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Abstract
The propagation of drought frommeteorological drought to soilmoisture drought can be accelerated
by high temperatures during dry periods. The occurrence of extremely long-duration dry periods in
combinationwith extremely high temperaturesmay drive larger soilmoisture deficits than either
extreme occurring alone, and lead to severe impacts. In this study, we propose a framework to both
characterise long-durationmeteorological droughts that co-occur with extremely high temperatures
and quantify their probability.We term these events as long-duration, dry and hot (DH) events and
characterise themby their duration (D) andmagnitude (M).D is defined as the consecutive number of
dayswith precipitation below 1mm,whileM is themaximumdailymaximum temperature during an
event. A copula-based approach is then employed to estimate the probability ofDH events. The
framework is applied to Europe during the summermonths of June, July andAugust.We also assess
the change in probability that has occurred over the historical period 1950–2013 andfind an increased
probability ofDH events throughout Europewhere rising temperatures are found to be themain
driver of this change. Dry periods are becoming hotter, leading to an increase in the occurrence of
long-duration dry periodswith extremely high temperatures. Some parts of Europe also show an
increased probability of long-duration events although the relative change is not as strong as that seen
with temperature. The results point to a predominant thermodynamic response ofDH events to
global warming and reaffirmprevious research that soilmoisture drought events are setting in faster
and becomingmore severe due to a change in the contributingmeteorological hazards. It is hoped that
the framework applied herewill provide a starting point for further analysis ofDH events in other
locations and for the assessment of climatemodels.

1. Introduction

Soil moisture drought is a complex hazard (Senevir-
atne 2012) that can adversely affect crop yields and
natural ecosystems. Understanding its relationship
with rising global temperatures and changes in pre-
cipitation is of significant societal importance. Sparse
soil moisture data networks make it a difficult
phenomenon to investigate empirically (Robock et al
2000, Dorigo et al 2011), and forces one to study
output from land surface models (Mitchell et al 2004,

Sheffield et al 2014) or observations of themore widely
available meteorological drivers, namely precipitation
and temperature. In this study, we focus on the
meteorological drivers and assess changes in meteor-
ological drought events that co-occur with extreme
temperatures, where meteorological drought is
defined as an extended dry period. We term such co-
occurrences as long-duration, dry and hot (DH) events
and characterise them by their duration (D) and
magnitude (M). D is calculated as the number of
consecutive dry days with precipitation below 1mm,
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whileM is themaximumdailymaximum temperature
during the givenmeteorological drought.

The persistence of meteorological drought leads to
the propagation of drought into soil moisture result-
ing in a negative moisture anomaly in the upper layers
of soil known as the root zone. This propagation
depends on both D and M. Longer dry periods allow
for more drying of soil than shorter intermittent dry
periods separated by wet days providing recharge,
while high temperatures that increase evapotranspira-
tion (ET) can accelerate this propagation of drought
(Orlowsky and Seneviratne 2012, Seneviratne et al
2012, Teuling et al 2013). The joint occurrence of
extremely long-duration and high magnitude events
may thus lead to higher soil moisture deficits than
events where only one characteristic is extreme. Larger
deficits can produce longer lasting soil moisture
droughts as higher amounts of precipitation are then
required for drought recovery (Seneviratne et al 2012,
Manning et al 2018).

The co-occurrence of extremes, such as meteor-
ological drought and high temperatures, is known as a
compound event. This ‘refers to the combination of
multiple meteorological/climatic drivers and/or
hazards that contribute to societal or environmental
risk’ (Zscheischler et al 2018). Events involving the co-
occurrence of dry and hot extremes are receiving
increased attention due to the growing awareness of
the severity of their impacts (Ciais et al 2005, Sha-
poshnikov et al 2014), which can be far greater than
those arising from one extreme alone (Hegerl et al
2011, Zscheischler et al 2014). Considering such
extremes as independent of one another can result in
an underestimation in the probability of their co-
occurrence (Zscheischler and Seneviratne 2017), as
well as in the risk of low crop yields (Zscheischler et al
2017), and the probability of wildfires (Gudmundsson
et al 2014, Ruffault et al 2016). Additionally, both the
duration and magnitude of dry and hot periods are
required to explain the severity of ecosystem impacts
(von Buttlar et al 2017). Underlying the significance of
these studies are findings of increased concurrences of
drought and heat waves within the US (Mazdiyasni
and AghaKouchak 2015) and India (Sharma and
Mujumdar 2017) along with projected increases in the
likelihood of dry and hot summers globally
(Zscheischler and Seneviratne 2017).

With soil moisture drought events expected to set
in quicker and become more severe in a warmer cli-
mate (Trenberth et al 2014, Samaniego et al 2018), it is
important to understand the characteristics of DH
events,D andM, and how they react to a warming cli-
mate. With regards to D, an increasing frequency of
long-duration events has been seen in the Netherlands
(Zolina et al 2013), while only small changes were
found in the annual maximum duration over Europe
(Donat et al 2013). Ye (2018) showed increases in the
seasonal mean duration across Russia and demon-
strated that locations with the largest increases exhibit

a higher rise in seasonal mean temperature. However lit-
tle attentionhas been given to quantifying the probability
of long-duration and high magnitude DH events. Many
studies have estimated the probability of co-occurring
dry and hot conditions (e.g. AghaKouchak et al 2014,
Zscheischler and Seneviratne 2017, Zscheischler et al
2017), though these studies investigate precipitation
accumulations over specified periods of time (e.g.
monthly, seasonal etc), and not the duration of events
which has an important influence on ecosystem impacts
(vonButtlar et al2017).

Furthermore, drought analysis based on meteor-
ological variables has for the most part focussed on
trends in drought indices such as the SPI (Gudmunds-
son and Seneviratne 2016), SPEI (Stagge et al 2017)
and PDSI (Dai et al 2004, Sheffield et al 2012, Dai 2013,
Trenberth et al 2014). These indices are calculated by
integrating variables such as precipitation and poten-
tial ET over time, and so bear no explicit information
of individualDH events. We therefore look to add fur-
ther insight to changes in the meteorological hazards
that influence soil moisture drought through analys-
ingDH events.

In this study, following recommendations of
Zscheischler et al (2018), we propose a framework to
that can be used to characterise compound DH events
and quantify their probability through the application
of a copula-based approach introduced in Bevacqua
et al (2018). This framework can be applied in other
regions and in the assessment of climate model out-
put. We apply the framework to Europe during June,
July and August (JJA), and assess the change in prob-
ability of DH events over the historical period
(1950–2013), in terms of their duration, magnitude
and co-occurrence of extremes in D andM. By doing
so, we aim to gauge the response of such events to cli-
mate change and highlight regions that may have a
higher risk of impacts due to changes inDH events.

2.Data andmethods

2.1.Data
For the identification of DH events, we use temper-
ature and precipitation data from the EOBS dataset
(Haylock et al 2008) version 16.0 on a 0.25° grid. EOBS
is the state of the art gridded dataset for Europe,
although it is produced from a network of stations
whose density is heterogeneous in both time and
space. Herrera et al (2018) point to a minimum
number of stations required for reliable grid cell
averages when assessing precipitation extremes, which
is far higher than that used to produce EOBS in many
regions (see Herrera et al 2018). However, the events
studied here are driven by large-scale systems that will
produce smoother fields than localised precipitation
extremes, and so we consider EOBS to be adequate for
identifying the events of interest.
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The dataset is available from 1950 to 2017,
although data is missing over Russia from 2014
onwards.We therefore analyse the period of 1950 until
and including 2013 to keep a consistent time period
throughout Europe. There are also many missing
values of precipitation over Poland, Iceland and parts
of Northern Africa throughout the observation per-
iod. These areas are therefore removed from the analy-
sis.We also employ the ERA Interim reanalysis dataset
(Dee et al 2011) to provide temperature data for the
composite plots presented in figure 1, as EOBS is a
land-only dataset.

2.2. Event definition
We characterise DH events by their duration (D) and
magnitude (M) and identify events occurring within
June, July and August (JJA). Events overlapping these
months that begin before or end after this period are
also included. D is defined as the number of days
where precipitation is consecutively below 1mm. This
threshold is chosen to remain consistent with previous
studies (Orlowsky and Seneviratne 2012, Donat et al
2013, Sillmann et al 2013, Lehtonen et al 2014), as well
as to be applicable to output from climate models
which systematically overestimate the number of
drizzle days. To ensure we obtain an independent
event set (Coles et al 2001) and capture events in their
entirety (Fleig et al 2006), we combine events longer
than the 90th percentile of duration that are separated
by nsep=2 days or less. Combining events shorter
than the 90th percentile can result in events made up
of intermittent dry and wet periods rather than the
distinct dry events that we seek. The choice of two days
is a subjective choice, and the sensitivity of the results
to this choice was tested with values of nsep=0, 1, 2, 3,
and 4 days. Little difference is seen between results
obtained for each value of nsep and so this choice will
not affect the overallmessage of the paper.

M is defined as the maximum daily maximum
temperature observed during a dry period, it is thus
defined separately toD.M is highly correlated with the
mean of the maximum daily maximum temperatures
during an event and so it is taken to represent the level
of temperature throughout each event. Although
temperature is not the sole driver of the atmospheric
evaporative demand for water, it is the main driver of
changes in atmospheric evaporative demand through
alterations to vapour pressure deficits (Scheff and
Frierson 2014, Zhao andDai 2015), and ismorewidely
available than other variables. We therefore assume
that it provides us with an indication of potential
changes in the drying of soil moisture during DH
events over time.

2.3. Estimation of univariate and bivariate return
periods (RPs)
The univariate RP for a dry period of a given duration
is the average waiting time between dry periods of at

least that duration, while the univariate RP for a given
magnitude is the average waiting time between events
with at least that magnitude. We estimate univariate
RPs for an exceedance of a given value of each
characteristic (D andM) separately. RPs are quantified
using a peak over threshold (PoT) approach in which
stationary parametric models are applied to excee-
dances of the thresholds dsel

uni and msel
uni (sel: selected,

uni: univariate) for D and M respectively (see appen-
dices for details on threshold selection). The univariate
RP, T, of an event exceeding a duration d is estimated
as (Coles et al 2001):

T d
F d1

, 1Dm=
-

( )
( )

( )

where 1−F(d) is the probability of an event exceeding
a duration d, F is the cumulative distribution function
(CDF) of the exceedances above dsel

uni, while μD is the
mean inter-arrival time between events with a dura-
tion exceeding dsel

uni. This is estimated as μD=NY/NE,
where NY is the number of years in the observation
period and NE is the total number of exceedances of
dsel
uni. The RP of an event exceeding amagnitude ofm,T
(m), is estimated in the samemanner.

A bivariate RP provides the estimated expected
waiting time between events in which specified values
of D and M are jointly exceeded. Following the
approach in Bevacqua et al (2018), bivariate RPs are
estimated through a PoT approach in which a para-
metric copula-based probability distribution is
applied to events inwhichD andM jointly exceed their
respective thresholds dsel

bi and msel
bi (sel: selected, bi:

bivariate). This ensures we focus on long-duration dry
and hot events.

A copula is a multivariate distribution function
that models the dependence between random vari-
ables independently of the marginal distributions.
According to Sklar (1959), the joint distribution of D
andMmay bewritten as:

F D M C u u, , , 2D M=( ) ( ) ( )

where C is the copula modelling the dependence
between the selected (D, M) pairs while uD=FD(d)
and uM=FM(m) are uniformly distributed variables
on [0, 1]. FD and FM are respectively the marginal
CDFs ofD andM from events with joint exceedances.
The bivariate RP of an event exceeding Dq and Mq is
then estimated as (Salvadori et al 2007):

T D M
u u C u u

,
1 ,

, 3q q
E

D M D Mq q q q

m
=

- - +
( )

( )
( )

where N NE Y Em = is the average inter-arrival time of
events whereD andM jointly exceed the thresholds dsel

bi

andmsel
bi , and u F DD D qq

= ( ) (likewise for uMq
).

We estimate univariate and bivariate RPs in two
separate time periods, a reference (ref : 1950–1979)
and a present (pres: 1984–2013) period. We quantify
the change in RPs from ref to pres and estimate the
contributions to these changes from variations inD,M
and the (D, M) dependence. For details on the
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Figure 1. Summary of event characteristics taken from grid points near Stockholm (a)–(c), Paris (d)–(f), Belgrade (g)–(i),Moscow
(j)–(l) andMadrid (m)–(o). Panels in the left columnprovide xy-scatter plots ofDuration (D) andMagnitude (M) of events from ref
(grey dots), pres (black crosses) and the period 2014–2016 (black circles). The dashed grey lines represent dsel

bi andmsel
bi forD andM,

respectively, the bivariate statisticalmodel isfitted to all events that jointly exceed these thresholds in ref and pres separately. The years
are shownnext to the points representing top 5 ranked events presented in tables in the appendix, years for events that jointly exceed
the 99th percentiles, estimated from ref , are shown in red. Panels in the centre columnprovide temperature anomaly composites
considering days onwhich themaximum temperature was observed during events jointly exceeding dsel

bi andmsel
bi . Panels in the right

column provide temperature composites considering all days during the events jointly exceeding dsel
bi andmsel

bi . Composites are
produced using the ERA Interimdataset.
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procedures followed in fitting the statistical models, as
well as the methods used in estimating changes in RPs
and contributions to changes in bivariate RPs, see
appendix A.

3. Results

The joint behaviour ofD andM is demonstrated at five
grid points near Stockholm, Paris, Belgrade, Moscow
and Madrid using xy-scatter plots (figure 1, left
column). These illustrate the (D,M) dependence seen
throughout Europe where long-duration events gen-
erally coincide with high temperatures. Such depend-
ence is explained by the anti-cyclonic conditions
underlying DH events, which suppress rainfall and
allow for more incoming solar radiation that heats the
Earth’s surface and atmosphere causing high tempera-
tures to build throughout an event (Miralles et al
2014). The top 5 ranked events at each location, from
the entire period available (1950–2016), are both
provided in tables B1–B5 in appendix B and indicated
in figure 1 (left column). Such events have contributed
to severe impacts in the affected regions. For example
the 2010 event at Moscow was accompanied by
extreme heat and wildfires that resulted in 50 000
excess deaths (Shaposhnikov et al 2014), while the
1972 event was termed one of the worst modern
droughts at the time (Federov 1973, Buchinsky 1976,
Schubert et al 2014). At Belgrade, the events of 1990
and 2012 brought respective estimated agricultural
losses of USD 500 million (Sepulcre-Canto et al 2012)
and USD 2 billion (Zurovec et al 2015). While at
Madrid, the 1994 event formed part of Spain’s worst
20th century drought event from 1991 to 1995
(Sheffield and Wood 2012) which peaked during the
1994 event according to EDC (2013c). Furthermore
the 2012 event led to long-term negative impacts for
trees that will have cascading effects on ecosystem
services (Camarero et al 2015) while the 2015 event
covered the hottest July ever recorded in Spain (Ionita
et al 2017). Further examples are detailed in the
appendix which indicate the effectiveness of the
characteristics in identifying important events.

The bivariate model, presented in section 2.3, is
applied to DH events that reside in the upper right-
hand corner defined by the dashed grey lines, repre-
senting msel

bi and dsel
bi , in figure 1, (left column).

Although the characteristics of these events are calcu-
lated at a single grid point, they represent anti-cyclonic
systems with large spatial extents. To give an idea of
their spatial coverage, two types of composite plots of
temperature anomalies are produced using ERA
Interim data for events in pres. A daily temperature
anomaly is defined with respect to the climatological
mean temperature of all days within a 21 day window
centred on the given day. The first composite is pro-
duced considering days on which the maximum
temperature during an event was observed (figure 1,

middle column), while the second is produced con-
sidering all days throughout each event (figure 1, right
column). The number of days (ndays) used to produce
the composite is given on each panel.

Stronger anomalies are of course seen for the first
type of composite (figure 1, middle column), but both
types indicate the affected areas of these events.Within
the composites, we also see alternating regions of
warm and cold anomalies, particularly in Scandanavia
and areas in Central Europe. This feature demon-
strates the connection of the event characteristics to
blocking systems and sub-tropical ridges, affecting
these regions (Sousa et al 2018), that are themselves
embeddedwithin planetary-scale Rossbywaves.

The differences between Madrid and the other
locations should be noted. In contrast to the more
northern locations, events inMadrid aremuch longer-
lasting and no spatial signature is seen in the compo-
site of temperature anomalies for all event days
(figure 1(o)). Thus, in Madrid, unlike the other loca-
tions where the characteristics are representative of
distinct events,D is most likely representative of a nor-
mal summer season while M may represent a single
hot event within that season.

3.1. RPs for long-duration and bivariate extreme
events
Univariate RPs (T(d)) of long-duration dry periods
exceeding a duration d=15, 20, 30 and 40 days in pres
(1984–2013) are presented in figure 2. The spatial
distribution of T(d) identifies the differences in
synoptic variability seen across Europe during sum-
mer. Persistent anti-cyclonic conditions that are
common in Southern Europe (Ulbrich et al 2012)
explain the low values of T(d) seen there, while higher
values in more northern parts of Europe are due to a
higher synoptic variability between cyclonic and anti-
cyclonic conditions.

Bivariate RPs (T(Dq, Mq)), computed from pres,
for joint exceedances of q=95th and 99th percen-
tiles, respectively, are presented in figure 3. The 95th
and 99th percentiles of D and M throughout Europe
are provided by figure C1 in appendix C. The (D, M)
dependence can influence the estimation ofT(Dq,Mq).
This influence is quantified using the likelihoodmulti-
plication factor (LMF) (Zscheischler and Senevir-
atne 2017) and is estimated as the ratio between T(Dq,
Mq) considering (D, M) dependent (Tdep) and inde-
pendent (Tind) of one another, LMF=Tind/Tdep (see
appendix for details). The dependence is seen to have a
large influence across Europe (figures 3(b) and (d)).
For example, treating D andM as independent results
in an overestimation of T(D95, M95) of up to 8 times
the RPwhen accounting for their dependence.

The spatial distribution of T D M,95 95( ) is mostly
homogeneous throughout Western and Eastern
Europe (figure 3(a)). The lowest RPs are seen in the
Balkans while higher RPs are found in southern areas
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such as Spain. The interpretation of T(D95, M95)
requires careful consideration of both T(d), shown in
figure 2, and the local climate. For instance, event
characteristics in areas of higher synoptic variability

aremost likely associated with distinct blocking events
or sub-tropical ridges (Sousa et al 2018). In areas such
as the Balkan region that lie in a transitional climate
zone with strong land-atmosphere interactions

Figure 2.Return periods (T(d)) ofDH events from pres (1984–2013)with durations (d) exceeding (a) 15; (b) 20; (c) 30; and (d) 40 d.

Figure 3.Bivariate return periods ofDH events from preswith joint exceedances of (a) the 95th percentiles (T(D95,M95)) and (c) 99th
percenitles (T(D99,M99)), alongwith the likelihoodmultiplication factor (LMF) that quantifies the influence of the (D,M) dependence
on the estimation of (b)T(D95,M95) and (d)T(D99,M99), a value greater than one signifies that the bivariate return period is
overestimatedwhen considering theD andM independent of one another.
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(Hirschi et al 2011, Schwingshackl et al 2017), drying
of soil during a dry period can in turn amplify tem-
peratures (Seneviratne et al 2010). This combination
may in part explain why the lowest RPs are found in
the Balkan region. Meanwhile, in Southern Europe, D
can be representative of the normal situation during a
large part of the summer seasonwhileMmay be repre-
sentative of a single hot event within that season. This
results in high values of T(D95, M95) due to a smaller
number of events that are each very long-lasting.

The occurrence of events with joint exceedances of
the 99th percentiles have led to severe impacts in parts
of Europe, these events are indicated by the years in
red in figure 1. Due to the rare occurrence of such
events, the estimation ofT(D99,M99) is highly sensitive
to the occurrence of a single event and as such is sub-
ject to large uncertainties. Figure 3(c) provides an indi-
cation of where such events have and have not
occurred during pres and where such events may be
more likely to occur again. For example, the areas of
2010 and 2012 events in Russia and South-East Europe
are highlighted by lower values of T(D99, M99)
(figure 3(c)). However, it does not provide robust
information of locations where such extreme events
are unlikely to occur. This is emphasised by the recent
record breaking 2018 dry and hot period that had
severe impacts in much of Northern Europe, where
large RPs are found (figure 3(c)). Robust estimates of

the probability of such rare events are not obtainable
using empirical data, particularly with non-stationa-
rities imposed by a changing climate. Such estimates
require ensembles of suitable climate models that pro-
vide a larger sample of events and perhaps more crea-
tive methods to understand the changing probability
and future likelihood of such rare events (Hazeleger
et al 2015, Bevacqua et al 2017). For these reasons, we
present the analysis of changes to T(D95, M95) in the
next sections as we have greater confidence in its
estimation.

3.2. Variations in duration andmagnitude
Figure 4 presents the linear trends, estimated via linear
regression, in the annual maxima ofD andM over the
entire observation period (1950–2013), as well as the
percentage change between ref and pres in T(D95) and
T(M95) estimated via equation (A.2) (see appendix A
for details).

BetweenD andM, the strongest relative changes in
both the annual maxima and 95th percentile excee-
dances are seen for M across Europe. Positive linear
trends are seen in the annual maxima ofM in much of
Western Europe and parts of Eastern Europe
(figure 4(b)). These trends can be between 0.25 °C and
0.5 °C per decade, meaning that the annual maximum
of M in DH events may have warmed by 1.5 °C–3 °C
over the 64 year observation period. Large differences

Figure 4.Estimated linear trends in the annualmaxima of (a)Duration and (b)Magnitude. Statistically significant trends are indicated
by stippling. Also given are the change in univariate RPs in pres (1984–2013)with respect to ref (1950–1979) of (c)Duration and (d)
Magnitude for exceedances of their respective 95th percentiles. Statistically significant differences in the 95%uncertainty interval,
estimated via non-parametric bootstrap, are shown by stipling. For all cases, only every 3rd and 5th latitudinal and longitudinal grid
point are selected for showing the stippling, showing all points would hide themagnitude of change due to the high resolution of the
dataset.
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in T(M95) between ref and pres are found across Eur-
ope (figure 4(d)). The frequency of exceedances has
almost doubled in many locations though much of
Northern Scandinavia has seen a halving in frequency,
which is in contrast to changes in the seasonal mean
(see figure C2 in appendix C). The physical reasoning
for different behaviours between the mean and
extremes is unclear. It may involve changes in atmo-
spheric circulation that are largely dominated by nat-
ural variability (Woollings et al 2018) and/or changes
in soil moisture from permafrost melting due to
increased seasonal mean temperatures (see figure C2
in appendices). The latter may lead to an increase in
both the moisture availability in soil and evapo-
transpiration during summer (Lawrence et al 2015)
which may in turn dampen temperature extremes
through latent cooling.

Weak variations are observed for D. Significant
trends in the annual maximum duration are found
only in a particular region of Russia and South-Eastern
Europe (figure 4(a)). These trends can be between 1
and 2 days per decade such that the annual maximum
durationmay have increased by between 6 and 12 days
over the 64 years in these locations. Variations in D95

are also mostly small. The strongest increases are
found in South-Eastern Europe and parts of Russia
while the strongest decreases are seen across much of
theUK, Scandinavia andRussia.

3.3. Variations in bivariate RPs
The change in T D M,pres

95 95( ) with respect to
T D M,ref

95 95( ), estimated via equation (A.2) (see
appendix A), is provided in figure 5(a). Statistically
significant differences between pres and ref , indicated
by the stippling in figure 5(a), are identified when
T D M,pres

95 95( ) is outside the 95% uncertainty interval
of T D M,ref

95 95( ). The strongest changes are seen just
north of the Mediterranean, particularly in South-

Eastern Europe, and across much of Western Russia.
Statistically significant negative changes (increased
probability) are found throughout these regions and
cover 17% of the total area of the dataset. Figure 5(b)
presents the kernel density estimates of T D M,ref

95 95( )
and T D M,pres

95 95( ) from each grid point throughout
Europe. Comparing these highlights the general shift
across Europe to lower bivariate RPs and thus a higher
frequency ofDH events during pres compared to ref.

These changes inT(D95,M95), shown in figure 5, can
arise due to changes in themarginal distributions of (a)D
and (b) M as well as due to changes in (c) the (D, M)
dependence. Using methods outlined in appendix A.4,
we decompose the changes in bivariate RPs to quantify
the contribution of these three components to the varia-
tion in T(D95, M95). Changes in marginal density of M
have the largest contributions as indicated by the higher
amount of stippling (figure 6(b)), while changes inD are
seen to have a contribution in some areas of Europe
(figure 6(a)), most specifically in the Balkans where the
largest changes in D are seen (figure 4(a)). Large con-
tributions are also seen from variations in the (D, M)
dependence (figure 6(c)) owing to an increase in the
dependence between D and M. The physical reasoning
behind this increase is unclear and as there are very few
significant changes, it is likely that contributions from
variations in dependence are dominated by a single event
such as the 2010 Russian heat wave. In fact, some of the
areas showing the largest contribution from changes in
dependence correspond to the area affected by the Rus-
sianheatwave in 2010.

Overall, with large variations inM and only small
variations found in D, the results illustrate the pre-
dominant influence of temperature on the increased
frequency of DH events seen across Europe as there is
little evidence to suggest that events are more pro-
longed in pres. Thus, DH events are, in general,
becomingwarmer but not longer.

Figure 5.Estimated change in bivariate RPs in pres (1984–2013)with respect to ref (1950–1979) for joint exceedances of their
respective 95th percentiles. Shown in (a) are the% changes across Europe, stippling indicates statistically significant differences
between pres and the 95%uncertainty interval from ref estimated via non-parametric bootstrap.Only every 3rd and 5th latitudinal
and longitudinal grid point are selected for showing the stippling. Alongside in (b) are the kernel densities estimated using the RPs
from all grid points for ref (blue) and pres (red).
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4. Summary and conclusions

We have investigated long-duration dry events that
co-occur with extreme temperatures in Europe, as well
as changes in these events over the period 1950–2013.
This paper proposes a framework to characterise such
events and quantify their probability and RPs through
the application of a copula-based approach introduced
by Bevacqua et al (2018). The events are denoted as
long-duration dry and hot (DH) events and are
characterised by their duration D (consecutive num-
ber of day with precipitation less than 1mm), and
magnitude M (maximum daily maximum temper-
ature during event). These characteristics combined
are shown here to be effective in highlighting impor-
tant events that have brought severe impacts to
affected regions.

The probability of such compound events, with
respect to joint exceedances of the respective 95th per-
centiles ofD andM, has increased acrossmuch of Eur-
ope between ref (1950–1979) and pres (1984–2013)
periods. The main driver of this change in probability
is increasing temperatures throughout Europe. Little
change is seen in the duration of events, leading us to
conclude thatDH events have mostly become warmer
during pres rather than longer. An exception to this is
found in South-East Europe where events appear to
have increased in temperature and duration.

RPs were also estimated for events in whichD and
M jointly exceed their 99th percentiles. However,
robust estimations of their probability are not possible

to obtain due to the rarity of their occurrence. For this
reason, we cannot assess changes in these RPs. Such
events have brought severe impacts to the affected
regions and so it is important that efforts are made to
better quantify their probability such that possible
future changes in their occurrence may be better
understood (Coumou et al 2018). It is hoped that the
methodology used in characterising these events and
quantifying their probability will provide a platform
for further research, particularly in extracting infor-
mation of their current and future probability from
climatemodels.

The implications of the increased probability of
DH events found here mainly pertain to the accelera-
tion of drought propagation from meteorological
drought to soil moisture drought. The results comple-
ment other findings with respect to the relationship
between drought and climate change. For example,
soil moisture drought events are expected to set in
quicker and become more severe (Trenberth et al
2014, Samaniego et al 2018), owing to increases in eva-
poration during dry periods (Dai et al 2004) that are
driven by rising temperatures (Scheff and Frierson
2014, Zhao and Dai 2015). Furthermore, given the
weak historical trends found in global land precipita-
tion (New et al 2001, Lambert et al 2004, Ren et al
2013, Adler et al 2017), the dominant temperature sig-
nal behind the increased probability of DH events may
also largely explain changes in global drought condi-
tions, as shown in Marvel et al (2019), which closely
resemble changes in global mean temperature (e.g.

Figure 6.Contributions to changes in bivariate RPs between ref and pref from changes in themarginal densities of (a)Duration, and
(b)Magnitude, as well as from changes in (c) dependence. Statistically significant differences between Texpi

and Tref are indicated by
stippling. Only every 3rd and 5th latitudinal and longitudinal grid point are selected for showing the stippling.
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Pachuari et al (2014)). The resultsmay also have impli-
cations for the persistence of soil moisture drought
conditions. High amounts of precipitation are
required for recovery from large moisture deficits
induced by intense drying (Seneviratne et al 2012,
Manning et al 2018) while general increases in eva-
poration can push environments towards a climati-
cally drier state (Samaniego et al 2018).

The response of D and M to climate change can
also be linked to that of blocking events. The weak var-
iations seen in D align with studies on changes in
blocking frequency which is expected to be dominated
by natural variability in the coming decades (Wool-
lings et al 2018). Consistent with the changes in M
shown here, blocking events have becomewarmer and
are expected to become more extreme in the future
(Sousa et al 2018) due to increasing temperatures and
decreasing soil moisture that can strengthen temper-
ature extremes through land-atmosphere interactions
(Seneviratne et al 2006).

One should note that these results are derived
from a gridded dataset which may introduce errors
through interpolation of station observations whose
spatial density can be too low for adequate representa-
tion of extremes (Haylock et al 2008, Herrera et al
2018). Althoughwe havemore confidence in this data-
set for large-scale events investigated here than for
localised precipitation extremes, as investigated in
(Herrera et al 2018) for instance, it would be interest-
ing to investigate the influence of interpolation and the
spatial density of stations on the representation of
characteristics ofDH events in gridded products. This
would provide important information for climate
model validation studies that incorporate EOBS and
other gridded datasets.

Finally, the comparisonmade here between ref and
pres shows differences in the multi-decadal variability
of DH events. Direct attribution of these events to
anthropogenic climate change is not possible with an
empirical analysis. However, our finding that temper-
ature changes are themain cause for changes in bivari-
ate probability is in line with trends of increasing
temperature due to rising greenhouse gas concentra-
tions. One can therefore hypothesise, alongside fore-
warnings from Samaniego et al (2018), that such
increases in probability will continue into the future
leading to more severe long-lasting soil moisture
droughts that can lead to negative impacts such as
reduced crop yields and increasedwildfire risk.
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AppendixA.Methods appendix

A.1. Statisticalmodels selection
Univariate stationary parametric models are fitted to
exceedances of the thresholds dsel

uni and msel
uni (sel:

selected, uni: univariate) forD andM respectively. The
default selection for each threshold is the 90th
percentile of the given variable, estimated from the ref
period (1950–1979), though this is decreased in cases
where there are not at least 20 events, but never below
the 70th percentile from ref . Grid points with fewer
than 20 events exceeding the 70th percentile are
removed from the analysis. These cases are found in
arid regions such as Southern Spain, Turkey and
Northern Africa where dry events are generally very
long lasting, resulting in very few events. Similarly, the
parametric copula-based probability distribution is
fitted to events in which D andM jointly exceed their
respective thresholds dsel

bi and msel
bi (sel: selected, bi:

bivariate). Again the default selection for each thresh-
old is the 90th percentile from ref and both are
simultaneously decreased if there is not at least 20
events, but never below their 70th percentiles.

Duration exceedances of the thresholds dsel
uni and

dsel
bi are modelled using an exponential distribution. A
geometric distribution is generally used for D but the
application of copulas requires continuous marginals,
and so we employ its continuous counterpart as done
in Serinaldi et al (2009). Magnitude exceedances of
msel

uni andmsel
bi are modelled using the Generalised Par-

eto Distribution. Copulas were fitted to uD and uM.
These were obtained via empirical marginal CDF in
order to avoid errors introduced by potential mis-
specification of the parameters of the marginal
distributions.

The copula family was selected at each grid point
separately from the highest ranked of the following
families according to the akaike information criterion
(AIC): Gaussian, t, Clayton, Gumbel, Frank, Joe, BB1,
BB6, BB7, and BB8. At some grid points, we find a
negative dependence between pairs that jointly exceed
dsel
bi and msel

bi . For these cases we fit an independent
copula as the overall dependence between D andM is
always positive such that a negative dependence
between joint exceedances is likely unphysical and due
to the small number of data points. The selected copu-
las are shown in figure C3 in appendix C. By selecting
from a range of copula, we choose the best model
according to the AIC at each grid point. Alternatively,
one could select an optimal copula for all grid points,
as is the case for marginal distributions. However, we
choose not to do this as we do not have prior knowl-
edge of the true structure of dependence and have too
few data to gain such knowledge. Applying a single
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copula would also assume a homogeneous depend-
ence structure exists across Europe. This assumption
may not be reasonable and can reduce the quality of fit
regionally and locally (not shown).

Marginal distributions and copulas were fitted
through a maximum likelihood estimator using the
fitdistrplus (Delignette-Muller and Dutang 2015),
ismev (Heffernan and Stephenson 2018) and VineCo-
pula (Schepsmeier et al 2017) R packages. The good-
ness of fit of marginals and copulas (one-tailed;
Nboot=100 for copulas)was tested using the CvM cri-
terion with the goftest (Faraway et al 2017), eva (Bader
and Yan 2018) and VineCopula R packages. The selec-
ted distribution or copula family is rejected if the
p-value is less than 0.05. This occurs at less than 5% of
grid points for each case, which is in the acceptable
range of tests that may fail by random chance
(Zscheischler et al 2017).

A.2. Influence of dependence of bivariate RP
estimation
The (D, M) dependence can influence the estimation
of the bivariate RP T(Dq, Mq). We quantify this
influence using the LMF (Zscheischler and Senevir-
atne 2017), which is estimated as the ratio between
T(Dq, Mq) considering (D, M) dependent (Tdep) and
independent (Tind) of one another:

T TLMF A.1ind dep= ( )

Tdep is estimated using equation (3), while Tind is
computed considering D and M independent of one
another. In this case, an independent copula is chosen
for C and μE=NY/Nind, where Nind is the expected
number of joint exceedances for two independent
variables (the total number of events (including non-
extremes) multiplied by the probability of a joint
exceedance above q in the independent case). FD and
FM are then fitted to all marginal exceedances of the
thresholds dsel

uni andmsel
uni.

A.3. Estimation of annual trends andRP variation
Linear trends are estimated for the annual maxima of
D and M from DH events throughout the entire
analysis period (1950–2013) using linear regression.
We use a significance level of p=0.05 to identify
statistically significant trends.

We estimate changes in the RP for individual and
joint exceedances of the 95th percentiles of D and M.
The analysis period is split into two 30 year periods, a
reference (ref : 1950–1979) and present period (pres:
1984–2013), and RPs are estimated in each period
separately, while the 95th percentiles are estimated

from ref. The change in case i=(a) T(D95), (b)
T(M95), and (c) T(D95,M95), is calculated in pres with
respect to ref as:

T
T T

T
100, A.2i

i
pres

i
ref

i
ref

D =
-

· ( )

where ΔTi refers to the change of RP in pres (Ti
pres)

with respect to that estimated in ref (Ti
ref ). The

statistical significance of changes is identified through
comparing Ti

pres with the 95% uncertainty interval

surrounding Ti
ref . This uncertainty interval is con-

structed, via non-parametric bootstrapping, from
1000 values of Ti

ref obtained from 1000 event sets.
These are created by resampling of the entire distribu-
tion such that we consider the uncertainties around μi
also.

A.4. Contributions toRP variation
Using amethod developed in Bevacqua et al (2018), we
assess the relative contributions to changes in bivariate
RPs arising from changes in themarginal distributions
of (a) D, (b) M, and (c) the (D, M) dependence. The
relative change in probability for each case is estimated
as:

T
T T

T
100, A.3exp

exp
ref

refi

iD =
-

· ( )

where Tref is the bivariate RP from ref while Texpi
is

calculated in the followingmanner:
Experiment (a): Given the variable Dref , we calcu-

late the associated empirical CDF to obtain UDref .
From the variable Dpres we define the empirical CDF
FD pres that is used to obtain D F Ua D D

1
pres ref= - ( ).We then

compute the RP Texpa
using the bivariate model fitted

to (D M,a
ref ) pairs that jointly exceed dsel

bi andmsel
bi . The

variables (D M,a
ref ) have the same Spearman correla-

tions and tail dependence as during ref but the mar-
ginal distribution ofD is that of pres.

Experiment (b): Similar to Experiment (a) but
swappingD andM.

Experiment (c): With variables (D M,ref ref ) we
obtain their respective empirical CDFs from which we
define D F Uc D D

1
ref

pres= - ( ) and M F Uc M M
1
ref

pres= - ( ). The
variables (D M,c c) have the same Spearman correla-
tion and tail dependence as (D M,pres pres), but the
marginal distributions are those of ref . The RP Texpc

is
then computed using the bivariate model fitted to
(D M,c c) pairs jointly exceeding dsel

bi andmsel
bi .

Appendix B. Additional tables appendix:
top 5 events at selected locations
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Table B1.Top 5 Events fromStockholm grid cell. The top 5 events at each site are selected based on a combined ranking, rDM, based on a sum
of the individual ranks of duration (rD) andmagnitude rM, i.e. rDM=rD+rM. The event with the highest combined rankingwill be that
with the largest rDM value.

D (days) M (°C) Start date References

30 30.70 06 July 1955 Veryard (1956)
28 30.69 30 June 1994 Stagge et al (2013)
21 33.75 25 July 1975 SPCCA (2016)
27 30.38 25 July 1969 Hannaford et al (2011)
21 29.36 20May 2008 No Information

Table B5.Top 5 Events fromMadrid grid cell. Events ranked as described in the caption of table B1.

D (days) M (°C) Start date References

111 39.31 02 June 1994 Stagge et al (2013)
58 40.83 27 July 2012 Camarero et al (2015)
71 39.33 03 July 1966 Cantos et al (2000)
58 40.28 24 June 2015 Ionita et al (2017)
68 39.41 07 July 2016 Vázquez et al (2016)

Table B2.Top 5 Events fromParis grid cell. Events ranked as described in the caption of table B1.

D (days) M (°C) Start date References

39 37.00 06 July 1990 Stagge et al (2013)
34 37.82 06August 2012 No Information

25 38.26 23 June 2015 Ionita et al (2017)
33 35.03 07 July 1986 No Information

28 35.04 01 July 1959 Stagge et al (2013)

Table B3.Top 5 Events fromBelgrade grid cell. Events ranked as described in the caption of table B1.

D (days) M (°C) Start date References

87 40.12 30 July 2012 Zurovec et al (2015)
37 40.00 21 July 2000 Sepulcre-Canto et al (2012)
35 38.67 17 July 1988 No Information

26 38.74 06August 1950 Tošić andUnkašević (2014)
19 43.20 12 July 2007 Sepulcre-Canto et al (2012)

Table B4.Top 5 Events fromMoscow grid cell. Events ranked as described in the caption of table B1.

D (days) M (°C) Start date References

36 36.40 17 June 2010 Mokhov (2011)
25 34.61 29 July 1972 Schubert et al (2014)
35 33.56 03 July 2014 Russo et al (2015)
53 32.04 01 June 1999 Schubert et al (2014)
21 33.18 08August 2007 Schubert et al (2014)
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AppendixC. Additionalfigures appendix

FigureC1.Absolute values at the 95th and 99th percentiles throughout Europe forD ((a) and (c)) andM ((b) and (d)).

FigureC2. Estimated linear trends in the seasonalmean of temperature forwinter (DJF), spring (MAM), summer (JJA) and autumn
(SON) over the historical period 1950–2013. Statistically significant trends are indicated by stippling.
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