem. 2013, 5, 257–

258. 

(168)  Kang, H.; Jouvet, C.; Dedonder-Lardeux, C.; Martrenchard, S.; Charrière, C.; Grégoire, 

G.; Desfrançois, C.; Schermann, J. P.; Barat, M.; Fayeton, J. A. Photoinduced Processes in 

Protonated Tryptamine. J. Chem. Phys. 2005, 122, 84307. 

(169)  Grégoire, G.; Jouvet, C.; Dedonder, C.; Sobolewski, A. L. On the Role of Dissociative 

πσ* States in the Photochemistry of Protonated Tryptamine and Tryptophan: An Ab Initio 

Study. Chem. Phys. 2006, 324, 398–404. 

(170)  Féraud, G.; Broquier, M.; Dedonder-Lardeux, C.; Grégoire, G.; Soorkia, S.; Jouvet, C. 

Photofragmentation Spectroscopy of Cold Protonated Aromatic Amines in the Gas Phase. Phys. 

Chem. Chem. Phys. 2014, 16, 5250–5259. 

(171)  Broquier, M.; Soorkia, S.; Grégoire, G. A Comprehensive Study of Cold Protonated 

Tyramine: UV Photodissociation Experiments and Ab Initio Calculations. Phys. Chem. Chem. 

Phys. 2015, 17, 25854–25862. 

(172)  Simons, J. P. Bio-Active Molecules in the Gas Phase. Phys. Chem. Chem. Phys. 2004, 

6, E7. 

(173)  Andersen, J. U.; Cederquist, H.; Forster, J. S.; Huber, B. A.; Hvelplund, P.; Jensen, J.; 

Liu, B.; Manil, B.; Maunoury, L.; Brøndsted Nielsen, S.; et al. Photodissociation of Protonated 

Amino Acids and Peptides in an Ion Storage Ring. Determination of Arrhenius Parameters in 

the High-Temperature Limit. Phys. Chem. Chem. Phys. 2004, 6, 2676–2681. 

(174)  Kang, H.; Dedonder-Lardeux, C.; Jouvet, C.; Martrenchard, S.; Grégoire, G.; 



91 

 

Desfrançois, C.; Schermann, J.-P.; Barat, M.; Fayeton, J. A. Photo-Induced Dissociation of 

Protonated Tryptophan TrpH+ : A Direct Dissociation Channel in the Excited States Controls 

the Hydrogen Atom Loss. Phys. Chem. Chem. Phys. 2004, 6, 2628–2632. 

(175)  Talbot, F. O.; Tabarin, T.; Antoine, R.; Broyer, M.; Dugourd, P. Photodissociation 

Spectroscopy of Trapped Protonated Tryptophan. J. Chem. Phys. 2005, 122, 074310. 

(176)  Boyarkin, O. V; Mercier, S. R.; Kamariotis, A.; Rizzo, T. R. Electronic Spectroscopy 

of Cold, Protonated Tryptophan and Tyrosine. J. Am. Chem. Soc. 2006, 128, 2816–2817. 

(177)  Lepère, V.; Lucas, B.; Barat, M.; Fayeton, J. A.; Picard, Y. J.; Jouvet, C.; Çarçabal, P.; 

Nielsen, I.; Dedonder-Lardeux, C.; Grégoire, G.; et al. Characterization of Neutral Fragments 

Issued from the Photodissociation of Protonated Tryptophane. Phys. Chem. Chem. Phys. 2007, 

9, 5330. 

(178)  Lucas, B.; Barat, M.; Fayeton, J. A.; Perot, M.; Jouvet, C.; Grégoire, G.; Brondsted 

Nielsen, S. Mechanisms of Photoinduced C-C Bond Breakage in Protonated Aromatic Amino 

Acids. J. Chem. Phys. 2008, 128, 164302. 

(179)  Kadhane, U.; Pérot, M.; Lucas, B.; Barat, M.; Fayeton, J. A.; Jouvet, C.; Ehlerding, A.; 

Kirketerp, M.-B. S.; Nielsen, S. B.; Wyer, J. A.; et al. Photodissociation of Protonated 

Tryptamine and Its Supramolecular Complex with 18-Crown-6 Ether: Dissociation Times and 

Channels, Absorption Spectra, and Excited States Calculations. Chem. Phys. Lett. 2009, 480, 

57–61. 

(180)  Sunil Kumar, S.; Pérot-Taillandier, M.; Lucas, B.; Soorkia, S.; Barat, M.; Fayeton, J. A. 

UV Photodissociation Dynamics of Deprotonated 2′-Deoxyadenosine 5′-Monophosphate [5′-

DAMP–H]−. J. Phys. Chem. A 2011, 115, 10383–10390. 



92 

 

(181)  Cheong, N. R.; Nam, S. H.; Park, H. S.; Ryu, S.; Song, J. K.; Park, S. M.; Pérot, M.; 

Lucas, B.; Barat, M.; Fayeton, J. A.; et al. Photofragmentation in Selected Tautomers of 

Protonated Adenine. Phys. Chem. Chem. Phys. 2011, 13, 291–295. 

(182)  Soorkia, S.; Dehon, C.; Kumar, S. S.; Pedrazzani, M.; Frantzen, E.; Lucas, B.; Barat, 

M.; Fayeton, J. A.; Jouvet, C. UV Photofragmentation Dynamics of Protonated Cystine: 

Disulfide Bond Rupture. J. Phys. Chem. Lett. 2014, 5, 1110–1116. 

(183)  Soorkia, S.; Dehon, C.; S, S. K.; Pérot-Taillandier, M.; Lucas, B.; Jouvet, C.; Barat, M.; 

Fayeton, J. A. Ion-Induced Dipole Interactions and Fragmentation Times: Cα-Cβ Chromophore 

Bond Dissociation Channel. J. Phys. Chem. Lett. 2015, 6, 2070–2074. 

(184)  Kumar, S.; Lucas, B.; Fayeton, J.; Scuderi, D.; Alata, I.; Broquier, M.; Barbu-Debus, K. 

Le; Lepère, V.; Zehnacker, A. Photofragmentation Mechanisms in Protonated Chiral Cinchona 

Alkaloids. Phys. Chem. Chem. Phys. 2016, 18, 22668–22677. 

(185)  El Aribi, H.; Orlova, G.; Hopkinson, A. C.; Siu, K. W. M. Gas-Phase Fragmentation 

Reactions of Protonated Aromatic Amino Acids: Concomitant and Consecutive Neutral 

Eliminations and Radical Cation Formations. J. Phys. Chem. A 2004, 108, 3844–3853. 

(186)  Kadhane, U.; Andersen, J. U.; Ehlerding, A.; Hvelplund, P.; Kirketerp, M. B. S.; 

Lykkegaard, M. K.; Nielsen, S. B.; Panja, S.; Wyer, J. A.; Zettergren, H. Photodissociation of 

Protonated Tryptophan and Alteration of Dissociation Pathways by Complexation with Crown 

Ether. J. Chem. Phys. 2008, 129, 1–6. 

(187)  Kang, H.; Jouvet, C.; Dedonder-Lardeux, C.; Martrenchard, S.; Grégoire, G.; 

Desfrançois, C.; Schermann, J.-P.; Barat, M.; Fayeton, J. A. Ultrafast Deactivation Mechanisms 

of Protonated Aromatic Amino Acids Following UV Excitation. Phys. Chem. Chem. Phys. 

2005, 7, 394. 



93 

 

(188)  Kang, H.; Dedonder-Lardeux, C.; Jouvet, C.; Grégoire, G.; Desfrançois, C.; Schermann, 

J.-P.; Barat, M.; Fayeton, J. A. Control of Bond-Cleaving Reactions of Free Protonated 

Tryptophan Ion by Femtosecond Laser Pulses. J. Phys. Chem. A 2005, 109, 2417–2420. 

(189)  Grégoire, G.; Jouvet, C.; Dedonder, C.; Sobolewski, A. L. Ab Initio Study of the 

Excited-State Deactivation Pathways of Protonated Tryptophan and Tyrosine. J. Am. Chem. 

Soc. 2007, 129, 6223–6231. 

(190)  Grégoire, G.; Lucas, B.; Barat, M.; Fayeton, J. A.; Dedonder-Lardeux, C.; Jouvet, C. 

UV Photoinduced Dynamics in Protonated Aromatic Amino Acid. Eur. Phys. J. D 2009, 51, 

109–116. 

(191)  Stearns, J. A.; Mercier, S.; Seaiby, C.; Guidi, M.; Boyarkin, O. V.; Rizzo, T. R. 

Conformation-Specific Spectroscopy and Photodissociation of Cold, Protonated Tyrosine and 

Phenylalanine. J. Am. Chem. Soc. 2007, 129, 11814–11820. 

(192)  Choi, C. M.; Choi, D. H.; Kim, N. J.; Heo, J. Effective Temperature of Protonated 

Tyrosine Ions in a Cold Quadrupole Ion Trap. Int. J. Mass Spectrom. 2012, 314, 18–21. 

(193)  Redwine, J. G.; Davis, Z. a.; Burke, N. L.; Oglesbee, R. a.; McLuckey, S. a.; Zwier, T. 

S. A Novel Ion Trap Based Tandem Mass Spectrometer for the Spectroscopic Study of Cold 

Gas Phase Polyatomic Ions. Int. J. Mass Spectrom. 2013, 348, 9–14. 

(194)  Ishiuchi, S.; Wako, H.; Kato, D.; Fujii, M. High-Cooling-Efficiency Cryogenic 

Quadrupole Ion Trap and UV-UV Hole Burning Spectroscopy of Protonated Tyrosine. J. Mol. 

Spectrosc. 2017, 332, 45–51. 

(195)  Soorkia, S.; Broquier, M.; Grégoire, G. Conformer- and Mode-Specific Excited State 

Lifetimes of Cold Protonated Tyrosine Ions. J. Phys. Chem. Lett. 2014, 5, 4349–4355. 



94 

 

(196)  Noble, J. A.; Dedonder-Lardeux, C.; Mascetti, J.; Jouvet, C. Electronic Spectroscopy of 

Protonated 1-Aminopyrene in a Cold Ion Trap. Chem. - An Asian J. 2017, 12, 1523–1531. 

(197)  Féraud, G.; Broquier, M.; Dedonder, C.; Jouvet, C.; Grégoire, G.; Soorkia, S. Excited 

State Dynamics of Protonated Phenylalanine and Tyrosine: Photo-Induced Reactions Following 

Electronic Excitation. J. Phys. Chem. A 2015, 119, 5914–5924. 

(198)  O’Hair, R. a; Broughton, P. S.; Styles, M. L.; Frink, B. T.; Hadad, C. M. The 

Fragmentation Pathways of Protonated Glycine: A Computational Study. J. Am. Soc. Mass 

Spectrom. 2000, 11, 687–696. 

(199)  Grégoire, G.; Kang, H.; Dedonder-Lardeux, C.; Jouvet, C.; Desfrançois, C.; Onidas, D.; 

Lepere, V.; Fayeton, J. A. Statistical vs. Non-Statistical Deactivation Pathways in the UV 

Photo-Fragmentation of Protonated Tryptophan–Leucinedipeptide. Phys. Chem. Chem. Phys. 

2006, 8, 122–128. 

(200)  Nolting, D.; Schultz, T.; Hertel, I. V.; Weinkauf, R. Excited State Dynamics and 

Fragmentation Channels of the Protonated Dipeptide H2N-Leu-Trp-COOH. Phys. Chem. Chem. 

Phys. 2006, 8, 5247. 

(201)  Grégoire, G.; Dedonder-Lardeux, C.; Jouvet, C.; Desfrançois, C.; Fayeton, J. A. 

Ultrafast Excited State Dynamics in Protonated GWG and GYG Tripeptides. Phys. Chem. 

Chem. Phys. 2007, 9, 78–82. 

(202)  Fujihara, A.; Matsumoto, H.; Shibata, Y.; Ishikawa, H.; Fuke, K. Photodissociation and 

Spectroscopic Study of Cold Protonated Dipeptides. J. Phys. Chem. A 2008, 112, 1457–1463. 

(203)  Stearns, J. A.; Guidi, M.; Boyarkin, O. V.; Rizzo, T. R. Conformation-Specific Infrared 

and Ultraviolet Spectroscopy of Tyrosine-Based Protonated Dipeptides. J. Chem. Phys. 2007, 



95 

 

127, 154322. 

(204)  Rizzo, T. R.; Stearns, J. A.; Boyarkin, O. V. Spectroscopic Studies of Cold, Gas-Phase 

Biomolecular Ions. Int. Rev. Phys. Chem. 2009, 28, 481–515. 

(205)  Stearns, J. a; Seaiby, C.; Boyarkin, O. V; Rizzo, T. R. Spectroscopy and Conformational 

Preferences of Gas-Phase Helices. Phys. Chem. Chem. Phys. 2009, 11, 125–132. 

(206)  Antoine, R.; Broyer, M.; Chamot-Rooke, J.; Dedonder, C.; Desfrançois, C.; Dugourd, 

P.; Grégoire, G.; Jouvet, C.; Onidas, D.; Poulain, P.; et al. Comparison of the Fragmentation 

Pattern Induced by Collisions, Laser Excitation and Electron Capture. Influence of the Initial 

Excitation. Rapid Commun. Mass Spectrom. 2006, 20, 1648–1652. 

(207)  Swendsen, R. H.; Wang, J. S. Replica Monte Carlo Simulation of Spin-Glasses. Phys. 

Rev. Lett. 1986, 57, 2607–2609. 

(208)  Hansmann, U. H. E. Parallel Tempering Algorithm for Conformational Studies of 

Biological Molecules. Chem. Phys. Lett. 1997, 281, 140–150. 

(209)  Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; 

Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. A Second Generation Force Field 

for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 

117, 5179–5197. 

(210)  Mercier, S. R.; Boyarkin, O. V.; Kamariotis, A.; Guglielmi, M.; Tavernelli, I.; Cascella, 

M.; Rothlisberger, U.; Rizzo, T. R. Microsolvation Effects on the Excited-State Dynamics of 

Protonated Tryptophan. J. Am. Chem. Soc. 2006, 128, 16938–16943. 

(211)  Fujihara, A.; Sato, T.; Hayakawa, S. Enantiomer-Selective Ultraviolet Photolysis of 

Temperature-Controlled Protonated Tryptophan on a Chiral Crown Ether in the Gas Phase. 



96 

 

Chem. Phys. Lett. 2014, 610–611, 228–233. 

(212)  Wyer, J. A.; Ehlerding, A.; Zettergren, H.; Kirketerp, M.-B. S.; Brøndsted Nielsen, S. 

Tagging of Protonated Ala-Tyr and Tyr-Ala by Crown Ether Prevents Direct Hydrogen Loss 

and Proton Mobility after Photoexcitation: Importance for Gas-Phase Absorption Spectra, 

Dissociation Lifetimes, and Channels. J. Phys. Chem. A 2009, 113, 9277–9285. 

(213)  Ehlerding, A.; Wyer, J. A.; Zettergren, H.; Kirketerp, M.-B. S.; Nielsen, S. B. UV 

Photodissociation of Protonated Gly-Trp and Trp-Gly Dipeptides and Their Complexes with 

Crown Ether in an Electrostatic Ion Storage Ring. J. Phys. Chem. A 2010, 114, 299–303. 

(214)  Park, S.; Ahn, W.-K.; Lee, S.; Han, S. Y.; Rhee, B. K.; Oh, H. Bin. Ultraviolet 

Photodissociation at 266 Nm of Phosphorylated Peptide Cations. Rapid Commun. Mass 

Spectrom. 2009, 23, 3609–3620. 

(215)  Tabarin, T.; Antoine, R.; Broyer, M.; Dugourd, P. Specific Photodissociation of 

Peptides with Multi-Stage Mass Spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 

2883–2892. 

(216)  Lemoine, J.; Tabarin, T.; Antoine, R.; Broyer, M.; Dugourd, P. UV Photodissociation 

of Phospho-Seryl-Containing Peptides: Laser Stabilization of the Phospho-Seryl Bond with 

Multistage Mass Spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 507–511. 

(217)  Joly, L.; Antoine, R.; Broyer, M.; Dugourd, P.; Lemoine, J. Specific UV 

Photodissociation of Tyrosyl-Containing Peptides in Multistage Mass Spectrometry. J. Mass 

Spectrom. 2007, 42, 818–824. 

(218)  Dehon, C.; Soorkia, S.; Pedrazzani, M.; Jouvet, C.; Barat, M.; Fayeton, J. A.; Lucas, B. 

Photofragmentation at 263 Nm of Small Peptides Containing Tyrosine: The Role of the Charge 



97 

 

Transfer on CO. Phys. Chem. Chem. Phys. 2013, 15, 8779. 

(219)  Stearns, J. A.; Boyarkin, O. V.; Rizzo, T. R. Effects of N-Terminus Substitution on the 

Structure and Spectroscopy of Gas-Phase Helices. Chim. Int. J. Chem. 2008, 62, 240–243. 

(220)  Kopysov, V.; Makarov, A.; Boyarkin, O. V. Nonstatistical UV Fragmentation of Gas-

Phase Peptides Reveals Conformers and Their Structural Features. J. Phys. Chem. Lett. 2016, 

7, 1067–1071. 

(221)  Kopysov, V.; Nagornova, N. S.; Boyarkin, O. V. Identification of Tyrosine-

Phosphorylated Peptides Using Cold Ion Spectroscopy. J. Am. Chem. Soc. 2014, 136, 9288–

9291. 

(222)  DeBlase, A. F.; Harrilal, C. P.; Lawler, J. T.; Burke, N. L.; McLuckey, S. A.; Zwier, T. 

S. Conformation-Specific Infrared and Ultraviolet Spectroscopy of Cold [YAPAA+H]+ and 

[YGPAA+H]+ Ions: A Stereochemical “Twist” on the β-Hairpin Turn. J. Am. Chem. Soc. 2017, 

139, 5481–5493. 

(223)  Burke, N. L.; Redwine, J. G.; Dean, J. C.; McLuckey, S. A.; Zwier, T. S. UV and IR 

Spectroscopy of Cold Protonated Leucine Enkephalin. Int. J. Mass Spectrom. 2015, 378, 196–

205. 

(224)  Dian, B. C.; Longarte, A.; Zwier, T. S. Conformational Dynamics in a Dipeptide after 

Single-Mode Vibrational Excitation. Science. 2002, 296, 2369–2373. 

(225)  Guglielmi, M.; Doemer, M.; Tavernelli, I.; Rothlisberger, U. Photodynamics of Lys+-

Trp Protein Motifs: Hydrogen Bonds Ensure Photostability. Faraday Discuss. 2013, 163, 189–

203. 

(226)  Guidi, M.; Lorenz, U. J.; Papadopoulos, G.; Boyarkin, O. V; Rizzo, T. R. Spectroscopy 



98 

 

of Protonated Peptides Assisted by Infrared Multiple Photon Excitation. J. Phys. Chem. A 2009, 

113, 797–799. 

(227)  Papadopoulos, G.; Svendsen, A.; Boyarkin, O. V; Rizzo, T. R. Conformational 

Distribution of Bradykinin [Bk + 2H]2+ Revealed by Cold Ion Spectroscopy Coupled with 

FAIMS. J. Am. Soc. Mass Spectrom. 2012, 23, 1173–1181. 

(228)  Zabuga, A. V.; Kamrath, M. Z.; Boyarkin, O. V.; Rizzo, T. R. Fragmentation 

Mechanism of UV-Excited Peptides in the Gas Phase. J. Chem. Phys. 2014, 141, 154309. 

(229)  Scholes, G. D. Long Range Resonance Energy Transfer in Molecular Systems. Annu. 

Rev. Phys. Chem. 2003, 54, 57–87. 

(230)  Medintz, I. L.; Mattoussi, H. Quantum Dot-Based Resonance Energy Transfer and Its 

Growing Application in Biology. Phys. Chem. Chem. Phys. 2009, 11, 17–45. 

(231)  Andrews, D. L.; Curutchet, C.; Scholes, G. D. Resonance Energy Transfer: Beyond the 

Limits. Laser Photon. Rev. 2011, 5, 114–123. 

(232)  Curutchet, C.; Mennucci, B. Quantum Chemical Studies of Light Harvesting. Chem. 

Rev. 2017, 117, 294–343. 

(233)  Neidigh, J. W.; Fesinmeyer, R. M.; Andersen, N. H. Designing a 20-Residue Protein. 

Nat. Struct. Biol. 2002, 9, 425–430. 

(234)  Hudgins, R. R.; Huang, F.; Gramlich, G.; Nau, W. M. A Fluorescence-Based Method 

for Direct Measurement of Submicrosecond Intramolecular Contact Formation in Biopolymers: 

An Exploratory Study with Polypeptides. J. Am. Chem. Soc. 2002, 124, 556–564. 

(235)  Vaiana, A. C.; Neuweiler, H.; Schulz, A.; Wolfrum, J.; Sauer, M.; Smith, J. C. 

Fluorescence Quenching of Dyes by Tryptophan: Interactions at Atomic Detail from 



99 

 

Combination of Experiment and Computer Simulation. J. Am. Chem. Soc. 2003, 125, 14564–

14572. 

(236)  Iavarone, A. T.; Parks, J. H. Conformational Change in Unsolvated Trp-Cage Protein 

Probed by Fluorescence. J. Am. Chem. Soc. 2005, 127, 8606–8607. 

(237)  Iavarone, A. T.; Duft, D.; Parks, J. H. Shedding Light on Biomolecule Conformational 

Dynamics Using Fluorescence Measurements of Trapped Ions. J. Phys. Chem. A 2006, 110, 

12714–12727. 

(238)  Zhou, R. Trp-Cage: Folding Free Energy Landscape in Explicit Water. Proc. Natl. Acad. 

Sci. U. S. A. 2003, 100, 13280–13285. 

(239)  Iavarone, A. T.; Meinen, J.; Schulze, S.; Parks, J. H. Fluorescence Probe of Polypeptide 

Conformational Dynamics in Gas Phase and in Solution. Int. J. Mass Spectrom. 2006, 253, 

172–180. 

(240)  Shi, X.; Duft, D.; Parks, J. H. Fluorescence Quenching Induced by Conformational 

Fluctuations in Unsolvated Polypeptides. J. Phys. Chem. B 2008, 112, 12801–12815. 

(241)  Shi, X.; Parks, J. H. Fluorescence Lifetime Probe of Biomolecular Conformations. J. 

Am. Soc. Mass Spectrom. 2010, 21, 707–718. 

(242)  Tinnefeld, P.; Sauer, M. Branching Out of Single-Molecule Fluorescence Spectroscopy: 

Challenges for Chemistry and Influence on Biology. Angew. Chemie Int. Ed. 2005, 44, 2642–

2671. 

(243)  Michalet, X.; Weiss, S.; Jäger, M. Single-Molecule Fluorescence Studies of Protein 

Folding and Conformational Dynamics. Chem. Rev. 2006, 106, 1785–1813. 

(244)  Schuler, B.; Eaton, W. A. Protein Folding Studied by Single-Molecule FRET. Curr. 



100 

 

Opin. Struct. Biol. 2008, 18, 16–26. 

(245)  Förster, T. Zwischenmolekulare Energiewanderung Und Fluoreszenz. Ann. Phys. 1948, 

437, 55–75. 

(246)  Stryer, L.; Haugland, R. P. Energy Transfer: A Spectroscopic Ruler. Proc. Natl. Acad. 

Sci. U. S. A. 1967, 58, 719–726. 

(247)  Talbot, F. O.; Rullo, A.; Yao, H.; Jockusch, R. A. Fluorescence Resonance Energy 

Transfer in Gaseous, Mass-Selected Polyproline Peptides. J. Am. Chem. Soc. 2010, 132, 16156–

16164. 

(248)  Stryer, L. Fluorescence Energy Transfer as a Spectroscopic Ruler. Annu. Rev. Biochem. 

1978, 47, 819–846. 

(249)  Schuler, B.; Lipman, E. A.; Steinbach, P. J.; Kumke, M.; Eaton, W. A. Polyproline and 

the “Spectroscopic Ruler” Revisited with Single-Molecule Fluorescence. Proc. Natl. Acad. Sci. 

2005, 102, 2754–2759. 

(250)  Kuemin, M.; Schweizer, S.; Ochsenfeld, C.; Wennemers, H. Effects of Terminal 

Functional Groups on the Stability of the Polyproline II Structure: A Combined Experimental 

and Theoretical Study. J. Am. Chem. Soc. 2009, 131, 15474–15482. 

(251)  Czar, M. F.; Jockusch, R. A. Sensitive Probes of Protein Structure and Dynamics in 

Well-Controlled Environments: Combining Mass Spectrometry with Fluorescence 

Spectroscopy. Curr. Opin. Struct. Biol. 2015, 34, 123–134. 

(252)  Frankevich, V.; Martinez-Lozano Sinues, P.; Barylyuk, K.; Zenobi, R. Ion Mobility 

Spectrometry Coupled to Laser-Induced Fluorescence. Anal. Chem. 2013, 85, 39–43. 

(253)  Uteschil, F.; Kuklya, A.; Kerpen, K.; Marks, R.; Telgheder, U. Time-of-Flight Ion 



101 

 

Mobility Spectrometry in Combination with Laser-Induced Fluorescence Detection System. 

Anal. Bioanal. Chem. 2017, 409, 6279–6286. 

(254)  Daly, S.; Poussigue, F.; Simon, A.-L.; MacAleese, L.; Bertorelle, F.; Chirot, F.; Antoine, 

R.; Dugourd, P. Action-FRET: Probing the Molecular Conformation of Mass-Selected Gas-

Phase Peptides with Förster Resonance Energy Transfer Detected by Acceptor-Specific 

Fragmentation. Anal. Chem. 2014, 86, 8798–8804. 

(255)  Bouakil, M.; Kulesza, A.; Daly, S.; MacAleese, L.; Antoine, R.; Dugourd, P. Visible 

Multiphoton Dissociation of Chromophore-Tagged Peptides. J. Am. Soc. Mass Spectrom. 2017, 

28, 2181–2188. 

(256)  Daly, S.; Kulesza, A.; Poussigue, F.; Simon, A.-L.; Choi, C. M.; Knight, G.; Chirot, F.; 

MacAleese, L.; Antoine, R.; Dugourd, P. Conformational Changes in Amyloid-Beta(12–28) 

Alloforms Studied Using Action-FRET, IMS and Molecular Dynamics Simulations. Chem. Sci. 

2015, 6, 5040–5047. 

(257)  Kulesza, A.; Daly, S.; MacAleese, L.; Antoine, R.; Dugourd, P. Structural Exploration 

and Förster Theory Modeling for the Interpretation of Gas-Phase FRET Measurements: 

Chromophore-Grafted Amyloid-β Peptides. J. Chem. Phys. 2015, 143, 025101. 

(258)  Kulesza, A.; Daly, S.; Choi, C. M.; Simon, A.-L.; Chirot, F.; MacAleese, L.; Antoine, 

R.; Dugourd, P. The Structure of Chromophore-Grafted Amyloid-β12–28 Dimers in the Gas-

Phase: FRET-Experiment Guided Modelling. Phys. Chem. Chem. Phys. 2016, 18, 9061–9069. 

(259)  Daly, S.; MacAleese, L.; Dugourd, P.; Chirot, F. Combining Structural Probes in the 

Gas Phase - Ion Mobility-Resolved Action-FRET. J. Am. Soc. Mass Spectrom. 2018, 29, 133–

139. 



102 

 

(260)  Penzkofer, A.; Lu, Y. Fluorescence Quenching of Rhodamine 6G in Methanol at High 

Concentration. Chem. Phys. 1986, 103, 399–405. 

(261)  Bindhu, C. V.; Harilal, S. S. Effect of the Excitation Source on the Quantum-Yield 

Measurements of Rhodamine B Laser Dye Studied Using Thermal-Lens Technique. Anal. Sci. 

2001, 17, 141–144. 

(262)  Valdes-Aguilera, O.; Neckers, D. C. Aggregation Phenomena in Xanthene Dyes. Acc. 

Chem. Res. 1989, 22, 171–177. 

(263)  Setiawan, D.; Kazaryan, A.; Martoprawiro, M. A.; Filatov, M. A First Principles Study 

of Fluorescence Quenching in Rhodamine B Dimers: How Can Quenching Occur in Dimeric 

Species? Phys. Chem. Chem. Phys. 2010, 12, 11238. 

(264)  Daly, S.; Choi, C. M.; Chirot, F.; MacAleese, L.; Antoine, R.; Dugourd, P. Action-Self 

Quenching: Dimer-Induced Fluorescence Quenching of Chromophores as a Probe for 

Biomolecular Structure. Anal. Chem. 2017, 89, 4604–4610. 

(265)  Stadtman, E. R.; Van Remmen, H.; Richardson, A.; Wehr, N. B.; Levine, R. L. 

Methionine Oxidation and Aging. Biochim. Biophys. Acta - Proteins Proteomics 2005, 1703, 

135–140. 

(266)  Kumar, S. S.; Lucas, B.; Soorkia, S.; Barat, M.; Fayeton, J. A. Cα–Cβ Chromophore 

Bond Dissociation in Protonated Tyrosine-Methionine, Methionine-Tyrosine, Tryptophan-

Methionine, Methionine-Tryptophan and Their Sulfoxide Analogs. Phys. Chem. Chem. Phys. 

2012, 14, 10225. 

(267)  Hendricks, N. G.; Lareau, N. M.; Stow, S. M.; McLean, J. A.; Julian, R. R. Bond-

Specific Dissociation Following Excitation Energy Transfer for Distance Constraint 



103 

 

Determination in the Gas Phase. J. Am. Chem. Soc. 2014, 136, 13363–13370. 

(268)  Dexter, D. L. A Theory of Sensitized Luminescence in Solids. J. Chem. Phys. 1953, 21, 

836–850. 

(269)  Hendricks, N. G.; Julian, R. R. Characterizing Gaseous Peptide Structure with Action-

EET and Simulated Annealing. Phys. Chem. Chem. Phys. 2015, 17, 25822–25827. 

(270)  Hendricks, N. G.; Julian, R. R. Two-Step Energy Transfer Enables Use of Phenylalanine 

in Action-EET for Distance Constraint Determination in Gaseous Biomolecules. Chem. 

Commun. 2015, 51, 12720–12723. 

(271)  Kopysov, V.; Boyarkin, O. V. Resonance Energy Transfer Relates the Gas-Phase 

Structure and Pharmacological Activity of Opioid Peptides. Angew. Chemie Int. Ed. 2016, 55, 

689–692. 

(272)  Muñoz-Losa, A.; Curutchet, C.; Krueger, B. P.; Hartsell, L. R.; Mennucci, B. Fretting 

about FRET: Failure of the Ideal Dipole Approximation. Biophys. J. 2009, 96, 4779–4788. 

(273)  Scutelnic, V.; Prlj, A.; Zabuga, A.; Corminboeuf, C.; Rizzo, T. R. Infrared Spectroscopy 

as a Probe of Electronic Energy Transfer. J. Phys. Chem. Lett. 2018, 9, 3217–3223. 

(274)  Lobsiger, S.; Etinski, M.; Blaser, S.; Frey, H.-M.; Marian, C.; Leutwyler, S. Intersystem 

Crossing Rates of S 1 State Keto-Amino Cytosine at Low Excess Energy. J. Chem. Phys. 2015, 

143, 234301. 

(275)  Broquier, M.; Soorkia, S.; Pino, G.; Dedonder-Lardeux, C.; Jouvet, C.; Grégoire, G. 

Excited State Dynamics of Cold Protonated Cytosine Tautomers: Characterization of Charge 

Transfer, Intersystem Crossing, and Internal Conversion Processes. J. Phys. Chem. A 2017, 121, 

6429–6439. 



104 

 

(276)  Broquier, M.; Soorkia, S.; Dedonder-Lardeux, C.; Jouvet, C.; Theulé, P.; Grégoire, G. 

Twisted Intramolecular Charge Transfer in Protonated Amino Pyridine. J. Phys. Chem. A 2016, 

120, 3797–3809. 

(277)  Soorkia, S.; Broquier, M.; Grégoire, G. Multiscale Excited State Lifetimes of Protonated 

Dimethyl Aminopyridines. Phys. Chem. Chem. Phys. 2016, 18, 23785–23794. 

(278)  MacAleese, L.; Hermelin, S.; Hage, K. El; Chouzenoux, P.; Kulesza, A.; Antoine, R.; 

Bonacina, L.; Meuwly, M.; Wolf, J.-P.; Dugourd, P. Sequential Proton Coupled Electron 

Transfer (PCET): Dynamics Observed over 8 Orders of Magnitude in Time. J. Am. Chem. Soc. 

2016, 138, 4401–4407. 

(279)  Meng, Q.; Meyer, H. D. A Multilayer MCTDH Study on the Full Dimensional Vibronic 

Dynamics of Naphthalene and Anthracene Cations. J. Chem. Phys. 2013, 138, 014313. 

(280)  Huix-Rotllant, M.; Burghardt, I.; Ferré, N. Population of Triplet States in 

Acetophenone: A Quantum Dynamics Perspective. Comptes Rendus Chim. 2016, 19, 50–56. 

(281)  Montavon, G.; Rupp, M.; Gobre, V.; Vazquez-Mayagoitia, A.; Hansen, K.; Tkatchenko, 

A.; Müller, K. R.; Anatole Von Lilienfeld, O. Machine Learning of Molecular Electronic 

Properties in Chemical Compound Space. New J. Phys. 2013, 15, 095003. 

(282)  Häse, F.; Kreisbeck, C.; Aspuru-Guzik, A. Machine Learning for Quantum Dynamics: 

Deep Learning of Excitation Energy Transfer Properties. Chem. Sci. 2017, 8, 8419–8426. 

(283)  Hu, D.; Xie, Y.; Li, X.; Li, L.; Lan, Z. Inclusion of Machine Learning Kernel Ridge 

Regression Potential Energy Surfaces in On-the-Fly Nonadiabatic Molecular Dynamics 

Simulation. J. Phys. Chem. Lett. 2018, 9, 2725–2732. 

(284)  Chen, W. K.; Liu, X. Y.; Fang, W. H.; Dral, P. O.; Cui, G. Deep Learning for 



105 

 

Nonadiabatic Excited-State Dynamics. J. Phys. Chem. Lett. 2018, 9, 6702–6708. 

(285)  Dral, P. O.; Barbatti, M.; Thiel, W. Nonadiabatic Excited-State Dynamics with Machine 

Learning. J. Phys. Chem. Lett. 2018, 9, 5660–5663. 

(286)  Gastegger, M.; Behler, J.; Marquetand, P. Machine Learning Molecular Dynamics for 

the Simulation of Infrared Spectra. Chem. Sci. 2017, 8, 6924–6935. 

(287)  Reed, K. J.; Zimmerman, A. H.; Andersen, H. C.; Brauman, J. I. Cross Sections for 

Photodetachment of Electrons from Negative Ions near Threshold. J. Chem. Phys. 1976, 64, 

1368–1375. 

(288)  Tian, Z.; Wang, X. Bin; Wang, L. S.; Kass, S. R. Are Carboxyl Groups the Most Acidic 

Sites in Amino Acids? Gas-Phase Acidities, Photoelectron Spectra, and Computations on 

Tyrosine, p-Hydroxybenzoic Acid, and Their Conjugate Bases. J. Am. Chem. Soc. 2009, 131, 

1174–1181. 

(289)  Compagnon, I.; Allouche, A. R.; Bertorelle, F.; Antoine, R.; Dugourd, P. 

Photodetachment of Tryptophan Anion: An Optical Probe of Remote Electron. Phys. Chem. 

Chem. Phys. 2010, 12, 3399–3403. 

(290)  Forbes, M. W.; Jockusch, R. A. Deactivation Pathways of an Isolated Green Fluorescent 

Protein Model Chromophore Studied by Electronic Action Spectroscopy. J. Am. Chem. Soc. 

2009, 131, 17038–17039. 

(291)  Deng, S. H. M.; Kong, X. Y.; Zhang, G.; Yang, Y.; Zheng, W. J.; Sun, Z. R.; Zhang, D. 

Q.; Wang, X. Bin. Vibrationally Resolved Photoelectron Spectroscopy of the Model GFP 

Chromophore Anion Revealing the Photoexcited S1 state Being Both Vertically and 

Adiabatically Bound against the Photodetached D0 continuum. J. Phys. Chem. Lett. 2014, 5, 



106 

 

2155–2159. 

(292)  Mooney, C. R. S.; Horke, D. A.; Chatterley, A. S.; Simperler, A.; Fielding, H. H.; Verlet, 

J. R. R. Taking the Green Fluorescence out of the Protein: Dynamics of the Isolated GFP 

Chromophore Anion. Chem. Sci. 2013, 4, 921–927. 

(293)  Henley, A.; Fielding, H. H. Anion Photoelectron Spectroscopy of Protein 

Chromophores. Int. Rev. Phys. Chem. 2019, 38, 1–34. 

(294)  Stolow, A.; Bragg, A. E.; Neumark, D. M. Femtosecond Time-Resolved Photoelectron 

Spectroscopy. Chem. Rev. 2004, 104, 1719–1758. 

(295)  Continetti, R. E.; Guo, H. Dynamics of Transient Species via Anion Photodetachment. 

Chem. Soc. Rev. 2017, 46, 7650–7667. 

(296)  Pino, G. A.; Jara-Toro, R. A.; Aranguren-Abrate, J. P.; Dedonder-Lardeux, C.; Jouvet, 

C. Dissociative Photodetachment: Vs. Photodissociation of Aromatic Carboxylates: The 

Benzoate and Naphthoate Anions. Phys. Chem. Chem. Phys. 2019, 21, 1797–1804. 

(297)  Joly, L.; Antoine, R.; Allouche, A. R.; Dugourd, P. Formation and Spectroscopy of a 

Tryptophan Radical Containing Peptide in the Gas Phase. J. Am. Chem. Soc. 2008, 130, 13832–

13833. 

(298)  Antoine, R.; Joly, L.; Allouche,  a. R.; Broyer, M.; Lemoine, J.; Dugourd, P. Electron 

Photodetachment of Trapped Doubly Deprotonated Angiotensin Peptides. UV Spectroscopy 

and Radical Recombination. Eur. Phys. J. D 2009, 51, 117–124. 

(299)  Brunet, C.; Antoine, R.; Dugourd, P.; Canon, F.; Giuliani, A.; Nahon, L. Formation and 

Fragmentation of Radical Peptide Anions: Insights from Vacuum Ultra Violet Spectroscopy. J. 

Am. Soc. Mass Spectrom. 2012, 23, 274–281. 



107 

 

(300)  Bagheri-Majdi, E.; Ke, Y.; Orlova, G.; Chu, I. K.; Hopkinson, A. C.; Siu, K. W. M. 

Copper-Mediated Peptide Radical Ions in the Gas Phase. J. Phys. Chem. B 2004, 108, 11170–

11181. 

(301)  Cordes, M.; Köttgen, A.; Jasper, C.; Jacques, O.; Boudebous, H.; Giese, B. Influence of 

Amino Acid Side Chains on Long-Distance Electron Transfer in Peptides: Electron Hopping 

via “Stepping Stones.” Angew. Chemie - Int. Ed. 2008, 47, 3461–3463. 

(302)  Lam, A. K. Y.; Ryzhov, V.; O’Hair, R. A. J. Mobile Protons versus Mobile Radicals: 

Gas-Phase Unimolecular Chemistry of Radical Cations of Cysteine-Containing Peptides. J. Am. 

Soc. Mass Spectrom. 2010, 21, 1296–1312. 

(303)  Laskin, J.; Yang, Z.; Ng, C. M. D.; Chu, I. K. Fragmentation of α-Radical Cations of 

Arginine-Containing Peptides. J. Am. Soc. Mass Spectrom. 2010, 21, 511–521. 

 

 

 

 

 

 

 

 

 



108 

 

TOC Graphic 

 

 


