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SUMMARY 

Signaling pathways are key regulators of adult stem cell homeostasis and underlying 

mechanisms are often deregulated in cancers. Recent studies of epithelial tumors have 

involved OvoL/Svb transcription factors, which produce isoforms with antagonistic 

activities. Here we show that Svb, the unique OvoL factor in Drosophila, directly integrates 

multiple signaling inputs to coordinate the behavior of adult intestinal stem cell lineage. 

Under steady state, Svb mediates Wnt and EGFR signaling to ensure stem cell renewal 

and progenitor survival. This requires the post-translational processing of Svb into a 

transcriptional activator by Polished rice (Pri) regulatory peptides, under the regulation of 

ecdysone signaling. In response to PDM1, Svb expression is specifically maintained in 

enterocytes where it acts as a transcriptional repressor sufficient to override mitogenic 

signals and impose differentiation. Altogether, these results demonstrate that the 

OvoL/Svb transcriptional switch controls the balance between stem cell survival, self-

renewal and differentiation. 
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INTRODUCTION 

Living organisms are constantly exposed to internal and environmental challenges that 

may disturb specific cell functions and promote cell death. To maintain homeostasis, most 

organs are regenerated by stem cells that self-renew and differentiate to replenish 

damaged tissues by replacing dead cells. The highly regenerative digestive system is 

kept intact during adulthood by the activity of intestinal stem cells residing in the gut 

epithelium. Recent findings on intestinal stem cells in flies have greatly advanced our 

understanding of the regulatory signaling networks underlying stem cell biology and their 

implication in cancers (reviewed in (Herrera and Bach, 2019; Li and Jasper, 2016; 

Perochon et al., 2018)). 

The adult Drosophila midgut consists of a highly compartmentalized epithelium 

(Buchon et al., 2013), which shares anatomical and physiological similarities with the 

mammalian counterpart (Casali and Batlle, 2009). The fly intestinal stem cells (ISCs) are 

scattered underneath the basal surface of the midgut epithelium (Micchelli and Perrimon, 

2006; Ohlstein and Spradling, 2007). In most cases, ISC divide asymmetrically to 

generate a new stem cell and a progenitor called enteroblast (EB) (de Navascues et al., 

2012; Goulas et al., 2012; Ohlstein and Spradling, 2007). EB are post-mitotic cells that 

progressively acquire characteristics of either absorptive enterocytes (EC) or hormone-

secreting enteroendocrine cells (EE) (Ohlstein and Spradling, 2007). It has been 

proposed that EE arise from a separate pool of progenitors, called pre-enteroendocrines, 

which express markers of both ISCs and EEs (Biteau et al., 2011; Zeng and Hou, 2015). 
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The evolutionarily conserved Notch pathway establishes the asymmetry between 

ISC and EB after division (Ohlstein and Spradling, 2007; Perdigoto et al., 2011). ISCs 

express Delta, a transmembrane ligand that activates the Notch receptor in neighboring 

daughter EBs, with high levels of Notch promoting the EC fate, whereas EE requires lower 

levels of Notch (Ohlstein and Spradling, 2007). The JAK/STAT pathway acts downstream 

Notch to ensure differentiation of committed progenitors (Beebe et al., 2010; Jiang et al., 

2009). 

Gut homeostasis further relies on a tight regulation of ISC division through 

cooperative activity of additional signaling pathways (reviewed in (Buchon and Osman, 

2015)). For instance, the epidermal growth factor receptor (EGFR), Wingless (Wg) and 

JAK-STAT pathways contribute to ISC preservation and proliferation in a redundant 

manner, and loss of all three pathways is needed to abrogate ISC maintenance (Biteau 

and Jasper, 2011; Jiang and Edgar, 2009; Jiang et al., 2011). Despite the wealth of 

knowledge accumulated on the role of signaling pathways in regulating ISC maintenance, 

division and differentiation, the intrinsic mechanisms by which ISCs integrate these cues 

remain poorly understood. 

 Previous work has shown that Wnt and EGFR pathways specify embryonic 

epidermis differentiation through controlling the expression of Ovo/Shavenbaby (Svb), a 

transcription factor (Payre et al., 1999) that governs cell remodeling. In response to small 

peptides called Polished rice (Pri), encoded by an atypical RNA that contains only four 

small open reading frames (smORF), Svb switches from a long transcriptional repressor 

(SvbREP) to a short activator (SvbACT), following post-translational processing (Kondo et 

al., 2010; Zanet et al., 2015). Pri expression is directly activated by ecdysone (Chanut-
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Delalande et al., 2014), the main steroid hormone in insects, which regulates 

reproduction, sleep, nutritional state and stress resistance (Uryu et al., 2015). 

Initially isolated in flies for its role in epidermal differentiation and germ cell 

maintenance, the Ovo/Svb gene was soon after identified in mammals (Dai et al., 1998) 

in which three paralogs are called OvoL1-3. OvoL/Svb are specific to animals and encode 

transcription factors with a conserved C-terminal DNA binding domain, and varying N-

terminal regions conferring antagonistic transcriptional activities (Kumar et al., 2012). 

Human tumor profiling has recently identified OvoL/Svb as regulators of the metastatic 

potential of many epithelial cancers. Besides pathological situations, functional studies 

have disclosed important functions of OvoL/Svb for the repair of epithelial tissues, e.g. for 

mammary (Watanabe et al., 2014) and epidermal (Haensel et al., 2019) regeneration in 

mammals. OvoL/Svb factors are also critical for maintenance of human corneal epithelial 

cells and in eye regeneration in invertebrates (Kitazawa et al., 2016; Lapan and Reddien, 

2012). Moreover, we recently found that Svb is required for the survival of renal nephric 

stem cells (RNSC) in adult Malpighian tubules. Svb activates the expression of the 

Drosophila anti apoptotic protein (DIAP1) in RNSC by direct interaction with Yorkie, a 

nuclear effector of the Hippo pathway (Bohere et al., 2018). 

 In this study, we investigated whether Svb plays a role in sustaining adult 

Drosophila midgut homeostasis in order to regulate ISC survival, division and/or 

differentiation. We found that svb is expressed in both ISC/EBs and ECs, where its 

inactivation induces apoptotic cell death. Svb directly acts downstream of EGFR and Wnt 

mitogenic signaling in progenitors, where it is processed into SvbACT through the activity 

of Pri/Ubr3/proteasomal pathway. In contrast, SvbREP promotes differentiation of ISC/EB 
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lineage toward ECs, where it is required to maintain functional organization of mature 

cells. Importantly, SvbREP is a potent inhibitor of tumor induced by deregulated Notch and 

JAK/STAT pathways, imposing differentiation towards the enterocyte fate. Thus, these 

findings show that, though integrating multiple signaling pathways and transcription 

factors, Svb coordinates ISC survival, renewal and differentiation. 
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RESULTS 

Svb is required to maintain Drosophila adult midgut progenitors  

To monitor svb expression in the adult midgut, we tested the main enhancers that drive 

svb transcription in the embryo (Frankel et al., 2011). We found that the medial svb 

enhancer drives specific expression in escargot-positive cells, therefore identifying them 

as stem cells and enteroblasts (Figures 1A,B and S1A). Further dissection restricted the 

cis-regulatory region responsible for progenitor expression to two separate enhancers 

called E3-14 (292 bp) and E6 (1kb). 

As a first step to investigate the function of Svb in intestinal stem cells, we used 

targeted RNAi-mediated depletion at the adult stage. The conditional thermosensitive 

driver (esg-Gal4, UAS-GFP, tub-Gal80ts, henceforth referred to as esgts) allowed svb 

knockdown in esg+ cells, resulting in a strong decrease in the number of progenitors 

(Figure 1C,C’). Using delta-lacZ and Su(H)-GBE-lacZ markers to discriminate ISCs vs 

EBs respectively, we observed a strong reduction in both stem cells and enteroblasts 

upon svb knockdown (Figure 1C-E’). Similar results were obtained following svb depletion 

specifically either in ISCs (esg-Gal4, UAS-YFP, Su(H)GBE-Gal80, tub-Gal80ts (Wang et 

al., 2014), hereafter referred to as ISCts) (Figure 1D,D’) or in EBs (Su(H)-Gal4, tub-

Gal80ts, UAS-GFP, hereafter referred to as Su(H)ts) (Figure S1B). Hence, svb depletion 

causes the loss of both ISCs and EB populations, without detectable effects on 

enteroendocrine cells (Figure S1B-C). 

This conclusion was further tested by lineage-tracing using acttsF/O system (actin-Gal4; 

tubGal80ts Act>Cd2> Gal4 UAS-flp UAS-GFP), which led to random inactivation of svb in 
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dividing intestinal cells and their progeny. This experiment showed that svb depletion 

leads to a strong decrease in both the number and size of GFP-labelled clones, when 

compared to controls (Figure 1F). This was also confirmed by the generation of 

genetically mutant cells for svb, using the MARCM technique (Lee and Luo, 2001). In 

contrast to controls, we obtained very few clones of cells homozygous for the null svbR9 

mutant allele (Delon et al., 2003). In addition, svb mutant clones were unable to grow and 

often restricted to single cells (Figure 1G). 

These results therefore suggested that intestinal progenitors lacking svb undergo 

apoptosis, as recently shown for renal stem cells (Bohere et al., 2018). To test this 

hypothesis, we stained for the apoptotic marker Drosophila caspase protein 1 (Dcp1) in 

intestines bearing clones lacking svb, using esgtsF/O (esg-Gal4; tubGal80ts Act>Cd2> 

Gal4 UAS-flp UAS-GFP)  (Jiang et al., 2009) to drive svb-RNAi. While only rare Dcp1–

positive cells were seen in controls, we observed many apoptosis figures in GFP+ cells 

upon svb depletion (Figure 1H). In addition, whereas overexpression of Drosophila 

Inhibitor of Apoptosis-1 (DIAP1) did not significantly influence the number of esg+ cells, 

it partially rescued the loss of ISC/EB when concomitantly expressed with svb-RNAi 

(Figures 1I). Finally, ReDDM lineage tracing (Antonello et al., 2015) further indicated that 

the loss of stem cells upon svb depletion does not results from premature differentiation 

(Figure S1D). 

Taken together, these data show that Svb function is required to protect intestinal stem 

cells and enteroblasts from apoptosis. 
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Pri/Ubr3/proteasomal pathway regulates Svb function in midgut progenitors 

Svb is translated as a long (1345aa) repressor (SvbREP) that is post-translationally 

processed into a shorter (946aa) transcriptional activator (SvbACT) (Kondo et al., 2010). 

This switch is gated by Pri smORF peptides that bind to and activate the E3 ubiquitin 

ligase Ubr3, triggering its binding to Svb (Zanet et al., 2015). Ubr3 then induces the 

processing of Svb via limited proteasome degradation of its N-terminal repression domain 

(see Figure 2C). Originally described in epidermal derivatives (Chanut-Delalande et al., 

2014; Kondo et al., 2010), a growing body of evidence suggests that Pri-dependent 

processing underlies Svb function in somatic tissues (Pueyo and Couso, 2011; Ray et al., 

2019), including adult stem cells (Bohere et al., 2018). 

To investigate whether Pri-mediated maturation of Svb was also involved in 

maintaining ISC/EB, we examined pri expression in the adult midgut. Profiling of reporter 

lines (Chanut-Delalande et al., 2014) showed that three pri enhancers (priA, priJ and priH) 

drive specific expression in ISC/EBs (Figure 2A,B). pri expression domain was also 

confirmed by the activity of a gene trap (Galindo et al., 2007) in ISC/EBs (Figure 2B). We 

next assayed the consequences of pri knockdown in ISC/EBs and observed an acute loss 

of progenitors when Pri-RNAi was driven by esgts (Figure 2D), or stem cells when using 

the ISCts driver (Figure S2A). In the epidermis, ecdysone signaling times pri expression 

across development (Chanut-Delalande et al., 2014). We reasoned that if this hormonal 

control of pri expression was occurring in the midgut, cell autonomous disruption of 

ecdysone signaling should affect the behavior of ISCs. Consistently with this prediction, 

downregulation of ecdysone signaling via a dominant negative receptor (EcR-DN) 

(Figures 2E and S2D), or RNAi-mediated depletion of EcR (Figure S2B,C), led to a loss 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/627554doi: bioRxiv preprint first posted online May. 4, 2019; 

http://dx.doi.org/10.1101/627554
http://creativecommons.org/licenses/by-nc-nd/4.0/


Al Hayek et al.,    p:  10 

of intestinal progenitors. Furthermore, restoring pri expression was sufficient to rescue 

the loss of intestinal progenitors upon EcR inactivation (Figures 2E and S2D). These data 

thus support that pri is an important target of ecdysone required (and somehow sufficient) 

for the homeostasis of intestinal stem cells. 

A key role for Pri in ISC/EBs in triggering the Ubr3-mediated processing of Svb 

was confirmed by several lines of evidence. First, knockdown of Ubr3 in intestinal 

progenitors or stem cells (ubr3-RNAi driven by esgts or ISCts) resulted in a strong 

reduction of their number (Figures 2F and S2E). Second, similar results were observed 

in clones of ubr3 mutant cells, which were very rare and unable to expand (Figure 2G). 

Third, the loss of Ubr3 could be compensated by expression of the constitutive activator 

OvoB (Figures 2F and S2E), indicating that Pri and Ubr3 are required in ISCs to trigger 

the switch of Svb transcriptional activity. 

We interpret these results to imply that Svb undergoes Pri/Ubr3-dependent 

processing in intestinal stem cells to maintain the population of midgut progenitors. 

 

The Svb activator form triggers ISC proliferation  

Having shown that the Svb activator is required for the survival of ISC/EBs, we next 

investigated if it could be sufficient to influence adult stem cell homeostasis. 

Hence, we expressed the OvoB constitutive activator using esgts and monitored 

the behavior of ISCs marked with delta-LacZ. OvoB induced a strong increase in the 

number of ISCs (esg+, delta-LacZ+ cells), reaching up to four-fold the normal population 
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(Figure 3A). This was due to ISC over-proliferation, as seen by staining for the mitotic 

marker phosphorylated-histone3 (PH3) (Figure 3A’). Similar results were obtained when 

OvoB expression was specifically targeted in stem cells using the ISCts driver (Figure 3B). 

Furthermore, if pri overexpression has weak if any effects, the simultaneous expression 

of pri and svb (to induce the production of SvbACT) provoked a massive proliferation of 

ISCs, reminiscent of the OvoB phenotype (Figures 3B and S3A). 

These data thus show that the SvbACT form drives ISC proliferation and that Pri smORF 

peptides play a key role to regulate the processing of Svb in adult stem cells. 

 

Svb acts downstream of Wnt and EGFR mitogenic pathways in the adult midgut 

svb was identified as a functional integrator of signaling pathways, including Wnt, EGFR, 

Hedgehog and Notch, mediating their roles in the terminal differentiation of embryonic 

epidermal cells (Payre, 2004). Since these pathways are well-established to control ISC 

maintenance, proliferation and differentiation (reviewed in (Buchon and Osman, 2015)), 

we investigated whether Svb could also mediate their activity in intestinal stem cells. 

As previously reported (Lin et al., 2008), inhibition of Wnt signaling by expressing 

a dominant negative form of the nuclear effector TCF/Pangolin (TCF-DN) led to a marked 

decrease in the number of ISC/EBs (Figure 4A,A’). Co-expression of OvoB was not only 

sufficient to rescue the progenitor population, but could still induce ISC proliferation even 

when Wnt activity was compromised. Conversely, over-activation of Wnt signaling by 

expressing the Wingless ligand, or a constitutively active transcriptional regulator Arm, 
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promotes ISC division (Lin et al., 2008). The Wnt-induced stem cell proliferation was 

further potentiated upon expression of OvoB and abrogated when svb function was 

inhibited (Figure 4A). Similarly, knocking-down EGFR through a dominant negative 

receptor (EGFR-DN) led to a loss of esg+ cells, and OvoB was sufficient to bypass this 

depletion of stem cells (Figure 4B,B’). Activation of EGFR signaling (esgtsF/O>RasV12) 

induced progenitor proliferation, which was counteracted upon svb knockdown (Figure 

4B). These results show that Svb is epistatic to, in other words likely acts downstream, 

Wnt and EGFR pathways to control adult stem cell maintenance and division. 

Therefore, svb expression integrates inputs from Wnt and EGFR pathways in both 

adult stem cells and embryonic epidermal cells (Payre et al., 1999); the underlying 

mechanisms remained, however, to be elucidated. To identify in an unbiased manner the 

transcription factors that control svb expression, we undertook a large-scale functional 

screening in vivo. We performed this screen in the embryo, where signaling pathways do 

not dramatically impinge on the presence/absence of targeted cells, as opposed to adult 

stem cells. Briefly, we selected the whole complement of transcription factors showing 

detectable expression at the time of svb expression in epidermal cells (227 candidates), 

and assayed consequences of their dsRNA-mediated depletion on the activity of the E3-

14 svb enhancer (Figure S4A). This identified four factors the depletion of which alters 

E3-14 expression, including TCF and Pointed, i.e., the nuclear effectors of Wnt and EGFR 

signaling, respectively. Analysis of the E3-14 sequence identified putative binding sites 

for TCF and Pointed (Figure S4B-C) and we generated transgenic flies carrying E3-14-

lacZ reporters with mutations within either TCF (E3-14-TCF-mt) or Pointed (E3-14-pnt-

mt) binding sites. When compared to the wild-type reporter in embryos, E3-14-pnt-mt 
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displayed reduced expression, whereas E3-14-TCF-mt showed an ectopic pattern in 

epidermal cells (Figure S4D). To further assay whether this altered pattern affected svb 

function, we generated transgenic lines driving svb expression under the control of wild 

type E3-14 or E3-14-TCF-mt enhancers and assayed their rescuing activity when 

introduced in svb mutant embryos. While E3-14-svb displayed a clear rescue of epidermal 

trichomes, the mutation of TCF binding sites almost completely abolished the function of 

E3-14-TCF-mt (Figure S4E). Accordingly, both E3-14-TCF-mt and E3-14-Pnt-mt 

displayed strongly decreased activity when assayed in adult stem cells (Figure 4C). 

These data show that the medial svb enhancer integrates direct regulatory inputs from 

the Wnt and EGFR pathways, to control the behavior of intestinal stem cells. 

 

The Svb repressor promotes enterocyte differentiation 

In addition to stem cells, we observed expression of Svb within differentiated enterocytes 

as deduced from complementary pieces of evidence. These data opened the possibility 

of a role of Svb in the differentiation of the intestinal stem cell lineage, which we 

investigated using a set of functional assays. 

In situ hybridization revealed that svb mRNA is expressed in small doublet cells, i.e. 

ISC/EBs, but also in large-nuclei enterocytes all along the midgut epithelium (Figure 5A). 

This was further supported by the expression of a svb::GFP mini-gene rescue construct 

(Menoret et al., 2013) (Figure 5B), while no expression was detected in enteroendocrine 

cells. The svb proximal enhancer (9CJ2, see Figure 1A) showed a restricted expression 
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in big nucleated cells (Figure 5C). We used the same screening assay in the embryo and 

found that 9CJ2 expression is reduced upon knocking down Pdm1/Nubbin (Figure S5), a 

TF well known for the differentiation of enterocytes (Korzelius et al., 2014; Tang et al., 

2018). We identified two Pdm1 putative binding sites within the 9CJ2 enhancer (Figure 

S5B,C) and inactivated these sites by site-directed mutagenesis (9CJ2-PDM-mt). When 

assayed in vivo, the inactivation of Pdm1 binding sites prevents 9CJ2 expression in both 

embryonic epidermal cells and adult intestinal stem cells (Figures 5C and S5D). We 

therefore conclude that svb is also expressed in enterocytes under the control of the 

proximal enhancer, likely directly regulated by Pdm1. 

 The switch in Svb transcriptional activity is associated with a striking change in its 

intra-nuclear distribution: whereas SvbACT diffusely distributes within the nucleoplasm, 

SvbREP accumulates in dense foci (Kondo et al., 2010; Zanet et al., 2015). Interestingly, 

Svb staining is diffuse in esg+ cells (which express pri), while it accumulates in intra-

nuclear foci in enterocytes (Figures 2B and 5B’). This differential pattern of nuclear 

distribution thus suggested that, unlike ISCs, Svb might act as a repressor within ECs 

where it could play a role in their survival and/or differentiation. To test this hypothesis, 

we overexpressed the full size Svb protein (SvbREP) in intestinal progenitors. The number 

of ISC/EB was reduced and remaining esg+ cells displayed aberrant morphology, with 

enlarged nuclei reminiscent of polyploid ECs (Figure 5E). Similar phenotypes were 

observed when using the ISCts driver. Importantly, the loss of progenitors observed upon 

SvbREP expression was not rescued by concomitant expression of DIAP1 (Figure 5E,E’). 

esgtsF/O clones expressing Svb were composed of single cells displaying large nuclei, 

and being negative for DCP1 apoptotic staining (Figure 5D). These data thus suggested 
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that Svb induces ISC differentiation into enterocytes rather than cell death, a hypothesis 

we further tested using ReDDM lineage tracing (Antonello et al., 2015). The loss of 

progenitors upon SvbREP expression was accompanied by an increase in differentiated 

cells (Figure 5F-F’) showing that the Svb repressor induces progenitor differentiation 

towards the enterocyte fate. 

 To further investigate Svb function within enterocytes, we expressed svb-RNAi 

using the EC-specific driver MyoIAts (MyoIA-Gal4, UAS-GFP, tubulin-Gal80ts). We 

observed that svb knockdown induced EC apoptosis, as shown by elevated DCP1 

staining (Figure S6A). We next further assayed whether Svb acted as a repressor in ECs, 

through driving Ovo/Svb isoforms in ECs with MyoIAts. Intestines expressing SvbREP did 

not show any detectable homeostatic or structural changes. In contrast, OvoB induced a 

loss of GFP+ ECs, with an increase in EEs (Figure 6A). In addition, the apical microvilli 

that features mature ECs was altered following svb knockdown in enterocytes (Figure 

6B,C). Furthermore, ectopic expression of SvbACT also disrupted brush border 

differentiation, whereas we did not detect defects upon SvbREP expression. 

All together, these findings indicate that the Svb repressor is required to maintain proper 

differentiation/maturation state of ECs in the adult midgut. 

 

Svb allows the growth of genetically-induced ISC tumors  
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A main determinant of intestinal stem cell differentiation is the activation of the Notch 

pathway (Ohlstein and Spradling, 2007). We hypothesized that Svb may synergize with 

Notch to direct EC differentiation. 

As previously reported (Ohlstein and Spradling, 2007), inhibition of Notch induces 

tumor-like expansion of ISCs (Figure 7A). Concomitant svb knockdown strongly reduced 

the expansion of Notch-induced tumors. Strikingly, SvbREP was sufficient to suppress 

Notch tumors and induced EC differentiation (Figure 7A). Conversely, Notch activation by 

expressing the nuclear Notch intracellular domain (NICD) caused an acute decrease in 

progenitors, likely differentiating in ECs (Figure S7A). The co-expression of NICD and 

OvoB restored a wild type number of progenitors, whereas co-expressing SvbREP further 

enhanced the NICD phenotype (Figure S7A). Furthermore, we found antagonistic effects 

of SvbACT versus SvbREP on the phenotype resulting from the expression of a dominant 

negative form of Delta, the Notch ligand in ISCs (Figure S7B). 

We next tested whether the Svb repressor was sufficient to counteract the 

deregulation of additional signaling pathways that induce midgut tumors. Indeed, we 

found that SvbREP expression inhibited the expansion of progenitors induced by 

inactivation of the STAT transcription factor, or the overexpression of Wg, or Arms10, in 

esg+ cells (Figures 7B and S7C,D). In addition, the depletion of svb in those tumors was 

sufficient to block their expansion in the midgut (Figure 7B). 

We conclude that svb is required for the growth of genetically-induced ISC tumors and 

that the Svb repressor overrides different signaling pathways to promote enterocyte 

differentiation. 
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DISCUSSION 

Our data show that the OvoL/Shavenbaby transcription factor is a key regulator of adult 

intestinal stem cells and their progeny. In stem cells, Svb is post-translationally processed 

into an activator required for progenitor maintenance. SvbACT is sufficient to promote stem 

cell division, thereby mediating the proliferative activity of EGFR and Wnt signaling. Svb 

is also expressed in enterocytes, where the unprocessed Svb repressor promotes 

differentiation. The balance between SvbACT and SvbREP is gated by Pri smORF peptides, 

which allow proteasome-mediated conversion of Svb transcriptional activity in response 

to Ecdysone signaling (Chanut-Delalande et al., 2014; Kondo et al., 2010; Zanet et al., 

2015). Our results further suggest that the Svb transcriptional switch is a conserved 

mechanism involved in the control of various adult stem cells. 

svb integrates multiple regulatory cues for the homeostasis of adult stem cells 

svb expression is driven by a large array of enhancers (Stern and Frankel, 2013), which 

collectively define at single cell resolution the pattern of epidermal differentiation (Frankel 

et al., 2011; McGregor et al., 2007; Preger-Ben Noon et al., 2016; Sucena et al., 2003). 

Although svb enhancers were delineated for their embryonic activity, they harbor 

pleiotropic functions across the Drosophila life-cycle (Bohere et al., 2018; Preger-Ben 

Noon et al., 2018). At least three enhancers drive svb expression within the lineage of 

adult intestinal stem cells. In stem cells and progenitors, svb enhancers integrate 

regulatory outputs of Wnt and EGFR signaling to direct svb expression. Unbiased large-

scale screening further indicates that the nuclear mediators of Wnt (TCF) and EGFR 

(Pointed) directly regulate the activity of a svb stem cell enhancer. In addition, PDM1, a 
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key TF for the enterocyte fate (Korzelius et al., 2014), regulates a distinct enhancer driving 

svb expression within differentiated enterocytes. Hence, the regulatory logic of svb 

expression is reused in the adult intestinal lineage, involving separate enhancers and 

regulators between stem cells and enterocytes. 

SvbACT is required for the maintenance and proliferation of stem cells 

A main aspect of Svb regulation relies on post-translational control of its transcriptional 

activity (Bohere et al., 2018; Chanut-Delalande et al., 2014; Kondo et al., 2010; Menoret 

et al., 2013; Ray et al., 2019; Zanet et al., 2015). Svb processing into an activator is 

indispensable for the maintenance of stem cells, which otherwise undergo apoptosis. 

Both intestinal and renal stem cells are particularly resistant to apoptotic cell death (Ma 

et al., 2016). In the latter, we recently reported that Svb physically interacts with Yorkie 

(a.k.a. YAP/TAZ in mammals), the nuclear effector of Hippo signaling (Staley and Irvine, 

2012), to directly activate DIAP1 expression (Bohere et al., 2018). Although renal stem 

cells are mostly quiescent (Bohere et al., 2018; Xu et al., 2018), intestinal stem cells self-

renew under homeostatic conditions and proliferate in response to various challenges 

(Staley and Irvine, 2012). Consistently, SvbACT is required, and to a certain extent 

sufficient, to promote stem cell proliferation. Knocking out svb function, or maturation, 

prevents normal stem cell maintenance and suppresses their expansion induced by 

mitogenic signals (Wnt, EGFR, JAK/STAT…). Reciprocally, SvbACT can bypass the 

repressive effects of altered signaling and triggers stem cell expansion. These data 

support a model whereby the Svb activator plays a key role in mediating the activity of 

signaling pathways for the control of adult stem cell division. 
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SvbREP in the differentiation of enterocytes 

Our results also show the expression and function of Shavenbaby in enterocytes, but not 

in enteroendocrine cells, consistent with an early separation between EC and EE lineages 

(Guo and Ohlstein, 2015; Yin and Xi, 2018; Zeng and Hou, 2015). In contrast to stem 

cells, Svb acts as a repressor within enterocytes where it is required for their functional 

organization, including proper differentiation of brush border microvilli. Strikingly, SvbREP 

is sufficient to induce differentiation toward the enterocyte fate, including in conditions 

otherwise leading to stem cell expansion. This is the case for deregulated signaling, when 

SvbREP can force differentiation of tumor-like stem cells. These findings therefore show 

that SvbACT and SvbREP exert antagonistic function within the adult intestinal lineage, 

SvbACT promoting stem cell proliferation and progenitor survival, while SvbREP later acts 

to promote and maintain enterocyte differentiation. 

 The switch between SvbREP and SvbACT is triggered by Pri small peptides 

throughout the fly life-cycle (Bohere et al., 2018; Chanut-Delalande et al., 2014; Kondo et 

al., 2010; Zanet et al., 2015) and across arthropods (Ray et al., 2019; Savard et al., 2006). 

pri expression is manifest in progenitors but absent from differentiated enterocytes, and 

Pri peptides are required, together with their target Ubr3 ubiquitin ligase, for stem cell 

maintenance. A key role of Pri is to mediate systemic Ecdysone signaling for 

developmental timing (Chanut-Delalande et al., 2014). The Ecdysone receptor binds to 

pri cis-regulatory enhancers and trigger pri expression upon elevation of Ecdysone titer 

(Chanut-Delalande et al., 2014). Although Ecdysone influences intestine stem cells (Reiff 

et al., 2015), the role of Ecdysone in midgut homeostasis remains to be fully elucidated 

(Miguel-Aliaga et al., 2018). We find that disrupting Ecdysone signaling affects the 
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behavior of intestinal stem cells, decreasing proliferation and promoting differentiation, 

i.e., as observed upon inhibition of Svb processing. The expression of pri, or of 

constitutive SvbACT, can compensate compromised Ecdysone signaling, showing that the 

regulation of Svb activity is a key target of hormonal control in intestinal stem cells. 

OvoL/Svb transcriptional switch for stem cell control across animals 

Mounting evidence suggests a broad role of the Svb transcriptional switch in stemness. 

In flies, Shavenbaby refers to the somatic protein (Delon et al., 2003; Mevel-Ninio et al., 

1995), while alternate promoters produce germinal isoforms called OvoA and OvoB, 

acting as a repressor and activator, respectively (Andrews et al., 2000; Mevel-Ninio et al., 

1991; Mevel-Ninio et al., 1995). OvoB is required for the maintenance of germ cells (Delon 

et al., 2003; Hayashi et al., 2017; Mevel-Ninio et al., 1995), while OvoA later acts for 

proper differentiation (Andrews et al., 2000; Hayashi et al., 2017). Precocious expression 

of OvoA leads to germ line loss (Andrews et al., 1998; Mevel-Ninio et al., 1996) and other 

ovo mutations cause ovarian tumors. Although relying on different mechanisms between 

soma (post-translational processing) and germline (alternative promoters), the REP-to-

ACT switch appears central to the function of Ovo/Svb factors in Drosophila stem cells. It 

will be interesting to elucidate whether a putative switch in transcriptional properties also 

underlies OvoL function in stem cells across animals. 

 OvoL factors are associated with many cancers, in particular those of epithelial 

origin (Roca et al., 2013; Roca et al., 2014). In flies, svb knockdown is sufficient to block 

Notch- and JAK/STAT-induced tumor formation and growth. Moreover, there are 

opposing effects of SvbACT vs SvbREP, which promotes or suppresses tumors, 
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respectively. Interestingly, OvoL2 isoforms display strikingly different effects within 

tumors, in which only the repressor suppresses tumor development (Watanabe et al., 

2014). Wnt signaling plays a key role in tumors, including in cancer stem cells (Zhan et 

al., 2017). We show that Svb is a target of Wnt and EGFR pathways in the fly gut, 

mediating their action on stem cell proliferation. These data show the role of antagonistic 

OvoL/Svb factors in the control of normal and tumor stem cells. 

OvoL/Svb have been proposed to act as epithelial stabilization factors, 

counteracting epithelial to mesenchyme transition (EMT) (Lee et al., 2014; Li and Yang, 

2014). EMT is induced by a core of transcription factors, including Snail, Slug and Zeb1,2 

in mammals, and their Drosophila homologs (Escargot, ZFh1,2) prevent differentiation of 

intestinal stem cells (Antonello et al., 2015; Korzelius et al., 2014; Loza-Coll et al., 2014). 

According to the model of an antagonism between EMT factors and OvoL/Svb, the SvbREP 

isoform promotes differentiation. However, our results draw a more complex picture, 

where SvbACT also acts together with Esg, ZFh1,2 for the maintenance of stem cells. EMT 

is not an all-or-none process and instead progresses through a series of reversible 

intermediate states between the epithelial (E) and mesenchyme (M) phenotypes (Nieto 

et al., 2016). Such hybrid E/M phenotypes are hallmarks of normal and cancer stem cells, 

and relative doses of EMT factors and OvoL/Svb may provide a tunable window of 

stemness (Jolly et al., 2015). 

Taken together, these data therefore support a conserved role of OvoL/Svb transcription 

factor in the control of stem cell behavior, in both normal and tumorous conditions. 
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Figure 1: svb is expressed in ISC/EBs and is required for their maintenance  
(A) Schematic representation of the svb locus, with the position of main embryonic enhancers. 
(B) Expression of GFP (green) driven by the E3-14 svb enhancer in ISC/EBs, as shown by co-staining with esg-lacZ (β-Gal, red).  
(C) Expression of Dl-lacZ reporter (purple) in esgts (control), and esgts>svb-RNAi. Close ups show separate channels for GFP (green) 
and Dl-lacZ (purple). (C’) Quantification of Dl-lacZ-positive cells in esgts svb-RNAi and control (esgts>GFP) .  
(D-D’) Effect of svb-RNAi knockdown using ISCts (D) and quantification of YFP-positive cells (D’). 
(E-E’) Esgts>svb-RNAi in enteroblasts marked by Su(H)-LacZ (red), green is esgts>mCherry; quantification of Su(H)-positive EBs.  
(F) Actin Flip-out clones of control and svb-RNAi expressing cells. Clones are stained by GFP. 
(G) MARCM clones of control or svbR9 null mutant cells, labeled by GFP (green). Flies were heat shocked once at 37°C for 1 hour 
and then shifted to 25°C for 10 days. Quantification of the number of clones per posterior midgut and number of cells per clone. 
(H) Staining for the apoptotic marker DCP1 (red) in control and svb-RNAi esg-Flo clones (GFP positive cells, green). 
(I) Number of GFP-positive cells per posterior midgut in esgts>GFP (control) and together with DIAP1, svb-RNAi, svb-RNAi and DIAP1. 
In all panels, DAPI is blue, scale bars represent 20µm. See also Figure S1. In this and all following figures, pictures display 
representative images of the posterior midgut of female flies aged from 5 to 7 days and shifted to non-permissive temperature for the 
indicated number of days. P values were estimated by nonparametric Mann-Whitney tests, and Kruskal-Wallis tests with Dunn’s 
correction, for comparison of two or several samples, respectively. ns: p>0.05, ***: p<0.001, ****: p < 0.0001. 
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Figure 2: The Pri/proteasome processing of Svb is required for ISC/EB maintenance  
(A) Schematic representation of pri genomic locus, with the position of Gal4 gene trap insertion. 
(B) Expression of priA, priJ or priH enhancers (cyan) and pri-Gal4 transgene (GFP, green).  
(C) Schematic representation of Svb maturation by proteasomal processing. The germinal isoforms OvoA and OvoB are also shown. 
(D) Effect of pri-RNAi depletion driven by esgts and quantification of GFP positive cells per posterior midgut. 
(E) Effect of esgts driven expression of EcRDN, Pri, EcRDN plus Pri, or EcRDN plus OvoB and quantification of GFP-positive cells. 
(F) Esgts expression of Ubr3-RNAi alone or in combination with OvoB.  
(G) Control and Ubr3 null MARCM clones, visualized by GFP (green).  
In all panels, blue is DAPI and scale bars represent 20µm. P values from Mann-Whitney tests (D’) and Kruskal-Wallis tests (E’) are 
ns:>0.5, *: <0.05, ***: < 0.001, ****: <0.0001. See also Figure S2. 
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Figure 3: The Svb activator induces ISC proliferation 
(A) Expression of esgts>GFP (green) and Dl-lacZ (purple) in control or upon OvoB expression, and quantification of Dl-lacZ positive 
cells (ISCs) and GFP positive cells (ISC/EBs). 
(A’) Quantification of the mitotic marker P-H3 in control flies (egstS>GFP), or expressing OvoB or svb-RNAi driven by esgts. 
(B) Expression of YFP (yellow) driven by ISCts in control, flies expressing OvoB or Svb plus pri, and quantification of YFP positive 
cells. Blue is DAPI. 
Scale bars represent 20µm. P values from Mann-Whitney tests (A’) and Kruskal-Wallis tests (B’) are ns: p>0.5, *: p<0.05, **: p<0.01, 
***: p < 0.001, ****: p<0.0001. See also Figure S3. 
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Figure 4: Svb acts downstream of mitogenic signaling pathways Wnt and EGFR in adult midgut 
(A,A’) Images from control flies, or expressing TCFDN, TCFDN and OvoB, Arms10, Arms10 and svb-RNAi driven by esgts and 
quantification of GFP-positive progenitors. 
(B, B’) Images from control esgts>GFP flies or expressing EGFR-DN, EGFR-DN and OvoB and quantification of GFP-positive 
progenitors. Bottom panels show egstsF/O>GFP (control), and expressing RasV12 alone or in combination with svb-RNAi. 
(C) X-gal staining of posterior midguts showing expression of DmE3-14-LacZ, or mutated version of the enhancer knocking out 
putative binding sites for Pointed or TCF. 
Scale bars represent 20µm. P values from Kruskal-Wallis tests ****: p<0.0001. See also Figure S4. 
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Figure 5: Svb repressor is expressed in enterocytes and promotes differentiation. 
(A) Expression of svb mRNA in the adult posterior midgut as revealed by in situ hybridization. Arrows indicate ISC/EBs. 
(B) Expression of a svb mini-gene rescue construct (Menoret et al., 2013) composed of svb-cDNA tagged by GFP (green) and driven 
by the medial and proximal svb enhancers. Red is mCherry and white Prospero. 
(C) Expression of wild type (9CJ2) and a mutated version disrupting the putative Pdm1 binding site (9CJ2-mut-PDM1) svb proximal 
enhancer. 
(D) Images of esgts-F/O clones expressing Svb and stained for DCP1(red), clones are visualized by GFP (green).  
(E,E’) Control (esgts>GFP) and midguts expressing Svb alone or combined to DIAP1 driven by esgts (E) and quantification (E’). 
(F) Expression of ReDDM in control flies or expressing Svb and quantification of progenitors and differentiated cells. 
In all panels, blue is DAPI and scale bars represent 20µm. P values from Mann-Whitney tests (F’) and Kruskal-Wallis tests (E’) are 
ns: p>0.5, ***: p < 0.001, ****: p<0.0001. See also Figure S5. 
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Figure 6: The Svb repressor is required to maintain proper enterocyte differentiation 
(A) Control midgut or midgut expressing Svb or OvoB in EC. EC are visualized by GFP. Red is Prospero and blue is DAPI. Scale bar 
represents 20µm. 
(B) Images from control midgut or midgut expressing Svb or OvoB. ECs are visualized by GFP and their brush border apical 
organization underlined by the expression of A142::GFP.  
(C) Electron micrographs of control (MyoIAts>GFP), MyoIAts>svb-RNAi and MyoIAts>OvoB. Either the depletion of svb or the ectopic 
expression of OvoB leads to strong defects in enterocyte ultrastructure, including alteration of the brush border microvilli (highlighted 
in green). Nuclei are pseudo-colored in purple and the basement membrane in cyan. 
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Figure 7: The Svb repressor suppresses genetically-induced hyperplasia in the gut 
(A) Esgts-driven expression of Notch-RNAi alone, or combined to svb-RNAi or to Svb and quantification of GFP positive cells. 
(B) Effect of esgts expression of STAT-RNAi alone, or combined to svb-RNAi or to S and quantification of GFP positive cells.  
In all panels, GFP is in green, anti-Prospero staining in red and DAPI in blue; scale bars represent 20µm. P values from Kruskal-Wallis 
tests are ns: p>0.5, **: p < 0.01, ****: p<0.0001. See also Figure S7. 
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