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Phenolic glycolipids (PGLs) are cell wall components of a subset of pathogenic myco-
bacteria, with immunomodulatory properties. Here, we show that in addition, PGLs 
exert antibactericidal activity by limiting the production of nitric oxide synthase (iNOS) 
in mycobacteria-infected macrophages. PGL-mediated downregulation of iNOS was 
complement receptor 3-dependent and comparably induced by bacterial and purified 
PGLs. Using Mycobacterium leprae PGL-1 as a model, we found that PGLs dampen 
the toll-like receptor (TLR)4 signaling pathway, with macrophage exposure to PGLs 
leading to significant reduction in TIR-domain-containing adapter-inducing interferon-β 
(TRIF) protein level. PGL-driven decrease in TRIF operated posttranscriptionally and 
independently of Src-family tyrosine kinases, lysosomal and proteasomal degradation. 
It resulted in the defective production of TRIF-dependent IFN-β and CXCL10 in TLR4-
stimulated macrophages, in addition to iNOS. Our results unravel a mechanism by which 
PGLs hijack both the bactericidal and inflammatory responses of host macrophages. 
Moreover, they identify TRIF as a critical node in the crosstalk between CR3 and TLR4.
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inTrODUcTiOn

Phenolic glycolipids (PGLs) are polyketide synthase products that are only synthesized by a subset 
of pathogenic mycobacteria, including the W-Beijing family of Mycobacterium tuberculosis strains 
and Mycobacterium leprae (1–3). In structure, these phenolphtiocerol dimycocerosates (DIMs) 
share a common phenolic lipid backbone that is decorated with species-specific oligosaccharide 
moieties (Figure S1 in Supplementary Material). PGL from M. tuberculosis (PGL-tb) inhibited the 
inflammatory cytokine responses of mycobacteria-infected macrophages, suggesting that it mediates 
the virulence of W-Beijing strains by suppressing host innate immune responses (4). While the 
association between PGL-tb and mycobacterial virulence later appeared more complex, the anti-
inflammatory activity of PGL-tb was confirmed, using naturally deficient M. tuberculosis strains that 
were genetically engineered to express PGL-tb (5). In line with these results, synthetic analogs of 
PGL-tb and M. leprae PGL-1 inhibited toll-like receptor (TLR)2-driven production of inflammatory 
cytokines and nitric oxide (NO) by macrophages (2, 6, 7). Since PGL-1 bound to immobilized TLR2 
in solid-phase assays, it was proposed that PGL-1 and PGL-tb can act as TLR2 antagonists (2).  
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Whether this mechanism is sufficient to explain the cytokine 
production defects of macrophages infected with PGL-expressing 
mycobacteria was not addressed.

In parallel, it was reported that recombinant Mycobacterium 
bovis BCG (rBCG) expressing PGL-1 instead of its native PGL 
(PGL-bov) exploit complement receptor (CR)3 for invasion of 
macrophages (2, 8). CR3, also known as Mac-1, CD11b/CD18, 
and αMβ2 integrin, is a widely expressed heterodimeric surface 
receptor, which in macrophages contributes to microbial pat-
tern recognition and phagocytosis. CR3 is known to mediate the 
opsonic and non-opsonic uptake of M. tuberculosis and M. leprae 
by macrophages (9–11), via its complement-binding I-domain 
and its carbohydrate-binding lectin domain, respectively (12, 13).  
Based on biochemical evidence, the increased infectivity of 
PGL-1-expressing BCG was attributed to a selective interac-
tion between its trisaccharide moiety and the lectin domain of 
CR3 (2). Of note, PGL-1-mediated phagocytosis required the 
Src-family kinase Lyn, a known mediator of β2-integrin signal 
transduction in macrophages (2, 14). In addition to promote 
macrophage invasion, PGL-1 increased the long-term survival 
of BCG within macrophages by a mechanism that remained 
unclear (8).

In the present work, we sought to determine if and how PGLs 
interfere with the bactericidal functions of macrophages. We 
found that PGLs limit the capacity of activated macrophages 
to induce nitric oxide synthase (iNOS) and generate NO upon 
mycobacterial infection, by downregulating the TLR4 adapter 
TIR-domain-containing adapter-inducing interferon-β (TRIF). 
In addition to suppressing iNOS production, PGLs decreased 
the TLR4-induced production of TRIF-dependent cytokines 
and chemokines. Our results thus provide a mechanism for both 
the immunomodulatory and virulence properties of PGLs. They 
support the general concept that PGL production was evolved 
by pathogenic mycobacteria to enhance intracellular survival and 
immune evasion.

MaTerials anD MeThODs

reagents
PGL-bov and DIMs were purified from bacterial cell pellets of  
M. bovis BCG and Mycobacterium canettii, respectively, as previ-
ously described (2). PGL-tb from M. canettii (#NR-36510) and 
PGL-1 from M. leprae-infected armadillos (#NR-19342) were 
obtained from BEI resources (https://www.beiresources.org/). 
Working solutions of lipids were prepared as follows: PGLs were 
dissolved in ethanol; DIMs were first recovered in a small volume 
of chloroform, before being added to water, then sonicated until 
complete suspension. These solutions were diluted >200 times in 
cell culture medium for cellular assays and compared to equiva-
lent volumes of vehicle. Ultrapure LPS from E. coli, serotype 
O55:B5, TLR grade (#ALX-581-013-L001) was purchased from 
Enzo Life Sciences. Recombinant mouse IFN-γ (#PMC4031) 
and TNF-α (#PMC3014) were purchased from ThermoFisher 
Scientific. InSolution™ PP2 Src inhibitor (#529576) and ALLN 
(#208719) were from Calbiochem Merck Millipore, and chloro-
quine diphosphate salt (#C6628) from Sigma.

cell cultures
Bone marrow-derived macrophage (BMDM) progenitors were 
obtained by flushing mouse femurs and tibias, followed by eryth-
rocyte lysis with red blood cell lysis buffer (#B00003, Roche). 
BMDMs were obtained by a 7-day differentiation of progenitors 
in RPMI 1640 GlutaMAX™ medium (#61870-010, ThermoFisher 
Scientific) supplemented with 10% heat-inactivated fetal calf 
serum (#A15-102, PAA) and 10% L929-conditioned medium as 
a source of M-CSF [hereafter called complete medium (CM)]. 
THP-1 human monocytes (ATCC, TIB-202) were cultured 
in RPMI supplemented with 10% heat-inactivated fetal calf 
serum, penicillin, and streptomycin (#15140122, ThermoFisher 
Scientific). They were differentiated into macrophages by addi-
tion of 2 ng/ml phorbol 12-myristate 13-acetate (#P8139, Sigma) 
for 3 days.

Mycobacteria cultures and cell infection
Methods used to generate the PGL-expressing rBCGs used in this 
study and experimental validation that they grow comparably  
and express equivalent amounts of heterologous PGLs were 
reported previously (2, 8). Bacteria were grown at 37°C in 
suspension in Middlebrook 7H9 broth (#M0178) supplemented 
with ADC (#M0553) and 40 µg/ml kanamycin (#K0254), all from 
Sigma. Mycobacterial suspensions destined to infect BMDMs were 
pelleted at (3,200 × g) for 7 min, washed twice with phosphate-
buffered saline (PBS), suspended in 5  ml of PBS before disso-
ciation in M-tubes using the gentleMACS Dissociator (Miltenyi 
Biotec), then diluted in RPMI to the appropriate concentration. 
Before infection, BMDMs were washed twice with warm RPMI, 
followed by a 2 h infection in RPMI. BMDMs were washed twice 
again with warm RPMI, then incubated in complete CM.

nO Quantification
Bone marrow-derived macrophages were cultured at 2 × 105 cells 
per well in black clear-bottomed cell culture microplates (Greiner 
Bio-One International) for 24 h and infected or treated as indi-
cated. Cells were washed once with warm PBS before addition 
of 5 µM 4,5-diaminofluorescein diacetate (#D225, Sigma), a cell 
permeable fluorescent dye for NO detection (15, 16), and incuba-
tion at 37°C in the dark. Fluorescence was measured using a fixed 
gain setting each hour for 5 h using a BMG FLUOstar OPTIMA 
Microplate reader (BMG Labtech) with emission and excitation 
wavelengths of 485 and 520 nm, respectively. In order to normal-
ize cell number, BMDMs were subsequently stained with 0.05% 
crystal violet (#C0775, Sigma) in 2% ethanol for 15 min followed 
by four washes with PBS. Dye was then dissolved in methanol and 
absorbance was measured at 550 nm. All values were set as a fold 
change ratio to averaged value of unstimulated group.

Flow cytometry
Adherent mouse BMDMs were detached with accutase (#A6964, 
Sigma) for 20 min at 37°C and blocked with FcR Blocking reagent 
(#130-092-575, Miltenyi Biotec) for 15  min at 4°C. Antibodies 
used in flow cytometry were anti-CD11b (M1/70), anti-CD11c 
(HL3), anti-CD86 (GL1), anti-CD40 (HM40-3) from BD 
Biosciences; anti-TLR4 (MTS510) from Biolegend; anti-IFNGR1 
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Table 1 | Primers used in the qRT-PCR analysis.

gene Primers (5′–3′)

Nos2 (17) ACATCGACCCGTCCACAGTAT
CAGAGGGGTAGGCTTGTCTC

Arg1 (17) CTCCAAGCCAAAGTCCTTAGAG
AGGAGCTGTCATTAGGGACATC

Cxcl10 (18) GGATCCCTCTCGCAAGGA
ATCGTGGCAATGATCTCAACA

Ifnb1 (19) CCCTATGGAGATGACGGAGA
ACCCAGTGCTGGAGAAATTG

Il6 (20) AGTTGCCTTCTTGGGACTGA
TCCACGATTTCCCAGAGAAC

Cebpb (21) GGAGACGCAGCACAAGGT
AGCTGCTTGAACAAGTTCCG

Tnf (17) CTGGGACAGTGACCTGGACT
GCACCTCAGGGAAGAGTCTG
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(2E2) from eBioscience; anti-iNOS (M-19) from SCT and anti-
goat AlexaFluor 647 Donkey (polyclonal IgG H&L) from Abcam 
(#ab150131). For intracellular staining of iNOS, macrophages 
were fixed with BD Lyse/Fix solution (#558049) for 10  min at 
37°C, then permeabilized with BD Perm Buffer III (#558050) 
for 20  min at 4°C prior to antibody staining. Flow cytometric 
acquisitions were performed on a BD FACS Accuri C6 and data 
were analyzed using FlowJo software.

immunoblot analysis and elisa
Bone marrow-derived macrophages (1–3 × 106) were washed and 
scraped in cold PBS, centrifuged, and then lysed in ice cold lysis 
buffer (20 mM Tris, 150 mM NaCl, 1mM EGTA, 1mM MgCl2, 1% 
n-Dodecyl-(β)-d-maltoside (#D4641), 4 mM sodium orthovana-
date (#S6508), 50 mM NaF (#S6776), 10 µg/ml leupeptin (#L2884), 
10  µg/ml aprotinin (#10820), 1  mM Pefabloc-sc (A8456)), all 
purchased from Sigma, for 15  min. Protein concentration was 
quantified with NanoDrop Light SpectroPhotometer (Thermo 
Fisher Scientific). Cell lysates were resolved on NuPAGE Bis-Tris 
gels and transferred to nitrocellulose membranes (ThermoFisher 
Scientific). Protein detections used the following antibodies:  
MyD88 (#3699), Phospho-Src (Tyr416, #2101), GAPDH 
(#2118), all from CST, and Ticam-1 (TRIF, #657102, Biolegend). 
Detection of pSrc (MW 60 kDa), MyD88 (MW 33 kDa), TRIF 
(MW 98 kDa), and GAPDH (MW 37 kDa) was performed in a 
single Western blot assay using multiple antibodies. Before using 
this technique, we verified that our antibodies were specific (data 
not shown). When only TRIF and GAPDH were analyzed, blots 
were sliced horizontally after transfer, then stained separately in 
order to capture images at optimal exposure times. Protein com-
plexes were revealed with the ECL Prime detection reagent (GE 
Healthcare) and chemiluminescence reading on a Fuji LAS-4000 
Luminescent Image Analyzer. IFN-β and TNF-α concentra-
tions in BMDM culture supernatants were measured by ELISA 
(Biolegend, #439407 and #430901), following the manufacturer’s  
protocol.

rna extraction and real-time Quantitative 
rT-Pcr
Qiagen RNeasy Mini Kit (#74104) was used to extract total RNA 
from BMDMs. cDNA was amplified from 1 µg of total RNA using 
the high-capacity cDNA reverse transcription kit with added 
RNAse inhibitor (#4374966, Applied Biosystems). Relative mRNA 
levels were quantified by qRT-PCR using power SYBR green and 
with gene-specific primers (Table  1). Amplification conditions 
and dissociation step were as follows: 50°C for 2 min, 95°C for 
10 min followed by 40 cycles (95°C for 15 s and 60°C for 1 min). 
ABI 7300 Sequence Detection System (Applied Biosystems) was 
used for data acquisition. Fold increase values were calculated for 
each gene transcript using the 2−ΔΔCt method, using RPL19 as a 
house-keeping gene.

Mice
C57BL/6J (JAX™) and Itgam−/− (B6.129S4-Itgamtm1Myd/J) 
mice were obtained from Charles River and Jackson Laboratories, 
respectively. TRIFLPS2/LPS2 mice [C57BL/6J—Ticam1Lps2 (22)] 

were originally from B. Beutler et  al. (The Scripps Research 
Institute, CA, USA) and back-crossed into the C57BL/6J back-
ground at Institut Pasteur. TLR2−/− [B6.Cg-Tlr2tm1Aki (23)] and 
MyD88−/− [B6.129-Myd88tm1Aki (24)] mice were obtained from 
S. Akira (Osaka University, Japan). All animals were bred and 
housed under pathogen-free conditions in our animal facilities 
with food and water ad  libitum. Transgenic mice were used 
between 6 and 10 weeks of age, with age and sex-matched wild-
type controls. Since we only used mice as a source of bone mar-
row, the described experiments did not require approval from 
the French Ministry of Higher Education and Research. They 
were performed in compliance with the European Communities 
Council Directive of 22 September 2010 on the approximation of 
laws, regulations, and administrative provisions of the Member 
States regarding the protection of animals used for scientific 
purposes.

statistical analysis
Statistical analyses were performed with the StatView® 5 software 
(SAS Institute, Inc.). The Prism software (5.0d) was used for 
graphical representation.

resUlTs

Pgls inhibit infection-induced Production 
of inOs and nO in activated Macrophages
Following infection with mycobacteria and the early activation 
of innate immunity, T cells are stimulated to produce IFN-γ. This 
cytokine induces the expression of iNOS in infected macrophages, 
with subsequent production of NO efficiently controlling the 
growth of intracellular bacteria (25–28). To see if PGLs affect NO 
production in activated macrophages, we compared intracel-
lular levels of iNOS in BMDMs infected with recombinant BCG 
expressing PGLs (rBCG:PGLs), or PGL-deficient BCGs (rBCG:no 
PGL) as control, in the presence of IFN-γ. Figure 1A shows that 
rBCG:bov, rBCG:PGL-1, and rBCG:PGL-tb all elicited less iNOS 
than rBCG:no PGL in infected macrophages. Consistently, the 
production of NO was lower in cells infected with any of the 
PGL-expressing strains, compared to those infected with PGL-
deficient rBCG (Figure  1B). Importantly, addition of soluble 
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FigUre 1 | Phenolic glycolipids (PGLs) inhibit infection-induced production of iNOS and NO in activated macrophages. (a) Differential induction of iNOS in bone 
marrow-derived macrophage (BMDMs) infected with rBCG:no PGL, rBCG:PGL-bov, rBCG:PGL-1 or rBCG:PGL-tb, or non-infected BMDMs (no inf), as determined 
by intracellular detection of iNOS using flow cytometry. BMDMs were infected for 2 h at a MOI of 1:1, then washed and cultivated in the presence of 100 U/ml IFN-γ 
for 48 h. Data are mean fluorescence intensities (MFI) ± SEM (n = 3). (b) Differential production of NO in the same conditions as in (a). Data are mean NO 
levels ± SEM (n = 8), expressed as fold changes relative to non-infected controls (no inf). (c) NO production by BMDMs pretreated with 25 µM PGL-1 or ethanol 
vehicle (Veh) for 24 h prior to 48 h of infection with rBCG:no PGL at a MOI of 1:1 in the presence of 100 U/ml IFN-γ. (D) as in (a) in Itgam−/− BMDMs. Data shown 
are from one experiment repeated twice with similar results. *P < 0.05, **P < 0.01, ***P < 0.001, following statistical comparison by repeated measures ANOVA with 
Tukey post hoc test, relative to rBCG:no PGL.
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PGL-1 to BMDMs was sufficient to reduce the cell production of 
NO upon infection with PGL-deficient rBCG (Figure 1C).

Since PGL-1 was previously reported to interact with CR3, we 
tested the potential involvement of this receptor in PGL-mediated 
inhibition of iNOS and NO production, using CD11b-deficient 
(Itgam−/−) macrophages. PGL-expressing rBCGs induced compa-
rable production of iNOS as PGL-deficient BCG in Itgam−/− mac-
rophages, implying that CR3 is involved (Figure 1D). Together, 
these data suggested that PGLs have the intrinsic capacity to 
suppress the infection-induced production of NO in activated 
macrophages, by a mechanism involving CR3.

Pgls reduce the lPs/iFn-γ-induced 
Production of inOs in a cr3-Dependent 
Manner
Induction of iNOS requires the cooperative activation of the  
JAK–STAT and pattern recognition receptor signaling pathways 
(29). To gain insight into the mechanism by which PGLs down-
regulate iNOS in mycobacteria-infected macrophages, we next 
tested if PGLs affected NO production in BMDMs stimulated with 

IFN-γ and the TLR4 agonist LPS. PGL-1 added to macrophages at a  
concentration superior to 12 µM prior to stimulation with LPS/
IFN-γ indeed caused a dose-dependent reduction in NO produc-
tion (Figure 2A). Notably, NO decrease was not observed if cells 
were treated with PGL-1 at the time of LPS/IFN-γ stimulation, 
and required a preincubation with PGL-1 of at least 6 h (Figure 
S2A in Supplementary Material). PGL-tb was equivalent to PGL-1 
in its capacity to decrease the LPS/IFN-γ-stimulated production 
of iNOS by BMDMs (Figure 2B). In contrast, phthiocerol DIMs, 
which correspond to PGLs devoid of phenol ring and oligosac-
charide domains (Figure S1 in Supplementary Material) had no 
inhibitory effect on NO production in the same conditions of cell 
pretreatment and stimulation (Figure  2C). This indicated that 
the lipid backbone of PGLs is not sufficient to inhibit the LPS/
IFN-γ-induced production of iNOS.

Consistent with our data in Figure 1, the inhibitory activity 
of PGL-1 on LPS/IFN-γ-mediated production of NO correlated 
with a significant decrease in iNOS (Figure  2D) and required 
BMDM expression of CR3 (Figure  2E). Since PGL-1 binds to 
TLR2 in  vitro and decreases the TLR2-induced production of 
cytokines and NO by human macrophages (2, 6, 7, 30), we next 
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FigUre 2 | Phenolic glycolipids (PGLs) reduce LPS/IFN-γ-induced production of iNOS in a CR3-dependent manner. (a) Differential production of NO by bone 
marrow-derived macrophages (BMDMs) pretreated with increasing concentrations of PGL-1 or vehicle (Veh) for 24 h prior to a 24 h stimulation with 1 µg/ml LPS 
and 100 U/ml IFN-γ. Data are mean NO levels ± SEM (n = 4), expressed as fold changes relative to non-treated, stimulated controls. *P < 0.05, Mann–Whitney test 
comparing PGL-1-treated to vehicle controls at each concentration. (b) As in (a) with 25 µM PGL-1 or 25 µM PGL-tb; unstim: non-treated, non-stimulated controls. 
(c) As in (a), with increasing concentrations of dimycocerosates (DIMs). (D) Differential induction of iNOS in BMDMs exposed to 25 µM PGL-1 or vehicle (Veh) for 
24 h prior to a 24 h stimulation with LPS/IFN-γ. Controls are non-treated, non-stimulated cells (unstim). Data are mean fluorescence intensities (MFI) ± SEM (n = 3). 
(e) As in (D) in Itgam−/− BMDMs. Data shown are from one experiment repeated twice with similar results. Statistical comparisons in (b,D,e) were performed with 
repeated measures ANOVA with Tukey post hoc test, relative to the vehicle-treated, LPS/IFN-γ-stimulated group. *P < 0.05, **P < 0.01, ***P < 0.001.
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FigUre 3 | Phenolic glycolipids (PGLs) impair TLR4-mediated downstream signaling pathways. (a) Differential production of NO by bone marrow-derived 
macrophages (BMDMs) pretreated with 25 µM PGL-1 or vehicle (Veh) for 24 h prior to a 24 h stimulation with 1 µg/ml LPS + 100 U/ml IFN-γ, or 10 ng/ml 
TNF-α + 100 U/ml IFN-γ. ***P < 0.001, Mann–Whitney test, comparing PGL-1-treated to vehicle controls in each condition of cell stimulation. (b) Differential 
production of NO by wild-type, MyD88−/−, TRIFLps2/Lps2, or DKO BMDMs treated with 25 µM PGL-1 or vehicle (Veh) for 24 h prior to a 24 h stimulation with 1 µg/ml 
LPS + 100 U/ml IFN-γ. Controls include non-treated, non-stimulated cells (unstim). (c) Differential production of NO by MyD88−/− BMDMs treated with 25 µM 
PGL-bov, 25 µM PGL-1, 25 µM PGL-tb, or vehicle (Veh) for 24 h prior to a 24 h stimulation with LPS/IFN-γ. (D) Differential production of NO by MyD88−/− BMDMs 
infected with rBCG:no PGL, rBCG:PGL-bov, rBCG:PGL-tb, or rBCG:PGL-1 at a MOI of 5:1, or non-infected (no inf). In (b–D), data are mean NO levels ± SEM 
(n ≥ 3), expressed as fold changes relative to non-stimulated (unstim) or non-infected (no inf) controls. Data shown are from one experiment repeated twice with 
similar results. *P < 0.05, **P < 0.01, ***P < 0.001, repeated measures ANOVA with Tukey post hoc test, relative to vehicle or no PGL controls.
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tested if TLR2 was involved in the observed effects. Decreased 
production of iNOS and NO was maintained in PGL-1-treated, 
LPS/IFN-γ-stimulated TLR2-deficient BMDMs (Figures S2B,C 
in Supplementary Material), ruling out this possibility. We con-
cluded that PGLs suppress the LPS/IFN-γ-induced induction of 
iNOS in a CR3-dependent and TLR2-independent manner.

Pgls impair Tlr4-Mediated Downstream 
signaling Pathways
We next sought to determine which of the TLR4 and IFN-γ receptor 
(IFNGR) signaling pathways was targeted by PGLs. BMDMs were 
stimulated with LPS/IFN-γ or TNF-α/IFN-γ, two combinations 
of reagents leading to significant production of NO. Figure 3A 
shows that PGL-1 only decreased the NO production of LPS/

IFN-γ-stimulated cells, suggesting that PGLs interfere with TLR4 
signaling independently of IFN-γ. Consistently, PGL-1 treatment 
did not alter the levels of total and Tyr701-phosporylated Stat1 
in BMDMs stimulated with IFN-γ (data not shown). Surface 
expression of TLR4, IFN-γ receptor 1, or CD11b was not altered 
by PGL-1 treatment of BMDMs (Figure S3 in Supplementary 
Material), implying that PGL-1 interferes with signaling events 
downstream of TLR4. Since TLR4 uses two adaptor proteins 
(MyD88 and TRIF), we examined if they equally contribute to 
TLR4-induced production of NO. We used BMDMs generated 
from MyD88−/−, TRIFLps2/Lps2, or double knock-out (DKO) mice. 
Figure  3B shows that LPS/IFN-γ-stimulated production of 
NO was strictly mediated by TRIF. Notably, PGL-1-mediated 
inhibition of LPS/IFN-γ-stimulated production of NO was lost 
in MyD88−/− BMDMs (Figure  3B). Comparable findings were 
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obtained with PGL-tb and PGL-bov (Figure 3C). In contrast to 
wild-type BMDMs (Figure 1A), infection of MyD88−/− BMDMs 
with PGL-expressing rBCGs did not alter their relative produc-
tion of NO (Figure 3D). Together, these data in Figure 3 thus 
suggest that PGLs decrease TRIF-dependent production of NO 
in a MyD88-dependent manner.

Pgl-1 Downregulates TriF Protein levels
TLR4-driven inside–out activation of CR3 was previously 
shown to dampen TLR4 signaling in BMDMs through a nega-
tive feedback mechanism involving Src-mediated degradation of  
MyD88 and TRIF by the ubiquitin:proteasome system (31). In 
parallel, it was reported that Leukadherin (LA)-1, a CR3 agonist, 
downregulates MyD88 protein levels in TLR7/8-stimulated 
THP-1 macrophages (32). We hypothesized that CR3 engage-
ment by PGLs may affect TLR4 signaling in macrophages by 
interfering with endogenous levels of MyD88 and/or TRIF. 
Consistent with previous work, MyD88 levels were decreased 
in BMDMs treated with LA-1 (Figure S4A in Supplementary 
Material). Notably, the inhibitory activity of LA-1 on MyD88 
levels was modest in comparison to that on TRIF. A 2 h treatment 
of BMDMs with 15 µM LA-1 indeed provoked >90% reduction 
in TRIF protein levels (Figure 4A). A comparable decrease was 
seen in human THP-1 macrophages treated with LA-1 (Figure 
S4B in Supplementary Material). Exposing BMDMs or THP-1 
cells to 25 µM PGL-1 for >6 h led to similar effects, although 
maximal downregulation of TRIF by PGL-1 reached a plateau 
at 50% (Figure 4B; Figure S4B in Supplementary Material). In 
contrast, PGL-1 had no major effects on MyD88 levels (Figure 
S4C in Supplementary Material).

PGL-1 treatment did not alter the level of TRIF transcripts 
in BMDMs, indicating that PGL-1-mediated decrease in TRIF 
protein levels operates at a posttranscriptional level (Figure 4C). 
It was maintained in the presence of the Src family tyrosine kinase 
inhibitor PP2 (Figure 4D), suggesting that PGL-1 operates inde-
pendently of Src activation. We tested if PGL-1-driven reduction 
in TRIF depended on lysosomal or proteasomal degradation 
using chemical inhibitors of these pathways, but no significant 
restoration of TRIF levels could be observed (Figure 4E). Notably, 
PGL-1-mediated decrease in TRIF was not detected in Itgam−/− 
BMDMs, further illustrating the involvement of CR3 in this 
process (Figure 4F).

Pgl-1-Mediated Decrease in TriF impairs 
Downstream signaling events
We next investigated to what extent PGL-1-driven decrease in 
TRIF protein level altered TLR4 signaling events in activated 

macrophages. Consistent with our data in Figures  1 and 2, 
pretreating BMDMs with PGL-1 for 24  h prior to LPS/IFN-γ 
stimulation durably suppressed Nos2 transcription (Figure 5A). 
Expression of Arginase 1 (Arg1), which competes with iNOS 
for arginine, does not depend on TRIF. Figure  5B shows that 
contrary to Nos2, the LPS/IFN-γ-induced transcription of Arg1 
was not modified by PGL-1 pretreatment. Similarly, expression 
of MyD88-dependent IL-6 (Il6) and M2-inducer CEBPB (Cebpb) 
in LPS/IFN-γ-stimulated BMDMs were not impacted by pre-
exposure to PGL-1 (as shown for IL-6 in Figure 5C). In contrast, 
the level of CXL10 (Cxcl10) transcripts, which relies on TRIF-
IRF3 signaling, was significantly reduced by PGL-1 pretreatment 
in BMDMs stimulated with LPS/IFN-γ for 6  h (Figure  5D). 
Although statistical significance was not reached, a similar trend 
was observed with the expression of the TRIF-dependent cytokine 
IFN-β (Ifnb1) (Figure 5E). By measuring IFN-β concentration in 
culture supernatants, we could confirm that PGL-1 pretreatment 
reduces significantly the ability of BMDMs to produce IFN-β 
in response to TLR4 stimulation (Figure  5G). In comparison, 
gene and protein expression of TNF-α (Tnf), which depend on 
both the MyD88 and TRIF pathways, were minimally affected 
(Figures 5F–H).

DiscUssiOn

We report in the present work that exposure of macrophages to 
mycobacterial PGLs affects the integrity of their TLR4 signaling 
pathway. Using PGL-1 as a model, we show that PGLs operate 
by selectively downregulating the TLR4 adaptor TRIF. Since 
TRIF mediates the production of iNOS and selected cytokines 
and chemokines in macrophages, PGL production endows 
mycobacteria with the capacity to alter both the bactericidal and 
inflammatory responses of the host during chronic infection.

This property adds to the previously reported inhibitory 
activity of PGL-1 and PGL-tb on TLR2 signaling, which was 
evidenced by a lower induction of NF-κB and associated produc-
tion of TNF-α in macrophages stimulated with Pam3CSK4 in 
the presence of PGLs (2, 6, 7). Notably, PGL-mediated inhibition 
of TLR2 signaling operated immediately and independently of 
CR3-mediated phagocytosis. This is in stark contrast with the 
observed effects of PGLs on TRIF-dependent TLR4 signaling, 
which required that macrophages express CR3 and are exposed 
to PGLs for >6 h. Using TLR2-deficient BMDMs, we excluded 
the possibility that TLR2 contributes to PGL-mediated inhibi-
tion of TLR4 signaling. Unlike TRIF, MyD88 was not impacted 
by macrophage pretreatment with PGL-1. Together, these data 
thus suggest that PGLs affect TRIF independently of their effect 
on TLR2 signaling. Pretreating macrophages with PGL-1 prior to 
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stimulation with TLR3 ligand poly(I:C) did not alter their IFN-β 
production (Figure S5 in Supplementary Material), thus limiting 
the functional relevance of PGL-1-mediated decrease in TRIF to 
TLR4 signaling.

Mycobacteria display multiple TLR2 and TLR4 agonists, and 
studies using TLR knock-out animals have shown the impor-
tance of TLR2/4 signals in host responses to chronic mycobac-
terial infection, via production of bactericidal molecules and 
pro-inflammatory mediators (3, 33, 34). By inhibiting TLR2 
signaling (previous work) and TRIF-dependent TLR4 signaling 
(present study) in macrophages, PGL production is thus likely 
to alter the immune control of M. tuberculosis and M. leprae 
infection in vivo. Interestingly, several strains of M. tuberculosis 
belonging to the W-Beijing lineage were shown to be potent 
activators of TLR4 and inducers of Type I IFNs in BMDMs (35). 
Production of Type I IFNs during infection with M. tubercu-
losis [reviewed in Ref. (36)] and M. leprae (37) is believed to 
promote rather than limit disease progression, through diverse 
autocrine and paracrine mechanisms contributing to suppress 
IFN-γ production and IFN-γ-induced microbicidal responses. 
However, recent studies have indicated that in conditions where 
IFN-γ signaling is absent, Type I IFNs confer protection against  
M. tuberculosis infection (38, 39). Our observation that PGLs 
limit the ability of macrophages to produce IFN-β upon TLR4 
activation, irrespective of IFN-γ stimulation, is, therefore, par-
ticularly interesting to consider in the context of early immune 
responses to infection.

We excluded the possibility that PGLs suppress TRIF gene 
transcription or promote TRIF proteasomal or lysosomal deg-
radation, but failed to identify a mechanism linking CR3 with 
TRIF protein loss. PGL-mediated inhibition of NO production 
was lost in MyD88−/− macrophages, suggesting that TRIF deg-
radation requires MyD88. Previous studies have shown that  
PGL-1 differs from other PGLs in capacity to promote the 
CR3-dependent uptake of mycobacteria by macrophages (2).  
Consistently, PGL-1 binding to CR3 was not displaced by oligo-
saccharides from other PGLs in solid-phase assays (2). Whether  
all PGLs can bind to a distinct region of the CR3 receptor, 
without activating downstream Src signaling, is unknown. Our 
observation that PGL-1, PGL-tb, and PGL-bov comparably 
suppress TLR4-induced induction of iNOS, in a CR3-dependent 
manner, supports this possibility. Alternatively, PGLs may bind 
to a distinct macrophage receptor, secondarily interfering with 
CR3. Incubation of BMDMs with PGL-1 did not alter their sur-
face expression of TLR4 (Figure S3 in Supplementary Material) 
nor basal production of IFN-β (Figure  5G), arguing against a 
direct interaction between PGLs and TLR4. Further work will be 
needed to determine how CR3 and MyD88 connect with PGL-
driven TRIF downregulation, and whether TRIF production is 

altered at the translational level, or if other mechanisms are at 
play. Recently, it was reported that PGL-1 expressed by recom-
binant Mycobacterium marinum induces BMDMs to produce 
enhanced levels of iNOS transcripts after 6 h of infection (40).  
It would be interesting to see if the production of NO is aug-
mented in macrophages infected M. marinum:PGL-1, and if the 
stimulatory effect of PGL-1 persists beyond 6  h postinfection 
in this system. If so, this would suggest that the mycobacterial 
strain expressing PGL-1 influences its effect on iNOS production 
by infected macrophages.

Aside from macrophages, CR3 is expressed by monocytes, 
dendritic cells, neutrophils, NK cells, basophils, eosinophils, and 
platelets. Interestingly, CD11b was reported to regulate TLR4-
induced signaling pathways in a positive manner in dendritic cells 
(41). The authors proposed that, in these cells, but not in mac-
rophages, CD11b facilitates TLR4 endocytosis and subsequent 
TRIF-mediated signaling in endosomes. Our preliminary inves-
tigations in the mouse MutuDC line showed that pretreatment 
with PGL-1 inhibits the LPS-stimulated upregulation of CD86 
at the cell surface (data not shown), which suggests that PGL-1 
comparably affects TRIF-dependent TLR4 signaling in dendritic 
cells. In all, our findings expand the list of subtle functional 
alterations caused by mycobacterial PGLs in the biology of host 
macrophages, namely hijacking the CR3 receptor for increased 
infectivity and directly interacting with surface-displayed TLR2. 
In addition to improve our understanding of how PGLs manipu-
late innate immunity receptor signaling and communication, our 
findings reveal a novel element of crosstalk between TLR and the 
complement system that is exploited by pathogens to improve 
persistence in infected hosts (42).
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