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1. LIFE-DETECTION: A CENTRAL RATIONALE FOR SPACE EXPLORATION 

Since its inception six decades ago, astrobiology has diversified immensely to encompass 

several scientific questions including the origin and evolution of Terran life, the organic 

chemical composition of extraterrestrial objects, and the concept of habitability, among 

others. The detection of life beyond Earth forms the main goal of astrobiology, and a 

significant one for space exploration in general. This goal has galvanized and connected with 

other critical areas of investigation such as the analysis of meteorites and early Earth 

geological and biological systems, materials gathered by sample-return space missions, 

laboratory and computer simulations of extraterrestrial and early Earth environmental 

chemistry, astronomical remote sensing, and in-situ space exploration missions. Lately, 

scattered efforts are being undertaken towards the R&D of the novel and as-yet-space-

unproven ‘life-detection’ technologies capable of obtaining unambiguous evidence of 

extraterrestrial life, even if it is significantly different from Terran life [1]. As the suite of 

space-proven payloads improves in breadth and sensitivity, this is an apt time to examine the 

progress and future of life-detection technologies. 

 

2. ELSI-EON WORKSHOP ON LIFE DETECTION TECHNOLOGIES 

The past four National Aeronautics and Space Administration (NASA) Astrobiology 

Roadmap documents acknowledged the need to develop technologies that can 

unambiguously detect life on habitable planetary bodies [2]. These roadmaps also mention 

the importance of assessing habitability and biosignature preservation potential, searching for 

liquid water, and defining thermodynamic constraints as critical parameters for selecting 

planetary targets and sites for future life-detection missions. 

 

The Earth-Life Science Institute (ELSI) is a vital research center for trans-disciplinary 

scientists across the world working towards the grand scientific questions of understanding 

the formation of the Earth, the origins of life, and the evolution of inhabited and habitable 

objects in the solar system and elsewhere in the universe. An international workshop entitled 

“Life Detection Technology: For Mars, Enceladus, and Beyond” was organized on October 

5-6, 2017 at ELSI; the co-authors of this white paper were the participants. The purpose of 

the workshop was to (a) deliberate the utilities of diverse life-detection payloads on space 

probes for exploring planetary bodies in the solar system with dissimilar habitability 
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potential; (b) cultivate international synergies between scientific and engineering laboratories 

from around the world for efficient R&D of life-detection technologies; and (c) add to the 

transdisciplinarity of this domain by bringing in new scientific and engineering disciplines 

that are presently outside astrobiology and could assist in the development of life-detection 

technologies. This white paper summarizes the discussions that emerged from this workshop, 

which included participants from France, Germany, India, Japan and the United States. The 

participants presented their perspectives on what might constitute a signature of life, and 

what technologies might enable such detection. 

 

Among the leading questions in astrobiology are: What is life? How do we define life? Will 

life elsewhere be identical or similar to Terran life? And what planetary environmental 

parameters determine habitability? These are presently studied from various physical, 

chemical, and biological perspectives [3]. Since these are grand scientific questions, they are 

difficult to tackle from the narrow purview of stove-piped scientific disciplines. Astrobiology 

and instrument-driven life detection stimulate transdisciplinarity, to which the congregation 

of this workshop was testament. The emergence of technical capacities to explore the 

surfaces of planetary bodies through space probes, e.g., landers, rovers and orbiters, are 

revitalizing the possibility of answering these questions. The space agencies in the United 

States, Japan, India, and the European Union pursue the R&D of space payloads dedicated to 

the search of bio-geo-chemo-signatures. However, presently none of these payloads are 

capable of detecting life. As life-detection technologies become increasingly central for in-

situ explorations, they will significantly advance our scientific understanding of the 

possibilities of life to survive beyond Earth, even simultaneously on multiple celestial 

objects. Therefore, apart from the basic scientific research, it is also essential to contemplate 

the technical demands of life-detection. The deliberations from this workshop are succinctly 

presented in the following sections. 

 

3. HABITABILITY ON PLANETARY AND NICHE SCALES 

The habitability of any planet or satellite is estimated from its size, surface composition, 

climate, orbit, and exposure to stellar radiation, among other parameters. Prior knowledge of 

the events that each planetary body experiences during its formation is also imperative. For 

example, events such as bolide impact-driven degassing of volatiles from planetary interiors 

may result in rapid retention of liquid water on the planetary surface and a gaseous 
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atmosphere. With the advent of next-generation astronomical observatories like the James 

Webb Space Telescope, the Extremely Large Telescope, and the Wide Field Infrared Survey 

Telescope, the theoretical knowledge of planetary habitability will receive support from a 

sizeable statistical set of spectrally-characterized extrasolar planets. A reasonably-sized 

sample set of extrasolar planets will potentially contribute to our understanding of the 

possibility (or possible forms) of life existing on them. The telescopes and other instruments 

used for the characterization of habitable extrasolar planets will also characterize habitable 

bodies in the solar system at much higher spatial resolutions. These intra-solar system 

observations will be necessary for selecting landing site, a crucial factor shaping the type of 

life-detection payloads aboard exploration probes. 

 

Lessons from the traditional laboratory-based prebiotic chemistry research can tentatively 

inform the search for potential extraterrestrial biosignatures, but reliance on these studies to 

determine reasonable biomarkers must be considered critically. Extant biochemistry is 

presumably a product of the molecular evolution of various chemical species that might have 

populated the prebiotic soup. This process was perhaps driven by pertinent selection 

pressures across millennia, which eventually resulted in life as we know it today. Present 

prebiotic chemistry research is heavily biased by our knowledge of extant biochemistry. It is 

vital to acknowledge that “acceptable” biosignatures could be biopolymers that have never 

been achieved in prebiotic chemistry research, not to mention that chemistries in the sterile, 

controlled laboratory may be very different from chemistries in the field. A complete bias 

towards finding extant Terran biosignatures when searching for life elsewhere should, 

therefore, be avoided. 

 

It is supposed that the most convincing biosignatures are likely to be organic, simply because 

carbon is uniquely able to form a vast structural and informational molecular repertoire. Life-

detection techniques targeting a wide array of carbon-based molecules can be applied to all 

samples, those existing in the same or different environments or even environments 

undergoing temporal variation. The insights obtained from such an approach is that extant 

biological, abiological or extinct biological samples will all provide unique identifiable 

signals. Biological and abiological samples may both contain thousands or millions of unique 

low molecular mass chemical species, and these can be explored in depth in the laboratory. 

Even if the identities of these species are not entirely known, the relationships between them 

can be indicative of biology. This aspect could be especially useful for extraterrestrial life-
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detection, as it is possible the nature of terrestrial biochemistry is either historically 

contingent or tightly linked to Earth’s geochemistry, and thus alien life could have evolved 

differently. Terran life produces a unique ensemble of organic molecules that is distinct from 

the vast combinatorial chemical space of abiotic chemistry. To maximize the chances of 

identifying real biosignatures and avoid false positives, an approach targeting chemical 

distributions to identify patterns unique to life will be necessary. 

 

4. CONCEPTS & TECHNOLOGIES UNDER CONSIDERATION 

Life-detection demands a technologically intricate space mission design. One causal factor of 

this intricacy is the fact that habitable environments are not distributed globally on planetary 

bodies, but possibly exist in geographically limiting niches. Reaching such often-inaccessible 

sites will require agile robotic probes that are robust, able to seamlessly communicate with 

orbiters and deep space communications networks, be operationally semi-autonomous, have 

high-performance energy supplies, and are sterilizable to avoid forward contamination. 

Moreover, to build confidence in any positive detection of life beyond Earth, cutting-edge 

payloads are needed that can investigate multiple aspects of the ‘Life Detection Ladder’ 

described previously [4]. 

 

Despite their potential habitability, the environmental conditions on Enceladus, Mars, and 

other planetary bodies are dissimilar to Earth and hence pose challenges for the R&D of 

appropriate life-detection instruments. Even assuming that life could exist in all these places, 

the workshop participants noted that a probe-payload combination designed for a mission to a 

potentially habitable niche on one planetary body would not work seamlessly for niches on 

another body. Given the distinct biology or bio-chemo-markers that different environments 

sustain, thus the probe-payload combination and the space mission design needed to explore 

habitable zones on Mars, Enceladus, Titan, and Europa would need to be custom-made. 

 

In agreement with the suggestions of the NASA Life Detection Ladder, the participants in 

this workshop promoted a variety of life-detection instruments. In-situ visual recognition of 

micro-organisms and detection of genetic or metabolic bio-macromolecules are some of the 

current aims of extant life detection technologies. The bio-geo-chemo-signatures of extinct 

and extant life can be detected using Raman and other spectroscopy techniques, 

enantioselective and two-dimensional gas chromatography, high-resolution mass 
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spectrometry, microfluidic devices, and microscopes. The workshop participants agreed on 

the necessity to pursue life-detection space missions with a suite of several instruments. 

Results obtained from various instruments can avoid spurious measurements and provide 

statistical analysis. 

 

To search for life in regions theoretically devoid of life requires novel detection techniques or 

probes. For example, air sampling in Earth’s stratosphere with a novel scientific cryogenic 

payload has led to the isolation and identification of several new species of bacteria; this was 

an innovative technique analyzing a region of the atmosphere that was initially believed to be 

devoid of life [5]. Novel high-sensitivity fluorescence microscopy techniques may be utilized 

to detect extraterrestrial organic compounds with catalytic activity surrounded by 

membranes, i.e., extraterrestrial cells [6]. Nucleic acid (i.e., genetic/informational 

biopolymers) detection and sequencing [7] provides an even more unambiguous approach to 

detecting ancestrally related life, Terran contamination, or non-familiar nucleic acid-based 

life. Despite the advent of highly portable single-molecule sequencing technology, current 

methods require extensive conditioning of nucleic acid molecules (library preparation) and 

biological reagents. Technologies under development, such as quantum tunneling-based 

nanogap devices [8], could eliminate this complexity and simultaneously target nucleic acids, 

peptides, and other small molecules while achieving improved detection limits and 

broadening the potential range of life that could be detected. Incorporating microfluidics—

due to their requirement of small fluid volumes, miniaturization, and low power 

consumption—that use novel nanomaterials for identifying microorganisms or their signature 

molecules is an ideal proposition for space missions which have weight and size constraints. 

Enantioselective separation techniques can distinguish between amino acids and sugars 

formed by abiotic or biotic reaction mechanisms and detect molecular homochirality, which 

may be a diagnostic biosignature [9]. Enantioselective gas chromatography has been utilized 

on the ESA Rosetta and ExoMars and NASA Mars Science Laboratory missions. It can be 

used with pertinent innovation for future life-detection missions. 

 

Mass spectrometry (MS) has been extensively used for surface and atmospheric chemical 

characterization on numerous space missions. Miniaturized mass spectrometers with 

increased mass resolution and multiple steps of fragmentation (e.g., Cosmo-Orbitrap by 

European Space Agency (ESA), MULTUM by Japan Aerospace Exploration Agency 

(JAXA), and MASPEX and LD-TOF-MS by NASA) will be available for in-situ 
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measurements on future life-detection missions. These MS techniques would allow 

characterization of high-mass organic solids including biopolymers and also enable in-situ 

elemental composition measurement for mineralogy and isotopic dating methods [10], which 

are essential for characterizing geo-chemo-signatures of habitability. The exciting 

developments in machine learning and its application to complex MS data will be invaluable 

in aiding the detection of organic and inorganic markers of biology. The specificity of these 

and other instruments also suggest life-detection missions demands the continuous invention 

of novel probe-payload combinations customized for exploration of each potentially 

habitable site. In the 2020s, sample-return missions like JAXA’s Martian Moons eXploration 

mission to Phobos and Hayabusa-2 to asteroid Ryugu and NASA’s OSIRIS-rEX to asteroid 

Bennu will refurbish the Earth-based infrastructure for environmentally-controlled and near-

sterile curation and analyses of organic-enriched extraterrestrial materials. The sample 

handling knowledge generated from these missions will improve planetary protection 

procedures. Along with the advances anticipated from in-situ exploration, sample-return 

missions will also contribute to advances in handling potentially biotic extraterrestrial 

materials. 

 

Sample-return missions are inherently technically sophisticated, but high-performance 

ground-based instruments can extensively characterize returned samples. High-resolution 

analyses on in-situ exploration missions are presently challenging from the purview of data 

transmission rate, as huge amounts of data may be generated. These aspects of life-detection 

missions call for the advancement of the current deep space communication technologies. 

 

Analytical instruments associated with high-powered synchrotron radiation and magnetic 

field facilities will continue to possess superior characterization abilities, and only through 

sample-return missions, their features could be utilized. Ultra-high resolution Fourier-

transform-ion cyclotron resonance-MS supported by high magnetic fields allows 

unambiguous assignment of molecular formulas to samples containing high molecular mass 

organic solids and polymers. Another technique, the synchrotron-based scanning 

transmission x-ray absorption microscopy is capable of distinguishing the distributions of 

protein, polysaccharide, and lipid in a living microorganism, and also characterizing 

biomineralization and nano-scale bioweathering. These techniques are disposed to provide 

more reliable and comprehensive characterization of chemically-complex materials. Efforts 

are also being undertaken to process high-resolution chemical characterization data with 



 8 

pattern recognition, machine learning, and artificial intelligence to determine the biological or 

abiological origin of the samples, a crucial determinant of the presence of life. 

 

 

5. CONCLUSION 

The authors of this white paper unanimously recognize the significance of life-detection 

instruments for unambiguous identification of extraterrestrial life and addressing the 

challenges involved in this. The authors acknowledge the necessity to establish an 

international network to forge collaborative R&D of life-detection technologies and a 

worldwide peer-reviewing network for data analyses. Life-detection is a capital-intensive 

endeavor capable of yielding enormous scientific return-on-investment and industrial spin-

offs. An international network is crucial for pooling and coordinating human, financial, and 

technical resources and harnessing creativity, talent, and infrastructure across institutions and 

governments. These factors will be vital for the R&D of life detection technologies and the 

growth of astrobiology as a science in the decades to come. 

 

 

ACKNOWLEDGEMENTS 

The authors are grateful to the Earth-Life Science Institute (ELSI) for supporting the 

workshop on which this white paper is based. The ELSI, at the Tokyo Institute of 

Technology, is a World Premier International Research Center supported by the Ministry of 

Education, Culture, Sports, Science and Technology (MEXT) of the Government of Japan. 

The workshop and the publication are supported by ELSI and the ELSI Origins Network 

(EON), which is supported by a grant from the John Templeton Foundation. The opinions 

communicated in this white paper are those of the authors and do not essentially reflect the 

views of the John Templeton Foundation. 

 

 

 

 

 



 9 

REFERENCES 

1. Conrad, P. & Nealson, K.H. (2004). A non-Earth centric approach to life detection. 

Astrobiology 1(1), 15-24. 

2. Hays, L. et al. (2015). NASA Astrobiology Strategy 2015. Retrieved from the NAI website 

https://nai.nasa.gov/media/medialibrary/2015/10/NASA_Astrobiology_Strategy_2015_15100

8.pdf  

3. Chyba, C.F., Whitmire, D.P. & Reynolds, R. (2000). Planetary Habitability and the Origin of 

Life. In Protostars and Planets IV, eds. Mannings, V., Boss, A.P., Russell, S.S. University of 

Arizona Press, Tucson, p. 1365. 

4. Smith, D. (2016). NASA’s Life Detection Ladder 2016. In Search for Life Across Space and 

Time: Proceedings of a Workshop. The National Academies of Sciences, Engineering and 

Medicine. 

5. Shivaji, S., et al. (2009). Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus 

aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper 

atmosphere. Int. J. Syst. Evol. Microbiol. 59, 2977-2986. 

6. Yamagishi, A. et al. (2014). Life detection microscope for in-situ imaging of living cells on 

Mars. 45th Lunar Planet. Sci. Conf., Houston, TX, USA. 

7. Carr, C.E, et al. (2017). Towards in situ sequencing for life detection. IEEE 

Aerospace Conference. March 4-11, 2017 Big Sky, MT, USA.  

8. Di Ventra, M. & Taniguchi, M. (2016). Decoding DNA, RNA and peptides with quantum 

tunnelling. Nature Nanotech. 11, 117–126. 

9. Barron, L.D. (2008). Chirality and life. Space Sci. Rev. 135, 187-201. 

10. Cho, Y. et al. (2016). An in-situ K-Ar isochron dating method for planetary landers using a 

spot-by-spot laser-ablation technique. Planetary and Space Science 128, 14-29. 


