
HAL Id: hal-02323821
https://hal.science/hal-02323821v1

Submitted on 21 Oct 2019 (v1), last revised 20 Oct 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RL extraction of syntax-based chunks for sentence
compression

Hoa T Le, Christophe Cerisara, Claire Gardent

To cite this version:
Hoa T Le, Christophe Cerisara, Claire Gardent. RL extraction of syntax-based chunks for sentence
compression. ICANN 2019, Sep 2019, Munich, Germany. pp.337-347. �hal-02323821v1�

https://hal.science/hal-02323821v1
https://hal.archives-ouvertes.fr


How much can Syntax help Sentence
Compression ?

Hoa T. Le1, Christophe Cerisara, Claire Gardent2

1 Laboratory LORIA Nancy, France
2 CNRS/LORIA Nancy, France

{hoa.le, christophe.cerisara, claire.gardent}@loria.fr

Abstract. Sentence compression involves selecting key information present
in the input and rewriting this information into a short, coherent text.
Using the Gigaword corpus, we provide a detailed investigation of how
syntax can help guide both extractive and abstractive sentence compres-
sion. We explore different ways of selecting subtrees from the dependency
structure of the input sentence; compare the results of various models
and show that preselecting information based on syntax yields promising
results.

1 Introduction

Interestingly, while previous work on sentence compression has often focused
on extractive compression i.e., compressions where most of the words occurring
in the short sentence version are also present in the corresponding input [5, 6],
the Gigaword corpus can be viewed as a corpus containing both extractive and
abstractive compressions (or sentence summarization).

Previous work on this dataset has used various ways of selecting key in-
formation in the input sentence. [3] uses dependency subtrees and information
extraction triples to enrich the input of a encoder-decoder model. [1] investi-
gates the use of linked entities to guide the decoder. [19] propose an encoding
model which includes a gate network to select key information from the input
sentence. [16] propose to enrich the encoder with information about the syntac-
tic structure of the input sentence. [2] use target summaries as soft templates to
guide the sequence-to-sequence model.

In this paper, we provide a detailed investigation of how syntax can help
guide sentence compression. We explore different ways of selecting subtrees from
the dependency structure of the input sentence. We evaluate the results on the
Gigaword corpus using an oracle setting and distinguishing between extractive
and abstractive corpus instances. And we show that preselecting information
based on syntax yields promising results.

2 Related Work

Sequence-to-sequence models nowadays are a popular model used for summa-
rization task but it’s still far from perfect. A lot of its problems have been noticed



in the community. [1, 3, 10, 11, 16] observed that sequence models can produce
incorrect, hallucinated and non-factual output. One common remedy often used
is integrating additional structural bias to make sure that the attention of the
model spreads over key information in the source. [1] observed that information
around entities could be built up the topic of the summary. They proposed to
associate with a linked entities topic module to guide the decoding process. [3]
used open information extraction and dependency parsing technique to achieve
actual facts from source text and force the generator to respect these descrip-
tions. In the same spirit, [16] explored the use of syntactic and relation from
constituency parsing, [10] employed TextRank algorithm and [11] relied on en-
tailment relations.

In parrallel, another research path is to directly learn to distill out important
sentences from the source document. This is applied specifically on CNN/Daily
Mail dataset. [13] proposed to cast extraction as a ranking problem and used
reinforcement learning to directly optimize the final output. They argued that
cross-entropy loss is not suitable metric on this task. However, this framework
lacks of a rewriting component. Mimicking how human summarizes text, [4] pro-
posed both components sentence extraction and rewriting network in a unified
model and trained an agent to globally optimize them in an end-to-end manner.

Previous studies on summarization tasks, especially on Gigaword dataset,
have only used dependency parsing as additional structural bias to the models
[3, 10, 16]. Subtrees from dependency structure are still not properly explored
to help narrowing down input sentence into a short, concise and less ambiguous
piece of information. We investigate different ways of selecting subtrees to help
decoder to rewrite better.

3 Extraction of Dependency Subtrees

We investigate different strategies for the extraction of the subtrees from the
dependency structure of the input sentences. In all cases, we start from “sentence
subtrees” i.e., subtrees rooted in a node which has an “nsubj” or an “nsubjpass”
child node. Given such sentence trees, we then extract the following subtrees:

– S-Tree: All sentence trees (as just defined).

– 1L:1R: all subtrees of the sentence tree which contain one left- and one right-
child. E.g., given the example in Figure 1, “government announced closure”
and “government announced campaign”

– 1L:AR (AL:1R): all subtrees of the sentence tree which contain one left-
(right-) child and all right- (left-) children. E.g., “government announced
closure campaign”

– Auxl: All intermediate subtrees below a level from subtree depth 1 contain-
ing “nsubj” or “nsubjpass”.



S-tree, Depth 1 government anounced closure campaign
S-tree, Depth 2 sri lankan government on wednesday anounced schools

closure military campaign separatists
1L:1R, Depth 1 government anounced closure

government anounced campaign
1L:AR, Auxl, Depth 1 sri lankan government on wednesday anounced closure

campaign

Fig. 1. Dependency Tree and example extracted subtress for the sentence “The Sri-
Lankan government on Wednesday anounced the closure of government schools with
immediate effect as a military campaign against Tamil separatists escalated in the North
of the country” .

We ignore all children node whose parent dependency relation is “punct” or
“det” as we observe that sentence compressions in the dataset are usually short
and very concise. For each subtree type, we recursively extract subtrees of depth
1, 2 and 3. Figure 1 shows some example (linearisation of) extracted subtrees.

4 Model

Following [4], we use a two-steps model which combines an extractor agent to
select dependency subtrees and an abstractor network to rewrite the extracted
subtrees. The two networks are connected using reinforcement learning to over-
come the non-differentiable behavior of the extractor and optimise with respect
to the ROUGE evaluation, a standard metric used for sentence compression.



4.1 Extractor Network

First, a temporal convolutional network [8] is used to compute representation
rj of each individual subtree in the input and then a bidirectional LSTM [7]
is applied on these convolutional output to obtain a stronger representation,
denoted as hj . Next, to select the most salient subtrees from the input sentence,
a Pointer Network [17] is employed to get the extraction probability:

utj =

{
v>p tanh(Wp1hj +Wp2et) if jt 6= jk,∀k < t

−∞ otherwise
(1)

P (jt|j1, . . . , jt−1) = softmax(ut) (2)
where et’s are the output of the glimpse operation:

atj = v>g tanh(Wg1hj +Wg2zt) (3)

αt = softmax(at) (4)

et =
∑
j

αtjWg1hj (5)

In Eqn. 3, zt is the output of the added LSTM decoder. All the W ’s and v’s
are trainable parameters. Similar to [4], we pretrain this extractor via a ‘proxy’
target label. For each ground-truth summary sentence, we find the most similar
subtree via ROUGE-Lrecall metric and minimize this classification cross-entropy
loss.

4.2 Abstractor Network

To generate compression, we use state-of-the-art sequence-to-sequence model
with copy mechanism [15]. We also pretrain abstractor by taking pair of each
summary and its extracted subtree (in section 4.1). The network is trained as

usual on decoder language model L(θabs) = − 1
M

∑M
m=1 logPθabs(wm|w1:m−1).

4.3 Reinforce Extraction

To make an extraction agent, we use vanilla policy gradient algorithm REIN-
FORCE [18]. At each extraction step t, the agent observes the current state
ct = (D, djt−1

), where d ∈ D: set of document sentence input. It samples an
action jt ∼ πθa,ω(ct, j) = P (j) from Eqn. 2 to extract a subtree and receive a
reward. We denote trainable parameters of the extractor agent as θ = {θa, ω}
(in section 4.1). Then, because vanilla REINFORCE yields high variance, we
maximize this following policy gradient objective:

∇θa,ωJ(θa, ω) = E[∇θa,ωlogπθ(c, j)A
πθ (c, j)] (6)

whereAπθ (c, j) is the advantage function, calculated as:Aπθ (c, j) = Qπθa,ω (c, j)−
bθc,ω(c). As we can see here, the total return Rt could be used as an estimate
of action-value function Q(ct, jt), a baseline bθc,ω(c) is needed to reduce its vari-
ance. Finally, the baseline is then also updated by minimizing this square loss:
Lc(θc, ω) = (bθc,ω(ct)−Rt)2.



4.4 Oracle

As the number of dependency subtrees extracted by our various strategies (cf.
Section 3) can be very large, [4]’s two steps approach actually fails to learn a
good selection strategy and underperforms.

To assess the degree to which syntax can help sentence compression, we
therefore consider the results of an oracle setting in which we apply the abstractor
of the Select-and-Paraphrase Model [4] to each of the subtrees produced for the
input sentence by the various extraction strategies described in Section 3 and
report the best ROUGE scores obtained.

We also compare our approach with an approach where the key information
extracted from the input is the set of subject-predicate-object triples extracted
from the input sentence by Stanford CoreNLP OpenIE tool.

5 Experiments

5.1 Data

We evaluate our approach on the Gigaword corpus [14], a corpus of 3.8M sentence-
headline pairs and where the average input sentence length is 31.4 words (in the
training corpus) and the average sentence compression length is 8.3 words. The
test set consists of 1951 sentence/compression pairs. Like [14], we use 2000 sam-
ple pairs (among 189K pairs) as development set.

5.2 Extractive vs. Abstractive Compression

To better assess the impact of our approach on abstractive vs extractive com-
pression, we divide the data (training, dev and test) into two parts: a part (ex-
tractive) where 80% of the tokens present in the sentence compression are present
in the input and another part (abstractive) which contains all other instances.
According to that criteria, out of the 1951 test instances, 207 are extractive and
1744 abstractive.

5.3 Evaluation Metric

We adopt ROUGE [12] for automatic evaluation. It measures the quality of sum-
mary by computing overlapping lexical units between the candidate summary
and actual summaries. We report ROUGE-1 (unigram), ROUGE-2 (bi-gram)
and ROUGE-L (LCS) F1 scores. ROUGE-1 and ROUGE-2 mainly represent
informativeness while ROUGE-L is supposed to be assess the readability.

5.4 Hyperparameter Details

We use Adam optimizer [9] with learning rate 0.001 for extractor, abstractor
ML and 0.0001 for extractor RL training. Vocabulary size of 30k, batch size 32
samples, gradient clipping of 2.0 and regularizing by early-stopping. For CNN,



we use 100 hidden units and 256 hidden units for all LSTM-RNNs. We truncate
maximum length of input sentences to 100 tokens and target sentences to 30
tokens. ROUGE-recall is used to create proxy label data as we want extracted
sentence to contain as much information as possible for paraphrasing. However,
ROUGE-F1 is used as reward for reinforce agent as the generation should be as
concise as the gold target sentence.

6 Results

6.1 Full Select-and-Paraphrase Model

Table 1. Baseline (Seq2Seq trained on Sentence/Compression Pairs) vs. RL Select-
and-Paraphrase Model (trained on S-Tree Data).

Model Extractive Data Abstractive Data
R-1 R-2 R-L R-1 R-2 R-L

Baseline 59.57 31.28 57.87 27.55 10.16 25.94
S&P Model 54.38 28.13 52.42 24.48 8.49 23.15

Table 1 shows the results comparing the baseline model (a simple seq2seq
model trained on input sentence/compression pairs) and the full Select-and-
Paraphrase Reinforcement (RL) learning model where the subtrees the extractor
is trained on, are the S-trees. The RL model under-performs which indicates that
the extractor does not succeed in selecting from among the dependency subtrees,
the key information necessary for generating the sentence compression. It should
be noted that the set of dependency subtrees can be very large (up to several
hundreds) making it difficult to learn a good ranker for the extractor. Making the
problem more tractable would require finding a method for limiting the number
of dependency subtrees to be taken into consideration. We leave this point for
further research and concentrate instead in the following section on analysing
the impact on performance of the different extraction strategies described in
Section 3.

6.2 Oracle Setting

Table 2 compares the baseline with an oracle abstracted trained on OpenIE
triples and on different sets of dependency subtrees extracted from the parse
tree of the input sentence.

OpenIE triples vs. Dependency Subtrees. One first observation is that scores are
lower when taking as input OpenIE triples rather than Dependency subtrees. The
results show that our specific S-tree heuristic rule outperforms arbitrary OpenIE
triples by 9, 7, 9 rouge-1,-2,-L point respectively on oracle setup for the extractive



Table 2. Baseline vs. Oracle Results.

Models Extractive Data Abstractive Data
R-1 R-2 R-L R-1 R-2 R-L

Baseline 59.57 31.28 57.87 27.55 10.16 25.94
Oracle

OpenIE 51.21 24.1 48.7 27.35 9.24 25.68
S-Tree 60.52 31.21 57.29 30.61 10.69 28.77
1L:1R 46.33 19.15 43.6 22.63 5.84 21.03
1L:1R, Auxl 64.04 28.32 60.55 33.23 10.01 30.3
1L:AR, AL:1R 43.99 20.4 42 21.16 5.48 19.71
1L:AR, AL:1R, Auxl 62.57 32.02 58.98 30.61 10.69 28.77
S-Tree, 1L:1R, Auxl 68.95 36.34 65.49 38.95 13.9 35.54
S-Tree, 1L:1R, Auxl, 1L:AR, AL:1R, Auxl 70.38 38.79 66.4 40 14.75 36.34

data and 3, 1 and 3 point for the abstractive data. OpenIE triples were in fact
used by [3] on the same task and same dataset to improve faithfulness i.e., to
favour output which is semantically correct with respect to the input sentence. As
[3] achieved good scores on the Gigaword data and S-trees outperforms OpenIE
triples, this suggests that S-Tree subtrees could help further improving results
provided a good extractor can be developed.

Extractive vs. Abstractive. Unsurprisingly, the impact of the input dependency
subtrees is much larger on extractive data. For extractive compressions, the
scores increase by roughly a factor of two suggesting that the match between
input dependency subtrees and compression is much larger for extractive com-
pressions. This is in line with previous work [5, 6] which shows that extractive
compressions can be found by searching in the parse tree of the input sentence
for a spanning tree linking the content words of the compression. It also indicates
that further improvements on the Gigaword dataset will require a better mod-
elling of the paraphrases and variations occurring in abstractive compressions.

Auxiliary subtrees. We observe a large, significant delta between (1L:1R) and
(1L:1R, Auxl) and similarly, between (1L:AR, AL:1R) and (1L:AR, AL:1R,
Auxl). In fact, this increase shows up systematically in the experiments. That
is, when considering subtrees below subject level, scores increase indicating that
dependents and modifiers of these nodes often contain key information that is
preserved in the compressed sentence. Gradual combination of each auxiliary
subtrees with its higher level (1L:1R) or (1L:AR, AL:1R) can yield the most
flexible phrase structure.

Syntax helps. The combination of subtrees shows substantial improvement. Among
all possible setup, the ( S-Tree, 1L:1R, Auxl, 1L:AR, AL:1R, Auxl) combination
obtains the best performance. It is 10, 7, 9 rouge-1,-2-L points respectively higher
than the first heuristic rule and the baseline seq2seq model on the extractive set.
On the abstractive set, it is 13, 4, 11 rouge-1,-2,-L points higher respectively.



Table 3. Example of oracle and full source generation.

Source
fred west told the truth – and should be believed – when he exonerated
his wife in the murders of ## young women before killing himself , a jury
heard wednesday .

Subtrees
...
12. fred west believed when exonerated wife heard wednesday
13. fred west believed when exonerated murders heard wednesday
14. fred west believed when exonerated killing heard wednesday
15. fred west believed he exonerated wife heard wednesday
16. fred west believed he exonerated murders heard wednesday
17. fred west believed he exonerated killing heard wednesday
18. fred west believed a jury heard wednesday
...

Abstract
fred west told truth when he exonerated his wife of murder defense by unk unk

Full source generation
jury hears west tells truth to be believed to be believed

Subtrees generation
...
12. fred west says he ’s exonerated
13. fred west says west nile murders
14. fred west says it was exonerated in killing of ##
15. fred west says he exonerated wife
16. fred west says he exonerated murders
17. fred west says he exonerated killing of killing
18. fred west s west virginia jury hears
...

Oracle
fred west says he exonerated wife (from subtree 15)

Qualitative analysis. Table 3 shows an example of multiple subtrees retrieved
from input document and their generations. We can see that normal sequence-
to-sequence with attention and copy mechanism struggles to identify important
information and produces loops, repetition in the end. On the other hand, thanks
to dependency structure, subtrees generation contain short, coherent and right-
to-the-point message in the gold abstract.

7 Conclusion

We have provided an analysis of how various syntactic strategies impact auto-
matic compression and shown that inputing sentence compression with subtrees
extracted from the dependency parse of the input sentence can improve results.
To improve the end-to-end RL compression model described in Section 4 so that
it can benefit from such syntactic input, we are currently working on identifying



ways of restricting the number of subtrees to be considered and more generally,
on improving the extractor.
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