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Abstract. We present MADA, a deployment approach to facilitate the
design of efficient and safe distributed software commissioning. MADA is
built on top of the Madeus formal model that focuses on the efficient exe-
cution of installation procedures. Madeus puts forward more parallelism
than other commissioning models, which implies a greater complexity
and a greater propensity for errors. MADA provides a new specific lan-
guage on top of Madeus that allows the developer to easily define the
properties that should be ensured during the commissioning process.
Then, MADA automatically translates the description to a time Petri
net and a set of TCTL formulae. MADA is evaluated on the OpenStack
commissioning.

Keywords: Distributed software commissioning · Deployment · Model
checking · Safety · Liveness · Efficiency · Component models · Petri nets.

1 Introduction

This paper focuses on one specific challenge related to distributed software de-
ployment: distributed software commissioning. By software commissioning we
mean the complete installation, configuration and testing process when deploy-
ing distributed software on physical distributed resources, with or without a
virtualization layer in between. This process is complex and error-prone because
of the specificity of the installation process according to the operating system,
the different kinds of virtualization layers used between the physical machines
and the pieces of software, the amount of possible configuration options [23].
Recently, commissioning (or configuration) management tools such as Ansible1,
or Puppet2, have been widely adopted by system operators. These tools com-
monly include good software-engineering practices such as code reuse and com-
position in management and configuration scripts. It is nowadays possible to

1https://www.ansible.com/
2https://puppet.com

https://www.ansible.com/
https://puppet.com
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build a new installation by assembling different pieces of existing installations3,4

which improves the productivity of system operators and prevents many errors.
Many distributed software commissionings are nowadays written with one the
two above tools and by using containers between the host operating system
and the pieces of software, such that portability of installations is improved.
For instance, OpenStack, which is the de-facto open source operating system of
Cloud infrastructures, can be automatically installed on clusters by using the
kolla-ansible project, which uses both Docker containers and Ansible.

Yet, even for such well-established software, there is still much room for
improving the efficiency of the commissioning process (i.e., reducing deployment
times, minimizing services interruptions etc.). As manually coding parallelism
into commissioning procedures is technically difficult and error prone, automated
parallelism techniques should be introduced. To this purpose, not only dedicated
tools, including Puppet, but also academic prototypes such as Aeolus [12] and
Madeus [9], introduce parallelism capabilities within software commissioning,
at different levels and by using different techniques more or less transparent
for the user. For instance, we have observed a performance gain of up to 47%
by using Madeus over the kolla-ansible reference approach (conducted on the
Taurus cluster of the Grid’5000 experimental platform).

Madeus5 is the commissioning model offering the highest parallelism level [9]
in the literature, while offering a formal operational semantics. This makes
Madeus the ideal candidate to further study challenges of efficient and safe dis-
tributed software commissioning. Madeus automatically handles the intricate
details of parallelism coordination, by managing threads and their synchroniza-
tions for the user. However, users still have to design their parallel procedures,
thus raising the following questions: (1) how to divide existing intricate commis-
sioning scripts in interesting subtasks to introduce parallelism? (2) how to find
correct dependencies between commissioning tasks? and (3) how to avoid safety
issues such as deadlocks, wrong order of configurations etc.?

We study the feasibility of using model checking techniques to help in the
three above challenges in the design of safe and efficient distributed software
commissioning. To this purpose we present MADA, an extension of Madeus
that brings the following contributions: (1) the automatic transformation process
from a Madeus commissioning to an equivalent time Petri net; (2) a domain
specific language on top of Madeus to easily express qualitative and quantitative
properties related to both safety and efficiency; (3) the automatic translation of
MADA properties to temporal logic properties, including liveness, observers and
causality, which is uncommon for software commissioning; and (4) an evaluation
of MADA on the real case study OpenStack6 and compared to real experiments.

The rest of this paper is organized as follows. Section 2 introduces the related
background. Section 3 presents MADA that is evaluated in Section 4 on the real

3https://galaxy.ansible.com/
4https://forge.puppet.com/
5https://gitlab.inria.fr/Madeus/mad
6https://www.openstack.org/

https://docs.openstack.org/kolla-ansible/latest/
https://www.grid5000.fr
https://galaxy.ansible.com/
https://forge.puppet.com/
https://gitlab.inria.fr/Madeus/mad
https://www.openstack.org/
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commissioning of OpenStack. Finally, Section 5 comments the related work, and
Section 6 concludes this work and opens some perspectives.

2 Madeus and Petri Nets

Madeus [9] is a component-based model where a component represents the con-
figuration and the installation of a software module of a distributed system. A
component contains a set of places that represent milestones of the deployment,
and a set of transitions that connect the places together and represent actions
to be performed between milestones (e.g., apt-get install).

undeployed

alocated

running

running

configured

installed

uninstalled
Server

Client

@ip

service

Fig. 1: A Madeus assembly of
a server-client software com-
missioning. Each component
(Server and Client) is composed
of an internal-net associated to
ports.

The internal commissioning behavior of a
Madeus component is called in the rest of this
paper an internal-net. In Madeus, a transi-
tion is attached to output and input docks
of places, which are used to properly man-
age parallel actions in the operational seman-
tics. Madeus components expose ports that
represent connection points with other com-
ponents. Four kinds of ports are available:
service-provide and service-use ports to pro-
vide (resp. require) a service, and data-provide
and data-use ports to provide (resp. require)
a piece of data. Provide ports (service or
data) are bound to one or more places (i.e.,
called groups), illustrating the set of mile-
stones where the component is able to provide
a service or data. Use ports (service or data)
are bound to one or more transitions where
services or data are actually used. A component assembly (also sometimes called
a configuration), is made of component instances and connections between ports.

Figure 1 shows an assembly composed of two components. The internal-net
of the Server component (on the left) is composed of three places (circles) and
two transitions (arrows). The Server’s allocated place is bound to the ip data-
provide port (outgoing arrow), while the running place is within a group bound
to the service-provide port (small black circle). The internal-net of the Client
component (on the right) is composed of four places and four transitions, two of
them being bound to (respectively) a data-use (incoming arrow) and a service-
use (semi circle) ports. The ports of Server and Client are connected within the
assembly forming data and service connections (i.e., dependencies).

The evolution of a Madeus deployment is modeled by a set of moving tokens
within the internal-nets of components. The evolution of these tokens is handled
by seven operational semantics rules which are specific to software commissioning
procedures. Hereafter is an overview of these rules, which are formally detailed
in [9]. Each initial place of a component (represented with a gray background in
Figure 1) initially contains a single token. The token is allowed to leave a place
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belonging to a group only if this would not deactivate a service provide port with
an active connection (i.e., under use). If so, and if the outgoing transition of a
place is not bound to a use port, the token is directly able to move from the place
to the transition. Otherwise, all the use ports have to be ready before the move
can happen, which is the case when the associated use-provide connections are
activated. When a token reaches a transition the associated deployment action is
started. Several transitions can be fired simultaneously (e.g., Client in Figure 1).
In this case, the token is duplicated on each transition. As soon as all the input
transitions of a place have ended, their tokens are merged and go to the place.
When a token moves to a place in a group that is bound to a provide port, the
associated connection is activated, which eventually unlocks use ports of other
components. Unlike the service-provide port, the data-provide port acts as a
register and will never be disabled once being activated.

Petri nets [22] are a classic formalism for the modeling of concurrent systems.
We recall here the basic definition. A Petri net (PN) is a 3-tuple (P, T, F ),
where P is finite set of places; T is finite set of transitions, with P ∩ T = ∅;
and F : (P × T ) ∪ (T × P ) → N is the flow function that defines weighted
arcs between places and transitions. A marking of a net (P, T, F ) is a function
m : P → N. For a given marking m, we say that place p contains m(p) tokens. A
pair (N ,m0), whereN is a Petri net and m0 is a marking, is called a marked Petri
net, which we often call just Petri net, when clear from the context. Marking
m0 is called the initial marking of N . A transition t is said to be enabled by
marking m, when ∀p ∈ P,m(p) ≥ F (p, t). A transition t enabled at marking
m can be fired, producing the new marking m′ defined by: ∀p ∈ P,m′(p) =
m(p)− F (p, t) + F (t, p).

We also consider time Petri nets [21], in which a time interval is attached
to each transition. A transition can then only be fired (and must be fired or be
disabled) after being continuously enabled for a duration in that interval. See [5]
for details.

At first sight a Madeus assembly looks fairly close to a Petri net. However,
compared to Petri nets, Madeus assembly falls into the category of Domain Spe-
cific Languages (DSL) to model and execute distributed software commissioning.
It therefore has a few high-level specific primitives, adapted to developers and
system administrators, that do not have direct equivalent in Petri nets.

3 MADA

Madeus automatically handles the intricate details of parallelism coordination,
by managing threads and their synchronizations for the user. However, users
still have to design their parallel procedures. MADA (MADeus Analyzer) uses
model-checking to help Madeus users design their safe and efficient commission-
ing. First, MADA is responsible for the automatic transformation from a Madeus
assembly to a time Petri net. Second, MADA offers a set of high level qualita-
tive and quantitative properties that are automatically transformed to Timed
Computational Tree Logic (TCTL) formulae.
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3.1 From Madeus to Petri Nets

Table 1 show the five rules that illustrate the complete translation from Madeus
assemblies to (time) Petri nets. Since the terminologies are similar we distinguish
between m-place and m-transition for Madeus assemblies and pn-place and pn-
transition for Petri nets. As docks, ports and connections only concern Madeus,
no special notations are introduced for them.

The first and second rule of Table 1 illustrate the basic constructions, when
Madeus port are not involved in the component (i.e., no synchronization). One
pn-place is created for each dock, one for each m-place, and one for each m-
transition. Those are connected straightforwardly to ensure the Madeus sequence
<source m-place, output dock, m-transition, input dock, target m-place >. When
considering time, all pn-transitions are executed immediately (interval [0, 0]) ex-
cept the end pn-transitions that bear the execution time interval of the associated
m-transition, thus representing the time needed for the commissioning action.

Each provide port of Madeus is modeled by a dedicated pn-place. Thus,
connections related to this provide port are available if and only if that pn-place
is non-empty. Rule (3) models how the pn-place modeling m-transition t, that
uses two provide ports port1 and port2, checks for the connections availability
by testing the non-emptiness of pn-places port1 and port2. Note that for service-
provide it is necessary to know whether some transition is currently using the
port (as explained below). We therefore add two pn-places for each provide port,
that are marked in exclusion, one to mark that a port is under use, the other one
to mark the opposite: port1 in use and port1 not used in Table 1 (rule (3)), for
instance. With this construction, the following property holds, thus respecting
the Madeus semantics:

Property 1. For any provide port port, pn-place port in use contains as many
tokens as there are marked pn-places representing an m-transition that currently
uses port. The total number of tokens in port in use and port not used is always
the total number of m-transitions that require port.

Rule (4) of Table 1 models the activation of a data-connection. In Madeus
as soon as m-place P is reached, the connection associated to the provide port
port2 is activated. Since a data-connection once activated will always remain so,
in the equivalent Petri net a token is added in the pn-place port2 once and for
all at the same time as the pn-place P is marked. With this construction the
following property holds:

Property 2. The number of tokens in a pn-place modeling a data-provide port
is equal to the number of pn-places modeling m-places bound to that port that
has been marked.

Finally, rule (5) models the most complex part of the transformation: a group
of m-places that provides a service. In this case, we must first ensure that the
connection is activated if and only if a m-place in the group is active, or a dock
or a m-transition between two such m-places is active. In the Petri net, this is
ensured in the following way: (1) whenever a pn-transition entering the group
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is executed, a token is added to the pn-place modeling the Madeus provide
port (e.g., pn-transitions enterP1

and enterP2
); (2) whenever a pn-transition

leaving the group is executed (i.e., from one of the last m-place of the group),
a token is removed from the pn-place modeling the Madeus provide port (e.g.,
pn-transitions exitP ′

1
and exitP ′

2
); (3) whenever a pn-transition within the group

Madeus (1) Petri net (1) Madeus (2) Petri net (2)

P’

d1 d2

d′1

P

enterP

d1 d2

exitP

d′1

P

t1

d1

d′1

P’

d1

startt1

t1

endt1

d′1

Madeus (3) Petri net (3) Madeus (4) Petri net (4)

P

P’

t

d

d′
port1

port2

d

startt

t

endt

port1 in useport1 not used

port2

port1

d′

P
port2

enterP

P port2

Madeus (5) Petri net (5)

port1

P1 P2

P ′
1 P ′

2

t11

t12
t2

di1 di2

do11 do12 do2

d′i1

d′i21
d′i22

d′o1 d′o2

enterP1

P1

exitP1

do11

startt1

t11

endt1

d′i1

enterP ′
1

P ′
1

exitP ′
1

exit′P ′
1

d′o1

do12

startt12

t12

endt12

d′i21

enter′P2

P ′
2

exitP ′
2

exit′P ′
2

d′o2

d′i22

endt2

t2

startt2

do2

exitP2

P2

enterP2

port1

port1 not used

port1 in use

1

2 2

Table 1: Set of transformations from Madeus to Petri nets: (1) basic construction
of a m-place and its associated docks, (2) basic construction of a m-transition
and its source and destination docks, (3) data-use and service-use ports bound
to a transition t, (4) data-provide port provided by a place P , (5) group of places
bound to a service-provide port

(i.e., source and destination pn-places within the group) that goes to or comes
from a pn-place modeling a m-place is executed, we accordingly remove in the
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provide port pn-place as many tokens as input docks, and add in the same
provide port pn-place as many tokens as output docks. Note that, in order to
minimize the number of arcs in the Petri net, we actually compute the net effect
on the port pn-place so that most transitions (leaving one dock for a place, or
one place for a dock) do not modify the number of tokens in the port pn-place.
Thus, only forks and joins within the group add and remove tokens in the port
pn-place (e.g., exitP1

and enterP ′
2

in Table 1, rule (5)). With this construction
the following property holds:

Property 3. The number of tokens in a pn-place modeling a service-provide port
is equal to the number of marked pn-places modeling either active m-places or
m-transitions or docks in the group.

Once the port activated, we need to keep it active until all m-transitions
using the port are completed. Thus there are two ways to leave a group from
a pn-place, first if the provide port is not used, and second if it is used but
leaving the pn-place does not remove the last token of the pn-place modeling
the service-provide port. In the Petri net, this is ensured in the following way:
(1) two outgoing pn-transitions are represented for each pn-place modeling a
m-place that leaves a group (e.g., exitP ′

1
and exit′P ′

1
for the m-place P ′

1, exitP ′
2

and exit′P ′
2

for the m-place P ′
2, rule (5) of Table 1): (2) the first one tests if the

pn-place not used associated to the service-provide port is equal to the total
number of m-transition that may require this port; (3) the second one tests if
the pn-place in use associated to the service-provide port is marked and checks
that there are at least two tokens left in the pn-place of the provide port. With
this construction the following property holds:

Property 4. (1) At any given time, at most one of the two pn-transitions that
go outside a pn-place modeling a m-place that leaves is enabled. (2) The pn-
place modeling the service-provide port cannot be emptied if the number of
tokens in the corresponding not used pn-place is not equal to the total number
of m-transitions that can use the port.

We have focused on a high-level explanation of the translation but it would
not be difficult, if a bit tedious, to formally prove a (weak) bisimulation between
the formal semantics of Madeus given in [9] and the Petri net obtained by the
process outlined above. We leave it out of the scope of the paper to improve its
readability and due to space concerns.

3.2 Property Language and Temporal Logic

Using MADA, an equivalent Petri net of a given Madeus assembly, i.e., soft-
ware commissioning, is automatically generated. This saves the user from the
transformation burden and prevents possible errors in this process. Furthermore,
Madeus users are not familiar with Petri nets. This also holds for the properties
on the generated Petri net. For this reason, MADA extends Madeus with a set
of property functions that abstract away from the user the details of temporal
logic and that are easy to understand for systems operators.
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def s e t i n t e r v a l ( s e l f , component , t r a n s i t i o n , min , max)
def add deployment ( s e l f , name , d i c t component s p lace s )
def d e p l o y a b i l i t y ( s e l f , deployment name , w i t h i n t e r v a l s )
def s e q u e n t i a l i t y ( s e l f , o r d e r e d l i s t c o m p o n e n t s t r a n s i t i o n )
def f o rb idden ( s e l f , l i s t marked , l i s t unmarked )
def p a r a l l e l i s m ( s e l f , f u l l a s s e m b l y , l i s t component s )
def gant t boundar i e s ( s e l f , deployment name , mini , maxi , c r i t i c a l )

Fig. 2: Methods signatures for MADA’s Properties.

Figure 2 shows the set of functions offered by MADA in Python. First, a
time interval can be associated to each m-transition of the Madeus assembly. A
default interval is set to [1, 100] and can be updated by the user. The interval of
each m-transition can be specified by the user with the function set interval.

Once an interval is declared for each m-transition, a set of deployments can be
defined by the user. A deployment is identified by a name and a set of places to
reach. Then the library offers five properties divided in two categories: qualitative
properties and quantitative properties. Quantitative properties are only available
if intervals have been indicated in the time Petri net as they offer results related
to time spent in m-transition. However, as it will be shown in Section 4 these
intervals do not necessarily have to be precise.

Qualitative properties. Three such properties are available in MADA. First,
for a given deployment D, its deployability is the property that all of the (mod-
eled) paths eventually lead to D. The associated syntax is illustrated on the
line 4 of Figure 2. In the Petri net, the deployability property can be verified as
an inevitability property, that is an AF property in TCTL [1]. Secondly, if an
assembly is well defined by the developer with the needed connections between
components and the right synchronization of transitions, the sequential orders
between transitions will be true by construction. However, designing a Madeus
assembly could become tricky for large distributed software, and the resulting
high concurrency level could lead to unwitting errors. For this reason, MADA
offers a way to define with an easy syntax the sequential orders that must be
ensured between transitions of the assembly. The function sequentiality takes
an ordered list of tuples as input, where each tuple contains a component name
and its transition name. The order in which are given the tuples is the sequence
to check. Sequentiality is a safety property that can be checked in Petri nets
using an observer subnet : add an error pn-place perr to the Petri net. Add
also, for each pn-transition pntt modeling the end of a m-transition t (i.e., timed
pn-transition), a pn-place pt, initially not marked and a pn-place p¬t, initially
with one token. pn-transition pntt moves the token from p¬t to pt. Then for
each ordered relation of m-transitions t << t′, a pn-transition is added from p¬t

and pt′ to perr. That transition will be firable only if t′ has fired but t has not
fired. Sequentiality is therefore equivalent to the impossibility of putting tokens
in perr, which is a basic safety property: AG perr = 0 in TCTL. Finally, systems
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operators may want to ensure that a given configuration is not reachable during
the software commissioning. To this purpose the method forbidden is available
in MADA and checks that the following invariant holds: we always have at least
one of the elements in list marked that is not marked or one of the elements
in list unmarked that is marked. In the Petri net, the forbidden property is
a basic safety property (AG). One can note that the opposite property could be
easily added.

Quantitative properties. When a Madeus assembly is designed it is not nec-
essarily easy, because of the global coordination with connections between com-
ponents, to understand the level of parallelism reached during the execution.
The method parallelism on line 6 of Figure 2 returns the level of parallelism
achieved when executing the Petri net. It takes as arguments, first, a boolean
indicating if the maximum parallelism level of the entire assembly has to be
computed, and second, the list of components for which the parallelism has to
be studied separately. To compute the (maximum) level of parallelism, we com-
pute all the reachable markings and then compute for all of them the sum of all
tokens in pn-places corresponding to m-transitions belonging to the components
to check. The number we want is the maximum of those. The level of parallelism
can be completed by a full Gantt diagram of all m-transitions execution. This
result is longer to compute but offers a clear view of the behavior of the software
commissioning. The function gantt boundaries takes the name of the deploy-
ment to check as input, as well as two booleans mini and maxi. In facts, a Gantt
diagram can be computed and drawn by computing either the minimum or the
maximum time to reach some markings in the Petri net [6] and by asking the
model checker to keep absolute time information in its trace. As a result, com-
putation of a Gantt diagram also computes the minimum and/or the maximum
boundaries of the software commissioning. One can note that the trace returned
by the model checker has to be processed to be able to draw the Gantt diagram.
Moreover, by starting with the last m-transition to execute and backtracking
in the Gantt diagram, a clear causality trace can be obtained to identify the
critical path that has led to the minimum or maximum execution time [4]. For
this reason, the last input of gantt boundaries is a boolean indicating if the
critical path has to be extracted from the trace.

4 Evaluation

In this section, we describe how MADA has been used to build the Madeus
OpenStack commissioning mentioned in Section 1 from a sequential original one.
Before reaching the final efficient and safe version, a total of four versions have
been incrementally written by using MADA. Thus, the goal of this evaluation is
to illustrate on a real use-case how MADA can be used by a user to avoid safety
issues and to identify where efficiency improvements can be performed thanks
to quantitative properties. Finally, this section discusses the feasibility of the
approach.
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Fig. 3: Coarse-grain Madeus assembly of the OpenStack commissioning.

OpenStack is the de-facto open source solution to address the IaaS (Infras-
tructure as a Service) level of the Cloud paradigm. In other words, OpenStack
is the operating system of the Cloud responsible for the management of phys-
ical resources of a set of clusters, as well as the management of virtual ma-
chines and their life cycle. Following the Ansible installation procedure defined
in Kolla, a popular tool to deploy OpenStack7, we have defined 11 Madeus
components: Nova, Glance, Neutron, Keystone, MariaDB, RabbitMQ, HAProxy,
OpenVSwitch, Memcached, Facts, Common. The coarse grain commissioning of
OpenStack is depicted in Figure 3, without the detailed internal-nets of compo-
nents.

All results are shown in Table 2 where the initial Madeus number of elements,
the resulting number of elements in the generated Petri net, as well as the ex-
ecution time of the transformation are given. For space reasons, this evaluation
focuses on the most original properties of MADA compared to the related work:
deployability that checks the inevitable end of the deployment, and the two
quantitative properties parallelism and gantt boundaries related to the use
of time Petri nets. The result of each property as well as its computation time
are also shown Table 2. Each Gantt diagram is depicted in separated figures
indicating in its caption the obtained critical path. The time intervals used in
the experiments have been chosen according to real observed execution time
traces. We have used the Roméo model checker for time Petri nets [20] in our
experiments. Finally, all the materials used for these experiments are available
online8 (i.e., MADA python files, Petri nets and results).

4.1 MADA evaluation

The first version (0-deadlock) has been designed by introducing three straight-
forward parallel tasks in the three components Glance, Neutron and Nova. The

7https://docs.openstack.org/kolla-ansible/latest/
8https://gitlab.inria.fr/hcoullon/mada

https://docs.openstack.org/kolla-ansible/latest/
https://gitlab.inria.fr/hcoullon/mada
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0-deadlock 1-naive 2-nova 3-nova 4-nova-mdb

Madeus places 27 27 28 28 29

Madeus transitions 22 22 25 25 28

Madeus connections 30 30 30 30 30

Petri net places 113 113 124 124 134

Petri net transitions 75 75 84 84 92

Transf. time (ms) 1.6 1.6 1.8 1.7 1.5

Deployability False True True True True
Computation time (s) 0 41.6 78.7 88.7 152.6

Parallelism nova - 1 2 2 2
Computation time (s) - 42.1 82.7 93.6 154.3

Parallelism full - 10 11 11 12
Computation time (s) - 43.2 86.1 98.4 162.9

Gantt & critical path - Figure 5a Figure 5b Figure 5c Figure 5d
Computation time (s) - 130.1 266.9 275.4 588.1

Boundaries - [575, 615] [518, 554] [400, 423] [377, 398]
Computation time (s) - 130.1, 128.8 266.9, 269.7 275.4, 267.6 588.1, 580.8

Table 2: Results by using MADA on five different versions of OpenStack com-
missioning in Madeus.

same parallel tasks have been used in these components: pulling the docker im-
age from the Docker registry at the same time as preparing the configuration of
the container, and at the same time as registering the service to the Keystone
component. This parallelism pattern is illustrated for the component Nova on
the left of Figure 4.

An error was accidentally introduced in this first version of the Madeus Open-
Stack commissioning (0-deadlock). This error was due to the label “register” of
a transition in the component MariaDB. In all components containing the same
label as a transition, this transition was using the service of the Keystone com-
ponent (for service authentication). However, in MariaDB this registering step
has to be performed with the component Common. In fact MariaDB is globally
installed before Keystone. For this reason, an incorrect sub-assembly has been
accidentally built. By executing MADA on the Madeus assembly the deadlock
has been detected and a clear trace leading to the problem has been returned.
This problem occurs when both MariaDB and Keystone are waiting for each
other.

The version 1-naive solves the deadlock detected by MADA in 0-deadlock
and keeps the exact same set of components as well as the same assembly. By
using MADA it appears that such a design is quite naive as the maximum
level of parallelism in Nova is actually 1 while we were expecting 3 (Table 2).
The Gantt diagram generated by MADA, shown in Figure 5a, explains that
the transition Nova config cannot be executed at the same time as Nova pull
because it has to wait for MariaDB deploy that ends after Nova pull. Similarly,
the transition Nova register cannot be executed at the same time as the two
other tasks because it has to wait for Keystone deploy that ends after both Nova
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pull and Nova config. Furthermore, thanks to the MADA critical path (indicated
in the caption of Figure 5a), one can note that Nova deploy plays an important
part in the overall execution time and could probably be divided into parallel
subtasks. This information offers a very useful help to the user to know where
to look first in order to improve the efficiency of the commissioning. Without
these pieces of information we could have wasted time to understand scripts of
Glance deploy while it is not in the critical path.

register
deploy

upg-api-dbupg-db

pull
config

create-dbpull
config

create-db
register

deploy

upg-api-dbupg-db

pull
config register

deploy

1-naive 2-nova 3-nova

Nova

Nova Nova

Fig. 4: Nova component evolution
thanks to the analysis with MADA.

Then, the second version 2-nova
focuses on dividing the transition
Nova deploy in parallel tasks. It ap-
pears that two long tasks respon-
sible for database schemes can be
performed in parallel, namely Nova
upg api db and Nova upg db. More-
over, one subtask of Nova deploy is
independent from the other and can
be added as a parallel task with Nova
config, namely Nova create-db (see
Figure 4). By using MADA, we verify
that the level of parallelism in Nova is
increased to 2. The Gantt diagram of
Figure 5b obtained by MADA shows
that both Nova upg api db and Nova
upg db wait for Nova register to end which is the reason why Nova deploy starts
very late. One can also note that Nova register is in the critical path. Thanks to
these results we have noticed that the dependencies of the parallel task Nova reg-
ister were not well defined as it is entirely independent from other tasks except
the last one Nova deploy.

In the third version 3-nova we have solved this issue as illustrated in Figure 4,
by defining Nova register as an overall parallel task. The Gantt diagram shown
in Figure 5c demonstrates that tasks of Nova are no longer in the critical path.
As shown in Table 2 the expected boundaries (i.e., according to time intervals)
were [575, 615] for 1-naive and are [400, 423] for 3-nova. Finally, in the Gantt
diagram and critical path of Figure 5c one can note that the transition MariaDB
deploy is responsible for the delay of many other tasks such as Keystone deploy,
for instance.

In the fourth version of the commissioning 4-nova-mdb the parallelization
of MariaDB deploy has been studied. This task has been divided in four tasks
namely MariaDB bootstrap, MariaDB restart, MariaDB register and MariaDB
check. The transition MariaDB bootstrap can be run at the same time as the al-
ready defined MariaDB pull transition. Moreover, MariaDB register and Mari-
aDB check can be executed simultaneously. The resulting Gantt diagram is de-
picted in Figure 5d with the following expected boundaries: [377, 398]. These
boundaries are much better than the observed execution time, greater than 750
seconds, of the reference Kolla scripts.
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Fig. 5: Gantt diagrams generated by the gantt boundaries property of MADA

4.2 Discussion

Does it work? To answer this question we have conducted real experiments on
the OpenStack commissioning. Figure 6a shows the Gantt diagram generated
from the traces of one of the real experiments on 4-nova-mdb (same as the
one mentioned in Section 1). One can note that the obtained diagram is very
close to the one computed by MADA with time intervals in Figure 5d and that
the obtained critical path fits perfectly with the one returned by MADA. This
result is also observed for other versions of the commissioning 1-naive, 2-nova
and 3-nova, available in the git repository previously indicated. Moreover, the
computed boundaries for all versions also perfectly match the real experiments.
For instance, the boundaries of 4-nova-mdb are [377, 398] and the execution
time of the run of Figure 6a is 389.8. This confirms that the approach works and
that the transformation is valid as well as its implementation. In addition, we
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would like to emphasize once again that MADA has been very useful in working
in the right direction, where tasks can be divided, saving time by avoiding the
unnecessary exploration of complex scripts. Finally, by using MADA a separation
of concerns is possible between the design phase and the experimental phase of
the commissioning. Thus, MADA could be considered as a formal simulator to
help the user in the design phase that avoids the burden of real experiments
and associated technical issues (e.g., machines provisioning, commands errors,
timeouts etc.).

Time intervals. The goal of MADA is not to precisely compute the execu-
tion time of the distributed software commissioning but to help identify where
efficiency improvements could be made. Accordingly, it is not necessary to be
precise about time intervals. However, to provide a good insight of possible effi-
ciency improvements to MADA users, the order of magnitude for each transition
is needed. To illustrate this claim, Figure 6b shows the Gantt diagram obtained
by using MADA on 4-nova-mdb with additional errors on the time intervals.
Errors are introduced as follows: for tasks representing less than 5% of the total
execution time (11 tasks) we have introduced 95% of error on the duration of the
interval (e.g., [6, 7] becomes [3, 10]). Similarly, for tasks representing respectively
between 5-10% (11 tasks), 10-20% (2 tasks), 20-30% (3 tasks), 30-60% (2 tasks)
of the execution time we have introduced 90%, 80%, 70%, 40% of error on the du-
ration of the interval (e.g., [98, 106] becomes [61, 143]). This method introduces
an error that may be substantial (up to 95%) but that does not change the order
of magnitude of intervals. One can note that even with this high error on time
intervals the Gantt diagram has almost the same shape and the critical path of
the execution stays valid. We think that it may be difficult for systems operators
to give a precise execution time for a given task. However, giving an order of
magnitude through a time interval is much easier as most software installation
scripts contain the same types of commands (human expertise). Furthermore,
thanks to the high frequency with which system commands appear, machine
learning algorithms could also be designed.

Scalability Most computations performed on bounded Petri nets (with or with-
out time) have a PSPACE worst-case complexity. This can be observed in Table 2
where execution time of properties are depicted for each version according to its
size. For an increase of the number of places and transitions in the Petri net of
15% the execution time of the deployability increases of 73%. We have however
to consider a few additional elements in our assessment of the usability of the
approach. First, OpenStack is a large system, thus many existing distributed
systems can certainly be analyzed with this approach. Second, the generated
Petri net itself can be made easier to analyze, depending on the property of in-
terest. Third, the MADA approach is largely independent of the model checker
used, and many techniques from the model checking community can be lever-
aged to improve performance such as partial orders [16], BDD-like data struc-
tures [8], SMT-based techniques [10], and lazy model checking [17] for instance.
A complete scalability study is left to future work. Finally, compared to the few
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Fig. 6: Experiment on Grid’5000 and experiment with errors on intervals.

contributions of the related work that provide some model checking execution
time [14,15] (50 minutes for BPEL, up to 47 minutes for Vercors), MADA ex-
ecution times can be fairly considered acceptable compared to the burden of
testing real experiments on infrastructures each time a modification is made in
the assembly (up to 600 seconds). This is due to the fact that Madeus is a rel-
atively small language compared to BPEL and Vercors because of its specificity
for distributed software commissioning.

5 Related work

MADA is specifically conceived to help in the design of safe and efficient dis-
tributed software commissioning on top of Madeus. Indeed, concurrency and
parallelism introduced by Madeus comes at a price. First, parallelism can in-
troduce liveness violation such as deadlocks. Secondly, even if the parallelism
coordination is ensured by Madeus, designing a parallel software commissioning
from a sequential one is difficult. Indeed, subtasks of the commissioning proce-
dures and dependencies between subtasks and software components have to be
identified while their exact internal behavior are not well known by operators,
because implemented by other developers. Moreover, most of the time commis-
sioning scripts are difficult to read and system commands do not clearly expose
their behaviors and functionalities. As far as we know, no existing software com-
missioning tool or academic model is equipped with a formal way to help the
user solving such problems when designing installation procedures. This is in
line with the fact that the parallelism capabilities of existing tools and mod-
els for automatic software commissioning are very limited compared to Aeolus
and Madeus, almost sequential in fact. Thus, in this context liveness issues are
impossible, and finding subtasks and dependencies is useless. The contribution
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of this paper could partially be useful and applicable to Aeolus. However, Aeo-
lus and its satellites [11] are not maintained and were not equipped with such
integrated model checking.

Yet, using model checking to help in the design of safe distributed software
(not software commissioning) has been extensively studied in the literature. For
instance, formal methods have been used in the domain of software components.
The Vercors framework [14,2] uses parameterized networks of asynchronous
automata (pNets) as an intermediate formalism representing behaviors of dis-
tributed software components, statically analyzed by the CADP model checker.
BIP [3] (Behavior, Interaction, Priority) was initially a component-based model
for heterogeneous real-time and reactive systems, and has been extended for dis-
tributed systems with heterogeneous interactions through HDBIP [19]. In BIP,
finite state automata are used to represent the behavior of components and their
composition. In these contributions, formal methods are used to verify the func-
tional behavior of distributed systems, which is very different from modeling and
checking the execution and coordination of software commissioning procedures.
In particular, MADA offers quantitative properties related to the concurrency
and parallelism introduced within a commissioning execution. This cannot be
modeled by Vercors nor BIP. Moreover, this kind of properties can be expressed
by using time Petri nets as an intermediate representation of the commissioning
execution semantics. Finally, neither Vercors nor BIP clearly explain how ver-
ification formulae are expressed by users while MADA automatically generates
TCTL formulae from function calls.

Some languages for defining business processes, BPEL [15] and BPMN [13] for
instance, have been straightforwardly translated to Petri nets such that a formal
semantics can be offered to the user instead of natural language and UML-
like semantics. In both of these contributions the Petri net translation has also
been used to check liveness and safety properties to detect bugs in user-defined
processes. However, quantitative properties such as the one proposed by MADA
are not offered because helping the user to improve the process efficiency is not
a goal. Moreover, details are missing regarding how translations and properties
are integrated in a user-friendly framework.

MACE [18] is another language example that uses formal methods. MACE
combines objects, events and aspects programming to address in a single frame-
work concurrency and failures when designing distributed software. Guiding the
users in their task and hiding from them the intricate details of static analysis
is in line with MADA. However, MACE is more complete and complex than
MADA and addresses many different problems at the same time thus raising the
complexity of the overall framework. In other words, MADA is specific to soft-
ware commissioning while MACE solves multiple issues related to distributed
software design. The model checking in MACE targets liveness violation only.
Causality is addressed by MACE to find failures origins, however, this causality
is based on automatic logging instead of model checking. MADA offers an in-
teresting separation of concerns between the design phase and the testing phase
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on real infrastructures. Quantitative information such as the critical paths for
efficiency analysis are studied through model checking thanks to time Petri nets.

Finally, related work has studied how to simplify for a non expert the way
properties could be expressed. This is for example one of the contributions
around Statemate [7] where timing diagrams are used to generate CTL formu-
lae for verification on reactive systems. The two main differences with MADA
are: first the generalization of properties thanks to five function signatures in-
stead of defining one timing diagram for each property to check in Statemate,
and second the specific application domain of MADA to distributed software
commissioning.

6 Conclusion

In this paper MADA has been presented as a useful approach for introducing
model checking to help system operators design their parallel distributed soft-
ware commissioning. MADA has been evaluated on the real use case of Open-
Stack which is a very large and complex distributed system. Moreover, compar-
isons with experiments on real infrastructures have shown the feasibility of the
approach. Future work will be focused on using other model checking algorithms
to improve the scalability of MADA. Moreover, MADA will be extended to help
the user build fault-tolerant distributed software commissioning.
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model. In: 4PAD 2018 - 5th Intl Symp. on Formal Approaches to Parallel and
Distributed Systems (hosted at HPCS 2018) (2018)

10. Cimatti, A., Griggio, A.: Software model checking via IC3. In: CAV (2011)
11. Di Cosmo, R., Eiche, A., Mauro, J., et al.: Automatic deployment of services in the

Cloud with Aeolus Blender. In: 13th Intl Conf. on Service-Oriented Computing.
vol. 9435. Springer (2015)

12. Di Cosmo, R., Mauro, J., Zacchiroli, S., Zavattaro, G.: Aeolus: a component model
for the Cloud. Information and Computation (2014)

13. Dijkman, R.M., Dumas, M., Ouyang, C.: Formal semantics and analysis of bpmn
process models using petri nets. Tech. rep., Queensland University of Technology
(2007)

14. Henrio, L., Kulankhina, O., Li, S., Madelaine, E.: Integrated Environment for
Verifying and Running Distributed Components. In: Stevens, P., Wasowski, A.
(eds.) Fundamental Approaches to Software Engineering. Fundamental Approaches
to Software Engineering, vol. 9633. Perdita Stevens and Andrzej Wasowski (2016)

15. Hinz, S., Schmidt, K., Stahl, C.: Transforming bpel to petri nets. In: van der
Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) Business Process
Management. pp. 220–235. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

16. Holzmann, G.J., Peled, D.: An improvement in formal verification. In: FORTE
(1994)

17. Jezequel, L., Lime, D.: Lazy reachability analysis in distributed systems. In: De-
sharnais, J., Jagadeesan, R. (eds.) The 27th International Conference on Con-
currency Theory (CONCUR 2016). LIPIcs, Dagstuhl Publishing, Québec City,
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