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Abstract 

The discovery of biodegradable poly(alkyl cyanoacrylate) (PACA) nanoparticles by Patrick Couvreur 

has opened large perspectives in nanomedicine. Nanoparticles made from different types of PACA 

monomers have been used in different applications such as the treatment of intracellular infections or 

the treatment of multidrug resistant hepatocarcinoma. This latest application led to a Phase 3 clinical 

trial of Livatag
®
, a PACA nanoparticulate formulation of doxorubicin. Despite the success of PACA 

nanoparticles, the need to develop novel type of nanoparticles with higher drug loadings and lower 

burst release was tackled by the discovery of squalene-based nanoparticles where the drug is 

covalently linked to the lipid derivative and the resulting conjugate self-assemble into nanoparticles. 

This pioneering work was accompanied by a wide range of novel applications which mainly dealt with 

the management of unmet medical needs (e.g., pancreatic cancer, brain ischemia and spinal cord 

injury). The present Review Article covers the most important steps of the pioneering work of Patrick 

Couvreur by trying to shed light on his outstanding career that has been a source of inspiration for 

many decades. 
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Introduction 

In 1975, Patrick Couvreur defended his PhD thesis at the Catholic University of Brussels under the 

supervision of Prof. Michel Roland. The subject of the doctoral dissertation was the disintegration 

mechanism of tablets containing starch [1, 2, 3]. In 1974, at the same University, Christian de Duve 

obtained the Nobel Prize in Medicine for his research over the structural and functional organization of 

cells. The discovery of the lysosome by De Duve inaugurated a new era in cellular physiology and 

pathophysiology which included, for instance the discovery of lysosomotropic agents. These 

discoveries inspired Patrick Couvreur who realized that, for major diseases (e.g., infectious diseases or 

cancer), there was a need to make the drug reach not only the right tissue but also the right cells and to 

do so, nanoscale systems would have been the best strategy. At the same time, a post-doctoral fellow in 

the group of Prof. Peter Speiser, a leader scientist in drug delivery working at the ETH in Zurich, 

described the first polymer nanoparticles (NPs) for drug delivery applications [4]. These nanoparticles, 

mainly used for the delivery of vaccines, were made of poly(methyl methacrylate) [5]. However, to 

safely deliver drugs intracellularly, the polymer had to be readily degradable to ensure excretion and 

avoid toxicity issues deriving from accumulation of foreign materials. From this observation arose the 

idea to develop poly(alkyl cyanoacrylate) nanoparticles (PACA) [6, 7]. The choice of this material was 

established as follows: (i) alkyl cyanoacrylate monomers can readily polymerize in aqueous medium 

which is of great interest for pharmaceutical purposes; (ii) PACA are biodegradable polymers, which is 

a prerequisite for intravascular administration and (iii) PACA-based surgical glues are widely used in 

humans and they exhibit low toxicity. 

Polymer nanomedicines have been designed based on two parts: a core and shell. While the 

core is generally a biodegradable reservoir in which the drug is encapsulated, the shell has different 

cumulative functions, that were used to discriminate different generations of nanomedicines. While the 

first-generation nanoparticles are simply stabilized by surfactants to avoid aggregation and 

sedimentation, in the second generation the shell is made of grafted hydrophilic polymers that reduce 

the recognition by the monocyte phagocytic system (MPS). The third generation is obtained by 

functionalization of the shell with relevant ligands to allow cellular recognition. 

Although exceptional potentialities have arisen from the use of polymer nanomedicines, 

including phase III clinical trials reached by doxorubicin-loaded PACA nanoparticles, there was still 

the need to develop new concepts in nanomedicine to circumvent their main limitations. This led 

Patrick Couvreur to move from the physical encapsulation of drugs, performed with PACA 

nanoparticles, to their chemical encapsulation, as shown with the recently-developed squalenoylation 

approach. Indeed, squalenoylation refers to a methodology which consists in coupling squalene, a 

natural lipid precursor of the cholesterol biosynthesis, to different biologically active molecules leading 

to squalene-based prodrugs able to self-assemble in aqueous medium into nanoparticles.  
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The goal of the present review is to cover the main discoveries carried out by the group of Patrick 

Couvreur at the Catholic University of Louvain in Belgium and at the University of Paris-Sud in 

France, where he spent most of his career.  

 

 

Poly(alkyl cyanoacrylate) nanoparticles: from bench to clinical trials 

1. Nanoparticle terminology and principle of the drug physical encapsulation 

Nanoparticles are submicronic colloidal systems with a mean diameter commonly ranging from 1 to 

100 nm, which can in many cases go up to 200 nm. Most of them are spherical and denominated 

“nanospheres” or “nanocapsules”, depending on their morphology [8]. Nanospheres are matrix system 

in which the drug is dispersed and/or adsorbed onto their surface, whereas nanocapsules are vesicular 

systems wherein the drug is contained in a liquid cavity serving as a reservoir surrounded by a 

polymeric shell [8]. The principle of physical encapsulation requires a material that can form 

nanoparticles after formulation and in which the drug can be physically entrapped. In the case of 

nanospheres, the drug to be encapsulated forms non-covalent bonds (strong ionic or weaker Van der 

Waals interactions) with the polymer matrix. In these conditions, it is usually very difficult to predict 

the amount of drug associated to the matrix. In the case of nanocapsules, the drug solubility in the core 

(water-containing or oil-containing) has been shown to be the limiting factor of the total drug that can 

be loaded [9, 10]. 

 

2. Polymerization of alkyl cyanoacrylate monomers 

Alkyl cyanoacrylate monomers are known for their very high reactivity and the excellent adhesive 

properties of the resulting PACA polymers. For instance, the well-known Superglue
® 

contains short 

alkyl chain cyanoacrylates whereas longer alkyl chain cyanoacrylates have been used for biomedical 

applications, the most famous examples being their use as surgical glue for the closure of skin wounds 

[11, 12, 13, 14, 15, 16, 17] or as embolytic materials for endovascular surgery [12, 13, 18]. Because of 

their high reactivity, coming from the two electro-withdrawing groups (i.e., ester and cyano) in the -

carbon of the double bond, alkyl cyanoacrylate monomers can polymerize extremely rapidly in the 

presence of nucleophiles such as anions (e.g., hydroxide, iodide, alcoholate) or weak bases (e.g., 

alcohol, amine), resulting in a very high polymerization kinetics.  

PACA can be synthesized by either anionic (Figure 1a), zwitterionic (Figure 1b) or radical 

polymerization (Figure 1c). However, due to a faster reaction rate, anionic and zwitterionic 

polymerizations are greatly predominant compared to a radical mechanism. This explains why most 

studies on alkyl cyanoacrylates polymerization were mainly devoted to anionic and zwitterionic 

processes.  
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It has been shown that the polymerization mechanism was governed by the experimental conditions. 

For instance, when simple anions (e.g., CH3COO
-
, CN

-
, I

-
) were used as initiators, ethyl cyanoacrylate 

(ECA) and nBCA polymerized via anionic polymerization whereas a zwitterionic mechanism was 

observed when using covalent organic bases (e.g., Et3N, pyridine) [19]. In particular for zwitterionic 

polymerization of n-butyl cyanoacrylate (nBCA), it was shown that nature of the initiator (e.g., 

phosphine, pyridine and amine derivatives) [20, 21, 22, 23, 24, 25, 26], the presence of inhibitors or 

water, had a strong influence on the macromolecular characteristics of the polymer and the 

polymerization kinetics. As for anionic polymerization, when tetrabutyl ammonium salts (hydroxide, 

bromide, acetate and substituted acetates) were used as initiators for the polymerization of nBCA, a 

quasi-ideal living polymerization was reported for hydroxide-based initiators [27, 28, 29]. When a 

suitable inhibitor (e.g., boron trifluoride-acetic acid complex, acetic acid, propane-1,3-sultone) is 

introduced in the reaction medium, free-radical polymerization is predominant over ionic 

polymerizations [30, 31, 32, 33, 34] and can be initiated by conventional radical initiators (e.g., 

azobisisobutyronitrile, benzoyl peroxide). 

 

 

Figure 1. Initiation and propagation steps involved during (a) anionic, (b) zwitterionic and (c) radical 

polymerization of alkyl cyanoacrylate monomer initiated by a base (B-), a nucleophile (Nu) and a 

radical (P•), respectively.  
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Interestingly, alkyl cyanoacrylate can also be copolymerized by free-radical copolymerization with 

other vinyl monomers such as methyl methacrylate (MMA) or styrene, leading to random or alternating 

copolymers, respectively. 

 

3. Preparation of PACA nanoparticles  

PACA nanoparticles can be prepared by polymerization of alkyl cyanoacrylate monomers or by 

formulation of preformed PACA polymers. Polymerization methods gives access to either nanospheres 

or nanocapsules. First examples of PACA nanospheres were prepared by anionic emulsion 

polymerization at low pH (~2-3) initiated by bases present in the medium, such as OH- ions deriving 

from water dissociation [35, 36]. As for nanocapsules, Al Khouri-Fallouh et al. [9] proposed an 

original method in which the monomer was solubilized in an oil-containing alcohol phase followed by 

dispersion in an aqueous phase containing surfactants. In contact with water, the alcohol phase diffused 

and favored the formation of a very fine oil-in-water emulsion, where polymerization initiated by OH- 

ions took place at the monomer droplet/continuous water phase interface. This simple process was 

successfully applied to the encapsulation of large quantities of lipophilic drugs. Other authors have 

suggested systems adapted to hydrophilic molecules in which the monomer polymerizes at the 

monomer droplet/continuous oily phase interface to form the nanocapsule shell [10, 37]. For 

intravenous administration, aqueous core-containing nanocapsules were transferred from the oily phase 

into an aqueous continuous phase by ultracentrifugation of the oily suspension over a layer of pure 

water containing a non-ionic surfactant [10, 37].  

PACA nanoparticles can also be obtained from preformed polymer. The main advantage of 

this approach is that nanoparticles are made from well-characterized and purified polymers. Also, their 

intrinsic physico-chemical characteristics will not depend on the conditions encountered during the 

nanoparticle preparation as it can be the case with the previously described methods. Based on the 

solubility properties of a polymer, the general principle is to prepare a solution of the polymer and to 

induce a phase separation by the addition of a polymer non-solvent [38]. Phase separations leading to 

polymer nanoparticles are usually obtained with diluted solutions of polymers. In this method, 

polymers such as PACA are dissolved in a water-miscible solvent (e.g., acetone) and the polymer 

solution is added into water. The acetone diffuses into water, causing the formation of the 

nanoparticles, and is eventually evaporated [39]. Surface active agents are usually added to water to 

ensure the stability of the polymer nanoparticles [39]. Nanocapsules can easily be prepared by the 

same method just by adding a small amount of an organic oil in the polymer solution. When the latter 

is poured into the water phase, the oil is dispersed as tiny droplets in the solvent/non-solvent mixture 

and the polymer precipitates at the oil/droplet surface. This method led to the preparation of oil-

containing nanocapsules and was valuably used for the encapsulation of liposoluble drugs. 

 

4. Physico-chemical properties of PACA nanoparticles 
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PACA nanospheres prepared by emulsion polymerization have an average size around 200 nm that can 

be reduced to 30-40 nm by addition of a nonionic surfactant in the polymerization medium [40] or SO2 

to the monomer [41]. Entrapment efficiency, that is the percentage of drug present within the 

nanospheres compared to the initial amount of drug, has been shown to vary consistently with polymer 

physico-chemical properties, drug nature, and preparation method. It was also strongly dependent on 

the monomer alkyl chain length as well as the drug physico-chemical characteristics. Drugs can be 

entrapped into PACA nanoparticles during the polymerization process by dissolution in the 

polymerization medium or can be adsorbed onto nanoparticles surface after their preparation. 

Generally, the drug loading, that is the weight fraction of drug with respect to the total nanoparticle 

weight (i.e., drug + polymer) is higher when drug is incorporated during the polymerization reaction. 

Hydrophilic drugs, such as ampicillin and doxorubicin, can be entrapped with a high loading [42, 43]. 

High molecular weight substances, such as monoclonal antibodies, insulin or growth hormone 

releasing factor (GRF), can also be entrapped with a very high loading efficiency [44, 45, 46]. 

Interestingly, some drugs such as vidarabine [47], can initiate the polymerization of alkyl 

cyanoacrylate, leading to a covalent bond between the polymer and the drug, and hence a decrease in 

the drug activity since the drug is not released from the conjugate here formed non intentionally [48]. 

The drug release kinetics of PACA nanoparticles depends on whether the drug has been 

incorporated into the nanoparticle or simply adsorbed on its surface. The drug release, after either 

encapsulation and adsorption, is biphasic, with an initial fast release phase followed by a much slower 

second one. The initial release rate is faster when the drug is located onto the surface than when it is 

incorporated within the polymer matrix. The release rate generally decreases with the polymer molar 

mass, the particle size and the drug physico-chemical characteristics and eventual interactions with the 

polymer. Grangier et al. suggested that drug release from nanoparticles resulted from polymer 

bioerosion [45] rather than diffusion through the polymer matrix, as shown by Lenaerts et al. [49], 

who correlated drug release with polymer degradation, explaining the influence of alkyl chain length 

on modulation of drug release [50]. These results were supported by the observation that the drug 

release increased in presence of esterase in the medium [42, 45]. Thus, preparing nanoparticles from 

different PACA polymers in different proportion allowed to modulate the drug release [50]. 

Oil-containing PACA nanocapsules have been developed to encapsulate lipophilic molecules 

such as indomethacin [51]. Interestingly, they have also been extensively used to encapsulate 

hydrophilic drugs such as peptides, including very large ones such as insulin [52, 53] and calcitonin 

[54], which were entrapped at very high encapsulation efficiency compared to smaller peptides [55]. 

The encapsulation efficiency of small lipophilic drugs was shown to be related to their solubility, while 

for peptides it seemed to depend on other parameters such as their larger molecular weight. The 

extremely rapid polymerization of alkyl cyanoacrylate monomers occurring at the surface of the oil 

droplet limited the diffusion of the peptide towards the aqueous phase leading to its entrapment into the 

nanocapsules. This mechanism is consistent with the fact that the encapsulation is more efficient with 
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higher molecular weight peptides since they are less likely to escape from the oil cavity and diffuse 

through the polymer film. In contrast to what has been observed with PACA nanospheres, peptides do 

not chemically react with the alkyl cyanoacrylate monomers during the preparation of nanocapsules. 

The presence of a large excess of alcohol likely prevented peptide hydroxyl and amino groups from 

initiating the polymerization, thus preserving their biological properties. 

Water-containing PACA nanocapsules were also designed by the Couvreur’s group. In general, 

the process led to nanocapsules with diameters ranging from 250 to 350 nm. There were designed to 

encapsulate hydrophilic molecules such as antisense oligonucleotides (Figure 2) [10, 37] and small 

interfering RNA [56] with high encapsulation yields as well. The internal localization of nucleic acids 

induced a better protection against nucleases compared to a simple adsorption onto cationic PACA 

nanospheres. Successful encapsulation of nucleosides was also achieved in such nanocapsules by the 

coencapsulation of polycations forming an ion pair with phosphate nucleosides [57]. 

 

 

Figure 2. Freeze fracture electron microscopy of water-containing PACA nanocapsules. Scale bar = 

500 nm. Reproduced with permission from Ref. [37]. 

 

5. Biological fate of PACA nanoparticles and their drug content 

Very early after designing PACA nanospheres, a study related to their in vivo fate was conducted. 

Their intravenous injection in mice and rats demonstrated that they were likely opsonized by plasma 

proteins and recognized by the MPS, resulting in their rapid clearance from the blood stream [58]. 

Autoradiographic studies have evidenced that nanoparticles were mainly concentrated in the liver, the 

spleen and the bone marrow [58]. The liver content in PACA nanospheres gradually decreased and, 

after being metabolized, the carrier was excreted via the feces and urine [58] and no physical blockade 

of Kupffer cell phagocytic function occurred in the long term [59]. Excretion of the nanoparticles was 

complete after 7 days. The situation can be summarized by suggesting that the liver acts as a reservoir 



 

8 
 

of nanoparticles, conditioning their rapid first-phase disappearance from the blood and their second-

phase release in the body under degraded and excretable forms. Since most nanoparticles were 

captured by the liver after intravenous administration, the intrahepatic distribution of PACA 

nanoparticles was investigated. Lenaerts demonstrated that Kupffer cells were the major liver site of 

accumulation of PACA nanospheres [60], while a very low uptake was observed by endothelial and 

especially parenchymal cells. Uptake of nanoparticles by Kupffer cells was consistent with in vitro 

experiments carried out with macrophages [61, 62] or fibroblasts [63] which showed that endocytosis 

played a major role in the uptake process. After being endocytosed, PACA nanospheres were located 

within the lysosomes [62, 64]. Biodegradation through a bioerosion process occurred in this cellular 

compartment by means of esterases. During degradation, the hydrocarbon chain of the polymer 

remains unchanged while the enzymatic cleavage of lateral ester groups induced the solubilization of 

the resulting poly(cyano acrylic acid) polymer, leading to a progressive disassembly of the 

nanoparticles into phagolysosomes [49]. After loading into PACA nanoparticles, the fate of the drug, 

its tissue distribution and pharmacokinetic were significantly modified [65]. Since the drug distribution 

is generally correlated with the distribution profile of the carrier itself, it is admitted that the drug 

release does not occur in the blood stream after intravenous administration, because of the rapid 

elimination of the carriers. It was also shown at the same period that alteration of the drug distribution 

profile by encapsulation of some anticancer drugs into nanoparticles considerably reduced the toxicity 

of the drug. This phenomenon was attributed to the reduced accumulation of drug in organs where 

most acute toxic effects are exerted [66]. 

The modulation of the uptake of PACA nanospheres by MPS was made feasible through their 

surface coating with hydrophilic and flexible polymers such as poly(ethylene glycol) (PEG) or 

polysaccharides. Even though simple adsorption of PEG-based surfactants like poloxamers was 

envisioned it has been demonstrated, for instance from PACA nanoparticles on which poloxamer 388 

or poloxamine 908 was adsorbed, that surfactant desorption after in vivo administration resulted in 

similar biodistribution than uncoated nanoparticles [84]. To circumvent this limitation, grafting PEG 

chains at the surface of PACA nanospheres was achieved in situ during anionic/zwitterionic emulsion 

polymerization using ability of PEG to act as initiator and therefore create a covalent bond with PACA 

chains [67, 68]. Similarly, polysaccharides (e.g., dextran, chitosan, etc.) were also used as 

stabilizing/initiating moieties to give surface-modified PACA nanospheres [69, 70]. Chauvierre et al. 

then adapted Couvreur’s original protocol to a free-radical emulsion polymerization using a 

polysaccharide/Ce4+ couple as the initiator [71, 72]. Various polysaccharides were used and exhibited 

different conformation [69, 73, 74] (e.g., brush, loop) at the surface of the PACA nanoparticles that 

impacted both complement activation (Figure 3) [70] and cytotoxicity [75].  

 

Among the different approaches to obtain PEGylated PACA nanoparticles from preformed polymers, 

the synthesis of poly[(hexadecyl cyanoacrylate)-co-methoxypoly(ethylene glycol) cyanoacrylate] 
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(P(HDCA-co-MePEGCA)) [76] was certainly the most promising one [77, 78] as protein adsorption 

considerably decreased when compared to non-PEGylated counterparts [79]. Also, liver uptake was 

reduced and the circulation time significantly increased in a mice model [80]. Interestingly, P(HDCA-

co-MePEGCA) [76] nanoparticles exhibited favorable and somewhat unexpected properties for the 

passage of the blood-brain barrier (BBB) compared to the non-PEGylated counterparts and NPs with 

pre-adsorbed PEG-based surfactants (Figure 4) [81, 82, 83, 84].  

 

 

 

Figure 3. Complement activation profiles of NPs prepared via (A, B, C) free-radical emulsion 

polymerization or (D, E, F) anionic emulsion polymerization at pH 2.5 from (A, D)10 kDa dextran, (B, 

E) 67 kDa dextran, or (C, F) 100 kDa dextran. Reproduced with permission from Ref. [70]. 
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Figure 4. Concentration of radioactivity in (a) right hemisphere, (b) left hemisphere and (c) cerebellum 

or mice 1 h after IV administration of [
14

C]-P(HDCA-co-MePEGCA) NPs, poloxamine 908-coated 

[
14

C]-PHDCA NPs, polysorbate 80-coated [
14

C]-PHDCA NPs, and uncoated [
14

C]-PHDCA NPs. 

Adapted with permission from Ref. [7]. 

 

The identified mechanism by which P(HDCA-co-MePEGCA) nanoparticles preferentially crossed the 

healthy BBB relied on a specific adsorption of apolipoprotein E and B-100 onto their surface which 

allowed their translocation via low-density lipoprotein receptors (LDLR). It was also shown that PEG 

chains exposed at the surface of P(HDCA-co-MePEGCA) nanoparticles had significant affinity for the 

A1-42 amyloid peptide, which is a well-known biomarker of the Alzheimer’s disease (AD) [85, 86, 

87]. Stealth P(HDCA-co-MePEGCA) nanoparticles were also made fluorescent by incorporation of 

rhodamine moieties in the copolymer structure [88] or by encapsulation of quantum dots [89], leading 

to useful imaging tools for the accurate determination of the fate of the nanoparticles either in vitro or 

in vivo.  

 

6. PACA nanoparticles for active targeting 

The synthesis of ligand-decorated PACA nanoparticles for achieving specific cells targeting on the 

basis of molecular recognition has been the topic of intensive research on the group of Patrick 

Couvreur. The most efficient approach relied on the coupling of biologically ligands at the extremity of 

PEG chains so that they would be displayed at the surface of nanoparticles. Depending on the size of 

the ligand, the coupling may be performed either before nanoparticle formulation (small size ligands) 

or after nanoparticle formulation (both small- and large-size ligands), for obvious physico-chemical 

and self-assembly reasons. This strategy was first investigated by Stella et al. [90] who formulated 

folic acid-functionalized, PEGylated PACA nanoparticles. They first prepared P(HDCA-co-

H2NPEGCA) nanoparticles that were further functionalized with folic acid by carbodiimide coupling 

chemistry. (Figure 5) These nanoparticles were able target folate receptor over-expressing cancer cells 

[90, 91], thus opening up new perspectives for such so-called third generation PACA nanoparticles.  
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Figure 5. Synthesis of P(HDCA-co-NH2PEGCA) copolymer for further NP surface functionalization. 

Adapted with permission from ref. [92]. 

A versatile nanoparticulate platform based on PACA, exhibiting stealth, fluorescent and targeting 

properties was reported by the group of Couvreur [93]. Targeted PACA nanoparticles were obtained by 

means of “click chemistry” which is a powerful orthogonal ligation strategy [94]. The ligand of interest 

was linked to P(HDCA-co-PEGCA) copolymer prior formulation into nanoparticles. The versatility of 

the synthetic route was illustrated by the coupling of a small library of ligands such as biotin, selegiline 

and curcumin derivatives to efficiently and selectively target cancer cells in vitro (biotin, [93] with 

enhanced cytotoxicity when paclitaxel was encapsulated), or the A1-42 peptide (selegiline, [95] 

curcumin derivatives [93]). The different ligands were previously derivatized with an alkyne group 

(except selegiline that already had one in its structure) (Figure 6). 

 

 



 

12 
 

 

 

Figure 6. Synthesis of fluorescent, PEGylated and biodegradable P(HDCA-co-PEGCA) nanoparticles 

functionalized with biotin (VB7), selegiline (Sel) or curcuminoid derivatives (CurA and CurB). 

Adapted with permission from ref. [92]. 

 

 

Remarkably, the presence of biotin at the surface of PACA nanoparticles was also used to anchor 

monoclonal anti-A1-42 antibodies after incubation of the nanoparticles with streptavidin-anti-A1-42 

through avidin/biotin ligation strategy [93]. It was shown a few years later that treatment of AD-like 

transgenic mice with anti-Aβ1-42-functionalized PACA nanoparticles led to complete correction of the 

memory defect, significant reduction of the Aβ soluble peptide and its oligomer level in the brain, and 

significant increase of the Aβ levels in plasma[96].  

 

7. Major applications of PACA nanoparticles by parenteral administration 

Different applications of PACA nanoparticles have been considered by the Couvreur’s group. Among 

them, the most important dealt with the treatment of intracellular infections, anticancer therapy 

(including targeting of nucleic acids), brain delivery, and finally oral or controlled delivery of peptides 

and proteins. 

  



 

13 
 

7.1 PACA nanoparticles for the treatment of intracellular infections 

A great deal of work has been focused on the use of PACA nanospheres for drug delivery in the 

management of intracellular infections. Indeed, infected cells may constitute a "reservoir" for 

microorganisms whose accumulation inside the lysosomes protect them from antibiotics. The 

resistance of intracellular infections to chemotherapy is often related to the low uptake of commonly 

used antibiotics or to their reduced activity at the acidic pH of lysosomes. To overcome these 

drawbacks, the use of antibiotic-loaded PACA nanospheres was proposed as endocytozable 

formulation [97]. The preparation of ampicillin-loaded, biodegradable nanospheres, either 

poly(isobutyl cyanoacrylate) (PIBCA) or poly(isohexyl cyanoacrylate) (PIHCA), was achieved and the 

antimicrobial activity of the drug remained unaltered upon loading into the carrier [42, 98]. The 

effectiveness of PIHCA nanospheres was tested in the treatment of two experimental models of 

intracellular infections. Ampicillin-loaded nanospheres were first administered in the treatment of 

experimental Listeria monocytogenes infection in congenitally athymic nude mice, a model involving a 

chronic infection of both liver and spleen macrophages [99]. After adsorption onto nanospheres, the 

therapeutic activity of ampicillin was found to increase dramatically over that of the free drug. 

Bacterial counts in the liver were at least 20-fold diminished after loading ampicillin into PIHCA 

nanospheres. In addition, ampicillin-loaded PIHCA nanospheres ensured liver sterilization after two 

injections of 0.8 mg whereas no effect was observed with any of other regimens tested.  

Efficacy of ampicillin-loaded nanospheres was then evaluated in the treatment of experimental 

salmonellosis in C57/BL6 mice, a model involving an acute fatal infection [97]. All mice treated with a 

single injection of ampicillin-loaded nanospheres survived whereas in control and empty nanosphere- 

groups, all mice died within 10 days post infection. To be noted that with free ampicillin an effective-

curative effect required 3 doses of 32 mg each. Lower doses (3 x 0.8 mg and 3 x 16 mg) delayed but 

did not reduce mortality. Thus, the therapeutic index of ampicillin, calculated according to mice 

mortality, was increased by 120-fold when the drug was loaded into nanospheres.  

To clarify the mechanism by which nanospheres improved the antimicrobial efficacy of 

ampicillin, Forestier et al. [100] compared in vitro the efficacy of ampicillin loaded into PIBCA 

nanospheres with that of free ampicillin in terms of survival of L. monocytogenes in mouse peritoneal 

macrophages. After 30 h of incubation, nanospheres decreased the number of viable bacteria by 99 % 

as compared to control treatments whereas only slight differences were observed between free 

ampicillin and controls. Ampicillin-loaded nanoparticle thus appeared to be much more effective than 

free drug for inhibiting intracellular growth of L. monocytogenes. A more complicated situation was 

observed with in vitro S. typhimurium-infected macrophages, since the bactericidal effect of ampicillin-

loaded PIHCA nanospheres was poor in spite of the dramatic increase of the intracellular capture of 

ampicillin and the reduction of its efflux in the extracellular medium [101]. In another study, confocal 

microscopy and transmission electron microscopy were used to establish the intracellular trafficking of 

ampicillin-loaded PIHCA nanospheres and their colocalization with the bacteria within the subcellular 
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compartments [62]. The active uptake by phagocytosis of ampicillin-loaded PIHCA nanospheres by 

murine macrophages was clearly demonstrated together with their localization in the same vacuoles as 

the infecting bacteria [62]. Such a limited bactericidal effect of the nanospheres was therefore quite 

puzzling. The most probable explanation was to be found in the resistance mechanism of S. 

typhimurium involving the inhibition of the phagosome-lysosome fusion [102] which allowed the 

survival of the bacteria accumulating in the nanosphere-free phagosomes. 

 

 7.2 PACA nanoparticles for anticancer therapy 

One of the most extensive research of Patrick Couvreur focused on the use of PACA NPs for the 

delivery of anticancer drugs. Dactinomycin-loaded poly(methyl cyanoacrylate) (PMCA) nanospheres 

were first developed in Brussels and tested against soft tissue sarcoma S 250, an experimental solid 

tumor of the rat [103]. This first experiment demonstrated a marked tumor growth inhibition in rats 

treated with dactinomycin-loaded PMCA nanospheres compared to the free dactinomycin. However, 

rat survival curves showed that the encapsulated drug form was more toxic than the free drug. 

Significant reduction of toxicity was achieved by using poly(hexyl cyanoacrylate) (PHCA), a less 

histotoxic structural homologue. Doxorubicin-loaded PIBCA nanoparticles [66] were then designed 

just before moving to the University of Paris-Sud. The first experiment evidenced that when the drug 

was loaded into nanospheres, significant reduction of both mortality and weight loss of healthy mice 

were recorded under various administration schedules. Furthermore, cardiotoxicity was decreased due 

to the poor uptake by the myocardium [66]. Since liver was shown to be one of the main site of 

nanoparticle uptake, a study was carried out on a sarcoma M 5076 model of liver metastases 

demonstrating a better efficiency of doxorubicin-loaded nanospheres due to their important capture by 

the Kupffer cells [104]. This effect likely led to the formation of an effective gradient of concentration 

favorable for a massive and prolonged diffusion of the drug towards the neighboring malignant cells. 

Therefore, and irrespective to the dose and the administration regime, the reduction of the number of 

metastases was far much larger with doxorubicin-loaded nanospheres than with the free drug [104]. 

The superiority of the nanoparticulate system was clearly evidenced by histological examinations, 

showing that both the number and the size of the tumoral cores were lower when doxorubicin was 

loaded into nanospheres. 

The problem of cancer multidrug resistance (MDR), which is the main cause of chemotherapy 

failure, was then investigated using PIHCA nanospheres [105]. MDR is often associated with the 

overexpression of a 170-kDa cell membrane glycoprotein (i.e., P-glycoprotein (P-gp)) [106, 107], 

which could act as an efflux pump and clear numerous drugs from the cells as also shown for bacterial 

transport proteins [106, 107, 108]. Indeed, multidrug resistance is associated with a low intracellular 

accumulation of some drugs. To solve this problem, the efficacy of doxorubicin-loaded nanospheres 

was evaluated by Cuvier et al. [105] on five different multidrug resistant cell lines, whose mechanism 

of pleiotropic resistance was known to be related to the presence of P-glycoprotein. A complete 
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reversion of drug resistance was obtained in vitro, which resulted in a cell growth inhibition 

comparable to that obtained with sensitive cells exposed to free doxorubicin. Similar results were 

obtained by Kubiak et al. [109] on the resistant DC3F-AD/AZA subline. It was thus made clear that in 

vitro resistance of tumor cells to doxorubicin can be fully circumvented using biodegradable PIHCA 

nanospheres. Doxorubicin-loaded nanospheres were also tested in doxorubicin-resistant C6 rat 

glioblastoma cell lines differing by their degree and mechanism of resistance [110]. The key finding of 

this study was that reversal of doxorubicin resistance by nanospheres was closely dependent on the 

nature of this resistance: nanospheres were only efficient on pure MDR phenotype cells and not on the 

additional mechanism of resistance to doxorubicin [110]. The mechanism behind this important 

observation was not fully understood although it was found that PIBCA nanospheres allowed higher 

intracellular concentrations of doxorubicin to be reached, which was correlated with a higher 

cytotoxicity compared to the free drug [111]. However, the lack of influence of cytochalasin B on the 

cellular drug uptake suggested that endocytosis was not the main mechanism of nanoparticle 

internalization [112]. According to the increase of intracellular drug accumulation, it was hypothesized 

that the rapid drug release of doxorubicin from nanospheres adhering to the cell membrane induced an 

overflow and saturation of P-gp [112]. However, the most probable explanation relies on the formation 

of an ion-pair association of doxorubicin with soluble degradation products of PACA which, 

conversely to free doxorubicin, were no longer a substrate for P-gp [113]. Doxorubicin-loaded PIHCA 

nanospheres were investigated in vivo in a model of hepatocarcinoma in transgenic mice 

overexpressing MDR genes, demonstrating a greater antitumor drug efficacy compared to the free drug 

[114]. 

A phase I clinical trial has been conducted in 21 patients with refractory solid tumors using 

these nanospheres. In this study [115], granulocytopenia appeared to be the dose-limiting toxicity. 

However, the comparison of this toxicity with historical data relative to free doxorubicin suggested that 

the nanospheres were, in some respects, less myelotoxic. Interestingly, no cardiotoxicity was noticed 

using Doppler-Echocardiography among 18 evaluable patients. Also, the lack of hepatic toxicity ruled 

out potential risk of liver damage following doxorubicin accumulation from nanoparticle capture by 

hepatic Kupffer cells. However, appearance of an allergy shortly after the beginning of the infusion (15 

mg/m
2
) in 2 patients at, without any history of allergic reactions, was an unexpected and a disturbing 

event [115]. This complication was almost circumvented by NP dilution in 5 % dextrose and increasing 

of the perfusion duration up to 60 min. This phase 1 study was completed around 15 years later by 

another phase 1-2 clinical trial in advanced hepatocellular carcinoma. It was carried out by the 

company BioAlliance Pharma
®
 (now Onxeo

®
) who gave the name of Livatag

®
 to the drug. In phase 1, 

hematological and respiratory limited toxicities were reported at 35 and 40 mg/m
2
, giving a MTD at 

30 mg/m
2
 [116]. Partial response rate was 10%, and stable disease 70%. The phase 2-3 trial presented 

preliminary survival results arising from patients with unresectable hepatocellular carcinoma (primary 

liver cancer). Out of the total 50 patients planned, 28 were randomized and received intra-arterial 



 

16 
 

injection of Livatag
®
 (n = 17) or chemoembolization (n = 11), according to a 2/1 scheme (2 patients 

with Livatag
®
 for 1 patient with chemoembolization). Livatag

®
 was administered every 4 weeks, up to 

3 injections. Although the trial had been put on hold due to severe pulmonary adverse events, the 

assessment of survival has been continued based upon the recommendation of the independent data 

safety monitoring board. The survival results for patients treated with Livatag
®
 showed a significant 

increase compared to the control group with 31.7 months median survival versus 15 months. Patients 

who received 3 injections had an even better response with an increased median survival (33 versus 15 

months) [116]. The phase 3 is still ongoing but Onxeo
® 

recently announced that the study did not meet 

its primary endpoint of improving survival over the comparative group. Indeed, since the study was not 

placebo-controlled, patients in the comparative group received other anticancer agents (e.g., 

oxaliplatin, gemcitabine or tyrosine kinase inhibitors) which might explain the high survival rate of the 

control arm. Livatag
®
, as single agent, showed a similar effect as the one observed in the comparative 

group with active treatments. There was no difference in efficacy between the two arms (Livatag
®
 20 

mg/m² and 30 mg/m²). Nevertheless, the monitoring of the patients still enrolled in the study will 

continue to completion expected in 2019. 

In the early 90’s, the group oriented some research on the application of PACA for nucleic acid 

delivery. The first molecules to be delivered were antisense oligonucleotides (ASO) followed by small 

interfering RNA (siRNA). ASO and siRNA are potentially powerful new drugs because of their 

selective inhibition of gene expression. They are therefore very potent in the treatment of cancer 

mainly because of their capacity to target specific signaling pathways. However, their use as 

therapeutics is a challenge because of their high susceptibility to enzymatic degradation and their poor 

penetration across biological membranes. Their incorporation into nanoparticulate systems has 

appeared as an interesting alternative that would enhance their stability in biological fluids. In the case 

of nanospheres made of synthetic polymers, since oligonucleotides have no affinity for the polymeric 

matrix, association with nanoparticles has been achieved by ion pairing with a cationic surfactant (e.g., 

cetyltimethylammonium bromide (CTAB)) adsorbed onto the nanoparticle surface [117]. 

Oligonucleotides bound to PACA nanospheres in this way were protected from nucleases in vitro [118] 

and their intracellular uptake was increased [119]. In addition, nanospheres were able to concentrate 

intact oligonucleotides in the liver and in the spleen [120]. This formulation strategy also allowed ASO 

to specifically inhibit cell proliferation and tumorigenicity, mediated by mutated Ha-ras, in nude mice 

[121]. 

However, these nanospheres had two drawbacks which were their toxicity, mainly due to the 

presence of CTAB [122], and the quick desorption of the ASO in the presence of serum, which 

resulted from nanoparticle surface erosion by serum esterases [120]. Accordingly, PACA 

nanocapsules with an aqueous core containing the ASO were developed. Stability studies 

demonstrated that nanoencapsulation was able to protect ASO against degradation by serum nucleases 

with a higher efficacy compared to CTAB-coated nanospheres, in which the oligonucleotides were 
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simply adsorbed onto the NP surface [118, 119] rather than encapsulated. Phosphorothioate ASO 

directed against the fusion gene EWS-Fli1 responsible of Ewing sarcoma were encapsulated within 

PACA nanocapsules and tested in vivo for their efficacy against the tumor model in mice after 

intratumoral administration [123]. Only intratumoral injection of ASO-loaded nanocapsules led to a 

significant inhibition of tumor growth. No antisense effect could be detected with the free 

oligonucleotide. In a previous study, using the same antisense sequence as a free drug, Tanaka et al. 

[124] demonstrated inhibition of a tumor growth in a similar model, but a cumulative dose of 500 

nmol oligonucleotide was needed. With nanocapsules it was possible to obtain an comparable effect to 

that observed by these authors but with a 35-fold lower dose. Therefore, the PACA nanocapsule 

technology allowed to lower phosphorothioate doses and thus avoided the toxicity and the loss of 

specificity resulting from phosphorothioates at higher doses [125]. The mechanism at the basis of the 

effect on the tumor growth likely relies on the protection of the oligonucleotide provided by the 

nanocapsules, which may also act as a controlled oligonucleotide release system in the tumor. Thus, 

the use of phosphorothioates at low doses combined with nanocapsules represented a new and safe 

therapeutic strategy for antisense therapy. Using the same in vivo experimental model, Toub et al. [56] 

showed that PIBCA nanocapsules were efficient to deliver siRNAs into tumour (Figure 7). A dramatic 

inhibition of tumour growth was observed, especially when a higher cumulative dose was employed. 

In particular, a reduction of the tumour volume to about 80% was observed allowing a lower daily and 

cumulative dose and a better efficacy than for encapsulated ASO. For both the doses, naked siRNA 

had no inhibitory effect on tumour growth. 

 

 

Figure 7. Inhibition of EWS-Fli1-expressing tumor growth in nude mice by siRNA-containing PIBCA 

nanocapsules at a dose of 0.8 mg/kg. The treatment was performed by intratumoral administration for 

20 days. Arrows correspond to the days of treatment. ○, AntiSense siRNA-loaded PIBCA 

nanocapsules; ▲, control siRNA-loaded PIBCA nanocapsules; ■, AntiSense siRNA; ♦, control 

siRNA; ●, saline. Bars indicate the standard deviation of the mean (n = 6). 
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7.3 PACA nanoparticles for peptide and protein delivery 

In the early 90’s, several drug delivery scientists have considered the use of nanoparticles for oral or 

controlled delivery of peptides/proteins. The group of Couvreur has focused much attention over the 

oral administration of insulin trying to overcome its degradation in the gastrointestinal tract and 

improve its bioavailability. Interesting results have been obtained with insulin-loaded PIBCA 

nanocapsules [53]. In diabetic rats, insulin nanocapsules given by a single intragastric administration 

after an overnight fast, reduced glycemia by 50-60 %. This effect appeared 2 days after administration 

and was maintained for a period of 20 days. On the contrary, free insulin did not affect glycemia when 

administered orally under the same experimental conditions [53]. It has been hypothesized that the 

long-term hypoglycemic effect could be due in part to the progressive arrival of nanocapsules from the 

stomach to the gut, leading to a delayed absorption. Grislain et al. [58] have found an intense 

radioactivity signal in the gastrointestinal tract of rats 4 h after administration of radiolabeled PACA 

nanospheres. Radioactivity was still present in the mucosa 24 h later. After arrival into the gut, insulin-

loaded nanocapsules may be protected against proteolytic enzymes and absorbed by the intestinal 

mucosa. Then, they were probably transported to the liver by the portal route. Thus, a slow process of 

redistribution from that organ and/or a slow release of insulin from nanocapsules could have occurred. 

One transport pathway that was put forward was the uptake by M cells. Indeed, M-cells appeared to be 

the main site for the uptake of PACA nanoparticles after oral administration allowing NP translocation 

[126 , 127].  

After subcutaneous administration of PIBCA nanospheres, autoradiographic pictures revealed a 

progressive reduction of the staining at the injection site, suggesting that nanoparticles were slowly 

biodegraded [128]. In the same study, PIBCA nanoparticles were found to release growth hormone 

releasing factor (GRF) in a sustained-release manner. Comparison of the AUC of free GRF and GRF 

loaded into PIBCA nanoparticles showed that, in addition to the "slow release" process, nanoparticles 

were able to increase the bioavailability of the peptide. This improvement could be attributed to the 

partial protection from enzymatic degradation which may result from its encapsulation into 

nanoparticles while the free GRF is quickly metabolized at the injection site [128].  

 

The squalenoylation technology  

1. The discovery 

Gemcitabine is an antimetabolite (i.e., nucleoside analogue) which has demonstrated activity against a 

variety of solid tumors [129]. However, its efficacy is dramatically hampered by the short half-life due 

to rapid metabolization, the limited intracellular penetration, restricted to the presence of specific 

membrane transporters and occurrence of resistances [130, 131, 132]. Therefore, design of efficient 

gemcitabine formulations is still an important medical need. To protect gemcitabine from degradation, 

a variety of lipid prodrugs has been synthetized by conjugation of acyl chains of different length to the 
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amino group in 4’ of the drug. However, the covalent modification caused reduction of the aqueous 

solubility, thus requiring encapsulation in lipid or polymer nanocarriers to allow intravenous 

administration [133, 134, 135, 136, 137]. Encapsulation of such lipid derivatives in PACA 

nanoparticles was proposed [138]. However, the drug concentration in the prepared formulations was 

extremely low reaching a maximum value of only 1 mg.mL
-1

 for the stearoyl derivative. Expecting 

that more compact lipid chains would have improved the encapsulation yield, the idea to conjugate 

gemcitabine to cholesterol was envisioned but was rapidly abandoned due to a possible cardiovascular 

risks associated to the intravenous administration of cholesterol during a long-term treatment. Thus, 

attention was shifted to squalene, an acyclic triterpene precursor in the cholesterol biosynthesis. 

Surprisingly, whatever the initial amount of squalene-gemcitabine (SQGem) conjugate, no free 

prodrug was detected in the supernatant after centrifugation of PACA nanoparticles, suggesting 100% 

drug encapsulation. In front of these results, Patrick Couvreur sensed that squalene-gemcitabine 

conjugates were able to independently self-assemble into nanoparticles and that the observed 100% 

loading eventually corresponded to quantitative formation of SQGem nanoparticles. This assumption 

was further confirmed without PACA copolymer, where SQGem prodrug self-assembled in water to 

form nanoparticles without the need of carrier material.  

This fortuitous discovery opened the door to an original approach, termed “squalenoylation”, 

that enabled the design of a brand-new family of nanomedicines. It refers to the synthesis of prodrugs 

resulting from covalent conjugation of the parent drug to a squalene molecule, followed by their self-

assembly in aqueous medium into nanoparticles. Considering squalene both acted as a promoiety and 

drug carrier, this concept led to very high drug loading nanoparticles (much higher than any other 

traditional drug-loaded nanoparticulate systems) and increased therapeutic efficacy compared to the 

free drugs. Proposed for the first time in 2006 [139], this versatile concept has been successfully 

applied to a broad range of different anticancer drugs [140, 141, 142, 143, 144], neuroprotective 

molecules [145], antibiotics [146, 147], antiretrovirals [148, 149], contrast agents [150], ligands [151], 

small peptides [152, 153, 154], fluorescent dyes,[151] siRNA [155, 156] and also PEG [157]. A 

complete list of all synthetized prodrugs or conjugates with contrast agents and ligands is reported in 

Table 1. 

 

Although the idea of synthetizing a prodrug by covalent linkage between a drug and a 

(macro)molecule [158, 159] was not new, the use of a natural terpenoid such as the squalene as 

promoiety had never been previously reported. Squalene is abundant in shark oil and largely 

distributed in human tissues with the highest content found in the skin. In addition, it is well tolerated 

after intravenous administration or oral injection. Thus, while many of the synthetic materials 

employed for the formulation of nanomedicines may carry a risk of potential toxicity, immunogenicity 

or tissue accumulation because of poor degradability/excretion, squalene has a well-known safety 

profile which made it an ideal biomaterial for the design of drug delivery systems. After the first 
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successful results obtained from SQ-based prodrugs, the extreme diversity in chemistry and physical 

properties of terpenoids prompted further studies on the applicability of the squalenoylation approach 

to other terpenes for the treatment of severe diseases such as cancer or infections. The ground-

breaking nature of this approach led Patrick Coureur being awarded a European Research Council 

(ERC) Advanced Grant in 2010 (TERNANOMED, FP7-IDEAS-ERC, n°249835). Considering that 

many natural and biocompatible terpenoids are constituted by isoprene units, the goal of the project 

was not only to apply the squalenoylation to other drugs and pathologies, but also to identify the 

influence of the isoprenoid chain length on the capacity (or not) of the resulting prodrug to self-

assemble into nanoparticles and to investigate the role of the promoiety on the in vitro/ in vivo 

pharmacological activity.  
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Table 1. List Of Prodrugs Obtained By Covalent Conjugation Of Squalene To Active Molecules, Ligands Or Contrast Agents. 

Drug class or 

contrast agent 
Drug Chemical formula of the prodrug 

Reference 

 

Alkylating 

agents 

Cisplatin 

 

[142],[160] 

Ifosfamide 

 
 

[161] 

WO2012/07682

4 A1. 

 

Antimetabolites Gemcitabine 

 

[139, 141, 162, 

163] 
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Gemcitabine 

monophosphate 

 

 

 

 

[144] 

Deuterated 

squalene-

gemcitabine 

 

[164] 

Antimitotic 

Agents 
Paclitaxel 

 

[165] 
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[165] 

 

 

 

 

 

 

Gemcitabine-

Paclitaxel 

bolaform 

conjugates 

 

 

 

 

 

 

 

 

 

 

 

 

[166] 
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DNA 

Intercalators 
Doxorubicin 

 

[143] 

β-lactam 

antibiotics 

Penicillin G  

[147] 

 

 

[147] 
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Tyrosine kinase 

inhibitor 
Sunitinib 

 

[167] 

siRNA 

RET/PTC1 

siRNA 

 

[155] 

TMPRSS2-ERG 

siRNA 

 
 

[156] 

 



 

26 
 

Neuroprotective 

molecules 
Adenosine 

 

[145, 168] 

ANTI HIV 

nucleosides 

Didanosine  

 

[148] 

Dideoxycytidine  

 

[139, 149] 
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Neuropeptides 

Leu Enkephaline 

 

[154] 

Met Enkephaline 

 

[154] 

Endomorphine 1 

 

[154] 
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Endomorphine 2 

 

[154] 

Antioxydants 

Vitamin C 

 

PCT/FR2012/1

2 52382 

Curcumin 

 

[169] 
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Statines Pravastatine-SQ 

 

PCT/IB2009/05

4781 

Targeting 

Ligands 

CKAAKN 

Peptide 

 

[152, 153] 

Biotin 

 

 

[151] 
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MRI Contrast 

agents 
Gadolinium 

 

[150] 
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2. General synthetic strategy and formulation 

Squalene is an acyclic triterpene that possesses only non-conjugates, trisubstituted double bonds, 

without any functional group that would allow for a direct conjugation to drug molecules. Thus, a 

required preliminary step in the synthesis of all squalene-based prodrugs is the chemical modification 

of squalene to introduce a functional group at the chain-end suitable for conjugation. This 

functionalization step was also required for the synthesis of prodrugs in which the SQ moiety has been 

replaced by polyisoprenoyl chains of different lengths (Figure 8) [170, 171]. Briefly, squalene was 

readily converted in 2,3-epoxysqualene (1) according to the van Tamelen's method [172], followed by 

oxidative cleavage to obtain 1,1′,2-trisnorsqualene aldehyde (2), a key molecule in the synthetic 

pathway. Indeed, the aldehyde derivative can then be readily modified to introduce hydroxyl (3), 

carboxyl (4) or amino groups (5) in the squalene structure to enable its coupling with drugs of interest 

(Figure 8). The conjugation reaction schema has been opportunely adapted as function of the drug 

molecule available functional groups. 

For instance, the nucleoside analogues derived from cytidine (e.g., gemcitabine, didéoxycytidine) have 

been coupled to the squalenic acid derivative (4) by simple condensation of the corresponding mixed 

anhydride, obtained using ethyl chloroformate as an activator, onto the amino group of the nucleoside 

analogues (Figure 9) [139]. Conjugation to this position allowed for protection of gemcitabine from 

deamination by deaminases and delayed its metabolization into inactive difluorodeoxyuridine. 

 

 

 

Figure 8. Syntheses of hydroxyl (3), carboxyl (4) and amino (5) squalene derivatives from 2,3-

epoxysqualene (1) Adapted with permission from ref. [173]. 
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Figure 9. Synthesis of squalene-gemcitabine (SQGem). 

 

For nucleoside analogues lacking the primary amino group on the purine/pyrimidine ring (e.g., 

didanosine [148]), conjugation was performed by esterification of the 5’OH group in the sugar moiety. 

Similarly, formation of an ester bond allowed for conjugation of squalene to doxorubicin and 

paclitaxel. For the latter, acylation has been selectively performed on the hydroxyl group in position 

C2’, chosen for its higher accessibility and its crucial role in tubulin polymerization activity [174, 

175]. Apart from direct coupling of squalene to paclitaxel, giving an ester linkage, different spacers 

resulting from intercalation of succinic acid, diglycolic acid, oligo(ethylene glycol) chains as well as 

dienic units, have been investigated [165, 176]. By using these more polar/labile and/or less sterically 

hindered linkers, the idea was to promote release of the drug from the prodrug and therefore the 

biological activity. Environmentally-sensitive linkers have also been used to conjugate squalene to 

antibiotics (e.g., penicillin G), allowing spatio-temporal release of the drug and efficient activity 

against intracellular bacterial infections [147]. 

Sequential oxidation of cisplatin and condensation with succinic anhydride led to bis-succinyl 

platinum (IV) complex, that was then linked to squalene amine after ethyl chloroformate activation of 

the carboxyl groups, to give squalene-cisplatin prodrug [177]. In the case of the adenosine, 

conjugation of squalenic acid to its amino group did not yield nanoparticles after nanoprecipitation. 

Stable colloidal nanoparticles were rather obtained when squalenylacetic acid, bearing a longer 

hydrophobic chain, was used [145]. 
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Analogues synthetic pathways were also used to conjugate squalene to macromolecules, such as 

siRNA [155]. This was achieved by copper-free “click chemistry” through a high yield, reproducible 

synthesis without by-products [156]. 

The nanoparticle preparation relied on simple nanoprecipitation of an organic solution of 

squalene-drug into an aqueous solution (pure water or with 5 wt.% dextrose) and successive solvent 

evaporation under reduce pressure. The formulation process does not require the use of any surface-

active agent, which are generally employed to stabilize most of the nanoscale drug delivery systems, 

but simply took advantage of the capacity of squalene to adopt a compact conformation in water to 

form self-stabilized, stable nanoparticles. This feature was likely related to the flexibility of the 

squalene chain which, during cholesterol biosynthesis, allows interaction with the catalytic pocket of 

oxydosqualene cyclase enzyme in which the cyclization in lanosterol occurs [178]. 

The chemical linkage between squalene and the drug enabled 100% entrapment efficiency 

without the need for tedious purification steps to remove unloaded drugs. Remarkably, absence of any 

other materials during formulation resulted in a dramatic increase of drug loading as only squalene 

molecular weight has to be taken into account (drug loading (wt.%) = MWdrug/MWSq-drug). Extremely 

high values have been reached while only a few percentages were generally obtained with 

conventional drug-loaded nanoscale systems. Another advantage, common to any kind of prodrugs, is 

the absence of “burst release”, which is the quick and uncontrolled release of drugs post-

administration, and the protection of the drug from early degradation, thus avoiding harmful toxicity 

until the drug gets cleaved from squalene. 

 

3. Representative examples of squalene-anticancer drugs  

3.1 Squalene-gemcitabine 

Among the different squalene-based prodrugs that have been synthesized so far, the most 

representative and most studied ones is certainly the SQGem [139, 179]. Nanoprecipitation in water of 

an ethanolic solution of SQGem resulted in the formation of nanoparticles with average diameter of 

130 nm, whose Cryo-TEM images showed a hexagonal/multifaceted shape and an internal structure 

composed of reticular planes. X-ray diffraction analysis revealed a stacking of direct or inverse 

cylinders and the packing of SQGem in an inverted hexagonal phase (Figure 10). 
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Figure 10. (a) Schematic drawing of the hexagonal (HII) packing of SQGem. (b) SQGem arranged 

along water channels containing hydrophilic moieties. (c) Face (upper part) and top (lower part) views 

of a construction of two sections of column, each made of six layers of a disk-like assembly composed 

of 20 SQGem prodrugs. On the face view, the aqueous core is clearly visible in the center 

(oxygen/red), and the extent of the polar heterocyclic part can be appreciated by the presence of a 

circle of pyrimidinone nitrogen atoms (blue) and fluorine atoms (yellow). The top view shows the 

central inclusion of the water spindle surrounded by lipophilic squalene side chains. Adapted with 

permission from refs. [173, 179] 

 

Conjugation of squalene to Gem favourably modified the pharmacokinetic, metabolism and 

biodistribution profiles comparatively to the parent drug. SQGem nanoparticles displayed long 

circulation with controlled and prolonged drug release, thus increasing the blood t1/2 (~3.9-fold), the 

mean residence time (~7.5-fold) and the distribution volume compared to the drug administered as a 

free molecule [162]. Consequently, SQGem nanoparticles exhibited improved therapeutic efficacy in 

various preclinical animal models including subcutaneously grafted tumors and aggressive metastatic 

leukemia. Moreover, only treatment with SQGem induced a long-term survival both at equimolar and 

equitoxic doses [140, 141, 163]. These results have been attributed to: (i) improved accumulation of 

SQGem in the organs of the reticuloendothelial system (i.e., spleen, liver, lung), the major site of 

metastatic spread; (ii) an intracellular uptake independent from the human equilibrative nucleoside 

transporters (hENT) [180]; (iii) a slow release of free Gem after cleavage of the prodrug by 

intracellular cathepsins B and D [139] and (iv) the avoidance of saturation of kinases involved in the 

phosphorylation of Gem into the active forms responsible of the anticancer activity [181, 182]. 
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However, the mechanism by which SQGem nanoparticles accumulated in cancer cells remained 

unclear for more than a decade until it was recently elucidated [183, 184]. Attention was first focused 

on evaluation of the interaction between SQGem nanoparticles and the complex microenvironment 

encountered in the bloodstream. It is composed of proteins, lipoproteins and blood cells, that are 

known to confer a “biological identity” to nanoparticles [185, 186, 187]. This identity usually governs 

the nanoparticle fate in vivo, influencing biodistribution, pharmacokinetic, therapeutic efficacy and 

potential toxicity. The vast majority of studies published so far in this field, relied on identification of 

adsorbed proteins at the nanocarrier surface, forming the so called “protein corona”. However, only 

limited attention has been devoted to interaction with lipid components of the blood, transported in 

circulation by lipoproteins (LPs), and with lipoproteins as a whole [188, 189]. 

The lipidic nature of SQGem nanoparticles and the biosimilarity of squalene with cholesterol, 

let the Couvreur’s group suppose that SQGem had a similar behaviour to that of cholesterol. Thus, 

SQGem nanoparticles would interact and be transported in the circulation by lipoproteins (LPs), which 

would act as an indirect endogenous carrier capable to drive SQGem to lipoprotein receptor (LDLR) 

overexpressing cells such as the cancer ones. Among the different lipoproteins, LDL are the main 

cholesterol transporters in humans to the peripheral tissues [190] and hence seemed to be the best 

candidate to perform this indirect targeting. To be noted that the overexpression of LDL receptors in 

cancer cells and the increased uptake of LDL observed in several tumors [191, 192, 193, 194] reflects 

their increased metabolic need of cholesterol due to their fast proliferating rate [194, 195, 196]. 

This hypothesis was confirmed by in vitro and in vivo studies. Incubation with human blood 

indeed revealed a 500-fold higher affinity between SQGem and LDL compared to albumin (Figure 

11a). Analogous behaviour was observed after intravenous administration of SQGem nanoparticles to 

rats (Figure 11b) and confirmed the tendency of SQGem nanoparticles to accumulate in the main 

cholesterol transporting particles (that is, LDL in humans and HDL in rodents [197]). Interaction 

between SQGem nanoparticles and lipoproteins might be imagined as a dynamic process in which the 

LDL (~20 nm in diameter) adsorb at the nanoparticle surface (~130 nm in diameter), followed by 

insertion of SQGem monomers into lipoproteins and further disassembly of SQGem nanoparticles in 

the biological compartment, as demonstrated by   rster  esonance  nergy  ransfer (FRET) [184, 

198]. 
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Figure 11. (a) Molar concentration of SQGem and Gem per mole of LDL or albumin after incubation 

with total human blood (5 min). Bars represent mean ± standard error of the mean. (b) Radioactivity 

(magenta lines) and cholesterol (blue line) distribution among the collected fractions of plasma 

obtained from rats treated with 
3
H-SQGem or free 

3
H-Gem 5 min post administration. Results are 

expressed as relative radioactivity (mean values) compared to total plasma. Adapted with permission 

from ref. [184] 

 

These experimental evidences were further supported by molecular dynamic simulations which 

showed that transfer of SQGem to the lipid core of the lipoproteins was energetically favourable and 

that SQGem was able to penetrate in the lipoprotein core and then be transported in the circulation. 

Conversely, a significant energy barrier (~ 60 kJ.mol
-1

) not only prevented penetration of free Gem 

into the LDL core but even any simple interaction with their surface (Figure 12). This corroborated the 

idea of a specific interaction with lipoproteins mediated by squalene moieties. 

 

 

 

Figure 12. Potentials of mean force of transferring individual Gem (magenta line) and SQGem (blue 

line) molecules from bulk water to the lipid core of model LDL particle. The plots are superimposed 

onto a snapshot of the equilibrated LDL system. 1-palmitoyl-2-oleoyl-sn glycero-3-phosphocholine 

lipids are shown in blue, 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine in red, cholesterol in 
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orange, cholesterol oleate in grey and glyceryl trioleate in violet. Adapted with permission from ref. 

[184] 

The biological evaluation demonstrated that lipoproteins were effectively transporting SQGem 

prodrugs to cancer cells, in which intracellular uptake occurred via LDL receptors. This endogenous 

transport was also responsible of a higher anticancer activity of SQGem compared to the free drug 

[183]. 

Interestingly, such interactions with lipoproteins was not only limited to the SQGem as 

analogous repartition was also observed for other squalene derivatives [184], thus revealing the key 

role of the squalene moiety in this drug delivery mechanism. Although the use of the lipoproteins as 

drug carriers is not a novel concept, the affinity of squalene to lipoproteins has the potential to 

simplify and enlarge their use as delivery vehicles. Indeed, previously described approaches involved 

complex isolation of lipoproteins or the synthesis of LDL-like particles in which drugs have to be 

loaded before administration [199, 200, 201, 202]. Here, thanks to the presence of squalene, it was 

possible to exploit intravascular events, which spontaneously occurred after intravenous 

administration of the SQ-based nanoparticles. This biomimetic approach thus represented a novel 

strategy to deliver anticancer drugs to tumors. 

 

3.2 Squalene-doxorubicin 

The squalenoylation was also applied to doxorubicin (Doxo) [143]. Nanoprecipitation of SQDoxo led 

to nanoparticles with a drug loading as high as 57 wt.% and an unexpected loop-train, rod-like 

morphology as observed by Cryo-TEM, conversely to the vast majority of drug delivery systems that 

predominantly displayed spherical morphologies (Figure 13).  

 

 

Figure 13. (a) Cryogenic transmission electron microscopy (Cryo-TEM) and (b) transmission electron 

microscopy (TEM) of SQDoxo nanoparticles. Scale bars: (a) 100 nm and (b) 500 nm. Adapted with 

permission from ref. [143]. 
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Surprisingly, despite the lack of stealth coating at their surface, SQDoxo nanoparticles significantly 

prolonged the Doxo circulation time in the bloodstream and reduced its cardiac accumulation 

compared to the free drug [143]. These results were assigned to the elongated shape of SQDoxo 

nanoparticles, allowing for their alignment in the bloodstream, in a longitudinal fashion to 

macrophages, thus preventing their capture. In static conditions (e.g., in vitro in cell culture 

experiment), however, a strong uptake by cancer cells was observed. These results were in agreement 

with previous data obtained with filomicelles [203] and clearly highlighted the crucial role of the 

shape of nanoparticulate systems on their fate following intravenous administration. These so called 

“nanospaghetti” strongly reduced the cardiac toxicity compared to the free drug, even when tested at 

2-fold-higher dose (1 or 2 mg.kg.week equiv. Doxo) in a model of hypertensive rat as attested by 

absence of myocardial injury either at histological and biochemical (e.g., quantification of troponin-T) 

level. Moreover, while the free drug negatively affected the food intake causing a significant loss of 

body weight, no sign of toxicity was observed during the whole study with SQDoxo nanoparticles.  

This formulation was even benchmarked against commercial liposomal formulations (i.e., 

Doxyl, Myocet). In two experimental models of lung (M109) and pancreatic (MiaPACA-2) cancer, 

SQDoxo nanoparticles led to the highest anticancer efficacy with a tumor mass reduction up to 90 and 

95%, respectively, whereas Myocet and Doxyl were both below 60% [143]. In agreement with these 

results, immunohistological evaluation of tumor biopsies revealed the highest apoptotic activity 

(caspase-3 activation) in the SQDoxo treated group (Figure 14).  

 

 

Figure 14. (a) Comparison of the antitumor activity SQDoxo nanoparticles with commercial Doxo 

liposomal formulations (Myocet and Caelyx) administered to MiaPaCa-2 (human pancreatic) tumor-

bearing mice (*p < 0.05, **P < 0.01). Results are reported as means ± SD. (b) Count of activated 

caspase-3 labelled cells in biopsies of M109 (murine lung) and MiaPaCa-2 tumor collected from mice 

treated with SQDoxo nanoparticles (**p <0.01). Adapted with permission from ref. [143]. 
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3.3 Squalene-adenosine 

Disorders of the central nervous systems (CNS) represent a major health problem for which efficient 

therapeutic strategies are urgently required. However, delivery of drugs to the CNS is extremely 

challenging. Not only active molecules are rapidly degraded and excreted, but the blood brain barrier 

(BBB) and the blood-cerebrospinal fluid barrier acts as gatekeepers blocking access to central tissues. 

These problems are faced for instance by adenosine (Ad) which, despite its therapeutic potential due to 

its capacity to stimulate neuronal survival, inhibit inflammation and improve the blood flow [204, 205, 

206, 207], has never been used for the treatment of CNS disorders because of its shorth half-life and 

its inability to cross the above-mentioned biological barriers [208, 209, 210]. In this context, by 

aiming to improve Ad circulation time and promote the BBB crossing by exploiting the affinity of 

squalene for cell membranes [211], synthesis and biological evaluation of squalene-adenosine (SQAd) 

nanoparticles were performed [145]. Such NPs showed spherical shape mean diameter of 120 nm and 

a unique sponge-like supramolecular organization. 

The therapeutic activity of SQAd nanoparticles was evaluated on preclinical animal models of 

cerebral ischemia and spinal cord injury. In the first model, pre-ischemia intravenous administration of 

SQAd nanoparticles resulted in a dramatic dose-dependent neuroprotective effect, leading to a 

reduction of the infarct volume compared to Ad-treated mice and control groups. Such neuroprotective 

action was also observed when nanoparticles were administered 2 h post-ischemia, which represented 

a more clinically relevant condition. As expected, the smaller infarcted area translated to a better 

functional recovery 24 h after injury (Figure 15). This protection was likely assigned to an 

improvement of the cerebral microcirculation consequent to a vasodilatory action, mediated by the 

released adenosine, on endothelial cells and pericyte/astrocytes receptors. Noteworthy is that despite 

the multiple receptors on which Ad could act, the treatment did not induce any undesired effect or 

alteration of haematological, cardiovascular and hepatic biochemical parameters. 

 

The neuroprotective action was also observed in rats which underwent to a T9 contusion, the most 

relevant model of spinal damage in human [212]. Treatments were administered immediately after the 

trauma and functional scores of animals were monitored over time for up to 28 days. At 72 h post 

trauma, the large damage observed in the cord of rats treated with the free Ad or control formulations 

strongly affected their locomotory activity and they were unable to move their hindlimbs. Remarkably, 

no traumatic area was visible in SQAd-treated rats, which were capable to walk without difficulties. 

These animals reached a score level of 14.4, considered indicative of an axonal activity in the lesioned 

area, as soon as 9 days post trauma [212]. This result was in good agreement with lower white matter 

damage and persistence of a higher number of intact small myelinated axons (Figure 16).  
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Figure 15. (a) Intravenous administration of SQAd nanoparticles just before or 2 h post middle 

cerebral artery occlusion (MCAo) compared to control groups that received vehicle (dextrose 5%), 

empty SQ nanoparticles or free Ad. Data presented as mean mm
3
 ± SD; 

† 
and * indicate p < 0.05 

compared to respective controls. Insets: ischemic volumes in mice subjected to transient (2 h MCAo 

and 22 h reperfusion) and permanent (24 h MCAo) ischemia identified by reduced Nissl staining 

(magnification ×10). (b) Neurologic deficit scores assessed 24 h after the induction of stroke. Data 

presented as mean mm
3
 ± SD; 

† 
and * indicate p < 0.05 compared to respective controls. Adapted with 

permission from ref. [145]. 
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Figure 16. Pharmacological efficiency of SQAd nanoparticles in a model of spinal cord injury in rats. 

(a) Locomotor scores after 24, 48 and 72 h, and up to 28 days post-trauma using the Basso, Beattie and 

Bresnahan grading scale. Data presented as mean ± SEM, # ns, *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001. (b) Quantification of damages on small myelinated axons. Data are presented as mean 

± SD, ****p<0.0001 compared to all groups. Adapted with permission from ref. [145]. 

 

Unexpectedly, no passage of SQAd nanoparticles across the BBB was observed in vitro and their 

disassembly occurred in the intracellular compartment during translocation as shown by double 

radioactive labelling and FRET. Conjugation of Ad to squalene protected the drug from early 

degradation and allowed to form an adenosine reservoir in the circulation, resulting in increased 

plasma half-life for up to 1 h post-administration. Conversely, free Ad was rapidly degraded in less 
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than 1 min. Consequently, the observed central effect was the result of a direct vascular action 

mediated by Ad which then induced an indirect neuronal protection. Since it was the first time that 

such a therapeutic activity had been provided, these results may pave the road to application of 

squalenoylation in the field of neurosciences. 

The versatility of the squalenoylation approach was also illustrated by its application to small 

interfering RNA for the inhibition of the ret/PTC fusion oncogene in the papillary thyroid carcinoma 

[155], to antibiotics for the treatment of resistant intracellular infections [146, 147], as well as antiviral 

molecules for the treatment of HIV-resistant strains [148]. Combination of therapeutic and imaging 

properties has also been witnessed through construction of a squalene-based nanotheranostic system 

[177]. 

 

4. Surface modification of squalene-based nanoparticles 

4.1 PEGylation 

To confer stealth properties to squalene-based nanoparticles, their PEGylation was investigated [157]. 

It relied on the concomitant self-assembly of a squalene-based prodrug with 2 kDa PEG derivatives; 

either SQPEG or cholesterol-PEG (CholPEG). This was successfully applied to SQGem and 

SQ-dideoxycytidine. It was found that, whatever the SQDrug:SQPEG weight ratio (ranging from 

1:0.008 to 1:07), SQPEG were efficiently incorporated (72–97 wt.%) in the resulting composite 

nanoparticles, as shown by radioactivity studies, zeta potential and size measurements. It was also 

noted that the higher the PEG derivative amount, the lower the size of the resulting nanoparticles. For 

instance, SQGem:SQPEG with 1:01; 1:0.3; 1:0.5 and 1:0.7 wt.% led to 120, 115, 104 and 89 nm, 

respectively (Figure 17a). It was hypothesized that by anchoring of SQPEG or CholPEG moieties, 

PEG altered the supramolecular organization of the nanoparticles via swelling of the inverted 

hexagonal phases. Freeze fracture studies showed that the SQGem nanoparticles prepared using either 

CholPEG or SQPEG lost their toroidal shape (Figure 17b) to adopt a spherical appearance with a 

regular inner structure and a golf ball-like shell (Figure 17c). Interestingly, PEG derivatives were also 

incorporated into already-formed SQGem nanoparticles, leading to slightly lower incorporating 

efficiencies (71–82 wt.%) and rapid increase of the average diameter and the particle size distribution. 

PEGylated SQGem nanoparticles exhibited superior in vitro anticancer activity on Gem-resistant 

leukemia L1210 10K cells than either their non-PEGylated counterparts (IC50 ~3 fold higher) or free 

Gem (IC50 ~6.4 fold higher) (Figure 17d), likely because of an improved intracellular penetration. 

Indeed, the relatively smaller size of the SQGem:SQPEG nanoparticles together with the surface 

activity of SQPEG may induce a temporary perturbation of the cell membrane, facilitating an 

improved uptake of the nanoparticles. Considering that SQGem nanoparticles are already more 

efficient than Gem on Gem-resistant L1210 10K cells, presence of SQPEG may still further increase 

the anticancer activity, thus contributing to resistance reversal. 
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Figure 17. Photographs of the aqueous suspensions of SQGem:SQPEG composite nanoparticles at 50 

mg.L
-1

 with various SQGem:SQPEG weight ratios (a). TEM images after freeze-fracture of SQGem 

(b) and SQGem:SQPEG nanoparticles (c). Scale bars = 100 nm. Cytotoxicity on L1210 10K cells of 

PEGylated SQGem composite nanoparticles. The values are the mean ± standard deviation of three 

determinations. Adapted with permission from ref.[157] 

 

4.2 Targeted squalene-based nanoparticles 

It was possible to confer both fluorescence and targeting features to SQGem nanoparticles by a simple 

co-nanoprecipitation approach from the corresponding SQ-based functional components (Figure 18): 

(i) SQGem; (ii) squalene rhodamine (SQRho) and (iii) squalene-biotin (SQBiotin). Biotin was linked 

to a triethylene glycol linker to promote its surface exposition and was used as a ligand to selectively 

target cancer cells via biotin receptors overexpressed at the surface of many cancer cells. The resulting 

multifunctional nanoparticles were then tested for their tumor targeting ability on MCF7, M109 and 

HeLa cells by FACS and cytotoxicity assays. Biotin-decorated nanoparticles showed a higher cell 

internalization and cytotoxicity profile, as opposed to non-biotinylated counterparts. This suggested 

the surface availability of biotin and the effectiveness of the targeting strategy. 

 

Figure 18. Structure of (a) squalene-gemcitabine (SQGem), (b) squalene-rhodamine (SQRho) and (c) 

squalene-biotin (SQBiotin), and their co-self-assembly to prepare multifunctional nanoparticles for 

cancer cell targeting. 
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To obtain higher specificity and affinity towards a certain type of cancer, a similar strategy was 

developed to surface-functionalize SQGem nanoparticles by a six amino acid peptide (CKAAKN) to 

specifically target pancreatic cancer cells [153]. This peptide was previously identified on RipTag-2 

mice (transgenic model of islet cells carcinoma) by in vivo phage display screening [213]. To prepare 

CKAAKN-functionalized NPs, two approaches have been explored (Figure 19), followed by a 

systematic investigation to evaluate each strategy in terms of functionalization, colloidal stability and 

targeting ability in vitro and in vivo [152, 153]. These approaches relied on: (i) conjugation of 

CKAAKN to a maleimide squalenoyl derivative (SQMal) leading to formation of the SQCKAAKN 

and successive co-nanoprecipitation with SQGem (NPs(before), Figure 19a) or (ii) co-nanoprecipitation 

of SQGem and SQMal, and direct conjugation of the CKAAKN peptide at the surface of the NPs 

(NPs(after), Figure 19b).  

 

Although both synthetic strategies allowed to obtain NPs able to interact with the corresponding 

receptor, enhanced target binding and higher specific avidity were observed with SQGem_CKAAKN 

NPs functionalized before NP formation. Therapeutic efficacy of these NPs was evaluated on RipTag2 

mice, which spontaneously develop a pancreatic islet cell carcinoma. Interestingly, while both 

SQGem_CKAAKN NPs and SQGem NPs induced a significant reduction of tumor burden compared 

to free Gem, the greatest efficacy was observed with the peptide functionalized NPs (tumor reduction 

by 40% and by 60% compared to SQGem NPs and free drug, respectively). In addition, functionalized 

NPs induced the highest apoptotic rate (increase by 44% of active caspase-3 immunostaining 

compared to SQGem NPs). To be noted that functionalized NPs strongly accumulated not only in 

cancer cell but also in tumor vessels, thus the tumor regression observed with these nanoparticles 

resulted from both a cytotoxic and an antiangiogenic activity. 
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Figure 19. Formulation of CKAAKN-functionalized SQGem nanoparticles: (a) conjugation before NP 

formation (NPs(before)) and (b) conjugation after NP formation (NPs(after)). 

5 Enlarging the squalenoylation concept  

To investigate the possibility to enlarge the squalenoylation concept to other terpenes, a series of 

prodrugs was synthetized by conjugation of Gem to polyisoprenoyl chains of variable length (from 1 

to 6 isoprene units) (Figure 20) [170]. Prodrugs were obtained by reaction of the corresponding 

(poly)isoprenic acid with the amino group of Gem, following the reaction scheme already described 

for SQGem (Figure 9) [139]. 

 

Figure 20. Structure of polyisoprenoyl gemcitabine prodrugs (2a-g) obtained by conjugation of the 

corresponding isoprenic acids (3a-g) to Gem (1). The 2a prodrug corresponds to SQGem. Adapted 

with permission from ref. [170]. 

 

Each prodrug was nanoprecipitated to determine the minimal requisite size of the isoprenoyl chain to 

allow formation of stable nanoparticles. Only prodrugs containing from 4 to 6 isoprene units led to 

stable nanoparticles in water while optimization of the formulation conditions was required for shorter 

polyisoprenoyl prodrugs (e.g., addition of 10% trehalose or 20% (wt/v) of SQPEG) to ensure colloidal 

stability. Whereas the isoprenoyl chain length dramatically influenced the prodrug ability to form 

stable nanoparticles, the distribution (symmetrical or not) of the double bonds of the isoprenoyl chain 

did not seem to affect the self-assembly. In addition, the reduction of the length of the isoprenoyl 

chain compared to squalene was associated to a faster drug release in serum containing medium, 

which reached ~30 % in 24 h for 2c (2 isoprene unit) while only 3% was released for the SQGem 

nanoparticles. Further reduction of the chain length down to 1 isoprene unit (2b) did not lead to higher 

drug release, probably because of the supramolecular organization of the prodrugs, thus reduced 

enzyme accessibility. 

The therapeutic efficacy of 2d (3 isoprene units, the most cytotoxic in vitro) was then 

evaluated in vivo and compared to SQGem nanoparticles (2a) on an experimental model of pancreatic 
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cancer (Mia PaCa-2). While free Gem did not show any efficacy, nanoparticles made of 2d (3 isoprene 

units) showed the highest anticancer activity, even higher than SQGem nanoparticles (2a) without 

inducing any toxicity (Figure 21). 

 

Figure 21. (a) Tumor growth inhibition and (b) relative body weight change in Mia PaCa-2 tumor 

bearing mice after administration of Gem-based prodrugs with isoprenoyl chain of variable length. 

Values represent mean ± SD. Adapted with permission from ref. [170]. 

 

Further extension of the squalenoylation concept to other drugs with a different isoprenoyl moiety was 

illustrated by conjugation of paclitaxel to a single isoprene unit through the hydroxyl group in position 

C2’of the drug (PtxMIP) [171]. The design of such a prodrug was motivated by the wish to develop an 

alternative to the Cremophor
®
-containing commercial formulation (Taxol

®
), whose administration is 

usually associated to the insurgence of several side effects such as hypersensitivity reactions, 

hematological toxicity, peripheral neurotoxicity and neuropathy. Nanoprecipitation of an ethanolic 

solution of PtxMIP into water led to stable NPs conversely to free Ptx that gave formation of typical 

insoluble needle crystals. Co-nanoprecipitation with SQPEG (8 wt.%) (PtxMIP_SQPEG NPs) allowed 

to achieve a concentration suitable for in vivo studies (4 mg/mL). Noteworthy is that these NPs 

showed an impressively high drug loading (82 wt.%), while conventional colloidal formulations of Ptx 

rarely achieved drug payloads higher than a few percent. This result clearly highlighted the crucial 

contribution of even a single isoprene unit to the physico-chemical behaviour of the prodrug. 

Compared to the previously designed SQPtx NPs [165], those formulated from PtxMIP showed 

significantly higher activity on cancer cells.  

Systemic toxicity evaluation revealed a higher tolerability of PtxMIP_SQPEG NPs. Also, no 

visible tissue irritation could be observed at the injection site. On the contrary, hypersensitivity 

reaction with clear necrosis of soft tissues, ulceration, oedema and erythema, were observed in the 

group treated with free Ptx formulation containing Cremophor
®
 (Figure 22). The greater safety profile 
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of PtxMIP NPs compared to that of the Ptx allowed for administration of higher doses and resulted in 

improved anticancer efficacy in vivo on a lung metastatic mouse model of stage IV breast cancer. 

 

 

Figure 22. Representative images of a mouse tail after 5 consecutive injections of: (a) 

PtxMIP_SQPEG NPs and (b) free Ptx at 25 mg/kg. Adapted with permission from ref. [171]. 

 

6. Other routes of administration 

Efficacy of nanoparticles made of squalene prodrugs has been largely demonstrated following their 

systemic administration via intravenous injection, but promising results have been obtained also when 

nanoparticles were given orally [142].  Probably thanks to a higher intracellular uptake and the 

overcome of resistance, the oral treatment with SQcisPt nanoparticles significantly inhibited tumor 

development on two different model of colon carcinogenesis (i.e., ApcMin/+ mice, and azomethane-

induced) compared to the free drug. The higher efficacy was also associated to a lower toxicity clearly 

revealing an enhancement of the drug therapeutic index.  

 

Conclusion 

Since the beginning, Patrick Couvreur's scientific career has been marked by important discoveries. 

Two main axes were considered as major breakthroughs and have had an extraordinary impact on the 

research work of many young researchers. First, the discovery of biodegradable PACA NPs has shown 

that it was possible to investigate synthetic materials in a nanoparticulate form at a time when 

scientists were rather considering using drug carriers produced from natural molecules such as 

liposomes. The design of PACA NPs led to a Phase III clinical trial with the Livatag
®
 in the treatment 

of doxorubicin-resistant hepatocarcinoma. Secondly, lessons from the past led to the formulation of 

NPs from drug-squalene conjugates solving out problems associated to drug encapsulation or leakage. 

Results from applications of these NPs in the treatment of unmet medical needs (e.g., pancreatic 

cancer, brain ischemia and spinal cord injury) demonstrated impressive therapeutic effects opening 

large perspectives for a new generation of novel drug carriers. 
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