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Abstract. Sentence compression involves selecting key information present
in the input and rewriting this information into a short, coherent text.
While dependency parses have often been used for this purpose, we pro-
pose to exploit such syntactic information within a modern reinforce-
ment learning-based extraction model. Furthermore, compared to other
approaches that include syntactic features into deep learning models,
we design a model that has better explainability properties and is flexi-
ble enough to support various shallow syntactic parsing modules. More
specifically, we linearize the syntactic tree into the form of overlapping
text segments, which are then selected with reinforcement learning and
regenerated into a compressed form. Hence, despite relying on extractive
components, our model is also able to handle abstractive summariza-
tion. We explore different ways of selecting subtrees from the dependency
structure of the input sentence and compare the results of various models
on the Gigaword corpus.

1 Introduction

While previous work on sentence compression has often focused on extractive
compression i.e., compressions where most of the words occurring in the short
sentence version are also present in the corresponding input [5,6], the Gigaword
corpus can be viewed as a corpus containing both extractive and abstractive
compressions (or sentence summarization).

Previous work on this dataset has used various ways of selecting key in-
formation in the input sentence. [3] uses dependency subtrees and information
extraction triples to enrich the input of a encoder-decoder model. [1] investi-
gates the use of linked entities to guide the decoder. [19] propose an encoding
model which includes a gate network to select key information from the input
sentence. [16] propose to enrich the encoder with information about the syntac-
tic structure of the input sentence. [2] use target summaries as soft templates to
guide the sequence-to-sequence model.

In this work, we propose a model that exploits syntactic parsing to extract
coherent segments from the source document, then selects the best of these seg-
ments with reinforcement learning, and finally regenerates the summary with a
recent sequence-to-sequence model. This model can thus transparently handles



both types of extractive and abstractive summarizations. Furthermore, our ap-
proach departs from the recent end-to-end deep learning architectures by deter-
ministically linearizing the syntactic tree into overlapping text segments to select
with reinforcement learning. Although this method prevents a joint global opti-
mization of the models, it also gives interesting adaptability and explainability
properties. Adaptability, because it is easy to replace the syntactic parsing mod-
ule with another shallow component, such as chunking, when full dependency
parses are not available or not reliable; Explainability, because the segments that
lead to the best summaries are clearly identified, which is not always the case
with other deep learning approaches, for instance based on attention.

2 Related Work

Sequence-to-sequence models nowadays are a popular model used for summa-
rization task but are still far from perfect. For instance, [1,3,10,11,16] observed
that sequence models can produce incorrect, hallucinated and non-factual out-
put. A common remedy often used consists to integrate additional structural
bias to make sure that the attention of the model spreads over key information
in the source. [1] observed that information around entities are related to the
topic of the summary. They proposed to associate with linked entities a topic
module to guide the decoding process. [3] used open information extraction and
dependency parsing technique to infer actual facts from source text and force
the generator to respect these descriptions. In the same spirit, [16] explored the
use of syntactic relations from constituency parsing, [10] employed TextRank
algorithm and [11] relied on entailment relations.

In parallel, another research path aims at directly learning to distill out im-
portant sentences from the source document. This is applied specifically on the
CNN/Daily Mail dataset. [13] proposed to cast extraction as a ranking problem
and used reinforcement learning to optimize the final objective. They argued that
cross-entropy loss is not a suitable metric on this task. However, this framework
lacks of a rewriting component. Mimicking how human summarizes text, [4] pro-
posed both sentence extraction and rewriting components in a unified model and
trained an agent to globally optimize them in an end-to-end manner.

Previous studies on summarization tasks, especially on the Gigaword dataset,
have only used dependency parsing as additional structural bias to the models [3,
10,16]. Subtrees from dependency structure are still not properly explored to help
narrowing down input sentence into a short, concise and less ambiguous piece of
information. We investigate different ways of selecting subtrees to help decoder
to rewrite better.



S-tree, Depth 1 government anounced closure campaign
S-tree, Depth 2 sri lankan government on wednesday anounced schools

closure military campaign separatists
1L:1R, Depth 1 government anounced closure

government anounced campaign
1L:AR, Auxl, Depth 1 sri lankan government on wednesday anounced closure

campaign

Fig. 1. Dependency Tree and example subtrees extracted from the sentence “The Sri-
Lankan government on Wednesday anounced the closure of government schools with
immediate effect as a military campaign against Tamil separatists escalated in the North
of the country” .

3 Extraction of Dependency Subtrees

We investigate different strategies for the extraction of the subtrees from the
dependency structure of the input sentences. In all cases, we start from “sentence
subtrees” i.e., subtrees which root node has an “nsubj” or an “nsubjpass” child
node. Given such sentence trees, we then extract the following subtrees:

– S-Tree: All sentence trees.
– 1L:1R: all subtrees of the sentence tree which contain one left- and one right-

child. E.g., given the example in Figure 1, “government announced closure”
and “government announced campaign”

– 1L:AR (AL:1R): all subtrees of the sentence tree which contain one left-
(right-) child and all right- (left-) children. E.g., “government announced
closure campaign”

– Auxl: All subtrees below a subtree at depth 1 that contains “nsubj” or
“nsubjpass”.



We ignore all children nodes whose parent dependency relation is “punct” or
“det”. For each subtree type, we recursively extract subtrees of depth 1, 2 and
3. Figure 1 shows some examples of linearized extracted subtrees.

4 Model

Following [4], we use a two-steps model that combines an extractor agent to
select dependency subtrees and an abstractor network to rewrite the extracted
subtrees. Both networks are connected using reinforcement learning to overcome
the non-differentiable behavior of the extractor and optimized with respect to
the ROUGE evaluation, a standard metric used for sentence compression.

4.1 Extractor Network

Every linearized subtree from Section 3 is scored by the extractor network; this
set of scored subtrees will later on be explored by the Reinforcement Learning
agent to select the best candidates for summarization. In details, every subtree
is passed to a temporal convolutional network [8] followed by a bidirectional
LSTM [7] to produce a subtree embedding hj . Assuming that hj is selected,
it is passed to an LSTM decoder for generation, which outputs zt. A pointer
network [17] computes a first attention et for zt over all inputs (hj)j with:

atj = v>g tanh(Wg1hj +Wg2zt) (1)

αt = softmax(at) (2)

et =
∑
j

αtjWg1hj (3)

It then computes the extraction probability of hj with another attention:

utj = v>p tanh(Wp1hj +Wp2et)

P (jt|j1, . . . , jt−1) = softmax(ut) (4)

All the W ’s and v’s are trainable parameters. Similarly to [4], we pretrain this
extractor via a ‘proxy’ target label: for every ground-truth summary sentence,
we find the most similar subtree via ROUGE-Lrecall metric and minimize this
classification cross-entropy loss.

4.2 Abstractor Network

To generate compression, we use state-of-the-art sequence-to-sequence model
with copy mechanism [15]. We also pretrain abstractor by taking pair of each
summary and its extracted subtree (in section 4.1). The network is trained as

usual on decoder language model L(θabs) = − 1
M

∑M
m=1 logPθabs(wm|w1:m−1).



4.3 Reinforce Extraction

To make an extraction agent, we use vanilla policy gradient algorithm REIN-
FORCE [18]. At each extraction step t, the agent observes the current state
ct = (D, djt−1), where d ∈ D: set of document sentence input. It samples an
action jt ∼ πθa,ω(ct, j) = P (j) from Eqn. 4 to extract a subtree and receive a
reward. We denote trainable parameters of the extractor agent as θ = {θa, ω}
(in section 4.1). Then, because vanilla REINFORCE yields high variance, we
maximize this following policy gradient objective:

∇θa,ωJ(θa, ω) = E[∇θa,ωlogπθ(c, j)A
πθ (c, j)] (5)

whereAπθ (c, j) is the advantage function, calculated as:Aπθ (c, j) = Qπθa,ω (c, j)−
bθc,ω(c). As we can see here, the total return Rt could be used as an estimate
of action-value function Q(ct, jt), a baseline bθc,ω(c) is needed to reduce its vari-
ance. Finally, the baseline is then also updated by minimizing this square loss:
Lc(θc, ω) = (bθc,ω(ct)−Rt)2.

5 Experiments

5.1 Data

We evaluate our approach on the Gigaword corpus [14], a corpus of 3.8M sentence-
headline pairs and where the average input sentence length is 31.4 words (in the
training corpus) and the average sentence compression length is 8.3 words. The
test set consists of 1951 sentence/compression pairs. Like [14], we use 2000 sam-
ple pairs (among 189K pairs) as development set.

5.2 Extractive vs. Abstractive Compression

To better assess the impact of our approach on abstractive vs extractive com-
pression, we divide the data (training, dev and test) into two parts: a part (ex-
tractive) where 80% of the tokens present in the sentence compression are present
in the input and another part (abstractive) which contains all other instances.
According to that criteria, out of the 1951 test instances, 207 are extractive and
1744 abstractive. We also report the ROUGE metrics over the whole corpus, to
allow for comparison with related works.

5.3 Evaluation Metric

We adopt ROUGE [12] for automatic evaluation. It measures the quality of sum-
mary by computing overlapping lexical units between the candidate summary
and actual summaries. We report ROUGE-1 (unigram), ROUGE-2 (bi-gram)
and ROUGE-L (LCS) F1 scores. ROUGE-1 and ROUGE-2 mainly represent
informativeness while ROUGE-L rather capture readability.



5.4 Hyperparameter Details

We use the Adam optimizer [9] with learning rate 0.001 for cross-entropy training
of the extractor and abstractor. We use a learning rate of 0.0001 for extractor RL
training. The vocabulary size is 30k, the batch size 32 samples, we use gradient
clipping of 2.0 and early-stopping. We use 256 hidden units for all LSTM-RNNs.
We truncate the maximum length of input sentences to 100 tokens and target
sentences to 30 tokens. ROUGE-recall is used to create proxy label data as
we want extracted sentences to contain as much information as possible for
paraphrasing. However, ROUGE-F1 is used as reward for reinforce agent as the
generation should be as concise as the gold target sentence.

6 Results

6.1 Full Select-and-Paraphrase Model

Table 1 shows the results comparing the baseline model (a seq2seq model trained
on input sentence/compression pairs) and our full Select-and-Paraphrase Rein-
forcement Learning (RL) model where the extractor is trained on all sentence
trees (S-trees). The RL model under-performs because the extractor does not
manage to handle the large number of candidate sub-trees (up to several hun-
dreds). We thus explore next, using an oracle RL selector, which of the selection
methods proposed in Section 3 help to reduce the set of candidate sub-trees
while still preserving the relevant information from the input document.

We also report in Table 1 the performances obtained with state-of-the-art
summarization systems. These figures come from [2], which appears to be the
best system on the Gigaword corpus reported in http://nlpprogress.com/

english/summarization.html, as of May 2019.

Table 1. Baseline (Seq2Seq trained on Sentence/Compression Pairs) vs. RL Select-
and-Paraphrase Model (trained on S-Tree Data).

Model Extractive Data Abstractive Data Whole corpus
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

Baseline 59.57 31.28 57.87 27.55 10.16 25.94 30.95 12.40 29.33
S&P Model 54.38 28.13 52.42 24.48 8.49 23.15 27.65 10.57 26.26

[2] 37.04 19.03 34.46

6.2 Oracle Setting

In Table 2, we compare our model with an “oracle reinforcement learning” com-
ponent that always chooses the best candidate subtree to pass to the abstractor.
This allows us to study the impact of each sub-tree selection processes described



in Section 3 and identify the ones that preserve relevant information to summa-
rize.

We also apply our approach with another shallow syntactic process, by re-
placing the dependency parser by the CoreNLP OpenIE tool 3, which extracts
a set of subject-predicate-object triples.

Table 2. Baseline vs. Oracle Results. The last row S-tree+ includes Stree, 1L:1R, Auxl,
1L:AR, AL:1R, Auxl

Model Extractive Data Abstractive Data Whole corpus
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

Baseline 59.57 31.28 57.87 27.55 10.16 25.94 30.95 12.40 29.33
Oracle

OpenIE 51.21 24.1 48.7 27.35 9.24 25.68 29.88 10.82 28.12
S-Tree 60.52 31.21 57.29 30.61 10.69 28.77 33.78 12.88 31.80
1L:1R 46.33 19.15 43.6 22.63 5.84 21.03 25.14 7.25 23.43
1L:1R, Auxl 64.04 28.32 60.55 33.23 10.01 30.3 36.50 11.95 33.51
1L:AR, AL:1R 43.99 20.4 42 21.16 5.48 19.71 23.58 7.06 22.07
1L:AR, AL:1R, Auxl 62.57 32.02 58.98 30.61 10.69 28.77 34.00 12.95 31.98
S-Tree, 1L:1R, Auxl 68.95 36.34 65.49 38.95 13.9 35.54 42.13 16.28 38.72
S-Tree+ 70.38 38.79 66.4 40 14.75 36.34 43.22 17.30 39.53

OpenIE triples vs. Dependency Subtrees. We can first observe that scores are
lower when taking as input OpenIE triples rather than Dependency subtrees.
The results show that our specific S-tree heuristic rule outperforms OpenIE
triples by +9, +7, +9 rouge-1,-2,-L respectively for extractive data, and +3, +1
and +3 points for abstractive data. OpenIE triples were in fact used by [3] on
the same task and same dataset to improve faithfulness i.e., to favour output
that is semantically correct with respect to the input sentence. Given that [3]
achieved good scores on the Gigaword data and that S-trees outperform OpenIE
triples, this suggests that S-Tree subtrees are potentially good alternatives to
OpenIE triples.

Extractive vs. Abstractive. Unsurprisingly, the impact of the input dependency
subtrees is much larger on extractive data. For extractive compressions, the
scores increase by roughly a factor of two suggesting that the match between
input dependency subtrees and summaries is much larger for extractive than
abstractive data. This is in line with previous works [5, 6], which show that
extractive compression can be found by searching in the parse tree of the input
sentence for a spanning tree linking the content words of the compression. It
also indicates that further improvements on the Gigaword dataset will require
a better modeling of the paraphrases and variations occurring in abstractive
compressions.

3 https://stanfordnlp.github.io/CoreNLP/openie.html



Table 3. Example of oracle and full source generation.

Source
fred west told the truth – and should be believed – when he exonerated
his wife in the murders of ## young women before killing himself , a jury
heard wednesday .

Subtrees
...
12. fred west believed when exonerated wife heard wednesday
13. fred west believed when exonerated murders heard wednesday
14. fred west believed when exonerated killing heard wednesday
15. fred west believed he exonerated wife heard wednesday
16. fred west believed he exonerated murders heard wednesday
17. fred west believed he exonerated killing heard wednesday
18. fred west believed a jury heard wednesday
...

Abstract
fred west told truth when he exonerated his wife of murder defense by unk unk

Full source generation
jury hears west tells truth to be believed to be believed

Subtrees generation
...
12. fred west says he ’s exonerated
13. fred west says west nile murders
14. fred west says it was exonerated in killing of ##
15. fred west says he exonerated wife
16. fred west says he exonerated murders
17. fred west says he exonerated killing of killing
18. fred west s west virginia jury hears
...

Oracle
fred west says he exonerated wife (from subtree 15)

Auxiliary subtrees. We observe a large, significant improvement from (1L:1R)
to (1L:1R, Auxl) and similarly, between (1L:AR, AL:1R) and (1L:AR, AL:1R,
Auxl). In fact, this increase shows up systematically in all our experiments. This
shows the importance of subtrees below the subject level, and that dependents
and modifiers of these nodes often contain key information that is preserved in
the compressed sentence.

Syntax helps. The combination of subtrees shows substantial improvement. Among
all possible setup, the (S-Tree, 1L:1R, Auxl, 1L:AR, AL:1R, Auxl) combination
obtains the best performance. It is respectively +10, +7, +9 rouge-1,-2-L points
higher than the first heuristic rule and the baseline seq2seq model on the extrac-
tive set. On the abstractive set, it is +13, +4, +11 rouge-1,-2,-L points higher
respectively.



Qualitative analysis. Table 3 shows examples of multiple subtrees retrieved from
the input document as well as the summaries generated from them. We can see
that normal sequence-to-sequence with attention and copy mechanism struggles
to identify important information and produces loops and repetitions in the
end. On the other hand, thanks to the dependency structure, the summaries
generated from subtrees contain short and coherent sentences.

7 Conclusion

We have proposed a flexible select-and-paraphrase summarization model that
decouples the syntactic analysis process from the generation component, hence
enabling plugging-in and out various syntactic parsing modules. We have demon-
strated this flexibility by seamlessly exploiting both a full-blown dependency
parser and the shallow OpenIE triples extractor. The dependency parser giving
better results, we have further proposed multiple heuristics to extract from the
syntactic tree the most informative subtrees for the task of summarization and
analyzed experimentally their potential. Compared to the state-of-the-art end-
to-end deep learning systems, the proposed approach has another advantage, as
it may more easily explain its generated summaries by presenting to the user the
actual subtrees that have lead to the output sentence. Although this approach
can theoretically handle both extractive and abstractive summarization, we show
that it is particularly effective on extractive types of summaries, and that more
work is still required to improve the generator component of this architecture.
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