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Graphical Abstract 
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Abstract 

Rheumatoid arthritis (RA) is a prevalent autoimmune disease characterized by joint inflammation, 

bone and cartilage erosion. The use of glucocorticoids in the treatment of RA is hampered by 

significant side effects induced by their unfavorable pharmacokinetics. Delivering glucocorticoids by 

means of nanotechnologies is promising but the encapsulation of highly crystalline and poorly water-

soluble drugs results in poor loading and low stability. We report here the design of 130 nm 

nanoparticles made of solely dexamethasone palmitate, stabilized by polyethylene glycol-linked 

phospholipids displaying a negative zeta potential (-55mV), high entrapment efficiency and stability 

over 21 days under storage at 4°C. X ray diffraction showed no crystallization of the drug. When 

incubated in serum, nanoparticles released free dexamethasone which explains the in vitro anti-

inflammatory effect on LPS-activated RAW 264.7 macrophages. Moreover, we demonstrate in a 

murine collagen-induced arthritis model the improved therapeutic efficacy of these nanoparticles. 

Their passive accumulation in arthritic joints leads to disease remission and recovery of the joint 

structure at a dose of 1mg/kg dexamethasone, without any adverse effects. Dexamethasone 

palmitate nanoparticles are promising in the treatment of inflammation in rheumatoid arthritis with 

a very significant difference occurring at the late stage of inflammation allowing to prevent the 

progression of the disease. 

Keywords: nanomedicines; prodrug; glucocorticoid; arthritis. 
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1 Introduction 

Rheumatoid arthritis (RA) is one of the most widespread chronic rheumatic diseases worldwide, with 

a prevalence of 0.5-1% in the developed countries [1]. RA is defined as a chronic, autoimmune 

rheumatic disease that affects all type of patients with a strong prevalence in 60-80 years old women 

and a female:male ratio of 3:1 [2]. RA evolves with inflammatory flares associated with inflammation 

of the joint synovial membrane, progressive bone and cartilage destruction and accompanied with 

strong pain [3]. Over the course of the disease, patients generally undergo a decreased quality of life, 

a potential disability and a reduction in life expectancy of about 10 years [4]. Like all autoimmune 

diseases, RA is caused by a disregulation of the immune tolerance leading to infiltration of the 

synovial membrane by immune cells (neutrophils, macrophages, T and B cells), pannus formation and 

proliferation of the lining cells of the synovial membrane [5]. Moreover, enhanced angiogenesis and 

high permeability of the newly generated vessels in a dense network all over the inflamed synovia, 

correlated with high vascular endothelial growth factor (VEGF) serum levels were reported in RA 

patients [6–8]. 

Within the RA therapeutic strategy, glucocorticoids (GCs) administration is limited to short period 

treatment to relieve joint inflammation during flares up due to their severe side effects [9]. GCs 

chronic administration for long-term treatment of RA, although not indicated, is used in association 

with first line treatment methotrexate or second line biologics by 1/3 of RA patients, preventing 

inflammation exacerbations. However, chronic misuse of GCs leads to the emergence of strong side 

effects such as diabetes, high blood pressure or Cushing syndrome [10,11]. Because of the ubiquitous 

expression of the GC receptor [12,13], GC local therapeutic activity is diluted by side activity in other 

organs. Therefore, patients require repeated administrations of high GCs doses strength to reach a 

sufficient anti-inflammatory activity in the tissue of interest [14].  

Nanotechnologies are taking advantage of the specific physiopathology of inflamed tissues and of a 

vascular enhanced permeability effect to address encapsulated molecules to the tissue of interest by 

passive diffusion in diseased area [15,16]. Accumulation of therapeutic nanoparticles in inflamed 

joints could therefore improve anti-inflammatory activity while avoiding administration of high doses 

and thus reducing side effects [17]. 

Previous studies reported that in spite of their increased accumulation in pathologic areas, most of 

the nanocarriers used so far faced a very low GC drug loading, below 10%w/w [18–20], and a fast 

destabilization because of lipophilic GC crystallization in aqueous media impairing their efficacy. In 

the present study, we designed a new type of PEGylated nanocarrier made of dexamethasone 

palmitate (DXP). DXP is a prodrug of dexamethasone on which a palmitic chain is covalently linked by 

an ester bound. The presence of a C16 chain confers to the molecule a very high hydrophobicity and 

strong interactions with phospholipid aliphatic chains due to hydrophobic interactions [21–23]. These 
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PEGylated DXP nanoparticles (DXP-NPs), obtained by the sole addition of DSPE-PEG2000 as stabilizer, 

exhibit a high drug loading and stability over time. The collagen induced arthritis (CIA) mouse model 

was used to assess whether DXP-NPs display greater anti-inflammatory activity than free 

dexamethasone. Our results demonstrated that DXP-NPs lead to specific joint accumulation, strong 

reduction of joint inflammation and histopathological signs of arthritis without increased side effects. 

2 Material and methods 

2.1 DXP-NP preparation and physicochemical characterization 

Nanoparticles were prepared by an emulsion-evaporation process. Briefly, 10ml of milliQ water were 

prechilled at 4°C. The desired amounts of DXP and DSPE-PEG2000, respectively 50mg and 25mg, were 

dissolved in 1ml chloroform. The organic phase was injected into the water phase before pre-

emulsification by vortexing for 30 seconds followed by ultrasonication during 2min at an amplitude 

of 40% in an ice bath (Branson, USA). The organic phase was evaporated under reduced pressure 

using a rotary evaporator. After full evaporation of the solvent, the suspension was stored at 4°C 

protected from light. Fluorescent nanoparticles were obtained by the same procedure, incorporating 

4% (mol/mol DSPE-PEG2000) of the hydrophobic and poorly-water soluble probe DID (1,1’-dioctadecyl-

3,3,3’,3’-tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate salt) in the chloroformic phase. 

After each preparation, nanoparticles size (dH), polydispersity index (PdI) and surface charge (zeta 

potential) were evaluated using a Malvern NanoZS at 173° angled laser (n=3 per sample, n=5 samples 

at least). Nanoparticle stability was followed up to 21 days while nanoparticles were stored in a cold 

room at 4°C. Size measurements were carried out in water and zeta potential at a 1/10 dilution in 

NaCl 1mM. Concentrations of DXP and DSPE-PEG2000 encapsulated were determined by HPLC-ELSD 

(evaporative light scattering detector) detection using a mobile phase of MeOH:ACN:Ammonium 

acetate (200mM, pH4) 70:28:2 added with 0.043% acetic acid and 0.104% trimethylamine, 

nebulization temperature of 35°C and evaporation temperature of 45°C, 30µl of samples were 

injected. DXP-NPs morphology was observed by TEM after negative staining with uranyl acetate at 

2%(w/w) for 30 seconds and cryo-TEM images. Internal structure was examined by X-ray powder 

diffraction on the concentrated nanoparticle suspension (Supplementary information) compared to 

the crystalline form of dexamethasone obtained by recrystallization in acetone, using a Rigaku 

rotating copper anode automated diffractometer operating at 50kV and 200mA using Cu Kα 

radiation. 

2.2 In vitro plasma release of Dexamethasone from DXP-NPs 

DXP-NPs were diluted in water to yield a final equivalent concentration of dexamethasone (DXM) of 

260 μg/mL. 180 μL of murine plasma were introduced in an Eppendorf tube and 20 μL of DXP-NPs 

were added and incubated at 37°C upon gentle mixing for different times up to 24h. After the 
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desired incubation time, 400 μL of acetonitrile containing 4µg/mL dexamethasone acetate as an 

internal standard was added followed by vortexing vigorously for 30 seconds to precipitate out 

enzymes/proteins present in plasma. Then, centrifugation was performed at 13, 400 rpm for 10 

minutes (ST16R centrifuge, rotor TX-400, Thermo Scientific, France). The supernatant organic phase 

was collected and DXM was quantified by HPLC-UV as follows. A Waters 717 Plus autosampler 

chromatographic system was employed equipped with a Waters 1525 binary HPLC pump, a Waters 

2487 dual λ absorbance detector, and a Breeze software. The analysis was performed at 240nm 

wavelength using a SymmetryShieldTM RP18 column (5 µm, 250×4.6 mm; Waters, Saint-Quentin-en-

Yvelines, France). The column temperature was maintained at 40°C. The mobile phase was composed 

by a mixture of acetonitrile and milliQ water (35/65 v/v). The mobile phase flow rate was 1.2mL/min, 

the injection volume was 50L and the run time was 30min. Retention times were 9min for DXM and 

26min for dexamethasone acetate. Calibration curves of DXM were linear in the range 0.1-100g/mL 

(R²=0.9974, y=1.056x+0.1445).  

2.3 In vitro anti-inflammatory effect 

To verify that DXP-NPs were able to exert an anti-inflammatory effect equivalent to the free drug, 

RAW 264.7 cells were seeded in 24-well plates at a cellular density of 4x104 cells/well in culture 

medium and were incubated for 48 hours until 80% confluency. Then, the medium was replaced by 

fresh medium alone or fresh medium with LPS at 0.1 µg/mL to induce inflammation, and plates were 

incubated another 3 hours. Afterwards, DXP-NPs were added at a subtoxic concentration [checked by 

the MTT (3-[4,5-dimethylthiazol-2-yl]-3,5-diphenyl tetrazolium bromide) colorimetric assay - 

unpublished data] diluted in culture medium: 100µg/mL of DXP and free dexamethasone phosphate 

(DSP) at 82µg/mL in culture medium, which correspond to 100µg/mL DXP considering molecular 

weight ratio. Culture medium alone was used as negative control and LPS 0.1 µg/mL as positive 

control. After 24 hours of incubation with the treatments, cell supernatants were collected and 

frozen at -20°C until analysis was performed. Cells were detached and counted. Mouse inflammatory 

cytokines TNFα and MCP-1 were quantified using a Cytometric Beads Array (CBA) detection kit (BD 

Biosciences, USA). In each test tube, 50µL of mouse inflammation capture bead suspension was 

added, completed with either 50µL of standards solution (20-5000pg/mL) or 50µL of supernatants 

samples. Phycoerythrin (PE) detection reagent was added 50µl to each tube and incubation during 2h 

at room temperature was performed. Samples were washed with 1mL wash buffer provided in the 

kit and tubes were centrifuged (200g, 5min) to recover the pellet. 300µL of wash buffer was added to 

resuspend the pellet and samples were quantified with the BD Accuri C6 Cytometer (BD Biosciences, 

USA). Cytokines results were analyzed with the FACP Array™ Software and were obtained as pg/mL 

concentrations. All measurements were performed in triplicate. 
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2.4 Animal studies 

In vivo experimental procedures using DBA/1OlaHsd mice were approved by the ethical committee 

No 026 and by the French ministry of education and research (Accepted protocol No 2842-

2015110914248481_v5). 9-12 weeks-old male DBA/1OlaHsd mice were purchased from Envigo (UK) 

and let for one week after shipping for adaptation before starting experiments. Mice were kept in a 

separate animal room under climate-controlled conditions with a 12h light/dark cycle, housed in 

polystyrene cages containing wood shavings and fed with standard rodent chow and water ad 

libitum.  

2.4.1 Collagen induced arthritis mice model  

At day 0, 10-13 weeks-old male DBA/1OlaHsd mice were injected intradermally at the base of the tail 

with an emulsion of Complete Freund’s Adjuvant (CFA) and type II collagen (CII). At day 21, mice 

received a boost injection of the same composition. From day 21, mice were evaluated every 2 days 

during the first week after boost and every day from day 28. Weight and arthritis symptoms were 

monitored, based on a visual scoring scale (0-3) of the paws with evaluation of the erythema, 

swelling and ankylosis of each paw (Fig. S3) and hind paw volume was measured with a 

plethysmometer (Harvard Apparatus). Special care was paid to ensure sufficient food and water 

access to mice. 

2.4.2 Assessment of the therapeutic efficacy in mice 

CIA mice were divided in 5 groups (n=8) on day 31 based on the inflammation score and hind paw 

volume to create the most homogeneous groups in terms of inflammation. On days 32, 34 and 36, 

mice received intravenously PBS or free dexamethasone sodium phosphate at 0.1 mg/kg (eq.DXM) or 

1mg/kg (eq.DXM) or DXP-NPs at 0.1 mg/kg (eq.DXM) or 1mg/kg (eq.DXM). From day 21 to 37, 

arthritis was monitored as described above. Mice were sacrificed on day 37, paws were removed for 

histology experiments. 

2.4.3 DXP-NPs joints accumulation 

Healthy (n=4) and CIA mice (n=4 at least, at day 32 post CIA induction) were injected intravenously 

with (i) fluorescent DXP-NPs-DID4% at 1mg/kg (eq. DXM) or (ii) a solution of free DID in 

DMSO/glucose5% 1/9 v/v (i.e. control). DXP-NPs and free dye-treated mice received comparable 

amounts of DID (0.1mg DID/kg). The kinetics of nanoparticles and free DID biodistribution were 

evaluated by NIR in vivo imaging using the IVIS Lumina® LT Series III (PerkinElmer, USA). After 

excitation at 640nm the signal was recovered at 745nm emission filter. First fluorescence images 
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were recorded at t=4h post injection and then mice were imaged daily until the disappearance of the 

fluorescent signal (day=14). Images of each mice before treatment were used to determine the 

baseline level of fluorescence (i.e., auto-fluorescence) which was subtracted to the recorded signal. 

Mice were imaged both in ventral and dorsal position. Images were processed using the Living Image 

software (PerkinElmer, USA). A region of interest was automatically identified, and quantification 

was performed using the Average radiant efficiency value (threshold of 30%). Results are expressed 

as [fluorescence signal on the analyzed surface subtracted by the auto-fluorescence acquired before 

injection] as a function of the inflammation score of each paw. 

2.4.4 Histopathology studies 

After sacrifice of the mice, hind legs were removed on day 37 from CIA mice at the end of the 

efficacy study. Skin and muscles were removed, and hind legs (from above the knee to the end of the 

foot) were fixed 24h in 4% paraformaldehyde and decalcified for 8h in Microdec (Microm Microtech, 

France). Hind legs were included in paraffin blocks and sectioned in 4µm thick slides. Haematoxylin-

eosin-safran (HES) staining was performed and synovial cell infiltration, pannus formation and 

proliferation and bone erosion were individually scored on a 0-3 scale as follows [20,24]. The score 

for every histopathologic feature was summed for each animal.  

Synovial infiltration. 0: normal; 1: minimal infiltration of cells in synovium and synovial membrane; 2: 

mild infiltration with minimal synovial hyperplasia; 3: severe infiltration in synovium and periarticular 

tissue. 

Pannus. 0: normal; 1: minimal pannus formation, marginal zones; 2: mild cell proliferation and 

expansion; 3: severe infiltration with large pannus expansion. 

Bone and cartilage erosion: 0: normal; 1: slight erosion, bone and cartilage thickness reduced; 2: mild 

bone and cartilage structure modification, thin bone and cartilage thickness; 3: severe erosion, total 

destruction of joint architecture. 

 

2.5 Adverse effect evaluation 

CIA was induced on 30 DBA/1 mice as described in the dedicated section above. On day 31, mice 

were divided into 3 groups (n=10), based on the inflammation score and hind paw volume to create 

the most homogeneous groups in terms of inflammation. After 3 IV injections on days 32, 34 and 36 

with PBS or DSP 1mg/kg (eq.DXM) or DXP-NPs 1mg/kg (eq.DXM), CIA mice were sacrificed on day 37. 

Blood was recovered by intracardiac puncture, one part of total blood was dedicated to complete 

blood count (CBC) and the other was centrifuged to recover plasma. Quantification of plasmatic 

glucose, alanine-aminotransferase (ALAT), aspartate-aminotransferase (ASAT) and creatinin; and 
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complete blood count (CBC) from total blood were performed by Cerbavet (France). Standard values 

presented on graphs correspond to mice standard values, without distinction between strains. 

 

2.6 Statistical analysis 

Results were reported as mean ± standard error of the mean (SEM). Statistical analysis was 

performed using the GraphPad Prism 6.0 software.  

3 Results and discussion 

3.1 DXP-NPs preparation and characterization 

DXP-NP formulation process is based on the emulsion-evaporation method (Fig. S1). Briefly, DXP and 

DSPE-PEG2000 were dissolved in chloroform and injected in pre-chilled aqueous phase. Emulsion was 

obtained through vortexing and sonication steps followed by chloroform evaporation leading to the 

formation of nanoparticles. DXP alone did not form nanoparticles. However, in combination with 

DSPE-PEG2000, recognized as biocompatible and approved by the Food and Drug Administration for 

medical use [25], and due to hydrophobic interactions between the palmitic chain of DXP and stearic 

chains of the PEGylated lipid [26], the emulsion-evaporation method led to the formation of 

spherical nanoparticles. The obtained nanoparticles presented a hydrodynamic diameter (dH) of 

130nm and a negative surface charge of -55mV (Fig. 1a), contributing to the stability and preventing 

nanoparticle aggregation upon storage. The polydispersity index (PdI) of 0.2 confirmed a 

monodisperse population of DXP-NPs, correlated to transmission electron microscopy (TEM) pictures 

also showing the spherical structure of DXP-NPs (Fig. 1c). The poor water solubility of DXP usually 

induces its crystallization in the nanoparticle suspension [26], leading to a low drug loading [18] and 

destabilization of the suspension overtime. The presence of DSPE-PEG2000 clearly avoided the 

formation of prodrug crystals and DXP-NPs with an amorphous structure were obtained. Indeed, no 

diffraction peaks were observed by X-ray diffraction for DXP-NPs, however a bump characteristic of 

an amorphous organization was detected. On the contrary, DXP crystals exhibited many diffraction 

peaks as expected [22,26]. Cryo-TEM images (Fig. 1b and 1c) confirmed the amorphous structure as 

no crystals were observed. In addition, DXP-NPs presented a very high DXP encapsulation efficiency 

of 98%w/w corresponding to a prodrug loading of 78%w/w and a drug loading of active 

dexamethasone (DXM) of 48.9%w/w. Compared to previous literature, our approach thus led to a 

much-improved loading efficiency. For example, the DXP-loaded lipid emulsion currently marketed in 

Japan and in Germany under the trademark Limethason or Lipotalon for the treatment of chronic 

inflammatory pathologies incorporates only 4%w/w of DXP/lipids [27]. Moreover, the encapsulation 

of DXP within solid lipid nanoparticles (SLN) by Kim at al. [28] leads to a DXP loading of 4-25%w/w 

lipids, in line with the 2.2 and 6.6%w/w lipids incorporation rate obtained by Lu and al. [29] . The high 
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drug loading of DXP-NPs could facilitate the administration of efficient therapeutic doses with low 

excipients amounts. In the DXP-NPs, 53% of initial DSPE-PEG2000 was encapsulated in DXP-NPs, the 

remaining being present in the formulation as micelles along with DXP-NPs suspension. DXP-NPs 

stability was assessed over 21 days under storage at 4°C and presented an excellent profile with no 

modification of size, polydispersity, surface charge or internal structure as assessed by X-ray 

diffraction (Fig. 1b and 1d). The good stability most probably arises from the presence of 

encapsulated DSPE-PEG2000. PEG chains exposed at DXP-NPs surface confer stability by steric 

repulsions whereas stearic chains associated to palmitic chains of DXP by hydrophobic interactions 

prevented DXP crystallization. PEGylated DXP-NPs were obtained without any addition of surfactants 

or stabilizers that could reveal toxic after administration, such as chitosan, poloxamer or PVA [30]. 

This simple preparation process with low amounts of PEGylated lipids presents obvious advantages 

from a toxicological point of view over common solid lipid nanoparticle formulations and from a 

formulation point of view with an increased drug loading and DXP stability. PEGylated DXP-NPs were 

incubated and the release of free DXM was monitored by an HPLC method (Fig 1e). The release 

profile shows that about 60% of dexamethasone is released before reaching a plateau more likely 

due hydrolysis through esterases present in plasma. The reason for which DXM is partly unreleased is 

unclear but might result from partial degradation of dexamethasone. 
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Fig. 1: Characterization and stability of DXP-NPs. a. Main physico-chemical parameters of DXP-NPs. 
Nanoparticles exhibited a monodisperse population of 130nm with negative surface charge and high 
drug loading of 49%w/w (eq. DXM/particle) b. X-ray diffractogram of DXP crystals (green) presented 
several diffraction peaks characteristics of a crystalline structure. By contrast, no peaks were 
observed for DXP-NPs either the day of preparation (red) or after 3 weeks of storage at 4°C (blue). c. 
Cryo-TEM (left) and TEM (right) images confirmed size measurements and the amorphous structure 
of DXP-NPs. d. DXP-NPs size, zeta potential and polydispersity index (PdI) stability at 4°C were 
followed up to 21 days. Results are presented as mean ± SEM (n=5 samples at least, each sample was 
analyzed in triplicate). e. In vitro release in plasma of dexamethasone from DXP-NPs. 
 

3.2 In vitro anti-inflammatory effect 

To ensure that the anti-inflammatory activity of DXM was conserved after formulation, the release of 

the pro-inflammatory cytokines MCP-1 and TNFα by LPS-activated macrophages into the cell culture 

medium was quantified after their exposition to DXP-NPs at the concentration of 100µg/mL DXP or 

free DSP at 82µg/mL, corresponding to 100µg/mL of DXP. A decrease of cytokines concentration was 

clearly observed resulting from the anti-inflammatory effect of DXP-NPs (Fig. 2). The MCP-1 

chemokine (Fig. 2) was strongly and significantly reduced by DXP-NPs in presence of LPS. The same 

conclusions hold for the secretion of TNFα (Fig. 2). These results demonstrate the maintenance of a 

similar anti-inflammatory activity between free drug and the drug released from the DXP-NPs. 

 

 
Fig 2: Cytokine production by Raw 264.7 macrophages without LPS induction (C-) or with LPS 
induction 0.1µg/mL (C+), DXP nanoparticles at 100µg/mL (LPS+DXP100) or DSP solution at 82µg/mL 
corresponding to 100µg/mL of DXP (LPS+DSP82). MCP-1 and TNF-α. Results are presented as 
mean±SEM (n=3) for all groups. Statistical analysis was performed with two-way ANOVA followed by 
Tukey’s post test. * p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 indicates differences with positive 
control (C+). 
 

3.3 In vivo activity on rheumatoid arthritis and inflamed joint accumulation 

To assess DXP-NP efficacy on rheumatoid arthritis, a collagen-induced arthritis (CIA) model was 

developed on DBA/1 male mice [31]. The effect of DXP-NPs on paw arthritis inflammation score and 

volume of hind paw edemas was compared to free dexamethasone sodium phosphate (DSP) and PBS 
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as negative control (Fig. 3). A low dosage, 0.1mg/kg (eq.DXM), injected intravenously three times 

every two days was compared to a medium dosage at 1mg/kg (eq.DXM), with the same injection 

pattern. These doses were considered since the administration of 1mg/kg (eq.DXM) is widely used in 

the literature as a medium dose to treat animals in arthritis mouse models without induction of side 

effects  [32]. Before the first injection (day 31), mice were randomly divided into 5 groups with the 

same average total arthritis score of 7.5 per mouse. The first injection took place at day 32 after the 

induction of CIA, a time point corresponding to the peak of the disease (Fig. S3). The activity of DXP-

NPs 0.1mg/kg (eq.DXM) was evaluated by measuring the total arthritis score on all 4 paws for each 

mouse and showed no significant reduction of the inflammation compared to free drug or PBS after 

statistical analysis on the whole length of the experiment. Indeed, the arthritis score on day 37 of 

DSP 0.1mg/kg (eq.DXM) group was 6.1±1.4 whereas the equivalent dose of DXP-NPs exhibited an 

arthritis score of 7.7±1. However, a significant difference was observed on hind paw volumes 

between DXP-NPs at 0.1mg/kg (eq.DXM) (0.15±0.006ml), free drug at 0.1mg/kg (eq.DXM) 

(0.18±0.01ml) and PBS (0.2±0.01ml) on day 34 (Fig. 3c). The discrepancy between the two evaluation 

methods may arise from the fact that arthritis score measurement is based on several parameters 

such as paw edema, swelling, redness and the number of affected fingers (Fig. S3), whereas hind paw 

volume measurement is only based on the edema evaluation. Moreover, arthritis score is measured 

on all 4 paws whereas paw volumes is measured only on hind paws. Thereby a slight reduction of 

edema will immediately affect the paw volume but not the total arthritis score. Strikingly, a medium 

dose of 1mg/kg (eq.DXM) of DXP-NPs showed a strong activity on disease progression with a 

significant reduction of the arthritis score compared to free dexamethasone (DSP) at the same dose 

and to the control group (PBS). After three injections of DXP-NPs 1mg/kg (eq.DXM), the total arthritis 

score dropped down to 2.5±0.7, significantly differing from what we observed for the groups DSP 

1mg/kg (eq.DXM) (5.5±1.1) and PBS (9.1±0.8) at day 37. The analysis of hind paw volume on day 34 

and up to ay 37 (Fig. 3c and 3b) confirmed the strongest therapeutic efficacy of DXP-NPs 

(0.14±0.003ml) (eq.DXM) with significant reduction compared to the free drug DSP at 1mg/kg 

(0.15±0.006ml) and the PBS group (0.2±0.01ml). By analyzing hind paw volumes, we can also 

conclude that treatment with DXP-NPs 0.1mg/kg (eq.DXM) exhibited the same anti-inflammatory 

activity at day 34 (0.15±0.006ml) than DSP 1mg/kg (eq.DXM) (0.15±0.006ml). Therefore, a reduction 

of the administrated dexamethasone doses through replacement of free drug by DXP-NPs could be 

considered. Numerous studies reported the accumulation of nanoparticles in inflamed sites [20,33] 

associated with an increased number of vessels in synovium induced by the high VEGF serum 

concentration [34]. Angiogenesis is correlated to clinical arthritis score and new vessels present high 

endothelial permeability to allow diapedesis of activated macrophages and lymphocytes leading to 

synovial infiltration [6,35]. Thereby, long-circulating nanoparticles may passively diffuse through 
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endothelial pores and specifically accumulate in inflamed joints due to extravasation and further 

macrophage uptake  [36]. DXP-NPs with stealth properties due to the presence of PEG at their 

surface could circulate longer in blood vessels and produce a rapid, significant anti-inflammatory 

activity on inflamed joints, leading to a complete remission of rheumatoid and persistent arthritis 

observed after treatment with 1mg/kg (eq.DXM) DXP-NPs. Indeed, as shown by preliminary 

biodistribution studies, the stealth effect favors a lower uptake by the liver compared to the free 

drug (Fig. S7). The mechanism by which such nanoparticles exert their anti-inflammatory effect is not 

totally clear. Nanoparticles might be taken up intact by synovial lining macrophages (more likely M1) 

as described [37], however we cannot rule out the possibility that the nanoparticles are degraded at 

the extracellular level, releasing free DXM that enter freely into macrophages without any specificity.  

 

Fig. 3. Therapeutic activity of DXP-NPs on a collagen induced arthritis (CIA) mouse model. 31 days 
after CIA induction, mice were divided into 5 groups (n=8) presenting similar arthritis score (7.5 
average arthritis score). Each group received three intravenous injections of treatments or controls 
on days 32, 34 and 36. a. Arthritis score and b. hind paw volume. The negative control group received 
PBS (green diamonds), free drug groups received dexamethasone sodium phosphate (DSP) at 
0.1mg/kg (eq.DXM) (light blue triangles) or 1mg/kg (eq.DXM) (dark blue triangles), DXP-NPs were 
administered at 0.1mg/kg (eq.DXM) (pink squares) or 1mg/kg (eq.DXM) (red circles). After three IV 
injections, DXP-NPs 1mg/kg (eq.DXM) induced a significant reduction on arthritis score compared to 
DSP at the same dose and to PBS. Statistical analysis was performed with two-way ANOVA and 
Newman-Keuls post-test (*p<0.05, ***p<0.001). c. Hind paw volume measured on day 34. The 
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volume of DXP-NPs 0.1mg/kg (eq.DXM) group (pink) was significantly different from free drug 
0.1mg/kg (eq.DXM) (light blue) and from PBS group, proving the superior efficacy of DXP-NPs. At a 
higher dose of 1mg/kg (eq.DXM), DXP-NPs (red) group presented a significantly lower hind paw 
volume than DSP (dark blue) and PBS. Statistical analysis was performed with Mann-Withney test 
(*p<0.05, **p<0.01, ****p<0.0001). 
 

To confirm the hypothesis of accumulation of stealth DXP-NPs in inflamed joints, fluorescent 

nanoparticles were formulated to monitor the in vivo distribution of DXP-NPs after IV administration. 

DID (1,1’-dioctadecyl-3,3,3’,3’-tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate salt) (Fig. 

S2a), a lipophilic fluorescent label containing two aliphatic chains was introduced in the organic 

phase before emulsification (4%mol with respect to the DSPE-PEG2000). No significant differences in 

terms of size and PdI were observed between fluorescent NPs and non-fluorescent ones (Fig. S2b). 

CIA and healthy mice received a single intravenous injection of fluorescent DXP-NPs-DID4% at a dose 

of 1mg/kg (eq.DXM). Day 32 post-disease induction was selected for the treatment as it 

corresponded to the peak of the inflammation. Due to the heterogeneity of joint inflammation 

inherent to the CIA model not all paws of all injected mice were affected, and we took advantage of 

this to assess DXP-NP accumulation in inflamed vs. non-inflamed paws from the same animal. After 

injection of the fluorescent NPs, near infrared (NIR) images of mice were recorded non-invasively for 

up to 14 days, and the fluorescence signal on the 4 paws of each mouse was quantified. At 4h post 

NP injection, a slight increase of fluorescence signal was observed in the paws of healthy mice, which 

corresponded to the presence of nanoparticles in the vasculature. However, the signal, reached the 

baseline value (mouse auto-fluorescence) at 24h, without further modification until the end of the 

study (Fig. 4a and 4c). Among four CIA-treated mice, an intense fluorescent signal was measured in 

the paws of mice, which displayed a severe paw inflammation (arthritis score = 3). This signal peaked 

at 24 hours post-injection and then progressively decreased to baseline value by day 14 (Fig. 4a and 

4c). As expected, in absence of inflammation, (arthritis score = 0) the fluorescence signal in the in the 

paws of CIA mice overlapped that recorded after injection of NPs in healthy mice, thus clearly 

revealing that joint accumulation of DXP-NPs was dependent on edema and neovascularization. An 

intermediary level of fluorescence intensity was recorded in the paws displaying an arthritis score 

between 1 and 2 (pooled results for a better statistical analysis), thus demonstrating the impact of 

inflammation stage on neoangiogenesis and therefore on DXP-NPs accumulation. Of note, the same 

profile was observed both on ventral and dorsal images (Fig. 4b and Fig. S4). Fig. 4b presents the 

average radiant efficiency (fluorescent signal) at 24h after injection on dorsal images with a 

significant difference between strongly inflamed paws (arthritis score = 3) and slightly (arthritis 

scores = 1 and 2) or not inflamed paws (arthritis score = 0 and healthy). The same trend was obtained 

when ventral pictures were analyzed (Fig. S4).  
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As a control, a DID solution containing the same amount of probe than DXP-NPs-DID4% was also 

injected to CIA and healthy mice (Fig. S5). The fluorescence signal detected was slightly correlated to 

the inflammation score due to the high vessel density in inflamed joints. However, the fluorescence 

intensity was significantly higher (1.5 to 2 times higher) on inflamed paws after DXP-NPs-DID4% 

administration compared to free DID solution, supporting that joint accumulation is linked to DXP-

NPs diffusion and not to an inherent DID property. These results clearly confirm the accumulation 

and cellular uptake of nanoparticles in the inflamed joints 5 times higher than in non-affected joints. 

This accumulation and retention further explain the improved therapeutic efficacy of DXP-NPs 

compared to the free soluble DSP, which does not accumulate specifically in inflamed joints. 

Whether this accumulation is due to macrophage uptake in the synovial fluids very likely as 

suggested by several authors [37,38]. Another possibility would be that nanoparticles are taken up by 

monocytes that are then being used as carriers to the inflammation site. Particle are then cleared 

from the paws as demonstrated by a slow and progressive reduction of fluorescence that occurred 

after 24 hours. This decrease of fluorescence might be related to particle degradation at the site of 

action and further elimination of the probe. 

 

Fig. 4. Accumulation of DXP-NPs in inflamed joints, impact of arthritis severity. After IV injection of 
fluorescent nanoparticles, the evolution of the NIR signal (dorsal view) in healthy mice (n=4) and CIA 
mice (n=4) was monitored according to the arthritis score for each paw. a. Fluorescent signal in paws 
segregated on the basis of their arthritis score after IV injection with DXP-NP-DID4% for 14 days. 
Paws of healthy mice (yellow diamonds) and score 0 paws of CIA mice (purple triangles) displayed 
the same basal level of fluorescence, score 1 and 2 paws of CIA mice presented an increase in 
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fluorescence signal above the auto-fluorescence level up to 48h after injection followed by a slow 
decrease down to basal level after 14 days. Highly inflamed paws (score 3, blue dots) displayed a 
strong fluorescence signal with a maximal level 24h after injection. b. Fluorescent signal in paws 
segregated based on their arthritis score 24h after IV injection with DXP-NP-DID4%. Nanoparticles 
accumulation in highly inflamed paws (score 3, blue) was significantly higher than mildly inflamed 
paws (score 1 and 2, red) and regular paws (score 0, purple/ healthy, yellow). The strongest joint 
inflammation, the highest nanoparticles accumulation. Statistical analysis was performed with one-
way ANOVA and Tukey post-test (*p<0.05, **p<0.01, ****p<0.0001). c. In vivo representative images 
of one mouse per group before and after injection with DXP-NP-DID4% at 4 hours, 24 hours, 48 hours 
and 7 days. The score of each paw is indicated in white squares on the “before injection” image.  

3.4 Histological evaluation of formulation efficacy 

 

Fig. 5. Histopathological evaluation of the knee joint inflammation after DXP-NPs treatment. a. 
Haematoxylin-eosin-safran (HES) staining of one representative knee joint section for each group of 
treatment: PBS, DSP 0.1mg/kg (eq.DXM) and 1mg/kg (eq.DXM), DXP-NPs 0.1mg/kg (eq.DXM) and 
1mg/kg (eq.DXM). For each slide, the synovial infiltration (S), the cell proliferation inside the synovial 
membrane forming the pannus (P) and the bone and cartilage erosion (E) were visually scored from 0 
to 3 giving a maximal histological score of 9 per slide. b. The average histological score for each 
treatment group is shown. c. Relation between the histological score and the macroscopic visual 
inflammation score observed on day 37 for each group of treatment.  n=8 mice per treatment group, 
right and left knees for each mouse were evaluated. Statistical analysis was performed with one-way 
ANOVA and Tukey post-test (*p<0.05, **p<0.01, ****p<0.0001) 
 



 

 
 

17 

To confirm the therapeutic efficacy of DXP-NPs observed on a macroscopic scale (Fig. 2), histological 

structures of knees were evaluated. After treatment with three IV injections (days 32, 34, 36) of PBS, 

DSP 0.1mg/kg (eq.DXM) and 1mg/kg (eq.DXM) or DXP-NPs 0.1mg/kg (eq.DXM) and 1mg/kg (eq.DXM), 

mice were sacrificed on day 37 post collagen injection and knee joints were observed and 

inflammation was scored after HES staining. As expected, the control group injected with PBS 

presented a high level of inflammation with pannus formation associated with an important synovial 

infiltration, a synovial lining cell proliferation and strong bone erosion. DSP treatment at both doses 

did not demonstrate a significant impact on the knee histopathology compared to the PBS control 

group. Although not statistically significant, the administration of DXP-NPs at 0.1mg/kg (eq.DXM) 

tended to decrease the histological severity of the inflammation. In striking contrast, the medium 

dose of DXP-NPs 1mg/kg (eq.DXM) led to a significant reduction of inflammatory histological signs 

compared to the same dose of DSP and to PBS. A good correlation between the histological scores 

and the macroscopic arthritis scores determined on each paw before sacrifice was obtained 

confirming the soundness of our first analysis (Fig. 4c). In the DXP-NPs 1mg/kg (eq.DXM) treatment 

group, a very few number of knee joints presented mild synovial hyperplasia with cell proliferation 

and fibrosis. These histological results are in agreement with therapeutic efficacy and joint 

accumulation results described above. Therefore, the benefit of three IV injections of DXP-NPs 

1mg/kg (eq.DXM) was clearly demonstrated compared to the free DSP at the same dose.  

3.5 Effect of formulation on glucocorticoids side effects  

Chronic administration of high doses of GCs generally leads to appearance of strong side effects such 

as hepatic and renal impairment, diabetes or hematologic abnormalities [3,37–39], which therefore, 

limit their use in chronic auto-immune diseases such as RA. DXP-NPs proved their superior 

therapeutic efficacy in our CIA mouse model after three IV injections of a medium dose of 1mg/kg 

(eq. DXM) compared to DSP (Fig. 3a). Adverse event assessment was designed to compare DXP-NPs 

to DSP, currently considered as the standard IV treatment, at the same therapeutic dose of 1mg/kg 

(eq.DXM) and PBS as negative control, 24h after the last IV injection. Hepatic enzymes were 

quantified to evaluate liver function. Alanine aminotransferase (ALAT) plasmatic concentration (Fig. 

6a) did not present significant increase between groups. Asparagine aminotransferase (ASAT) (Fig. 

S6) showed a very slight increase for the DXP-NPs treatment group compared to PBS but no 

difference was observed with DSP. DSP and DXP-NPs exhibited a similar and moderate increase of 

creatinin plasmatic concentration and blood glucose concentration (Fig. 6b and 6c) compared to 

control (PBS) but no difference between both treatment groups was detected, indicating no damage 

of liver, pancreas, or kidneys after DXP-NPs administration. The fact that there is no difference 

between treatment in relation with markers in line with liver function (glucose, liver enzymes) might 
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results from liver biodistribution observations. Indeed, although DXP-NPs and DXM display different 

level of liver distribution (lower than 5% and higher than 15% of the injected dose, respectively) (Fig. 

S7), DXM resulting from the prodrug hydrolysis induces an equivalent liver distribution (around 12%) 

(Fig. S7) both just enough to induce hyperglycemia or slight liver enzymes increase. 

During the progression of the disease, the mice weight was monitored and no significant difference 

between groups in terms of weight loss were observed. All groups lost weight due to the strong 

impact of CIA inflammation, but DSP 1mg/kg (eq.DXM) treated group seems to undergo a greater 

weight loss with a maximum of -13% of their initial healthy weight. Hematological parameters (blood 

count and leukocytic formula) were evaluated on total blood samples after sacrifice on day 37. No 

modification of blood count was observed for DXP-NPs as well as for DSP compared to PBS group. 

Hemoglobin concentration (Fig. 6e) and mean corpuscular volume (MCV) (Fig. 6f) were not affected 

by any treatment either. Mice did not present anemia, red blood cell count was slightly increased 

compared to standard values, hematocrit, mean corpuscular haemoglobin (MCH) and mean 

corpuscular haemoglobin concentration (MCHC) were comprised within standard values (SI Fig. 6) 

showing no hematological adverse effects of DXP-NPs 1mg/kg (eq.DXM). White blood cell count (Fig. 

6g) was similar between the DXP-NPs and DSP groups although they both exhibited higher values 

compared to the PBS control group. This leukocytosis is linked to neutrophilia and basophilia (Fig. S6) 

that are exacerbated in the GC treated groups. This pattern of leukocytosis is described as the typical 

response 24h after GC exposure [37]. Lymphocyte count was also slightly increased in the DSP and 

DXP-NP groups compared to the PBS group, but values remained within the range of standard values 

(Fig. 5h). No modification of eosinophils, monocytes and platelets was observed (Fig. S6).  

These results confirmed that only mild adverse effects were observed after 3 IV injections of DXP-NPs 

1mg/kg (eq.DXM). Moreover, these adverse effects were not significantly different from those 

observed after 3 IV injections of DSP at the same dose. Furthermore, it is important to note that DSP 

1mg/kg (eq.DXM) do not induce such a drastic reduction of the inflammation as observed with DXP-

NPs 1mg/kg (eq.DXM). Therefore, a higher dose of DSP would be needed to reach the same 

therapeutic efficacy as DXP-NPs 1mg/kg (eq.DXM) with potentially more severe associated side 

effects. Altogether, these results showed that DXP-NPs are safe after IV administration on CIA mice 

at a therapeutic dose of 1mg/kg (eq.DXM).  

4 Conclusion 

In this study, the lipophilic prodrug of dexamethasone, DXP, was successfully stabilized by the sole 

addition of DSPE-PEG2000 to yield nanoparticles as perfect candidates for RA treatment. For the first 

time, these highly loaded, stable, and stealth DXP-NPs demonstrated their clinical relevance in the 

CIA mouse model. Owing to their small size of 130nm and dense PEG coating, DXP-NPs could benefit 
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from the typical high vascular permeability of inflamed joints and diffuse passively to accumulate and 

be retained in the diseased sites as demonstrated by in vivo NIR fluorescence imaging. This 

accumulation in inflamed joints led to improvement of the joint inflammation and eventually disease 

remission. After three IV injections of DXP-NPs 1mg/kg (eq.DXM), the arthritis symptoms such as 

joint edema, swelling and ankylosis were significantly reduced compared to free hydrosoluble 

dexamethasone and to PBS injections. Moreover, this macroscopic evaluation was correlated with a 

significant reduction of histological signs of inflammation. Biologic and hematologic parameters were 

quantified to evaluate the potentially induced side effects of DXP-NPS at the efficient therapeutic 

dose of 1mg/kg (eq.DXM) and no adverse effects were detected for DXP-NPs. Considering the actual 

therapeutic scheme of RA patients, the developed DXP-NPs could be considered as a promising 

treatment for acute inflammation stage to prevent cartilage and bone erosion, in monotherapy or in 

combination with current 1st line treatment such as methotrexate. 
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Fig. 6. DXP-NPs administration does not lead to adverse effects compared to DSP administration. 
Three groups of CIA mice (n=10) received PBS, or DSP 1mg/kg (eq.DXM) or DXP-NPs 1mg/kg 
(eq.DXM) on days 32, 34 and 36 after CIA induction. Mice were followed up to sacrifice on day 37, 
several biological parameters were analyzed. a. No difference between groups was detected for 
ALAT (alanine aminotransferase) plasmatic concentration. Plasmatic creatinin (b) and glucose (c) 
concentrations were similar for treatment groups (DSP and DXP-NPs) but presented a slight increase 
compared to PBS group. d. The weight of each animal was recorded from day 21 to day 37. No 
significant difference was observed although DXP-NPs treated mice lost less weight compared to PBS 
and DSP groups. e-h. Hematological parameters were analyzed on total blood, dotted lines on graphs 
represent standard values for healthy mice. No anemia was observed on any group of treatment or 
PBS with hemoglobin concentration values within the normal range (e) as well as for mean 
corpuscular volume (MCV) (f). CIA mice treated with PBS presented an increased white blood cell 
(WBC) count (g) compared to standard values. Leukocytosis was also observed for DSP and DXP-NPs 
group of treatments with a significant difference with PBS. h. The presence of lymphocytes slightly 
increased after DSP and DXP-NPs administration, but values were still consistent with standard ones. 
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Results are presented as mean ± SEM (n=10). Statistical analysis was performed with One-Way 
ANOVA followed by Tukey’s post-test (*p<0.05, **p<0.01, ***p<0.001). 
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