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Abstract 21 

Imaging the enhanced permeation and retention effect by ultrasound is hindered by the large 22 

size of commercial ultrasound contrast agents (UCAs). To obtain nanosized UCAs, triblock 23 

copolymers of poly(ethylene glycol)-polylactide-poly(1H,1H,2H,2H-heptadecafluorodecyl 24 

methacrylate) (PEG-PLA-PFMA) with distinct numbers of perfluorinated pendant chains (5, 25 

10 or 20) are synthesized by a combination of ring-opening polymerization and atom transfer 26 

radical polymerization. Nanocapsules (NCs) containing perfluorooctyl bromide (PFOB) 27 

intended as UCAs are obtained with a 2-fold increase in PFOB encapsulation efficiency in 28 

fluorinated NCs as compared to plain PEG-PLA NCs thanks to fluorous interactions. NC 29 

morphology is strongly influenced by the number of perfluorinated chains and the amount of 30 

polymer used for formulation, leading to peculiar capsules with several PFOB cores at high 31 

PEG-PLA-PFMA20 amount and single-cored NCs with a thinner shell at low fluorinated 32 

polymer amount, as confirmed by small angle neutron scattering. Finally, fluorinated NCs 33 

yield higher in vitro ultrasound signal compared to PEG-PLA NCs and no in vitro 34 

cytotoxicity is induced by fluorinated polymers and their degradation products. Our results 35 

highlight the benefit of adding comb-like fluorinated blocks in PEG-PLA polymers to modify 36 

the nanostructure and enhance the echogenicity of nanocapsules intended as UCAs. 37 

 38 

  39 
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1. Introduction 40 

Ultrasound is one of the most widely used clinical imaging modality owing to its low cost, 41 

safety, portability, and possible combination with therapy.
1
 Nevertheless, this technique has 42 

been limited by the lack of effective ultrasound contrast agents (UCAs) to allow tissue 43 

differentiation.
2,3

 Commercially available UCAs consist of 1 – 6 µm gas microbubbles 44 

stabilized by a layer of lipids or proteins.
4,5

 Their large size and high compressibility make 45 

them ideal ultrasound reflectors, currently used to enhance the blood pool signal and assess 46 

tissue blood flow at the microvascular level.
6
 However, the fast diffusion of the encapsulated 47 

gas results in short circulation time in the bloodstream (a few minutes),
7
 and their large 48 

micrometer size prevents their accumulation in solid tumors. For tumor imaging, more stable 49 

nano-sized UCAs able to extravasate into tumors by the enhanced permeation and retention 50 

(EPR) effect
8
 are required. Since gas nanobubbles are difficult to stabilize,

9
 research has 51 

focused on the encapsulation of liquid perfluorocarbons.
10

 To further improve UCAs stability, 52 

several groups have reported the use of polymeric shells which are more stable than lipid or 53 

protein layers.
11–14

 54 

In this context, polymeric UCAs have been developed recently in our group. These polymeric 55 

nanocapsules (NCs) of poly(lactide-co-glycolide) (PLGA) encapsulating liquid perfluorooctyl 56 

bromide (PFOB) showed long-lasting in vitro echogenicity and allowed in vivo blood pool 57 

imaging.
15

 However, quick elimination by the mononuclear phagocyte system hampered their 58 

accumulation in the tumor. PLGA was then replaced by poly(lactide-co-glycolide)-59 

poly(ethylene glycol) (PLGA-PEG) copolymer to formulate long-circulating NCs which 60 

accumulated in the tumor by the EPR effect, and yielded contrast enhancement by 
19

F 61 

Magnetic Resonance Imaging.
16

 Nevertheless, the acoustic response of these capsules 62 

remained too weak at clinical frequencies, owing mainly to the important thickness of their 63 

shells. The strategy of decreasing the polymer amount in the formulation, which previously 64 
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allowed reducing the thickness of plain PLGA NCs,
17

 failed using PLGA-PEG due to local 65 

dewetting.
18

 66 

Our aim is therefore to improve the nanocapsule echogenicity by reducing their shell 67 

thickness, while keeping their long-circulating properties with PEG chains. Recently, we 68 

reported that functionalizing PLA with a short linear perfluorinated end group induced an 69 

increase of PFOB encapsulation efficiency into PEGylated NCs made of a mixture of PLA-70 

PEG and fluorinated-PLA, for perfluorinated chain length up to C8F17.
19

 However, the shell 71 

thickness was not reduced, and although a higher in vitro echogenicity was obtained due to 72 

fluorination, there is still room for improvement since the ultrasound signal was much lower 73 

than commercial Sonovue microbubbles.  74 

Plenty of reports on different triblock copolymers with hydrophilic, hydrophobic, and 75 

fluorinated blocks exist and nanoparticles formed using these polymers exhibit different 76 

morphologies.
20–24

 Here, the strategy consists in synthesizing triblock hydrophilic-77 

hydrophobic-fluorophilic copolymers of poly(ethylene glycol)-polylactide-78 

poly(1H,1H,2H,2H-heptadecafluorodecyl methacrylate) (PEG-PLA-PFMA), containing a 79 

higher proportion of C8F17 chains, to formulate nanocapsules. We intend to favor fluorous 80 

interactions between the fluorinated chains and PFOB to improve the wetting of the polymer 81 

around the PFOB core and yield capsules with thin shells as we decrease the amount of 82 

polymer in the formulation. We present here the polymer synthesis and the characterization of 83 

nanocapsules in terms of size distribution, morphology, PFOB encapsulation efficiency, shell 84 

thickness as measured by Small Angle Neutron Scattering, cytotoxicity and in vitro 85 

ultrasound scattering. 86 

  87 
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2. Materials and methods 88 

2.1. Materials 89 

DL-lactide was purchased from Biovalley, Polysciences Inc. (USA). Poly(ethylene glycol) 90 

methyl ether (OH-PEG-OCH3, average Mn = 5 000 g/mol), stannous 2-ethyl hexanoate 91 

(stannous octoate, Sn(Oct)2), N,N,N′,N′′,N′′-pentamethyldiethylenetriamine (PMDETA), 92 

triethylamine (Et3N), dried toluene, cyclohexanone, magnesium sulfate (MgSO4), sodium 93 

cholate, D2O and trifluoroacetic acid (TFA) were provided by Sigma-Aldrich (France). 94 

1H,1H,2H,2H-heptadecafluorodecyl methacrylate (FMA) and perfluorooctyl bromide (PFOB) 95 

were purchased from Fluorochem (UK). 2-Bromo-2-methylpropionyl bromide and copper(I) 96 

bromide (CuBr) were provided by ACROS Organics (Belgium). Deuterated chloroform 97 

(CDCl3) was obtained from Euriso-top (France). All solvents were purchased from Carlo Erba 98 

(France). Cell culture reagents such as DMEM (Dulbecco’s modified Eagle’s medium), RPMI 99 

1640 (Roswell Park Memorial Institute medium), FBS (Fetal Bovine Serum), trypsin-EDTA 100 

solution and PBS (Ca
2+

 and Mg
2+

 free phosphate buffer) were purchased from Sigma Aldrich 101 

(France). Water was purified using a RIOS/Synergy system from Millipore (France). NMR 102 

sample tubes and coaxial inserts were obtained from CortecNet (France). 103 

2.2. Polymer synthesis 104 

The synthesis route involved 3 steps as shown in Figure 1. 105 

2.2.1. Synthesis of PEG-PLA 106 

PEG-PLA was synthesized by ring-opening polymerization (ROP) of DL-lactide initiated by 107 

OH-PEG-OCH3 in  the presence of stannous octoate catalyst.
25

 All glassware was dried by 108 

heating under vacuum and handled under argon atmosphere. To a 250 mL round-bottom flask 109 

equipped with a magnetic stir-bar were added DL-lactide (156.14 mmol, 22.50 g) and OH-110 

PEG-OCH3 (1.13 mmol, 5.66 g). The flask was sealed with a rubber cap and a stannous 111 
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octoate solution (0.75 mmol, 306 mg) dissolved in 30 mL of dried toluene was added through 112 

the septum. The tube was purged with argon for 15 minutes and then placed into a 130°C oil 113 

bath. Polymerization was carried out for 1h under magnetic stirring, and then quenched by 114 

immersing the tube in a cold water bath. After evaporation of toluene, the reaction product 115 

was dissolved in chloroform and precipitated twice into excess cold diethyl ether. The 116 

polymer was finally dried under vacuum and 25.13 g of a white powder was obtained. Lactide 117 

conversion = 94% (
1
H NMR). 

1
H NMR (300 MHz, CDCl3, δ, ppm): 5.10-5.28 (CHCH3COO 118 

of PLA), 3.64 (OCH2CH2 of PEG), 3.38 (OCH3 of PEG), 2.70 (end HOCHCH3COO of PLA), 119 

1.45-1.67 (CHCH3COO of PLA). Mn
NMR

 = 23,500 g/mol; Mn
SEC

 = 24,300 g/mol. 120 

2.2.2. Synthesis of PEG-PLA-Br macroinitiator 121 

PEG-PLA-Br was synthesized by esterification of PEG-PLA with excess 2-Bromo-2-122 

methylpropionyl bromide using a known procedure.
26,27

 In a 250 mL round-bottom flask 123 

equipped with a magnetic stir-bar, PEG-PLA (1.06 mmol, 25 g) was dissolved in 160 mL of 124 

CH2Cl2. Excess of triethylamine (37.23 mmol, 5.2 mL) was added to the solution, and the 125 

mixture was stirred under argon and cooled to 0°C with an ice bath. 2-Bromo-2-126 

methylpropionyl bromide (37.23 mmol, 4.6 mL) was added dropwise for 15 min. The mixture 127 

was allowed to stir at room temperature overnight, and was subsequently washed twice with 128 

saturated brine and once with water. The organic phase was dried over anhydrous MgSO4 129 

before being concentrated under reduced pressure and precipitated twice in excess cold 130 

diethyl ether. The product was finally dried under vacuum to provide 16.55 g of an off-white 131 

solid. 
1
H NMR (300 MHz, CDCl3, δ, ppm): 5.10-5.28 (CHCH3COO of PLA), 3.64 132 

(OCH2CH2 of PEG), 3.38 (OCH3 of PEG), 1.95 and 1.98 (C(Br)(CH3)2), 1.45-1.67 133 

(CHCH3COO of PLA). Mn
NMR

 = 23,500 g/mol; Mn
SEC

 = 25,200 g/mol. 134 
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2.2.3. Synthesis of PEG-PLA-PFMAx polymers 135 

PEG-PLA-PFMAx polymers  were synthesized by ATRP of 1H,1H,2H,2H-136 

heptadecafluorodecyl methacrylate (FMA) initiated by PEG-PLA-Br with CuBr/PMDETA as 137 

the catalyst system.
28

 All glassware was dried by heating under vacuum and handled under 138 

argon atmosphere. To a 100 mL round-bottom flask equipped with a magnetic stir-bar were 139 

added PEG-PLA-Br (0.21 mmol, 5 g) and a solution of PMDETA (0.21 mmol, 37 mg) and 140 

FMA (1.06 mmol for x = 5, 2.13 mmol for x = 10, 4.26 mmol for x = 20) in cyclohexanone 141 

(15 mL). After dissolution of the macroinitiator, CuBr (0.21 mmol, 31 mg) was added and the 142 

mixture was subjected to two freeze-pump-thaw cycles. The reaction proceeded at 100 °C for 143 

42h. The mixture was cooled and diluted with THF, and the copper catalyst was removed with 144 

a neutral alumina column. After concentration under reduced pressure, the product was 145 

precipitated twice in excess cold diethyl ether and dried under vacuum. FMA conversion (
1
H 146 

NMR) = 84% (x = 20), 80% (x = 10), 67% (x = 5). 
1
H NMR (300 MHz, CDCl3, δ, ppm): 147 

5.10-5.28 (CHCH3COO of PLA), 4.28 (OCH2CH2CF2 of PFMA), 3.64 (OCH2CH2O of PEG), 148 

3.38 (end OCH3 of PEG), 2.47 (OCH2CH2CF2 of PFMA), 1.70-2.00 (CH2C(CH3)COO of 149 

PFMA), 1.45-1.67 (CHCH3COO of PLA), 0.80-1.45 (CH2C(CH3)COO of PFMA). Molar 150 

masses are displayed in Table 1. 151 

2.3. Polymer characterization 152 

Size exclusion chromatography (SEC) was performed at 30 °C with two columns from 153 

Polymer Laboratories (PL-gel MIXED-D; 300 × 7.5 mm) and a differential refractive index 154 

detector (Spectrasystem RI-150, Thermo Electron Corp.), using chloroform as an eluent, a 155 

Waters 515 pump at a flow rate of 1 mL/min, and toluene as a flow-rate marker. The 156 

polymers were dissolved at 5 mg/mL in the eluent and filtered on 0.2 µm PTFE syringe filters 157 

prior to injection. The calibration curve was based on poly(methyl methacrylate) (PMMA) 158 

standards from Polymer Laboratories. 
1
H NMR and 

19
F NMR spectroscopies were performed 159 
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in 5 mm diameter tubes in CDCl3 on a Bruker Avance-400 (400 MHz) spectrometer. The DP 160 

and Mn of the commercial OH-PEG-OCH3 were confirmed by 
1
H NMR in CDCl3 using the 161 

ratio of the methyl signal at 3.38 ppm versus the main chain signal at 3.64 ppm: DP = 118, Mn 162 

= 5.2x10
3
 g/mol. Differential scanning calorimetry (DSC) was performed using a DSC Q1000 163 

(TA Instruments). The polymers (2-5 mg) were sealed in aluminum pans and heated from -20 164 

to 100°C at a heating rate of 20°C/min and cooled to -20 °C before a second heating scan 165 

from -20 to 100°C at 20°C/min to determine the glass transition temperature (Tg). A nitrogen 166 

flow was maintained throughout the test (20 mL/min). 167 

2.4. Interfacial tension measurements 168 

Interfacial tension measurements were carried out using the pendant drop method, employing 169 

a Tracker tensiometer (Teclis, France). Drops of PFOB were formed using a syringe and a 170 

G22 stainless steel needle into a methylene chloride solution containing the polymers at 25 171 

mg/mL placed in an optical glass cuvette. The interfacial tension was determined from the 172 

drop profile using the Laplace equation and the forces balance between capillarity and 173 

gravity. The measurements were performed on at least three independent drops and the 174 

experiment was repeated on different days to ensure reproducibility. 175 

2.5. Nanocapsules preparation 176 

Nanocapsules (NCs) of PFOB were prepared by an emulsion-evaporation process as 177 

previously described.
16,19

 The polymer (50, 30 or 20 mg) was dissolved into 2 mL of 178 

methylene chloride along with 30 µL of PFOB. The organic phase was emulsified into 10 mL 179 

of 1.5 % sodium cholate (w/v) aqueous solution using a vortex for 1 min and then a vibrating 180 

metallic tip (Digital Sonifier, Branson Ultrasons, France) at 30% of maximal power, for 1 min 181 

over ice. Solvent was allowed to evaporate by magnetic stirring at 300 rpm at room 182 

temperature for 3 h. Suspensions of NCs were filtered through 0.45 µm PVDF filters, and if 183 
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necessary, were purified to remove sodium cholate by ultracentrifugation for 1h, at 4 °C and 184 

at 27 440 g (Optima LE-80K Ultracentrifuge Beckman Coulter). The pellet was finally 185 

resuspended in water to the desired concentration. 186 

2.6. Size distribution and Zeta potential 187 

The hydrodynamic diameter (dH) and polydispersity index (PDI) of the nanocapsules were 188 

measured by quasi-elastic light scattering, using a Zetasizer Nano ZS instrument (Malvern, 189 

France). Suspensions were diluted in water to a concentration of 1 mg/mL. Measurements 190 

were performed at 20 °C, at an angle of 173° to avoid multiple scattering. Zeta potential 191 

measurements were carried out with the same instrument, at 25 °C, in 1 mM NaCI. 192 

Measurements were performed in triplicate. 193 

2.7. PFOB encapsulation efficiency by 
19

F NMR spectroscopy 194 

PFOB encapsulation efficiency was determined by 
19

F NMR on a Bruker Avance-400 (400 195 

MHz) spectrometer with a 5 mm dual probe 
19

F/
1
H. The NMR quantitative method using stem 196 

coaxial inserts was originally proposed by Henderson for 
31

P compounds
29

 and adapted 197 

previously  for 
19

F NMR.
30,19

 1 mL of unpurified nanocapsules were freeze-dried for 24h 198 

using an Alpha-1-2 LD apparatus (Christ, France) and lyophilisates were dissolved into 1 mL 199 

of chloroform. Sodium cholate was removed by centrifugation for 5 min at 4696 g. The 200 

organic solution was collected and introduced into a usual 5mm-NMR sample tube loaded 201 

with a stem coaxial insert containing TFA in D20 as an external standard ([TFA]= 9.4 202 

µmol.mL
-1

). The total amount of PFOB in the suspension,      , was determined after 203 

integration of the peak at -64.7 ppm corresponding to the CF2Br group and normalization by 204 

the area of the TFA peak at -76.5 ppm. Absolute encapsulation efficiency,        , was 205 

calculated as follows: 206 
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     207 

where      
    

,         
    

 and    
    

are the initial masses of the components introduced during 208 

NCs preparation,     corresponds to the mass of NCs recovered after freeze-drying and 209 

      is the molar mass of PFOB (498.96 g/mol). 210 

2.8. Transmission electron microscopy (TEM) 211 

TEM was performed at I2BC (Gif-sur-Yvette, France) using a JEOL JEM-1400 operating at 212 

80 kV. 5 µL of purified suspensions of nanocapsules (0.5 mg/mL) were deposited for 1 min 213 

on glow-discharged copper grids covered with formvar-carbon film. Samples were then 214 

stained using 2% phosphotungstic acid (pH = 7) for 30 s. The excess solution was blotted off 215 

using a filter paper. Images were acquired using an Orius camera (Gatan Inc, USA). 216 

2.9. Cryo-transmission electron microscopy (cryoTEM) 217 

CryoTEM was performed at I2BC (Gif-sur-Yvette, France) using a JEOL JEM-1400 218 

operating at 120 kV. 5 µL of purified suspensions of nanocapsules (25 mg/mL) were 219 

deposited on glow-discharged Lacey copper grids covered with carbon film containing holes. 220 

The excess solution was blotted off for 5 s using filter paper and the grids were subsequently 221 

frozen in liquid ethane using a Leica EM GP automatic system (Leica, Austria) under a 90% 222 

humidity atmosphere. Images were recorded on a US1000XP camera (Gatan Inc, USA) with a 223 

-2 µm defocus.  224 

2.10. Small angle neutrons scattering (SANS) 225 

2.10.1. SANS data collection 226 

Small Angle Neutron Scattering (SANS) measurements were performed on the PACE 227 

spectrometer of the Laboratoire Léon Brillouin (LLB, CEA-Saclay, France). Nanocapsules 228 
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were filtered, purified and resuspended at a final volume fraction of φv = 1% in a 40/60 (v/v) 229 

H2O/D2O mixture to match the scattering length density of the PFOB core (PFOB = core = 3.6 230 

x 10
10

 cm
-2

). This mixture has a weak contrast with PFMA block polymer (PFMA = 3.0 x 10
10

 231 

cm
-2

). So, using contrast matching of the PFOB core, we focused on the polymeric shell of 232 

PEG-PLA blocks. Two configurations were used: the first one with a sample-to-detector 233 

distance of D = 4.7 m and a neutron wavelength of λ = 13 Å and the second one with D = 2.9 234 

m and λ = 4.6 Å to cover a broad q range of 3.2 × 10
−3 

– 1.5 × 10
−1

 Å
−1

. SANS measurements 235 

were performed in 1 mm thick quartz cuvettes to minimize the incoherent scattering. 236 

Scattered intensity curves were corrected from the scattering from the empty quartz cuvette 237 

and the electronic background, and normalized by the incoherent signal of 1 mm water sample 238 

to account for non-uniform efficiency of detector, using the LLB PASINET software.
31

  239 

2.10.2. SANS data modelling 240 

The scattered intensity curves obtained in PFOB matching condition were fitted using the 241 

vesicle model with Sasview software.
32

 This model provides the form factor, P(q), for a 242 

unilamellar vesicle of inner radius Rcore and thickness T, according to the following equation: 243 

     
     

  
 
                  

   
 

                     

   
 

 

 

Where scale is a scale factor, V1 is the volume of the core, V2 is the total volume of the 244 

vesicle, R1 = Rcore is the radius of the core, R2 is the outer radius of the vesicle (R2 = Rcore + 245 

T), and       
          

  
. For the vesicle, 1 = core = solv is the scattering length density 246 

of the core and the solvent, 2 = shell is the scattering length density of the shell. The fit gives 247 

geometrical parameters of the nanocapsules: the mean core radius Rcore, the polydispersity of 248 

the core radius σcore, the thickness of the shell T and the polydispersity of the thickness σT. A 249 

lognormal distribution was assumed for both radius and thickness. 250 
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2.11. Hydrolytic degradation of polymers 251 

50 mg of each polymer (except PEG-PLA-PFMA20) were suspended into 1 mL of NaOH 1M 252 

and vigorously stirred for 24h at 37°C in an incubator. After adjustment of the pH to 7 with 253 

HCl 1M, the cloudy solution was dialyzed against deionized water for 96h to remove salt and 254 

lactic acid (dialysis membrane molecular weight cut off: 100–500 Da).  255 

2.12. Cell culture  256 

Human endothelial umbilical vein cells (HUVEC) obtained from ATCC (USA) were cultured 257 

in DMEM supplemented with 50 U.mL
-1

 penicillin, 50 U.mL
-1

 streptomycin, and 10% heat 258 

inactivated FBS. The J774.A1 murine macrophage monocyte cell line (ATCC, USA) was 259 

cultured in RPMI 1640 medium supplemented with 50 U.mL
-1

 penicillin, 50 U.mL
-1

 260 

streptomycin, and 10% heat inactivated FBS. Cells were split twice a week, by trypsinisation 261 

for HUVEC and by scraping for J774.A1 cells. All cell lines were maintained at 37 °C and 262 

5% CO2 under a humidified atmosphere. 263 

2.13. Cytotoxicity evaluation of NCs and polymer degradation products 264 

To evaluate their in vitro cytotoxicity, NCs and polymer degradation products were diluted in 265 

cell culture medium before being added onto the cells. The cell viability was evaluated using 266 

the 3-[4,5-dimethylthiazol-2-yl]-3,5-diphenyltetrazolium bromide (MTT) assay. Briefly, cells 267 

were seeded in 100 µL of culture medium (12 x 10
3
 cells/well or 3 x 10

3
 cells/well for 24 and 268 

72h incubation respectively) in 96 well plates (TPP, Switzerland) and pre-incubated for 24 h. 269 

100 µL of a serial dilution of NCs (0.01 to 10 mg/mL) or of polymer degradation products 270 

(10
-5

 to 0.01 mg/mL of initial polymer) was then added to the medium. After 24 or 72h of 271 

incubation, the incubation medium was replaced by fresh medium containing 0.5 mg/mL
 
of 272 

MTT (Sigma, France). After 1h incubation, the culture medium was gently aspirated and 273 

replaced by 200 μL dimethylsulfoxide (ACS grade, VWR, France) to dissolve the formazan 274 
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crystals. The absorbance of the solubilized dye, which correlates with the number of living 275 

cells, was measured with a microplate reader (LAB Systems Original Multiscan MS, Finland) 276 

at 570 nm. The percentage of viable cells in each well was calculated as the absorbance ratio 277 

between treated and untreated control cells. 278 

2.14. In vitro ultrasound measurements 279 

Suspensions of nanocapsules (1 mL, 5 mg/mL) were placed in a 10 mm x 10 mm x 45 mm 280 

polystyrene cuvette in which 5-mm diameter holes were cut out and covered by acoustically 281 

transparent mylar membrane, as shown in Figure S1. The cuvette was placed in a water bath 282 

at 37°C, and a small magnetic bar allowed agitating gently the suspension without disturbing 283 

the signal. Measurements were performed after 4 minutes to allow temperature equilibration 284 

and removal of potential bubbles. A Handyscope HS5 (TiePie engineering, Netherlands) was 285 

used as both an arbitrary wave generator and a USB oscilloscope connected to a computer 286 

using Matlab (Mathworks, USA). Samples were insonified by a transducer (focal length 51 287 

mm, model I3-0506-R-SU-F2.00IN, Olympus, France), which emitted 10 bursts of 500 cycles 288 

at 5 MHz. The scattered ultrasound signal was received by a second transducer (focal length 289 

51 mm, model I3-1506-R-SU-F2.00IN, Olympus, France) placed at a 90° angle compared to 290 

the transducer-transmitter (Figure S1). This scattered signal was preamplified before being 291 

measured by the oscilloscope connected to Matlab for signal processing. The signal was then 292 

windowed, Fourier-transformed and the scattered intensity within the bandwidth of each 293 

harmonics was summed. The resulting ultrasound scattered intensities were subtracted from 294 

the intensity obtained with the cuvette filled with Milli-Q water. At least 9 measurements 295 

were performed with each sample. Commercial SonoVue
®
 microbubbles (diluted to 1/1000) 296 

were used as a reference positive control for the ultrasound set-up and parameters chosen for 297 

our study.   298 
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3. Results and discussion 299 

3.1. Polymers synthesis and characterization 300 

Triblock copolymers carrying perfluoroalkyl pendant chains were synthesized by a 301 

combination of ROP and ATRP as shown in Figure 1.   302 

 303 

Figure 1. Synthesis of PEG-PLA-PFMAx triblock copolymers. 304 

ROP of D,L-lactide with polyethylene glycol methyl ether (Mn = 5,000 g/mol) as initiator and 305 

Sn(oct)2 as catalyst first led to PEG-PLA diblock copolymer with molar mass close to the 306 

targeted Mn of 25,000 g/mol (Mn
NMR

 = 23,500 g/mol, Mn
SEC

 = 25,500 g/mol). PEG-PLA was 307 

subsequently converted to PEG-PLA-Br macroinitiator through esterification with excess 2-308 

bromo-2-methylpropionyl bromide in the presence of triethylamine. Quantitative conversion 309 

was confirmed by 
1
H NMR with disappearance of the end hydroxyl broad signal of PLA at 310 

2.70 ppm and appearance of signals at 1.95 and 1.98 ppm corresponding to the methyl protons 311 

from 2-bromo-2-methylpropionyl end group (supplementary material Figure S2). 312 

The final PEG-PLA-PFMAx copolymers were prepared by ATRP of FMA in cyclohexanone 313 

with PEG-PLA-Br as macroinitiator and CuBr/PMDETA complex as catalyst. The nature and 314 

amount of solvent were initially varied to achieve final polymerization with satisfactory 315 

conversion (>65%). Three different monomer/initiator feed molar ratios (x = 5, 10, 20) were 316 
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used to design polymers with various fluorinated block lengths. Successful polymerization 317 

was confirmed by 
1
H NMR with appearance of the signals at 2.47 and 4.28 ppm 318 

corresponding respectively to CH2CF2 and CH2CH2CF2 protons of the PFMA block (signals h 319 

and g, Figure 2), in addition to those of the methacrylate backbone 1.70 – 2.00 and 0.80 – 320 

1.45 (signals e and f, Figure 2). The 4.28 ppm peak area was used to calculate the copolymer 321 

molar composition and molar mass by normalization with the 3.64 ppm peak corresponding to 322 

the OCH2CH2 of PEG (Table 1).
  

323 

 324 

Figure 2. 
1
H NMR spectra of PEG-PLA and triblock copolymers PEG-PLA-PFMAx in 325 

CDCl3 (normalized with the PEG peak at 3.64 ppm). 326 

19
F NMR spectra of all polymers further support the successful polymerization of FMA 327 

(Figure 3). A broadening of the fluorine resonances is observed in PEG-PLA-PFMA5 328 

spectrum as compared to the monomer. This effect is more pronounced as the number of 329 
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perfluoroalkyl pendants increases, and leads to the overlapping of resonances of CF2 groups 330 

b’ in PEG-PLA-PFMA10 and PEG-PLA-PFMA20 spectra, in agreement with previous 331 

reports.
33,34

 Moreover, a splitting of the peaks c’ and d’, corresponding to the CF2 and CF3 332 

groups at the extremity of the fluorinated pendants, is observed. This suggests the existence of 333 

unaveraged conformations and therefore indicates some degree of self-association in 334 

chloroform.  335 

 336 

Figure 3. 
19

F NMR spectra of FMA (black line) and triblock copolymers PEG-PLA-PFMAx 337 

in CDCl3. 338 

The molar masses were also determined by conventional SEC in chloroform (Table 1). All 339 

polymers present a single peak (supplementary material Figure S3), confirming the successful 340 

formation of copolymers rather than homopolymer blends. Although Mn
SEC

 values are close to 341 

Mn
NMR

 values, Mn
SEC

 does not increase with the polymerization degree of the PFMA block, as 342 

shown by the superposition of chromatograms and the values in the 24,000 – 26,500 g/mol 343 
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range. Because of fluorophilicity of the perfluorinated chains, full swelling of the triblock 344 

polymers in chloroform is limited by a probable folding or formation of micellar domains. 345 

Indeed, the triblock polymers appeared more difficult and longer to solubilize than non-346 

fluorinated PEG-PLA in common organic solvents such as chloroform, methylene chloride 347 

and acetone. To confirm this different behavior, DLS analysis of fluorinated polymers at 25 348 

mg/mL in methylene chloride and chloroform was performed. It revealed an important 349 

increase of scattered intensity compared to plain PEG-PLA (around 15000 kcps for the 350 

triblocks compared to 200 kcps for PEG-PLA, see supplementary material Figure S4). This 351 

indicates presence of aggregates such as micelles which confirms that the fluorinated block 352 

strongly impacts the solubility and conformation of the polymers chains.  353 

  354 
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Table 1. Degree of polymerization (DP), number-average molar mass (Mn), dispersity (Ɖ) and 355 

glass transition temperature (Tg) of PEG-PLA-PFMAx polymers and their precursors.  356 

Polymer 
Mn

theoretical
 

(x 10
3
 g/mol) 

DP 

PLA:PFMA
1
 

Mn
NMR

 

(x 10
3
 g/mol) 

Mn
SEC

 

(x 10
3
 g/mol) 

Ɖ Tg (°C) 

PEG-PLA 25.0 257 23.5 24.3 1.29 13 ± 1 

PEG-PLA-Br 25.0 260 23.7 25.2 1.28 ND 

PEG-PLA-PFMA5 27.7 272:4 26.7 25.0 1.38 16 ± 1 

PEG-PLA-PFMA10 30.3 291:7 29.7 24.9 1.39 20 ± 2 

PEG-PLA-PFMA20 35.6 277:15 32.9 26.2 1.29 18 ± 1 

1
The DP and Mn

NMR
 were determined from the areas of the peak at 3.64 ppm (OCH2CH2 of 357 

PEG) versus 5.19 ppm (CH of PLA) for PLA, and versus 4.28 ppm (CH2CH2CF2 of PFMA) 358 

for PFMA.  359 

DSC thermograms of all polymers exhibited a single glass transition temperature (Tg) in the 360 

16-20°C range for triblock copolymers, slightly higher than plain PEG-PLA (Tg = 13°C) 361 

(Table 1). The Tg of the PEG block is too low to be detected, and the Tg of both PLA and 362 

PFMA blocks are probably very close to each other to be detected separately. Indeed, Li et al. 363 

reported the synthesis of PEG-PFMA block copolymers and found a Tg of -24.3 or -41.7 °C 364 

for the PEG block, and 19.5 °C for the PFMA block,
28

 in agreement with our observations. 365 

Moreover, the glass transition of PEG-PLA-PFMA20 appears less sharp than the others 366 

(supplementary material Figure S5), suggesting a stronger entanglement of polymer chains 367 

induced by a higher proportion of perfluoroalkyl units. This is consistent with the study of Li 368 

et al. where the glass transition of PFMA was observed only with the shorter PFMA block (28 369 

fluorinated units) and not with increasing number of fluorinated units (36 and 38).
28

 370 

A series of triblock copolymers containing a fluorinated block with a comb-like structure was 371 

therefore successfully synthesized using a combination of ROP and ATRP. This will allow 372 

studying the influence of the number of perfluoroalkyl pendant chains on polymers interfacial 373 

properties and on nanocapsules characteristics.  374 
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3.2. Polymers interfacial properties 375 

The importance of polymer interfacial behavior during the formulation process of 376 

perfluorocarbon micro- and nanocapsules was highlighted in previous reports.
18,35,36

 In 377 

particular, reducing the amount of PEG-PLGA in the formulation of PFOB nanocapsules led 378 

to local dewetting and expulsion of some PFOB droplets stabilized by sodium cholate.
18

 The 379 

interfacial tension at the PFOB/organic phase interface was therefore measured with each 380 

triblock polymer (Figure 4). A reduction from 2.0 to 0.9-1.0 mN/m is observed upon addition 381 

of each PEG-PLA-PFMAx polymer at 25 mg/mL in methylene chloride, regardless of the 382 

number of fluorinated units, whereas no decrease is induced by addition of plain PEG-PLA ( 383 

= 2.0 ± 0.3 mN/m). The profile as a function of time after the drop formation is also different 384 

between fluorinated polymers and the non-fluorinated one, showing a decrease of interfacial 385 

tension during the first few seconds with fluorinated polymers only (Figure 4). These results 386 

confirm that perfluoroalkyl pendant chains interact with PFOB and adsorb at the interface. 387 

Such finding is consistent with the reported fluorophilic character of perfluorinated chains, 388 

which usually form fluorous domains.
37–39

 In a previous study, no reduction of interfacial 389 

tension could be observed with PLAs terminated by a linear fluorinated chain of length 390 

ranging from C3F7 to C13F27.
19

 Adsorption of PEG-PLA-PFMAx polymers could potentially 391 

be favored by their higher fluorine content as compared to PLA-CxF2x+1 polymers. However, 392 

the difference between PLA-C13F27 and PEG-PLA-PFMA5 is not so important as compared to 393 

differences between all triblock polymers when taking into account the real degrees of 394 

polymerization: 25 mg of polymer contains ~45 µmol of fluorine for PLA-C13F27 and ~64 395 

µmol for PEG-PLA-PFMA5. This quantity then reaches ~100 µmol for PEG-PLA-PFMA10 396 

and ~194 µmol PEG-PLA-PFMA20. Adsorption of triblock polymers is therefore probably 397 

favored by their comb-like architecture. In linear fluorinated PLAs, the fluorinated chain 398 

might be hidden by the PLA chain, whereas with the methacrylate backbone, the fluorinated 399 
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part is more rigid and more voluminous, making it more exposed and able to adsorb at the 400 

PFOB-solvent interface. 401 

 402 

Polymer 
Interfacial tension 

(mN/m) 

No polymer 2.0 ± 0.3 

PEG-PLA 2.0 ± 0.3 

PEG-PLA-PFMA5 0.9 ± 0.1 

PEG-PLA-PFMA10 0.9 ± 0.1 

PEG-PLA-PFMA20 1.0 ± 0.1 

Figure 4. Interfacial tension measurements at the interface between PFOB and methylene 403 

chloride solutions of each polymer at 25 mg/mL with the pendant drop method: typical 404 

profiles as a function of time after the drop formation (top) and interfacial tension values at 405 

200 s presented as mean ± SD (n > 6) (bottom). 406 

3.3. PFOB nanocapsules: physical characterization 407 

PFOB nanocapsules (NCs) were formulated using an emulsion evaporation process.
16,17

 Since 408 

the objective was to reduce shell thickness, the initial amount of polymer in the organic phase 409 

was decreased (50, 30 and 20 mg), while keeping the amount of PFOB constant. 410 

Size distribution and zeta potential 411 

For a fixed polymer quantity, NCs mean hydrodynamic diameters are slightly larger with all 412 

PEG-PLA-PFMAx (117 – 147 nm) compared to PEG-PLA (113 – 131 nm) (Table 2). As 413 

observed with interfacial tension results, the number of fluorinated pendants does not seem to 414 
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have an influence on size and zeta potential. The polymer mass in the formulation is a more 415 

important parameter. Indeed, NCs formulated from 20 mg of polymer exhibit larger sizes than 416 

NCs from 50 and 30 mg, especially with the fluorinated polymers (136 – 147 nm at 20 mg 417 

compared to 117 – 119 nm at higher polymer amounts). For all polymers, the polydispersity 418 

(PDI) increases as the polymer quantity decreases (< 0.19 at 50 mg, > 0.28 at 20 mg), 419 

suggesting a wider size distribution at low polymer amount. This might arise from the 420 

presence of a second population of objects, such as non-encapsulated PFOB droplets, despite 421 

the addition of perfluorinated chains in the polymer, as previously observed with PLGA-422 

PEG.
18

 For all polymers, the zeta potential is negative and no significant difference is induced 423 

by the number of perfluoroalkyl chains (Table 2). 424 

Table 2. Characterization of nanocapsules prepared from 50, 30 or 20 mg of each polymer. 425 

Data are presented as mean ± SD (n > 3) for dH and ζ values. 426 

 
50 mg

 

30 mg

 

20 mg 

 

Polymer dH (nm) PDI ζ (mV) dH (nm) PDI ζ (mV) dH (nm) PDI ζ (mV) 

PEG-PLA 113 ± 3 0.19 -17 ± 10 113 ± 3 0.22 -23 ± 9 131 ± 8 0.28 -29 ± 7 

PEG-PLA-PFMA5 117 ± 2 0.17 -15 ± 8 120 ± 5 0.24 -20 ± 4 140 ± 9 0.34 -30 ± 15 

PEG-PLA-PFMA10 116 ± 5 0.17 -15 ± 7 120 ± 6 0.26 -20 ± 5 136 ± 12 0.35 -21 ± 6 

PEG-PLA-PFMA20 119 ± 3 0.16 -15 ± 9 123 ± 2 0.26 -21 ± 5 147 ± 3 0.44 -23 ± 10 

 427 

PFOB encapsulation efficiency 428 

PFOB encapsulation efficiency in NCs was measured by 
19

F NMR after freeze-drying to 429 

remove any non-encapsulated PFOB droplets remaining. As shown in Figure 5, more PFOB 430 

is encapsulated in PEG-PLA-PFMAx NCs compared to plain PEG-PLA NCs. When 431 

comparing to the PLA-PEG control, the encapsulation efficacy of PFOB is significantly 432 

higher for PEG-PLA-PFMA5 and PEG-PLA-PFMA10 ers for all initial masses of polymer but 433 

not for PEG-PLA-PFMA20. The difference appears more important at low polymer amounts, 434 
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with 49-61% PFOB encapsulated in PEG-PLA-PFMA5 and PEG-PLA-PFMA10 NCs 435 

compared to 35% in PEG-PLA NCs at 30 mg, and 37-47% compared to 24% at 20 mg. Such 436 

results are consistent with interfacial tension measurements and demonstrate that fluorophilic 437 

interactions between PFOB and the perfluorinated units of the polymers allow entrapping 438 

more PFOB into the NCs. One can also observe that PFOB encapsulation efficiency is slightly 439 

lower with PEG-PLA-PFMA20 compared to PEG-PLA-PFMA5 and PEG-PLA-PFMA10 440 

(about 9 – 12% of difference). This could be due to a stronger self-association of the polymer 441 

with the largest fluorinated block of 20 pendants, reducing their ability to interact with PFOB 442 

as compared with shorter blocks of 5 – 10 fluorinated units. 443 

 444 

Figure 5. PFOB encapsulation efficiency in freeze-dried NCs. Results are presented as mean 445 

± SD (n = 4). Statistical significance was analyzed using an ANOVA test: **** p<0.0001, 446 

*** p<0.001, ** p<0.01. 447 

 448 

Nanocapsules morphology 449 

Nanocapsules were then imaged by TEM with negative staining and cryo-TEM. In TEM 450 

images, one can observe mostly spherical objects with PEG-PLA (Figure 6A,B,C) whereas 451 

PEG-PLA-PFMAx NCs exhibit more heterogeneous morphologies (Figure 6 and 452 

supplementary material S6 to S9). Indeed, capsules appear less spherical and a lot of broken 453 

capsules can be observed at low polymer amounts (Figure 6E,F,H,I,K,L). These broken 454 
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capsules, which were neither observed in plain PEG-PLA samples nor for NCs made from 50 455 

mg of PEG-PLA-PFMAx, are sometimes very large (up to 1 µm diameter, see supplementary 456 

material). Such finding is surprising since NCs are filtered on 0.45 µm after the emulsion 457 

evaporation process. These objects might be very deformable to pass through the filter, and 458 

might be broken because of the filtration or because they are under vacuum during TEM 459 

observation. These large capsules can therefore explain the high PDI values observed at low 460 

fluorinated polymer amounts (Table 2). 461 

 462 

Figure 6. TEM images of formulated NCs with negative staining (scale bars = 200 nm). 463 

Additional images are shown in supplementary material. 464 

Cryo-TEM images allow distinguishing the dark PFOB core, with high electronic density, 465 

from the lighter polymeric shell (Figure 7 and supplementary material S6 to S9). NCs also 466 

present a white meniscus in the core, due to rapid freezing, which causes solidification and 467 
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shrinking of PFOB. PFOB therefore does not fill entirely the shell cavity anymore as observed 468 

previously.
18,19,40

 One can observe that NCs morphology is strongly influenced by the number 469 

of fluorinated chains and the amount of polymer used for formulation. Indeed, all PEG-PLA 470 

NCs possess a spherical core-shell structure (Figure 7A,B,C), whereas the presence of five 471 

perfluoroalkyl chains induces the formation of some elongated NCs with a non-centered 472 

PFOB core looking like sunny-side up eggs (shown by red stars in Figure 7D,E). Such 473 

elongated morphology had already been observed with COOH-PEG-PLA NCs. This was 474 

attributed to an interfacial instability due to electrostatic repulsions between deprotonated 475 

carboxy functions leading to an increase of the total surface area.
30

 Comparatively, with PEG-476 

PLA-PFMA5, we can imagine that the incompatibility between the various blocks may force 477 

the chains to adopt a particular conformation leading to an increase of the total surface area. 478 

The same type of morphologies (shown by red stars) is observed with 50 and 30 mg of PEG-479 

PLA-PFMA10, but with additional dark domains (shown by red arrows) in the same object 480 

(Figure 7G,H), which correspond either to other PFOB cores, or to fluorinated rich domains 481 

formed by aggregation of the perfluoroalkyl chains of the polymer.
41

 PEG-PLA-PFMA20 482 

leads to NCs with 2 or 3 distinct PFOB cores at high polymer amounts, as shown by blue 483 

circles in Figure 7J,K. Such multi-core structures are probably favored by strong interactions 484 

between PFOB and perfluoroalkyl pendants. However, at 20 mg of each fluorinated polymer, 485 

although morphologies are still a bit heterogeneous within a same sample, one can observe a 486 

majority of capsules with a single centered PFOB core and a thin shell (Figure 7F,I,L). 487 

Interestingly, some are not perfectly spherical and seem ellipsoidal/elongated (shown by 488 

yellow triangles), which may indicate different mechanical properties. In this type of capsules, 489 

the PFOB core is not spherical and the shell thickness is homogeneous within the whole 490 

capsule, which is different from the other elongated NCs observed at higher polymer amounts.  491 
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 492 

Figure 7. Cryo-TEM images of formulated NCs (scale bars = 100 nm). Additional images are 493 

given in supplementary material. Red stars show elongated NCs with a non-centered spherical 494 

PFOB core at high amounts of PEG-PLA-PFMA5 and PEG-PLA-PFMA10. In the case of 495 

PEG-PLA-PFMA10, this type of elongated NCs also possesses additional darker domains 496 

shown by red arrows. Blue circles show NCs with 2 or 3 distinct PFOB cores. Yellow 497 

triangles show ellipsoidal NCs with a single non-spherical PFOB core and a shell thickness 498 

homogeneous within the same capsule. 499 

Shell thickness 500 

Small Angle Neutron Scattering (SANS) was used to statistically determine shell thickness. 501 

We focused on PEG-PLA-PFMA5 and PEG-PLA-PFMA10 which showed better PFOB 502 

encapsulation efficiency and higher solubility in methylene chloride than PEG-PLA-PFMA20. 503 

NCs were resuspended in the appropriate mixture of H2O and D2O to match the scattering 504 
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length density of the PFOB core and allow focusing on the polymeric shell. Scattered 505 

intensity curves were fitted with the vesicle model, assuming a log-normal distribution for 506 

both shell thickness and core radius. One example of a satisfying fit and the best fit 507 

parameters obtained for shell thickness are represented in Figure 8. Fitted curves and 508 

numerical values of shell thickness and core radius are given in supplementary material 509 

(Figure S10 and Table S1). Mean PFOB core radii are all in the same range (53 – 56 nm) with 510 

a high polydispersity, in agreement with DLS measurements. The mean thickness of PEG-511 

PLA NCs is not impacted by the amount of polymer, with values between 16 and 14.5 nm. 512 

However, with fluorinated triblock polymers, the mean thickness is decreasing down to 13.5 513 

nm and 11 nm for 20 mg of PEG-PLA-PFMA5 and PEG-PLA-PFMA10, respectively, as 514 

compared with 50 and 30mg polymer where no difference can be observed. This decrease is 515 

meaningful as the precision of SANS fitting is on the 1-2 nm order. A high polydispersity is 516 

nevertheless observed for all samples, especially for NCs made from higher fluorinated 517 

polymer amounts. This can be attributed to PFOB cores not being always well centered as 518 

seen on cryo-TEM images.  519 

 520 

Figure 8. Experimental scattered intensity curve (black circles) of NCs made from 20 mg 521 

PEG-PLA-PFMA10 in PFOB matching condition fitted with the vesicle model (red line) (left) 522 
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and shell thickness values of NCs determined by fitting with the vesicle model (mean ± SD) 523 

(right). 524 

3.4. Cytotoxicity studies 525 

The biological inertness of perfluorocarbons is well documented.
42

 Nevertheless, 526 

perfluoroalkyl moieties are often associated to a certain toxicity due to their low excretion 527 

profiles and prolonged retention in the organism, especially linear perfluorinated chains 528 

longer than eight carbons.
43–45

 Therefore the potential cytotoxicity of PEG-PLA-PFMAx NCs 529 

was investigated using an MTT assay on two representative cell types. Human umbilical vein 530 

endothelial cells (HUVEC) were chosen for their high sensitivity and rapid response to 531 

external stimuli which make them a widely used in vitro model for polymer cytotoxicity 532 

evaluation.
46

 J774.A1 cells play a key role in phagocytosis and were chosen to highlight the 533 

possible toxicity of NCs after being engulfed by macrophages. At both 24 and 72h incubation 534 

times, cell viability of HUVEC slightly decreases as NCs concentration increases, but remains 535 

above 70% until 1 mg/mL, and above 50% at 10 mg/mL, with no difference between the 536 

polymers (Figure 9A and Figure S11A). Regarding J774.A1, cellular viability remains above 537 

80% until 1 mg/mL at both incubation times. A strong viability decrease down to 45% after 538 

24h and 20% after 72h is observed at 10 mg/mL, but this high concentration is unlikely to be 539 

reached in vivo (Figure 9A and Figure S11A). For both cell types and both incubation times, 540 

the perfluoroalkyl chains do not induce any specific toxicity in comparison to plain PEG-541 

PLA, with no influence of the number of perfluoroalkyl chains. These results concur with 542 

reports from Koda et al. on the low toxicity of an amphiphilic fluorous random copolymer 543 

containing PEG and C8F17 pendants.
34

  544 
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 545 

Figure 91. Viability assays on HUVEC (top) and J774.A1 (bottom) cell lines after 72h 546 

incubation with nanocapsules (A) or polymers degradation products (B). Results are presented 547 

as mean ± SD (n = 3). 548 

PEG-PLA diblock copolymer is well known to be degradable into non-toxic products (lactic 549 

acid and polyethylene glycol). However, toxicity of the remaining short PFMA block after 550 

degradation of the triblock copolymers must be investigated. Accelerated hydrolytic 551 

degradations of PEG-PLA-PFMA5, PEG-PLA-PFMA10, and PEG-PLA as control, were 552 

carried out in basic conditions. The in vitro cytotoxicity of degradation products was then 553 

evaluated using an MTT assay on the same cell lines as for NCs. Due to insolubility issues, 554 

only low concentrations could be tested (maximum 0.01 mg/mL of initial polymer). In this 555 

range of concentrations, high HUVEC cellular viabilities (> 70%) were observed at both 556 

incubation times (Figure 9B and Figure S11B). J774.A1 cells show a slightly higher 557 

sensitivity depending on the incubation time, with cell viabilities above 87% after 24h and 558 



29 

 

above 67% after 72h. Within experimental error, no significant differences between polymers 559 

can be observed for both cell types, indicating an absence of obvious toxicity arising from 560 

fluorinated degradation products (Figure 9B and Figure S11B). These results are encouraging 561 

and additional in vivo studies will be required to evaluate the potential toxicity arising from a 562 

prolonged exposure to the degradation products. 563 

 564 

3.5. In vitro ultrasound measurements 565 

Finally, the acoustic response of NCs made from 30 and 20 mg polymer was evaluated in 566 

vitro at 5 MHz. Figure 10A presents the ultrasound scattered intensities measured at 567 

fundamental frequency and subtracted by the background level produced by Milli-Q water. 568 

No non-linear response could indeed be detected with our capsules, in agreement with 569 

previous studies showing the absence of nonlinear scattering with nano-sized agents.
47,48

 At 570 

30 mg polymer, all samples did not yield an ultrasound signal much higher than the 571 

background (intensity < 0.9 x 10
3
 arbitrary units, a.u.). However, at 20 mg polymer, the 572 

ultrasound scattered intensity increases with the number of fluorinated pendant chains, from 573 

1.4 x 10
3
 a.u. with plain PEG-PLA to 2.5 x 10

3
 a.u. with PEG-PLA-PFMA5 and 5.3 x 10

3
 a.u. 574 

with PEG-PLA-PFMA10. Such enhancement probably arises from several contributions which 575 

are summarized in Table 3. As shown by De Jong et al., the scattering cross section of a 576 

particle is defined as      
  

 
      

      

 
 
 

 
 

 

         

         
  where k is the wavenumber, R is 577 

the radius of the particle, κd and κ the compressibilities of respectively the particle and the 578 

medium, ρd and ρ the densities of respectively the particle and the medium.
49

 A contrast agent 579 

will therefore backscatter ultrasound waves more effectively if its radius is larger and if its 580 

physical properties (compressibility and density) differ a lot from the ones of the surrounding 581 

medium. Here, the slight diameter difference (up to 27 nm) could hardly be considered 582 
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responsible for the higher efficacy in scattering ultrasound. One of the main contribution is 583 

probably the reduction of shell thickness (down to 13.5 nm for PEG-PLA-PFMA5 and 11 nm 584 

for PEG-PLA-PFMA10) which may increase the capsules compressibility and echogenicity as 585 

previously observed.
15

 Indeed, AFM indentation experiments performed on PFOB 586 

microcapsules have shown that a thinner shell leads to overall softer capsules.
50

 Moreover, 587 

higher encapsulated PFOB contents and higher amounts of fluorinated chains in the polymers 588 

both increase capsule density and strengthen the difference of acoustic impedance with the 589 

surrounding medium, as previously observed with linear fluorinated PLAs.
19

 Although the 590 

quantity of PFOB and fluorinated chains is also high in samples made from 30 mg of PEG-591 

PLA-PFMA5 and PEG-PLA-PFMA10, these two samples possess a larger shell thickness (> 592 

15 nm) and a different morphology with a non-centered PFOB core (Figure 10B). The 593 

observed differences in capsules morphology are probably related to some differences in their 594 

mechanical properties which impact their response to ultrasound waves. AFM indentation 595 

experiments should be performed in the future to relate mechanical properties and ultrasound 596 

signal. 597 

Nanocapsules made from 20 mg of fluorinated triblock polymers therefore appear as 598 

promising UCAs. Although the measured ultrasound scattered intensities were still lower that 599 

with SonoVue
®
 microbubbles (16.5 x 10

3
 a.u.) due to their large radius (20-fold larger than 600 

NCs) and gaseous core, these NCs have greater potential to accumulate into the tumors by the 601 

EPR effect and allow contrast ultrasound imaging of tumors.  602 
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 603 

Figure 10. (A) Ultrasound scattered intensity by NCs resuspended at 5 mg/mL made from 30 604 

mg (circles) and 20 mg (diamonds) of each polymer and by Sonovue microbubbles (dark 605 

triangle) as positive control. Results are presented as mean ± SEM (n > 9). (B) Table 606 

summarizing NCs characteristics which could account for differences of ultrasound 607 

scattering: simplified representation of their morphology, mean hydrodynamic diameter (dH), 608 

mean shell thickness (T), PFOB quantity and C8F17 chains quantity contained in 1 mL of 609 

formulation resuspended at a final polymer concentration of 5 mg/mL for ultrasound 610 

measurements.  611 
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4. Conclusion 612 

Triblock PEG-PLA-PFMA polymers with distinct lengths of PFMA block (5, 10 or 20 613 

fluorinated pendant chains) were successfully synthesized and were shown to adsorb at the 614 

PFOB/methylene chloride interface. These favorable fluorous interactions led to an increase 615 

of the PFOB encapsulation efficiency into nanocapsules made of fluorinated polymers 616 

compared to plain PEG-PLA. The morphology of the nanocapsules was strongly influenced 617 

by the number of perfluorinated chains and the amount of polymer used for formulation: 618 

capsules with several PFOB cores or fluorinated-rich domains are obtained at high polymer 619 

amount, while a single PFOB core and a thinner shell are observed at low polymer amount. 620 

SANS measurements confirmed the observed reduction of mean shell thickness down to 11 621 

nm with PEG-PLA-PFMA10, which led to a 3.7-fold higher in vitro ultrasound response at 5 622 

MHz compared to plain PEG-PLA nanocapsules. Finally, no in vitro cytotoxicity was induced 623 

by both the fluorinated polymers and their degradation products. Results are encouraging, and 624 

future work will consist in performing in vivo studies to confirm the potential of these 625 

PEGylated/fluorinated nanocapsules to be used as ultrasound contrast agents for tumor 626 

imaging.  627 

5. Supporting information 628 

Supporting information is available: scheme of the experimental set up for in vitro ultrasound 629 

measurements, 
1
H NMR spectra of PEG-PLA and PEG-PLA-Br, SEC chromatograms, DLS 630 

of polymers in methylene chloride and chloroform, DSC thermograms, additional TEM and 631 

cryo-TEM images, SANS curves fitting, cytotoxicity results after 24h incubation, DLS curves 632 

of NCs (correlation and distribution functions). 633 

 634 
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