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Abstract
Introduction  Metabolite identification remains a major bottleneck in the understanding of metabolism. Many metabolomics 
studies end up with unknown compounds, leaving a landscape of metabolites and metabolic pathways to be unraveled. 
Therefore, identifying novel compounds within a metabolome is an entry point into the ‘dark side’ of metabolism.
Objectives  This work aimed at elucidating the structure of a novel metabolite that was first detected in the soil bacterium 
Acinetobacter baylyi ADP1 (ADP1).
Methods  We used high resolution multi-stage tandem mass spectrometry for characterizing the metabolite within the 
metabolome. We purified the molecule for 1D- and 2D-NMR (1H, 13C, 1H-1H-COSY, 1H-13C-HSQC, 1H-13C-HMBC and 
1H-15N-HMBC) analyses. Synthetic standards were chemically prepared from MS and NMR data interpretation.
Results  We determined the de novo structure of a previously unreported metabolite: 3-((3-aminopropyl)amino)-4-hydroxy-
benzoic acid. The proposed structure was validated by comparison to a synthetic standard. With a concentration in the mil-
limolar range, this compound appears as a major metabolite in ADP1, which we anticipate to participate to an unsuspected 
metabolic pathway. This novel metabolite was also detected in another γ-proteobacterium.
Conclusion  Structure elucidation of this abundant and novel metabolite in ADP1 urges to decipher its biosynthetic pathway 
and cellular function.

Keywords  Functional genomics · Bacterial metabolism · LC/MS-orbitrap · NMR · Structure elucidation

1  Introduction

Extensive and accurate knowledge of bacterial metabolism 
is critical for developing a comprehensive and detailed 
understanding of cellular physiology. This requires that, in 
fine, within a studied organism the function of all genes is 
established and the identity of all metabolites known. This 
goal is today probably out of reach given the complexity 
of the chemistry of life, and represents a long-term objec-
tive. On the one side 30–40% of genes of a typical genome 
remain unannotated or associated with a putative function 
(Chang et al. 2016; Galperin and Koonin 2004) and on 
the other side, many metabolites remain unidentified in 
most metabolomics studies (Bingol et al. 2016; Dias et al. 
2016; Domingo-Almenara et al. 2018; Dunn et al. 2013b; 
Viant et al. 2017). Nuclear magnetic resonance (NMR) 
is currently the most powerful spectroscopic method for 
elucidating the chemical structure of organic compounds 
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due to the development of high field magnets as well as 
capillary and cryogenic probes that significantly increased 
the sensitivity of NMR spectroscopy (Dias et al. 2016). 
However, this technique most preferably needs a pure sam-
ple in the upper µM range that requires laborious and time 
consuming work. Moreover, since annotating compounds 
to most likely structures using high-resolution mass spec-
trometry (HRMS) is a faster and feasible first step, elec-
trospray-mass spectrometry (ESI-MS) and tandem mass 
spectrometry combined with liquid chromatographic (LC) 
separation is the most used technique for characterizing 
unknown compounds present in metabolomes. Neverthe-
less, many metabolomic studies end up with a mere list 
of mass-to-charge ratio (m/z) values and chromatographic 
retention times. As a consequence, a landscape of metabo-
lites and metabolic pathways are yet to be discovered. In 
metabolomics, identification of metabolites remains one 
of the biggest bottlenecks (Dunn et al. 2013a; Kind and 
Fiehn 2010; Viant et al. 2017), but of importance, since 
identifying novel compounds within a metabolome is an 
entry point into the ‘dark side’ of bacterial metabolism. 
The use of HRMS instruments with mass accuracy in the 
low parts per million (ppm) range can provide the elemen-
tal composition of the detected ions. HRMS also provides 
a useful method for putative annotation querying databases 
(Kanehisa et al. 2012; Smith et al. 2005; Wishart et al. 
2013) for metabolites whose molecular masses are within 
a specified mass deviation range. However, the majority 
of the observed peaks continue to remain unidentified or 
associated with multiple putative identifications. Without 
authentic compounds used for comparison of retention 
time and product ion spectra, the identity of a metabolite 
cannot be established. Structural information can also be 
obtained by performing MS/MS experiments, where the 
ion is fragmented and the m/z of the resulting fragment 
ions recorded. However, fragmentation interpretation of an 
unknown metabolite for its structural elucidation remains 
hampered by our incomplete understanding of the complex 
gas phase ion chemistry. Alternatively, these spectra can 
be matched with existing spectral databases for identity 
assignment or similarity search (Zhu et al. 2013). These 
databases, which are increasing in number and size (Horai 
et al. 2010; https​://www.mzclo​ud.org; Kale et al. 2016; 
Sawada et al. 2012; Smith et al. 2005; Wishart et al. 2013) 
are very useful for identifying known compounds, but are 
far from being complete. Only a small proportion of all 
known metabolites are commercially available, leaving the 
majority of them not included in mass spectral libraries. It 
is estimated that less than 5% of all known metabolites are 
MS2 spectra available (Frainay et al. 2018; Tsugawa et al. 
2016). Another drawback of ESI-MS/MS experiments 
is that the tandem mass spectra generated exhibit high 
instrument-dependent variability which interferes with the 

constitution of universal databases as done with electron 
ionization mass spectrometry (Roux et al. 2011). Com-
pared to MS2 approaches, multistage MS (MSn) fragmen-
tation in which ions are specifically selected for sequential 
fragmentation, results in deeper and more detailed frag-
mentation pathways and provides more structural informa-
tion (Rojas-Cherto et al. 2012; van der Hooft et al. 2011). 
In this case, again, complete identification is possible only 
when a fragmentation tree of the same compound is pre-
sent in the database. Otherwise, putative candidate struc-
tures can be proposed using computer assisted structure 
elucidation (Peironcely et al. 2012; Wolf et al. 2010) but 
the identity of the unknown remains non-validated. Four 
levels of reporting metabolite annotation and identification 
are defined by the metabolomics standards initiative (Sum-
ner et al. 2007). “Identification” is the most rigorous level 
(level 1), where two orthogonal properties of the metabo-
lite are matched to the same properties of an authentic 
compound analyzed by the same method. Levels 2 and 3 
provide annotation as metabolites or metabolite classes, 
respectively, without comparison to authentic compounds. 
Level 4 considers the metabolite as unidentified. There-
fore, only information from rigorously ‘level 1’ identified 
metabolites can be used for investigating metabolic path-
ways and accessing other levels of biological hierarchy 
such as gene function annotation.

Acinetobacter baylyi ADP1 (ADP1) is a nutritionally 
versatile strictly aerobic bacterium (Young et al. 2005). Its 
extraordinary competence for natural transformation and the 
ease with which it can be genetically engineered (de Berar-
dinis 2009; Metzgar et al. 2004) make ADP1 a key organ-
ism for the study of bacterial metabolism. We recently used 
metabolomics to reinvestigate quinate metabolism in ADP1, 
which was thoroughly studied for many years (Young et al. 
2005). We reported that shifting the carbon source from 
succinate to quinate elicited a global metabolic reprogram-
ming and led to the production of almost 30 unidentified and 
unexpected compounds that we anticipate to participate to 
unsuspected metabolic pathways (Stuani et al. 2014). Here, 
we report the complete de novo structure elucidation of one 
these unknown metabolites. We conducted its extensive 
LC/HRMS/MSn characterization within the metabolome 
and purified the molecule for 1D- and 2D-NMR (1H, 13C, 
1H-1H-COSY, 1H-13C-HSQC, 1H-13C-HMBC and 1H-15N-
HMBC) analyses. The putative structure deduced from MS 
and NMR data interpretation was eventually confirmed 
by means of chemical synthesis to be 3-((3-aminopropyl)
amino)-4-hydroxybenzoic acid (APAH). This compound 
was discovered to be a major metabolite in ADP1 with intra-
cellular concentration in the millimolar range. Its presence 
in another γ-proteobacterium such as Pseudomonas putida 
suggests a wider taxonomic distribution and urges to inves-
tigate its metabolic role.
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2 � Materials and methods

2.1 � Chemicals and reagents

Chemicals, HPLC-grade solvents, ammonium acetate, 
ammonium carbonate, ammonium hydroxide and deuter-
ated water were from Sigma-Aldrich. 5-((3-aminopropyl)
amino)-2-hydroxybenzoic acid (SN0079), 4-((3-aminopro-
pyl)amino)-2-hydroxybenzoic acid (SN0080), 2-((3-amino-
propyl)amino)-5-hydroxybenzoic acid (SN0123), 4-((3-ami-
nopropyl)amino)-3-hydroxybenzoic acid (SN0124) and 
3-((3-aminopropyl)amino)-4-hydroxybenzoic acid (SN0140) 
were synthesized by Synthenova (http://www.synth​enova​
.com).

2.2 � Strains and medium

Acinetobacter baylyi ADP1 strain (DSM 24193) was pro-
vided by Dr. Nicholas Ornston (Yale University). ADP1, 
Pseudomonas putida KT2440 (ATCC 47054) and Ralsto-
nia eutropha H16 (DSMZ 428) were routinely grown on 
medium for Acinetobacter (MA) minimal medium [31 mM 
Na2HPO4, 25 mM KH2PO4, 18 mM NH4Cl, 41 µM nitrilo-
triacetic acid, 2 mM MgSO4, 0.45 mM CaCl2, 3 µM FeCl3, 
1 µM MnCl2, 1 µM ZnCl2, 0.3 µM (CrCl3, H3BO3, CoCl2, 
CuCl2, NiCl2, Na2MoO2, Na2SeO3)] supplemented with 
20 mM (or 5 mM for protocatechuate) of the desired carbon 
source.

2.3 � Metabolome preparation

2.3.1 � Analytical scale

Cells were grown in 5 ml at 30 °C. Metabolite extraction 
was adapted from the Metabolomics Service Protocols 
from the University of Glasgow (http://www.polyo​mics.
gla.ac.uk/asset​s/downl​oads/MSMet​abolo​micsP​repCe​lls-
Aug20​13.pdf). A saturated overnight culture was diluted in 
a fresh medium at an OD600 = 0.05. 5 ml were transferred in 
a well of a 24 deep-well plate (Whatman; reference 7701-
5110). The cells were further grown to an OD600 between 
0.6 and 0.8 in a shaking incubator (Climo Shaker ISF1-X 
Kühner). The plate was then centrifuged at 2700×g at 4 °C 
for 10 min and the supernatant removed. The cell pellet 
was resuspended in 200 µl of water/methanol/acetonitrile 
(1:3:1 ratio) and placed in a cold bath (− 80 °C) composed 
of dry ice and ethanol. After cell freezing, the mixture was 
let at 25 °C to complete unfreezing of the cells. This proce-
dure was repeated twice to completely break the cells. The 
metabolites were next rocked on a shaker for 1 h at 4 °C. The 
metabolites were centrifuged at 5000×g at 4 °C for 10 min. 

The supernatant was dried and stored at − 80 °C. Before 
LC/MS analysis, the metabolites were suspended with 20 µl 
water and 42 µl 80% acetonitrile and 20% 10 mM ammo-
nium carbonate (pH 9.9), centrifuged at 5000×g at 4 °C 
for 10 min. The supernatant was finally filtered on 0.22 µm 
(PTFE, Acroprep Advance, Pall).

2.3.2 � Preparative scale

For purification of metabolite of m/z 211 (M211), a satu-
rated overnight culture was diluted in a fresh medium at 
an OD600 = 0.05. 5 ml were distributed in each well of a 
24 deep-well plate. Four plates were prepared per day. The 
cells were further grown to an OD600 between 0.6 and 0.8 in 
a shaking incubator. The four plates were then centrifuged 
at 2700×g at 4 °C for 10 min and the supernatant removed. 
Cell pellets were resuspended in 200 µl of water/methanol/
acetonitrile (1:3:1 ratio). The plates were placed in a cold 
bath (− 80 °C) composed of dry ice and ethanol. After cell 
freezing, the plates were let at 25 °C to complete unfreezing 
of the cells. This procedure was repeated twice to completely 
break the cells. The plates were next rocked on a shaker for 
1 h at 4 °C. The extracted metabolites were pooled in a 50 ml 
Falcon tube and lyophilized and stored at − 80 °C. All this 
procedure was repeated three times, for a total of twelve 
24 deep-well plates processed (1.5 l of cell culture). The 
metabolome was resuspended in 7 ml 80% acetonitrile and 
20% 10 mM ammonium acetate (pH 6.8) before purification.

2.4 � Metabolome derivatization

1,3-Diaminopropane (DAP) was labelled with benzoyl chlo-
ride for improving LC/MS detection (Aflaki et al. 2014). 
Dried metabolomes from 5 ml cultures were resuspended 
in 250 µl water and basified with 0.5 µl 2M NaOH. 250 µl 
of 4% benzoyl chloride in acetonitrile were added. After 
15 min, the mixture was filtered on 0.22 µm (PTFE, Acro-
prep Advance, Pall) and injected for LC/MS analysis.

2.5 � Analytical chromatography

Analyses were conducted using a Dionex Ultimate 3000 
Rapid Separation LC (Thermo Fisher Scientific).

Chromatographic Method 1 used a ZIC®-pHILIC column 
(150 × 4.6 mm2; 5 µm; Merck) and was previously reported 
(Stuani et al. 2014).

Chromatographic Method 2 was used for hydrogen/deu-
terium exchange (HDX) experiments, with deuterated (D2O) 
mobile phase. Elution was carried out on a ZIC®-pHILIC 
column (100 × 2.1 mm2; 5 µm; Merck) to minimize the use 
of heavy water. Column temperature was set to 15 °C using 
a mobile phase gradient with a flow rate of 0.2 ml/min. 
Mobile phase A consisted of 10 mM ammonium carbonate 
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in deuterated water and mobile phase B of acetonitrile. The 
gradient started at 80% B for 1 min, followed by a linear gra-
dient to 40% B at 8 min and remained 4 min at 40% B. The 
system returned to the initial solvent composition in 3 min 
and re-equilibrated under these conditions for 15 min. 2.5 µl 
were injected. All experiments done on labelled samples 
with these new settings were replicated on light samples 
with the same chromatographic column for comparison.

Chromatographic Method 3 used a Syncronis HILIC col-
umn (50 × 2.1 mm2; 1.7 µm; Thermo Fischer Scientific) and 
was conducted at 30 °C with a mobile phase gradient at a 
flow rate of 0.3 ml/min. A consisted of 10 mM ammonium 
acetate (pH 6.8) and B of acetonitrile. The gradient started 
at 80% B for 0.3 min, followed by a linear gradient to 40% 
B at 1.8 min and remained 1.5 min at 40% B. The system 
returned to the initial solvent composition in 0.5 min and re-
equilibrated under these conditions for 3.70 min. 2 µl were 
injected.

Chromatographic Method 4 used a ZIC®-pHILIC column 
(150 × 2.1 mm2; 5 µm; Merck) with a mobile phase gradient 
at a flow rate of 0.2 ml/min at 40 °C. A consisted of 10 mM 
ammonium carbonate with pH adjusted to 9.9 with NH4OH 
and B of acetonitrile. The gradient started at 80% B for 
2 min, followed by a linear gradient to 40% B at 20 min and 
remained 3 min at 40% B. The system returned to the initial 
solvent composition in 2 min and re-equilibrated under these 
conditions for 12.2 min. 5 µl were injected.

Chromatographic Method 5 used a ZIC®-pHILIC 
(50 × 2.1 mm2; 5 µm; Merck) with a mobile phase gradi-
ent at a flow rate of 0.2 ml/min at 40 °C. A consisted of 
10 mM ammonium carbonate with pH adjusted to 9.9 with 
NH4OH and B of acetonitrile. The gradient started at 80% B 
for 0.5 min, followed by a linear gradient to 40% B at 6 min 
and remained 1.5 min at 40% B. The system returned to the 
initial solvent composition in 1.5 min and re-equilibrated 
under these conditions for 4.3 min. 2 µl were injected.

Chromatographic Method 6 used an Acquity UPLC BEH 
C18 column (100 × 2.1 mm2; 1.7 µm; Waters) and was con-
ducted at 35 °C with a mobile phase gradient at a flow rate 
of 0.3 ml/min. Mobile phase A consisted of H2O and mobile 
phase B consisted of methanol. The gradient started at 10% 
B for 1 min, followed by a linear gradient to 70% B at 19 min 
and remained 5 min at 70% B. The system returned to the 
initial solvent composition in 5 min and re-equilibrated 
under these conditions for 10 min. 5 µl were injected. For all 
chromatographic analysis, the autosampler was kept at 4 °C.

2.6 � Metabolite purification

Metabolite purification was performed on a semi-preparative 
HPLC system Prominence LC-20AP (Shimadzu, Kyoto, 
Japan) fitted with a fraction collector FRC-10A (Shimadzu, 
Kyoto, Japan). The extracted metabolome was first dissolved 

and sonicated for 10 min at 4 °C in 6 ml 80% acetonitrile and 
20% 10 mM ammonium acetate (pH 6.8). The sample was 
centrifuged at 4000×g for 10 min at 4 °C and the superna-
tant filtered on 0.22 µm (Millipore Millex-GV 13 mm). The 
filter was further washed with 1 ml of the same solution. The 
first purification step was conducted using a ZIC®-HILIC 
column (250 × 10 mm2; 5 µm; Merck). A mobile phase 
gradient was used with a flow rate of 4.6 ml/min. Mobile 
phase A consisted of 10 mM ammonium acetate (pH 6.8) 
and mobile phase B consisted of acetonitrile. The gradient 
started at 80% B for 2 min, followed by a linear gradient to 
40% B at 22 min and remained 10 min at 40% B. The system 
returned to the initial solvent composition in 20 min and 
re-equilibrated under these conditions for 20 min. 200 µl 
were injected (33 injections of 200 µl were performed). The 
compound was monitored at 223 nm and collected in 2.3 ml 
fractions. Due to the weak UV signal of M211, the eluted 
fractions were analyzed for the presence of m M211 by LC/
MS using Chromatographic Method 3. The fractions of 
interest were pooled and dried, yielding 1.1 mg of a yellow/
pale brown solid residue. The partially purified compound 
was dissolved in 2 ml 72% acetonitrile and 28% 10 mM 
ammonium acetate (pH 6.8) and centrifuged at 4000×g for 
10 min at 4 °C and the supernatant filtered on 0.22 µm (Mill-
ipore Millex-GV 13 mm). The filter was further washed with 
1 ml of the same solution. The second purification step was 
conducted using the same ZIC®-HILIC column (250 × 10 
mm2; 5 µm; Merck) with an isocratic separation (mobile 
phase: 72% acetonitrile and 28% 10 mM ammonium acetate, 
pH 6.8) at a flow rate of 4.6 ml/min. 200 µl were injected 
(13 injections of 200 µl were performed). The eluted 2.3 ml 
fractions were analyzed for the presence of M211 by LC/
MS using Chromatographic Method 3. 100 µg of pure M211 
were obtained as a pale yellow solid matter.

2.7 � HRMS analyses

High-resolution measurements were obtained with a Velos 
Pro Orbitrap Elite mass spectrometer (Thermo Fisher Sci-
entific) fitted with a heated electrospray ionization source 
(HESI) operating in positive and negative ionization modes. 
In the positive ion mode, the ion spray (IS) was set to 
+ 3.5 kV and the capillary temperature at 275 °C. Sheath 
gas and auxiliary gas flow rates were set at 60% arbitrary 
units (a.u.) and 44 a.u., respectively. The S-lens RF level 
was set to 55%. In the negative ion mode, the IS was set to 
− 4.0 kV and the S-lens RF level to 60. Mass spectra were 
acquired over an m/z range from m/z 50 up to m/z 1000 with 
the mass resolution set to 60,000 FWHM at m/z 400. LC/MS 
data were acquired in raw files and processed with the Qual-
browser module of Xcalibur 2.2 (Thermo Fisher Scientific) 
to access to elemental compositions. Fragmentation experi-
ments were performed under collision induced dissociation 

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340



UNCORRECTED PROOF

Journal : Large 11306 Article No : 1508 Pages : 13 MS Code : MEBO-D-18-00279 Dispatch : 11-3-2019

De novo structure determination of 3-((3-aminopropyl)amino)-4-hydroxybenzoic acid, a novel…

1 3

Page 5 of 13  _####_

(CID) and higher energy dissociation (HCD) conditions. For 
CID and HCD, normalized collision energies (NCE) of 22% 
and 28% in positive mode and 33% and 75% in negative 
mode, respectively were applied.

2.8 � NMR analyses

Samples were dissolved in D2O:H2O (10:90). NMR experi-
ments were performed on a Bruker Advance 600-MHz NMR 
spectrometer equipped with a 1.7 mm cryogenic probe.

The 1H NMR water signal from the polar fraction was 
suppressed by means of excitation sculpting (Bruker 
ZGESGP pulse program). Additional 13C NMR spectra were 
acquired for each sample. 1H-1H COSY, 1H-13C HSQC, 1H-
13C HMBC and 1H-15N HMBC experiments was only car-
ried out for the purified metabolite sample.

Chemical shifts (expressed in ppm) of 1H NMR spectra 
were referenced to the solvent peaks δ H 4.79 for D2O.

3-((3-Aminopropyl)amino)-4-hydroxybenzoic acid 
(M211; APAH):

1H NMR (H2O/D2O (90:10), 600 MHz): 7.22 (1H, d, 
J = 2.0 Hz, H2), 7.20 (1H, dd, J = 8.5 and 2.0 Hz, H6), 
6.77 (1H, d, J = 8.5 Hz, H5), 3.20 (2H, t, J = 7.4 Hz, H1′), 
3.03 (2H, t, J = 7.4 Hz, H3′), 1.92 (2H, quint, J = 7.4 Hz, 
H2′); 13C NMR (H2O/D2O (90:10), 150 MHz): 176.0 
(C1

″), 148.5 (C4), 136.2 (C3), 128.6 (C1), 121.7 (C6), 
114.5 (C5), 114.5 (C2), 41.6 (C1′), 38.4 (C3′), 26.8 (C2′).
5-((3-Aminopropyl)amino)-2-hydroxybenzoic acid 
(SN0079):
1H NMR (D2O, 600 MHz): 7.25 (1H, d, J = 2.9 Hz), 6.96 
(1H, dd, J = 8.7 and 2.9 Hz), 6.84 (1H, d, J = 8.7 Hz), 
3.16 (2H, t, J = 7.1 Hz), 3.09 (2H, t, J = 7.6 Hz), 1.94 (2H, 
quint, J = 7.4 Hz); 13C NMR (D2O, 150 MHz): 176.0, 
153.8, 140.5, 123.0, 118.9, 117.6, 116.7, 43.0, 38.3, 26.9.
4-((3-Aminopropyl)amino)-2-hydroxybenzoic acid 
(SN0080):
1H NMR (D2O, 600 MHz): 7.51 (1H, d, J = 8.6 Hz), 6.2 
(1H, dd, J = 8.6 and 2.1 Hz), 6.07 (1H, d, J = 2.1 Hz), 
3.13 (2H, t, J = 6.7 Hz), 2.96 (2H, t, J = 7.7 Hz), 1.85 (2H, 
quint, J = 7.3 Hz); 13C NMR (D2O, 150 MHz): 176.0, 
161.6, 153.3, 131.9, 107.6, 105.7, 98.3, 40.0, 37.5, 26.5.
2-((3-Aminopropyl)amino)-5-hydroxybenzoic acid 
(SN0123):
1H NMR (D2O, 600 MHz): 7.29 (1H, d, J = 3.0 Hz), 6.96 
(1H, dd, J = 8.8 and 3.0 Hz), 6.86 (1H, d, J = 8.8 Hz), 
3.25 (2H, t, J = 6.8 Hz), 3.10 (2H, t, J = 7.6 Hz), 1.97 
(2H, quint, J = 7.2 Hz).13C NMR (D2O, 150 MHz): 175.3, 
147.1, 142.3, 123.0, 119.7, 117.2, 116.0, 41.7, 37.6, 26.3.
4-((3-Aminopropyl)amino)-3-hydroxybenzoic acid 
(SN0124):
1H NMR (D2O, 600 MHz): 7.44 (1H, dd, J = 8.2 and 
1.5 Hz), 7.34 (1H, d, J = 1.6 Hz), 6.79 (1H, d, J = 8.2 Hz), 

3.33 (2H, t, J = 6.8 Hz), 3.12 (2H, t, J = 7.5 Hz), 2.00 
(2H, quint, J = 7.2 Hz).13C NMR (D2O, 150 MHz): 175.5, 
143.0, 139.8, 125.3, 122.9, 115.1, 110.7, 40.2, 37.6, 26.2.

2.9 � APAH quantification

A calibration line for APAH (3-((3-aminopropyl)amino)-
4-hydroxybenzoic acid) was required to calculate its in vivo 
concentration. The calibration line was obtained using cali-
bration solutions containing 0, 1, 2, 5, 10 and 19 µM of syn-
thetic APAH spiked in metabolomes from succinate-grown 
cells (devoid of APAH), to take into account the matrix 
effect. These spiked metabolomes were analyzed on our 
Velos Pro Orbitrap Elite in the positive mode using Chro-
matographic Method 4. The peak areas from extracted ion 
chromatograms of APAH were integrated and the values 
used to build the calibration line. Next, to estimate APAH 
concentration in the cell, metabolomes from 13 independent 
5 ml cultures of quinate-grown cells (OD600 = 0.47 ± 0.02) 
were used. Cell cultures (succinate and quinate) and metabo-
lome preparation were conducted as described above. The 
lyophilized metabolomes were resuspended with 20 µl water 
and 42 µl 80% acetonitrile and 20% 10 mM ammonium car-
bonate (pH 9.9). Samples were filtered on 0.22 µm prior to 
injection.

3 � Results and discussion

3.1 � LC/HRMS/MSn analysis of an unknown 
metabolite of m/z 211

Among the compounds exclusively formed in quinate-
grown cells, we considered here an ion that, analyzed with 
LC–HRMS, has a long retention time (14.3 min) on the 
hydrophilic zwitterionic ZIC®-pHILIC column (Chroma-
tographic Method 1, see “Material and methods” section) 
and led to intense ionization signal in the positive mode at 
m/z 211.1074 (Fig. 1a, b). The compound was also detected 
in the negative mode at m/z 209.0934. These two m/z values 
were anticipated to be the protonated [M+H]+ and depro-
tonated form [M−H]− of the same molecule, respectively. 
The monoisotopic mass of the protonated form of this 
unknown metabolite, which we called M211 (metabolite of 
m/z 211), was consistent with an elemental composition of 
C10H15O3N2

+ (− 1.6 ppm off the theoretical mass) and with 
its first natural isotope abundance (M+1 = 11.1%; Fig. 1b). 
Elemental composition was validated by applying the Seven 
Golden Rules (Kind and Fiehn 2007). The long retention 
time of M211, associated with detection in both ionization 
modes suggest a very polar structure carrying acidic and 
basic functional groups. Photodiode array (PDA) detection 
indicated UV absorption (Fig. 1c) with maxima at 224, 259, 
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and 302 nm (Fig. 1d) that are evocative of an aromatic moi-
ety (Singh et al. 2007).

Accurate mass and elemental composition of M211 
matched to only two compounds present in Metlin and 
KEGG databases: aprobarbital and 2,6-dihydropseudoni-
cotine. These molecules harbor 2 and 3 mobile protons, 
respectively (Fig. S1). To check whether these molecules 
could correspond to M211, we determined its mobile pro-
ton number. This was established in positive and negative 
ionization modes using in-solution hydrogen/deuterium 
exchange (HDX) approach (Chromatographic Method 2). 
Six mobile protons were observed in the positive mode 
and four in the negative mode; i.e. five mobile protons 
for the neutral form of the molecule (Fig. 1e–h). This 

result invalidated the structures proposed by the databases 
and confirmed that M211 was a previously unreported 
metabolite.

Mass spectra recorded in the positive mode displayed 
M211 and a series of other ions with the same extracted 
ion chromatogram (EIC) shape: a major ion at m/z 180 and 
minor ones at m/z 166, 176, 193, 194 and 209 (Fig. 1i). This 
latter probably originated from in-source oxidation of M211. 
The similar chromatographic shape of these ions suggests 
they could be generated by in-source dissociation of the pre-
cursor ion at m/z 211 (Fig. S2a).

In the negative mode M211 was detected at m/z 209. 
Two others weakly abundant ions at m/z 165 and m/z 
107 observed in the mass spectrum displayed similar 
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line) and 214.1246 (blue line) at 5  ppm accuracy. g Zoom on the 
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chromatographic shapes, and originated from in-source 
dissociation of m/z 209.

Fragmentation spectra were recorded under collision 
induced dissociation (CID) and higher energy dissociation 
(HCD) conditions. Under HCD, small size fragment ions 
become significantly more abundant. In the positive mode 
(Fig. 1j), fragmentation spectra display two main product 
ions: a major one at m/z 193 (water loss) and a slightly less 
abundant one at m/z 194 (NH3 loss). Less abundant m/z 
176 and m/z 166 product ions are related to the consecutive 
losses of [NH3 + H2O] and the release of [C2H7N], respec-
tively. The neutral [C2H7N] moiety formally corresponds 
to saturated alkyl amine. The m/z 166 product ion was also 
formed during consecutive fragmentation of the m/z 194 
precursor (sequential MS3 experiments), as illustrated in 
Fig. S2b. This ion is related to the loss of C2H4 from m/z 
194 ion produced by the loss of ammonium from m/z 211 
precursor ion. Therefore, [C2H7N] probably corresponds 
to ethylamine rather than dimethylamine. HCD fragmenta-
tion also yielded very weak signals at m/z 150 and m/z 122, 
which likely originated from consecutive fragmentation 
of m/z 194 by the loss of CO2 and [CO2 + C2H4], respec-
tively. These ions were also observed in the sequential 
MS3 experiments of the selected m/z 194 (Fig. S2b). All 
these fragment ions were present in the mass spectrum, 
too. Ion m/z 180 was not detected in the fragmentation 
spectrum of M211, using either CID or HCD. However, 
it was very abundant in the fragmentation spectrum of its 
oxidized form at m/z 209 (Fig. 1k), indicating that m/z 180 
observed in the mass spectrum of M211 originated mainly 
from in-source dissociation of m/z 209. In addition, the 
number of mobile protons observed on the one side for 
M211 (5 for the neutral species) and on the other side for 
m/z 209 (3 for the neutral form) and m/z 180 (mostly 2 and 
in a much lesser extent 3 for the neutral form) are in agree-
ment with the loss of CH2NH (1 mobile proton) from m/z 
209 rather than the release of CH3NH2 (2 mobile protons) 
from M211 (Fig. S2c–f).

In the negative mode, HCD spectra of the selected ion 
m/z 209 yielded a main product ion at m/z165 (CO2 loss) 
along with two less abundant radical ions at m/z 107 and m/z 
151 (Fig. 1l). These latter were formed after the loss of the 
radical ion C3H8N⋅, either from m/z 165 (consecutive loss, 
which is also observed in MS3 experiments on the selected 
precursor m/z 165 ion) or from m/z 209, respectively.

The following assumptions can be made from the frag-
mentation spectra: in the negative mode, a major loss of 
CO2 is characteristic of the presence of a carboxylic group. 
In addition, the formation of an odd electron product ion 
such as m/z 107 [C6H5ON]−⋅ with a degree of unsatura-
tion of 5 (5.5 for the parent ion m/z 209) together with UV 
data (Fig. 1a, b) suggests the presence of an aromatic core. 
According to its elemental composition, this relatively stable 

radical anion should represent a phenol derivative (Afonso 
et al. 2010).

Generally, an abundant loss of NH3 in the positive mode 
is due to the presence of a primary aliphatic amino group. 
Here, a single ammonium loss suggests the presence of a 
single primary aliphatic amine in the unknown structure 
(Levsen et al. 2007). Therefore, taking into account the total 
number of mobile protons (five for the neutral species), a 
structure that involves N-containing heterocycle should be 
excluded. A loss of H2O in the positive mode can be related 
to the presence of either a carboxylic group or an aliphatic 
OH group (Levsen et al. 2007). Considering on the one hand 
a single water loss, the presence of one carboxylic group 
(two O-atoms), and on the other hand a total number of three 
oxygen atoms and the previously discussed existence of an 
aromatic (phenol) core, we anticipate a phenolic group rather 
than an aliphatic hydroxyl group. Thus, taking into account 
five mobile protons for the uncharged molecule, one for the 
carboxylic group, two for the primary amino group and one 
for the phenolic hydroxyl group, the molecule should involve 
a secondary amino group with one more mobile proton.

In conclusion, LC–HRMS/MSn data suggest that the 
unknown metabolite contains an aromatic moiety, possi-
bly a phenol ring, a carboxylic group along with primary 
and secondary amines, but de novo interpretation of mass 
spectrometry data did not allow to completely elucidate its 
chemical structure.

3.2 � NMR analysis of purified M211

NMR was considered to achieve the complete struc-
tural elucidation of M211. The metabolite was purified 
from 1.5 l of bacterial culture in MA medium containing 
20 mM quinate as the carbon source. Purification was 
carried out using HILIC-phase chromatography and led 
to 100 µg of a pale yellow solid (see “Material and meth-
ods” section). Extensive 1D- and 2D-NMR analyses (1H, 
13C, 1H-1H-COSY, 1H-13C-HSQC, 1H-13C-HMBC and 
1H-15N-HMBC) were performed (see Table 1 and Data-
set_S1). The 1H-NMR spectrum clearly confirmed the 
presence of an aromatic ring bearing three protons. Their 
multiplicity (Table 1; Fig. 2a) indicated a 1,2,4-trisubsti-
tution pattern (Fig. 2b). The set of three aliphatic signals, 
integrating each for two protons, suggested a propylene 
moiety further confirmed by several cross-correlations 
peaks visible in COSY spectrum (Fig. 2c, d). Combining 
1H and 13C chemical shifts of aliphatic signals allowed 
us to conclude to a 1,3-diaminopropyl substructure, in 
agreement with HRMS/MSn conclusions that predicted 
the presence of primary and secondary amines (Fig. 2d). 
Cross correlation peak between proton H1′ and carbon 
C3 in HMBC spectrum (Fig. 2e) unambiguously demon-
strated that the secondary amine is responsible for the 
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linkage of the aliphatic moiety to the aromatic ring. Char-
acteristic chemical shift values of 147 and 176 ppm for 
carbon C4 and C1″ confirmed the presence of phenolic 
and carboxylic moieties (see Table 1 and Dataset S1). 
HMBC experiments indicated that the carboxylic function 
is indeed branched onto the aromatic system (Fig. 2f). 
Expected labile protons for amine, phenol and carboxylic 
acid groups could not be observed in 1H NMR neither in 
organic solvents (dimethylformamide-d6, acetonitrile-d3) 
nor in aqueous solutions (90/10 H2O/D2O and 90/10 H2O/
D2O + 1% trifluoroacetic acid). Another difficulty arose 
from the superposition of two signals in 13C NMR spec-
trum at 114.5 ppm (Fig. 2g). Finally, we investigated the 
relative position of aromatic substituents using 1H-13C-
HMBC and 1H-15N-HMBC experiments. Unfortunately, 
observed long-ranged 1H-13C and 1H-15N correlations 
(Fig. 2f, h) did not allow us to draw any firm conclusion. 
Indeed, 2J(1H–13C), 3J(1H–13C) and 4J(1H–13C) on the one 
side and 2J(1H–15N), 3J(1H–15N) and 4J(1H–15N) on the 
other side are known to lead to coupling values of simi-
lar frequency in aromatic systems (Martin and Williams 
2008; Martin and Hadden 2000). At that stage, the com-
plete structure elucidation of M211 was still not achieved 
as six regioisomers remained plausible (Fig. 3).

3.3 � Structure determination of M211 
by comparison to the synthetic standards

To help raising the ambiguity, five out of the six possible 
compounds were synthesized: 5-((3-aminopropyl)amino)-
2-hydroxybenzoic acid (SN0079), 4-((3-aminopropyl)
amino)-2-hydroxybenzoic acid (SN0080), 2-((3-aminopro-
pyl)amino)-5-hydroxybenzoic acid (SN0123), 4-((3-ami-
nopropyl)amino)-3-hydroxybenzoic acid (SN0124) 
and 3-((3-aminopropyl)amino)-4-hydroxybenzoic acid 
(SN0140). 1H and 13C NMR analyses were then recorded 
in the same manner as for the purified metabolite (Data-
set_S1). Data clearly showed a very high similarity between 
M211 and SN0140 in detriment of all other structures. The 
observed slight 1H chemical shift difference between M211 
and SN0140 probably originated from the elevated num-
ber of protonable functions highly sensitive to pH and/
or to concentration due to inter-/intra-Hydrogen bonding 
(Fig. S3). To confirm the structural assignment, the stand-
ards along with a metabolome from ADP1 quinate-grown 
cells were further analyzed by LC/MS (Chromatographic 
Method 1). According to comparison of its retention time 
and MS2 spectrum with the reference compounds, M211 was 
eventually unambiguously identified as 3-((3-aminopropyl)

Table 1   1H- and 13C-NMR spectral data of m/z 211 [600/150 MHz, H2O/D2O 90:10, δ (ppm), J (Hz)]

Proton Chemical 
shifts dH

integration multiplicity Coupling con-
stants (Hz)

COSY signals 1H-13C 
(HSQC, 1J)

1H-13C 
(HMBC, 3J,4J)

1H-15N 
(HMBC, 
3J,4J)

1 – – – – 128.6 – –
2 7.22 1 d 1.95 H6 114.5 C6 Nα

C4
C1″

3 – – – – 136.2 – –
4 – – – – 148.5 – –
5 6.77 1 d 8.50 H6 114.5 C1 Nα

C3
C4

6 7.20 1 dd 8.50 H5 121.7 C2 or C5 –
1.95 H2 C4

C1″
1′ 3.20 2 t 7.40 H2′ 41.6 C3′ –

C2′
C3

2′ 1.92 3 q 7.40 H1′ 26.8 C1′ Nα

7.40 H3′ C3′ Nβ

3′ 3.03 2 t 7.40 H2′ 38.4 C1′ –
C2′

1″ – – – – – 176 – –
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Fig. 2   NMR analysis of purified M211. a Aromatic region of 1H-
NMR spectrum. b Proposed relative positions of aromatic protons 
based on 1H-NMR analysis. c Aliphatic region of 1H–1H COSY 
spectrum. d Proposed 1,3-diaminopropyl side chain based on 1H, 13C 
and 1H–1H COSY NMR analyses. e Extract of 1H–13C HMBC NMR 

spectrum showing C3–H1′ correlation. f 1H–13C HMBC correlations 
placed on the proposed M211 structure. g Extract of 1H–13C HSQC 
NMR spectrum showing the superposition of two carbons on 13C-
NMR spectrum. h Extract of 1H–15N HMBC NMR spectrum show-
ing all cross correlations between 1H and 15N (natural abundance)
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amino)-4-hydroxybenzoic acid (APAH), as illustrated in Fig. 
S4.

3.4 � Quantification of APAH in ADP1

In vivo quantification of APAH was conducted by 
LC–HRMS analysis using synthetic APAH. The calibration 
line (Chromatographic Method 4) was obtained by spiking 
metabolomes of succinate-grown cells (that are devoid of 
APAH) with known amounts of synthetic APAH, to over-
come matrix effects. APAH was quantified according to its 
EIC area in metabolomes from independent quinate-grown 
cultures (Fig. S5). Assuming the same internal volume 2.3 
10−9 µl for ADP1 as for E. coli (Bazile et al. 1992), we 
estimated the cellular concentration of APAH to 7 ± 4 mM. 
APAH is thus present in ADP1 at a high abundance, which 
could affect osmolality. To draw a comparison, in E. coli 
the concentration of 70% of quantified metabolites is below 
the millimolar range (Bennett et al. 2009). Its abundance 
should be related to its role in the cell, as low metabolite 
concentrations are favorable for avoiding osmotic stress and 
disadvantageous spontaneous reactions (Bennett et al. 2009). 
Data in Fig. S5 indicated a wide variation of APAH in the 
metabolomes (between 2 and 19 mM). This unexplained 
variability cannot be attributed to incorrect handling of the 
cells during metabolomics sampling. Here, before metabo-
lite extraction, culture centrifugation may have yield a cel-
lular stress that caused the observed variation in APAH 
concentrations. However, in our previous study in which 
rapid cell quenching was combined with cell inactivation 
to ‘freeze’ the microbial metabolism, peak areas of APAH 

varied in a similar manner sevenfold (Stuani et al. 2014, 
Online Resource 2, Table S-6).

3.5 � Hypotheses for APAH biosynthesis

APAH is formed in quinate-grown cells but not in succinate 
grown-cells (Stuani et al. 2014, Online Resource 2, Table 
S-6). Quinate is metabolized through the β-ketoadipate 
pathway (Young et al. 2005). Most aromatic compounds 
are mainly degraded by this pathway through the formation 
of catechol (catechol branch) or protocatechuate (protocat-
echuate branch). From catechol and protocatechuate, a paral-
lel but separate branch converts them into succinyl-CoA and 
acetyl-CoA which can enter central metabolism through the 
TCA cycle (Fig. S6). Quinate is metabolized via the proto-
catechuate branch.

From a structural point of view, APAH is evocative 
of two metabolites: protocatechuate on the one side and 
1,3-diaminopropane (DAP) on the other side. DAP is pre-
sented as the major polyamine in the genus Acinetobacter, 
with concentrations up to 2.5 µmol/g wet cell (Hamana and 
Matsuzaki 1992). We hypothesized that APAH may result 
from an enzymatic condensation of these two metabolites. 
Both protocatechuate and DAP are indeed present in ADP1 
quinate-grown cells (Fig. 4). To gain insight in APAH bio-
synthesis, we explored the feasibility of a spontaneous reac-
tion between protocatechuate and DAP. We mixed a 20 mM 
aqueous solution of protocatechuate with a 500 mM aque-
ous solution of DAP hydrochloride at a molar ratio of 1:2 
(pH 7). After 30 min, we diluted twofold the solution in 
80% acetonitrile and 20% 10 mM ammonium carbonate (pH 
9.9) before LC/MS analysis (Chromatographic Method 1). 

Fig. 3   Possible structures for 
M211. Synthesized compounds 
are indicated by their name of 
manufacturing

5-((3-aminopropyl)amino)-2-hydroxybenzoic acid

3-((3-aminopropyl)amino)-4-hydroxybenzoic acid 2-((3-aminopropyl)amino)-4-hydroxybenzoic acid
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Two peaks of similar intensities were observed at m/z 211 
(positive mode) consistent with the formation of two iso-
mers. According to their retention times and fragmentation 
patterns, they corresponded to APAH and 4-((3-aminopro-
pyl)amino)-3-hydroxybenzoic acid (SN0124), indicating 
that DAP can react with both hydroxyl groups of protocat-
echuate (Fig. S7). The reaction yield for APAH was very 
low (0.06%) and its concentration was estimated to be only 
0.3 µM. These data thus indicate that the reaction, thermo-
dynamically feasible, could be enzyme-catalyzed. According 
to this postulate, the formation of APAH should be strictly 
correlated to the presence of both DAP and protocatechuate 
in the cell.

We thus examined whether the presence of APAH was 
restricted to quinate metabolism solely or could be also 
linked to the catechol branch. To this end, we analyzed the 
metabolomes of ADP1 grown on benzyl alcohol, a com-
pound whose degradation feeds into the catechol branch 
(Fig. S6). Data analysis revealed that APAH is formed in 
these conditions, albeit more weakly than in quinate-grown 
cells (Fig.  4a), but in quantity that can nonetheless be 

compared to that obtained in protocatechuate-grown cells 
(Fig. S8). However, although DAP was present, protocate-
chuate was not detected in ADP1 growing on benzyl alcohol 
(Fig. 4b). The weak signal detected in the metabolome of 
benzyl alcohol-grown cells did not match with the reten-
tion time of protocatechuate and displayed a different MS2 
spectrum. This suggested that APAH is not formed from 
protocatechuate and indicates that APAH biosynthesis is 
neither restricted to quinate degradation nor to the proto-
catechuate branch of the β-ketoadipate pathway. We next 
wondered about the presence of APAH in other organisms 
harboring the quinate degradation pathway. Genome con-
text analyses conducted on the MicroScope platform (https​
://www.genos​cope.cns.fr/agc/micro​scope​/home/index​.php) 
showed that clusters of genes orthologous to pca operon 
encoding the enzymes for protocatechuate degradation 
(Siehler et al. 2007) are present in the genome of organ-
isms such as Pseudomonas putida KT4440 and Rasltonia 
eutropha H16. Despite the absence of genes orthologous 
to qui operon in P. putida for converting quinate to pro-
tocatechuate, this organism was nevertheless reported to 
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grow with quinate as the sole carbon source (Jimenez et al. 
2002). Regarding R. eutropha H16, its genome does not har-
bor the qui operon either and cannot grow on quinate. We 
thus analyzed the metabolomes of P. putida and R. eutropha 
grown on quinate and protocatechuate, respectively, for the 
presence of APAH. We detected APAH in P. putida but 
not in R. eutropha (Fig. 4a). This result emphasizes that 
APAH is not restricted to ADP1 and is produced at least in 
another γ-proteobacterium. On the other hand, its absence 
in R. eutropha eliminates a strict association between its 
synthesis and quinate/protocatechuate catabolism. Moreover, 
DAP was not observed in P. putida (Fig. 4c). Together, these 
results suggest that neither protocatechuate nor DAP is a 
biosynthetic precursor of APAH. APAH origin and function 
remain unknown. The metabolite is not excreted (Fig. S9) 
as APAH could not be detected in the medium of a culture 
at OD600 = 0.8, although APAH synthesis is maximal at this 
cell density (Fig. S10). On the contrary, protocatechuate, 
known to be present in the medium of quinate-degrading 
cells (D’Argenio et al. 1999) is indeed excreted (Fig. S9). 
Moreover, APAH does not behave as secondary metabolite: 
it is not formed at high cell density or during a decrease of 
the growth rate, or after exhaustion of the carbon source 
(Fig. S10).

4 � Conclusion

We report here the de novo complete structural elucidation 
of a novel and abundant metabolite in Acinetobacter baylyi 
ADP1, APAH, a compound that is not restricted to ADP1.

To meet the requirement of ‘level 1 identification’ 
(according to the Metabolomics Standard Initiative), we 
conducted an extensive analytical study that combined NMR 
and LC/HRMS/MSn techniques. Finally, its identity was 
established according to comparison of its retention time, 
MS2 and 1H NMR spectra with a synthetic standard. This 
work illustrates the significant effort required to unambigu-
ously identify a previously unreported metabolite, which still 
remains orphan of enzyme/gene.

Interpretation of experimental MS and NMR data for 
metabolite identification is crucial for metabolism interpre-
tation, but cannot be scaled up to adapt with the hundreds or 
thousands of compounds present in a metabolome. Improve-
ment of tandem mass spectral libraries and MS/MS scoring 
algorithms are needed (Kind et al. 2018) for faster com-
pound identification and biochemical landscape covering.

To gain insight from APAH biosynthesis, we are actually 
conducting a LC/HRMS-based screening of the collection of 
2600 single-gene deletion mutants of ADP1 (de Berardinis 
et al. 2008). Detecting the mutant metabolomes devoid of 
APAH shall inform us on the genes involved in its formation 
and led us to start reconstituting APAH synthetic pathway.
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