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Abstract

In the present paper we demonstrate the approach of using a holo-
graphic grating on a freeform surface for advanced spectrographs de-
sign. We discuss the surface and groove pattern description used
for ray-tracing. Moreover, we present a general procedure of diffrac-
tion efficiency calculation, which accounts for the change of hologram
recording and operation conditions across the surface. The primary
application of this approach is the optical design of the POLLUX
spectropolarimeter for the LUVOR mission project where a freeform
holographic grating operates simultaneously as a cross-disperser and a
camera with high resolution and high dispersion. The medium ultravi-
olet channel design of POLLUX is considered in detail as an example.
Its resolving power reaches [126,000-133,000] in the region of 118.5-
195 nm. Also, we show a possibility to use a similar element working
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in transmission to build an unobscured double-Schmidt spectrograph.
The spectral resolving power reaches 4000 in the region 350-550 nm
and remains stable along the slit.

Keywords— freeform optics, holographic grating, spectral resolution,
LUVOIR mission, optical design, diffraction efficiency.

1 Introduction

The use of freeform optics in the field of optical technology is expanding

the borders of achievable optical system performance. With use of such

surfaces it becomes possible to create wide-field fast optical systems with

fewer number of optical elements and also create new systems with geom-

etry, which impossible with ordinary aspheres. Application of a freeform

optical surface for the design of diffractive optical elements represents an

attractive prospect. Technology of complex diffractive optical elements, es-

pecially holographic ones, has been developing for a long time [1, 2], and the

freeforms represent an emerging technology, which made a huge progress in

the recent years [3, 4, 5]. Their combination could allow greater freedom for

aberrations correction and achieve a qualitatively new levels in spectroscopy,

imaging, and beam shaping. Such a possibility was recently considered and

demonstrated by a number of authors. For example, an optical design with
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a blazed grating on a non-symmetrical tilted elliptical surface was developed

and fabricated for the IGIS spectrograph [6]. In that case the grating had

equally spaced straight grooves (in projection to the tangent plane). Another

freeform grating was used in the Offner-type design for the ELOIS spectrom-

eter [7]. It had a complex freeform shape without rotational symmetry and

the groove pattern varying in order to maintain their positioning with respect

to the local surface normal. In general, application of freeform surfaces for

the design of spectrographs was considered in different studies [8, 9]. One of

such publications [10] demonstrates an Offner-Chrisp system with a grating

on a general freeform surface described by Zernike polynomials. Also, there

are ongoing research activities, which will allow a combination of freeform

surface, complex groove pattern and blazed groove profile in a single optical

element [11]. Finally, a number of publications have shown the potential

for application of freeform diffractive elements in adjacent fields like display

technologies, or image reconstruction [12, 13]. In the present paper we

consider the most general case, when a grating with curved and unequally

spaced grooves is imposed over a freeform surface. It is supposed that the

grating is manufactured holographically, i.e. it represents a recording of in-

terference pattern from two coherent sources. We developed a set of tools
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for ray-tracing through such a holographic freeform grating in Zemax and

further computation of the diffraction efficiency. The primary application

of these tools was the design of the POLLUX spectropolarimeter [14] for

the LUVOIR [15] mission concept. We show that the use of the freeform

grating allows the required image quality to be obtained with the minimal

number of optical surfaces and reach relatively high diffraction efficiency.

However, the possible applications are not limited to this particular case.

It is demonstrated that a transmission freeform grating can help achieve a

high performance in a double-Schmidt type spectrograph. The efficiency op-

timization of a volume-phase hologram on a complex surface represents a

separate task. Thus the paper is organized as follows: section 2 presents

how to describe the freeform surface shape, the grating pattern and to model

the diffraction efficiency accounting for the parameters variation across the

surface; section 3 demonstrates the usage of such an optical element for the

POLLUX instrument design with estimation of the obtained performance,

including the image quality and the diffraction efficiency; section 4 presents

a demonstrative optical design with a transmission freeform grating showing

a similar performance assessment. Finally, section 5 contains the general

conclusions on the study.
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2 Design approach

Describing a holographic grating on a freeform surface requires definition of

the surface sag [16] and the normals and then setting up a procedure of

ray-tracing at any point of this surface. Further, the diffraction efficiency

can be computed by application of any numerical method. For a holographic

freeform grating the recording and operation geometries vary significantly

from one point to another, so the local gratings approach is used. Below we

describe the approach to model the freeform surface in ray-tracing software,

which was implemented in a custom dll-library for Zemax. Also we present

the diffraction efficiency modelling procedure. It was realized by a combina-

tion of Zemax macros and Matlab-based numerical diffraction solvers.

2.1 Freeform description

A freeform surface can be described by different sets of polynomials [17] .

In the present case, one of the orthonormal polynomials sets -- Zernike or

Legendre polynomials are used for the surface description.

The Zernike polynomials [18] are widely used in optical engineering. They

are orthonormal over the unity circle, which simplifies the freeforms design

and optimization of them. Another polynomial set chosen for this task is
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(a) (b)

Figure 1: Modes of the orthonormal polynomials used for the freeform
optical surfaces description: (a) standard Zernike sag polynomials and (b)
Legendre polynomials.

the Legendre polynomials. They are orthonormal over the unity square.

Advantages of their use in some cases were demonstrated in a number of

publications — ref. [19, 17]. To facilitate the further explanations we provide

sag diagrams for the 4th to 11th modes of each set on Figure 1 (the piston,

tip and tilt are the same, so they are excluded). It is necessary to mention

that a freeform surface can be described by any of these polynomial sets, but

due to some features of the numerical optimization process one way of the

freeform description can be preferable [20].

2.2 Grating description

For modelling of a holographic grating we used the general ray-tracing pro-

cedure [21]. The vectorial equation used for computations is:
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Figure 2: Definition of the holographic grating recording and operation
geometry.

~N × (~ri − ~rd) = k
λ

λ0
~N × (~r1 − ~r2) , (1)

Here ~N is the normal vector, ~ri,~rd are vectors of the recording rays, ~r1,~r2

are that of the incident and diffracted rays, k is the order of diffraction, λ0

and λ are the recording and working wavelengths respectively. Hereafter we

assume that the grating is recorded by two point sources. The recording

and operating geometry is presented on Figure 2. One should keep in mind

that the recording sources coordinates are defined with respect to the grating

vertex.

In this case the grating works in reflection, but for a transmission grating

the equation and all the definitions remain similar except for the sign before
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the diffracted ray vector and inclusion of the refraction index into equation 1.

Combining the given descriptions of surface shape and grooves pattern, it is

possible to create a user defined surface in an optical design software like

Zemax (using customized .dll library) in order to use it with the standard

ray-tracing and optimization tools.

2.3 Diffraction efficiency modelling

The diffraction efficiency depends strongly on the angle of incidence (AOI),

groove orientation and groove profile. As it was mentioned, all of these pa-

rameters for a freeform holographic may vary significantly across the surface.

So the diffraction efficiency is calculated for a number of local gratings. Each

one of these gratings is supposed to be plane and have straight equidistant

grooves. It is defined around each ray traced on the previous step by the

local coordinate basis (~e1, ~e2, ~e3), where ~e1 corresponds to the local surface

normal and ~e3 gives the local grooves direction (see Figure 3).

Then the modelling is performed for each of these local gratings separately

using a precise numerical method - rigorous coupled wave analysis (RCWA).

We consider two possible cases - a blazed surface-relief reflection grating and

a volume-phase holographic (VPH) transmission grating.
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Figure 3: The local grating approach: recording and operation geometry of
the local plane classical grating.

For the reflection grating case we used Matlab-based GD-calc software

[22]. The grating profile there is represented by a number of layers or ’strata’.

We assumed that the grooves are triangular (formed for instance by ion-beam

etching). The grooves spacing d is defined by the recording geometry:

N =
1

d
=
sin(i′

1
)− sin(i′

2
)

λ0
, (2)

where i′
1
and i′

2
are angles between the local normal ~N = ~e1 and the
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projections of recording rays ~r1 and ~r2 to the plane ~e1 ~e2. They are different

from those defined at the vertex, since the local recording plane does not

coincide with the global tangential plane. The groove angle αb corresponds

to the blazing condition at the central wavelength of the working range λc

and the groove depth h equals to λc

2
. The incident ray vector is defined by

two spherical angles as they are given in the GD-calc description. All the

details are shown on Figure 4.

In the case of transmission VPH grating, the approach is similar. For

the diffraction efficiency modelling another version of the RCWA method

[23] , which is implemented in reticolo software, also operating in Matlab.

Instead of grooves such a grating consists of fringes with modulated refraction

index n+∆n. The main difference with the previous case is that the fringe

inclination and therefore the diffraction efficiency is strictly dependant on

the recording geometry. The inclination angle is defined as

β = acos
− ~N · (~r′

1
+ ~r′

2
)

| ~N ||(~r′
1
+ ~r′

2
)|
, (3)

where ~r′
1
and ~r′

2
are the recording rays vectors refracted by the holographic

media. In addition, the spherical angles ψ and δ are re-defined according to

the solver’s requirements. The entire schematic is given in Figure 5.
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Figure 4: Modelling of the diffraction on blazed grooves of a local plane
reflection grating.

For both of the cases we developed sets of tools for the modelling. The

surface shape and ray-tracing data was extracted from Zemax using a macro.

Then it was readout by a Matlab code, which performs the efficiency com-

putation for the entire surface and returns the average values as well as data

on spatial distribution and polarization dependence.
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Figure 5: Modelling of the diffraction on fringes of a local plane transmission
VPH grating.

3 Spectrograph with a reflection grating

3.1 Optical design

The primary application of the developed design tools is the optical design

of POLLUX, a high resolution UV spectropolarimeter for the LUVOIR mis-

sion concept under study in the frame of the current NASA decadal survey.

The target spectral resolving power of the instrument is 120 000 in the ex-
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(a) (b)

Figure 6: Optical design of the POLLUX instrument MUV channel: (a)
general view, (b) zoom-in of the polarimetric unit.

tended UV region 90-390 nm[20]. Such a high resolution can be achieved

in an instrument with 3 channels, when each of them represents an echelle

spectrograph. It was decided by the consortium to split the channels as fol-

lows: the far UV (FUV) channel operates from 90 to 124.5 nm and is fed by

a flip mirror; the medium UV (MUV) channel works between 118.5 and 195

nm, while the near UV (NUV) channel works in the range 195-390 nm and

they are separated by a dichroic splitter. It must be also mentioned, that the

spectral length of a diffraction order should be 6 nm at least to avoid splitting

of some broadened analytic lines. The design solutions for the polarimetric

units are different for each channel, whilst the spectral part is similar for all

3 channels. The MUV channel optics general view is shown as an example

on Figure 6. More details about the design can be found in [25] and [24].
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The entrance beam at F/20 passes through the pinhole and the polarime-

ter is collimated by an off-axis parabolic (OAP) mirror. Then it is dispersed

by the echelle grating. The cross-disperser represents a freeform holographic

grating, so it simultaneously separates the echelles diffraction orders and fo-

cuses them on the detector. Use of such a complex element allows correction

of the aberrations, achieves a high resolution and also decreases the total

number of bounces and thus increases the throughput. One of the main

features of this design is spatial separation of the spectral components on

the cross-dispersers surface (see Figure 7, a). It means that the aberrations

for this element considerably vary across the working range. So the grat-

ing properties and the surface shape should vary locally to compensate the

aberrations. It also requires use of a freeform holographic grating. After

the design and optimization, the grating frequency equals 212.3 mm−1 and

the recording sources rectangular coordinates are [100.194mm, 1913.946mm]

and [-99.558mm, 1936.898mm] if an Ar laser is used. The focal length of

the grating acting as a camera mirror is 1200 mm and its clear aperture is

215.4x98.3mm2. The surface shape is described by the vertex sphere and six

Zernike terms (primary coma, astigmatism and trefoil, 3rd order spherical,

astigmatism and quadrifoil). The deviation from the best-fit sphere (BFS) is
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(a) (b)

Figure 7: POLLUX MUV cross-disperser grating surface: (a) footprint
diagram and (b) map of the deviation from BFS in microns.

shown on Figure 7, b as a colormap. The root-mean square (RMS) deviation

is 2.27 µm and the peak-to-valley (PTV) value is 3.36 µm.

3.2 Image quality analysis

During the design and optimization process the image quality is assessed

via the spot diagrams (see Figure 8 for an example of diagrams for a single

order). It is an easy way to obtain an image quality estimation. The designer

should keep in mind that the minimized function is an RMS size of the spot

and that the X (horizontal) direction corresponds to the echelle dispersion

direction, so the X size of the spot defines the spectral resolution. Also it

should be noted that the order spectral length is 3.7 nm without the part

overlapping with the adjacent orders, though the full length on the detector
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Figure 8: Sample spot diagrams of the POLLUX MUV channel in the 40th

order.

corresponds to 6.1 nm.

However, the dimensions of the spots do not correspond to the spectral

resolving power directly. In order to compute the spectral resolving power

the spectrographs instrument functions (IF) are calculated. The entrance

slit width is 31.2 µm, which corresponds to 0.03′′ on sky. The results for the

same control wavelengths in a single order are given in Figure 9. The slight

asymmetry seen in the plots appears because of the residual aberrations,

mainly the coma-type aberrations. However, they do not almost do not

affect the spectral resolving power.

The aberrations correction is good enough, as the FWHM (full width at

half maximum) of IF equals to the slit width. The same data re-computed

to spectral resolving power units is summarised in Table 1.

The spectral resolving power is higher than the required value by 10%,
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Figure 9: Sample instrument functions of the POLLUX MUV channel in
the 40th order (the entrance slit projection width is 31.2 µm).

that allows us to leave some margins for possible manufacturing errors and

misalignments. In general, this modelling shows that with a freeform holo-

graphic grating it is possible to achieve the required spectrograph perfor-

mance, while the grating recording scheme is feasible and the surface as-

phericity is small.

3.3 Diffraction efficiency analysis

The diffraction efficiency was modelled with the technique described above.

For simplicity we consider the pure spectral mode of POLLUX, i.e. exclude

the influence of the polarimetric unit. Also it is supposed that the grating

is made in Al with the permittivity of (1.37 + 7.62i)2. For the instrument

throughput budget, the obtained diffraction efficiency is multiplied by the

coating reflectivity. The main result of this modelling is the efficiency spec-

tral dependence. The curve for unpolarized radiation is given in Figure 10.
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Table 1: POLLUX MUV spectral resolving power summary.

Wave-
length,
nm

Order Reciprocal
linear dis-
persion,
nm/mm

Instrument
function
FWHM,
µm

Spectral resolv-
ing power

188.9 31 0.047 31.2 128 909

191.9 31.2 131 008

195.0 31.95 133 106

150.6 40 0.036 31.2 132 673

148.8 31.2 131 035

146.9 31.95 126 359

120.2 50 0.029 31.95 129 700

119.0 31.2 131 502

118.0 31.2 130 391

Also, for comparison the efficiency of a local grating around the surface vertex

is presented. One can see that due to deviation from the optimal conditions

across the surface, the overall efficiency is lower, while the curve shape is

generally the same. Comparison of the two curves indicates the effect of

the local grating efficiencies variation consisting in a notable decrease of the

overall efficiency. Thus , this variation should be always taken into account

when computing the efficiency of a holographic grating on a complex surface.

In the future it may be also considered when optimizing the gratings param-

eters. However, the obtained maximum value of 76.5% with a decrease to
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56.1% at the edge is acceptable for the instrument.

Figure 10: Spectral dependence of the reflection freeform holographic grat-
ing diffraction efficiency.

To estimate the efficiency change we investigated the values for local

gratings at two polarization states. The result is shown in Figure 11 as a

colormap. It demonstrates that the grating introduces a notable polarization.

In addition the efficiency values vary both spectrally and spatially, but since

the grating is ’slow’ (i.e. it has a low surface steepness and operates with

a high f -number) and the asphericity is small, the variation for a single

wavelength is almost negligible.

In order to illustrate the origin of the efficiency variation the spherical
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Figure 11: Spatial distribution of the efficiency values over the reflection
grating clear aperture for two polarization states.

angles of the incident rays are plotted as a vector diagram in Figure 12. The

beginning point of each vector corresponds to the intersection point and the

vector’s coordinates correspond to the spherical angles (the trigonometric

functions are used just for a better visualisation and have no special mean-

ing). As the diagram shows, the incident ray vector coordinates change from

one spectral component to another and slightly vary in each beam. One

must note that a similar variation occurs in the recording scheme as well.

This explains the grating efficiency variation across the surface as shown in

Figure 11 qualitatively. But because of a large number of factors of different

origins influencing the resultant DE, it becomes impossible to predict the
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efficiency variation theoretically. Instead the numerical modelling technique

described above should be used.

Figure 12: Variation of the incident ray angles over the reflection grating
clear aperture.

4 Spectrograph with a transmission grating

4.1 Optical design

The design and modelling tools developed for POLLUX can be generalized

and applied to other optical systems. As an example we consider a spec-

trograph with a transmission freeform grating similar to the VIRUS instru-

ment design[26]. The considered design works in the visible domain 350-550

nm with F/3.1 aperture. Similarly to the prototype VIRUS instrument we
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start with a design using an inverted Schmidt telescope as the collimator

and another Schmidt telescope as the camera. Focal distances of the both

units are equal to 420 mm. In our case, the corrector plates for both of the

Schmidt-type parts are united with the dispersive element thus forming the

transmission freeform grating. Thanks to the Schmidt camera properties the

spectrograph can operate with a long entrance slit up to 50 mm. Due to

the use of an asymmetrical freeform surface it becomes possible to introduce

tilts on the spherical mirrors and avoid any central obscuration in the optical

scheme. The general view of the optical design is given in Figure 13. Note

that two flat folding mirrors were introduced to decrease the overall dimen-

sions. We also should mention that in this case the focal plane is curved

with a radius of 244.07 mm, though a similar result can be obtained with

a flat image plane and a field flattener. An early version of this design was

presented in [25] and we should emphasize that it was significantly changed.

The main reason driving the modifications is the strong dependence of the

diffraction efficiency on the recording geometry, but we also improved the

imaging performance and moderated the freeform deviation.

The grating frequency at the vertex is 649 mm−1 and the calculated

recording sources coordinates for a Nd:YAG laser are (0.644 m, 9.268 m) and
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Figure 13: Optical design of a double-Schmidt spectrograph with a trans-
mission freeform holographic grating.
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Figure 14: Deviation of the transmission freeform grating surface from the
BFS in microns.

(380.3 m, 870.0 m). Such sources practically correspond to two collimators

with an intentionally introduced defocus. Since the aperture stop is located

at the grating, its clear aperture is circular with a diameter of 124 mm.

The optimization starts with a plane-parallel plate, but the vertex radius of

curvature is set as a free parameter. Eleven Legendre modes, including all

the modes up to the 4th order symmetrical with respect to the YZ plane are

used. The deviation from the BFS of the surface is shown in Figure 14. The

BFS radius is 2134.35 mm. The RMS deviation is 70.1µm and the PTV

deviation is 177.4µm. These values are considerably larger than the ones

obtained for previous design, however they are still manufacturable with the

current level of technology.
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4.2 Image quality analysis

Like for the reflective design, we consider the image quality estimations. The

spot diagrams for long slit are presented on Figure 15. The horizontal X

axis corresponds to the slit height. One can note that the aberrations are

slowly growing towards the slit edges due to the field aberrations, as it may

be expected for any imaging system. But the main contribution to this

spot blurring is made by astigmatism. It implies that the spot size in the

dispersion direction Y remains relatively stable, so the spectral resolving

power does not change.

In order to prove and quantify the image quality we consider three spec-

trograph IFs. The IFs for the slit center are shown in Figure 16. The entrance

slit width is equal to 35 µm in this case. The IF plots indicates the presence

of a residual coma aberration, but the FWHM is very stable to the slit width

across the entire working spectral range and for all the slit points.

Table 2 summarises the spectral resolving power data. One can see a sub-

stantial gain in spectral resolution in comparison with the prototype design.
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Figure 15: Spot diagrams of the double-Schmidt spectrograph for a long
slit.

Figure 16: Instrument functions of the double-Schmidt spectrograph (the
entrance slit width is 35 µm).
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Table 2: The double-Schmidt spectrograph spectral resolving power sum-
mary.

Wave-
length,
nm

Slit
height,
mm

Reciprocal
linear dis-
persion,
nm/mm

Instrument
function
FWHM,
µm

Spectral
resolving
power

350 0 4.0 35 2500

400 35 2857

450 35 3214

500 35 3571

550 35 3929

350 25 4.0 37 2365

400 35 2857

450 35 3214

500 35 3571

550 35 3929

4.3 Diffraction efficiency analysis

As it was mentioned before, in a case of VPH grating the recording geometry

has an influence on both the imaging properties and diffraction efficiency.

The initial design version[25] suffered from a low diffraction efficiency, since

the recording source coordinates were optimized only accounting for the grat-

ing aberrations. It compelled us to re-optimize the entire design including

deviation from the Bragg condition as a part of the merit function.
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cos(β − θ) =
Nλc

2n
, (4)

where θ is the AOI and n is the medium refraction index. It is a relatively

simple procedure, which can be done with standard software tools.

After the design revision we computed the diffraction efficiency. We as-

sumed that the holographic layer index is equal to that of the substrate,

which is 1.46. For the modulation depth and layer thickness we used the

optimization procedure described in [27] considering only the local grating

around the vertex. The found values are δn = 0.021 and t = 10µm.

The modelling results are shown in Figure 17. The efficiency reaches

68.3% for the region center and decreases to 42.7% at its edge. Again, for

comparison, the vertex grating efficiency is plotted. The local grating is

more effective at the central wavelength but also more selective. The curved

flattening may be explained by the hologram reconstruction conditions vari-

ations across the surface.

Similarly, we provide the efficiency variation map for two polarization

states in Figure 18. Because the spectral components are not separated at

the grating surface, they are indicated with a different marker size. The

diagram clearly shows the strong spectral and angular selectivity of the VPH
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Figure 17: Spectral dependence of the transmission VPH freeform holo-
graphic grating diffraction efficiency.

grating.

The observed change of the efficiency can be explained by the AOI vari-

ation, which is illustrated by Figure 19. In comparison with the POLLUX

design, we have to include different field points (3 points in this case - the

slit center and its edges). The figure shows that the hologram replay con-

ditions significantly change across the grating surface and the field of view.

Moreover, their change pattern is non-symmetrical.

5 Conclusions

In the present paper we demonstrate the application of freeform holographic

gratings for spectrographs design. This approach provides an outstanding
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possibility for aberration correction, which allows improved performance and

decreases the number of optical elements. The first example of an applica-

tion of this element is the optical scheme of the POLLUX spectropolarime-

ter for the LUVOIR mission. The freeform reflection grating works as the

cross-disperser and camera simultaneously and allows the required spectral

resolving power of R > 120000 to be reached and minimizes the number

of bounces in the scheme. The second example is a demonstrative design

of a double-Schmidt spectrograph with transmission grating. The design

is notable for its absence of central obscuration and relatively high spectral

resolving power reaching R = 3929. In both cases we demonstrated the influ-

ence of the recording and operation geometry on the grating efficiency. In the

case of reflective blazed grating, the influence of grating shape and grooves

pattern is limited by a moderate decrease of the grating efficiency. The ef-

ficiency curve remains relatively uniform and high. In the case of freeform

VPH grating each of the local gratings has a strong angular and spectral

selectivity. This effect is partially cancelled out by the hologram replay con-

ditions variation. As a result, the efficiency spectral dependence becomes low

and flat. Future research activities may be related to the optimization of the

diffraction efficiency and the imaging performance simultaneously by means
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of combination of the ray-tracing and the local grating efficiency computation

in a single software tool. In general, the design approach demonstrated here

and the corresponding tools can be useful for development of future optical

instruments with a special emphasis on advanced spectrographs for scientific

research, e.g. for astronomy.
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Figure 18: Spatial distribution of the efficiency values over the transmission
VPH grating clear aperture for two polarization states.
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Figure 19: Variation of the incident ray angles over the transmission VPH
grating clear aperture.
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