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guillaume.ferriere@umontpellier.fr

Abstract

We consider the logarithmic Schrödinger equation in the focusing regime. For this equation, Gaussian initial
data remains Gaussian. In particular, the Gausson - a time-independent Gaussian function - is an orbitally stable
solution. In the general case in dimension d = 1, the solution with Gaussian initial data is periodic, and we compute
some approximations of the period in the case of small and large oscillations, showing that the period can be as
large as wanted for the latter. The main result of this article is a principle of nonlinear superposition: starting from
an initial data made of the sum of several standing Gaussian functions far from each other, the solution remains
close (in L2) to the sum of the corresponding Gaussian solutions for a long time, in square of the distance between
the Gaussian functions.

1. INTRODUCTION

1.1. Setting

We are interested in the Logarithmic Non-Linear Schrödinger Equation

i ∂tu+
1

2
∆u+ λu ln |u|2 = 0, u|t=0

= uin, (1.1)

with x ∈ R
d, d ≥ 1, λ ∈ R \ {0}. It was introduced as a model of nonlinear wave mechanics and in nonlinear

optics ([5], see also [6, 20, 21, 23, 27]). The case λ < 0 (whose study goes back to [10, 19]) was recently studied
by R. Carles and I. Gallagher who made explicit an unusually faster dispersion with a universal behaviour of the
modulus of the solution (see [7]). The knowledge of this behaviour was very recently improved with a convergence
rate but also extended through the semiclassical limit in [16]. On the other hand, the case λ > 0 seems to be the more
interesting from a physical point of view and has been studied formally and rigorously a lot (see for instance [14, 21]).
In particular, the existence and uniqueness of solutions to the Cauchy problem have been solved in [10]. Moreover,
it has been proved to be the focusing case and, in this context, a usual question is the existence of stationary states
called solitons and their stability. For this equation, we know that the so called Gausson

Gd(x) := exp
(d

2
− λ|x|2

)

, x ∈ R
d, (1.2)

and its derivates through the invariants of the equation (translation in space, Galilean invariance, multiplication by a
complex constant) are explicit solutions to (1.1) and bound states for the energy functional. Several results address
the orbital stability of the Gausson as well as the existence of other stationary solutions to (1.1); see e.g. [5, 8, 14, 2].
However, these solutions are not the only explicit solutions: indeed, any Gaussian initial data remains Gaussian and
can be made explicit up to a matrix ODE. In this article, we study a particular class of time-dependent Gaussian
solutions to (1.1) already introduced in [5] which are (almost) periodic in time in dimension 1, so called breathers,
and we address a partial result for the nonlinear superposition of Gaussian solutions.
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Remark 1.1 (Effect of scaling factors). As noticed in [7], unlike what happens in the case of an homogeneous nonlin-
earity (classically of the form |u|pu), replacing u with κu (κ > 0) in (1.1) has only little effect, since we have

i ∂t(κu) +
1

2
∆(κu) + λ(κu) ln |κu|2 − 2λ(lnκ)κu = 0.

The scaling factor thus corresponds to a purely time-dependent gauge transform:

κu(t, x)e−2itλ lnκ

solves (1.1) (with initial datum κu0). In particular, the L2-norm of the initial datum does not influence the dynamics
of the solution.

1.2. The Logarithmic Non-Linear Schrödinger Equation

The Logarithmic Non-Linear Schrödinger Equation was introduced by I. Białynicki-Birula and J. Mycielski [5]
who proved that it is the only nonlinear theory in which the separability of noninteracting systems hold: for noninter-
acting subsystems, no correlation is introduced by the nonlinear term. This means that for any initial data of the form
uin = u1in ⊗ u2in, i.e. uin(x) = u1in(x1)u

2
in(x2) for all x1 ∈ R

d1 , x2 ∈ R
d2 and x = (x1, x2), the solution u to (1.1) (in

dimension d = d1 + d2) is u(t) = u1(t)⊗ u2(t) where u1 and u2 are the solutions to (1.1) in dimension d1 (resp. d2)
with initial data u1in and u2in respectively.

They also emphasized that the case λ > 0 is probably the most physically relevant, and we will mathematically
study this case in the rest of this paper. For this case, the Cauchy problem has already been studied in [10] (see also
[9]). We define the energy space

W (Rd) :=
{

v ∈ H1(Rd), |v|2 ln |v|2 ∈ L1(Rd)
}

.

It is a reflexive Banach space when endowed with a Luxembourg type norm (see [8]). We can also define the mass
and energy for all v ∈ W (Rd):

M(v) := ‖v‖2L2 , E(v) :=
1

2
‖∇v‖2L2 − λ

∫

Rd

|v|2(ln |v|2 − 1) dx.

Theorem 1.2 ([10, Théorème 2.1], see also [9, Theorem 9.3.4]). For any initial data uin ∈ W (Rd), there exists a
unique, global solution u ∈ Cb(R,W (Rd)). Moreover the mass M(u(t)) and the energy E(u(t)) are independent of
time.

Note that whichever the sign of λ, the energy E has no definite sign. The distinction between focusing or defocus-
ing nonlinearity is thus a priori ambiguous. However, this ambiguity has already been removed by [8] (case λ > 0)
and [7] (case λ < 0). Indeed, in the latter, the authors show that all the solutions disperse in an unusually faster way
with a universal dynamic: after rescaling, the modulus of the solution converges to a universal Gaussian profile. On
the other hand, it has been proved that there is no dispersion for large times for λ > 0 thanks to the following result,
and hence it is the focusing case.

Lemma 1.3 ([8, Lemma 3.3]). Let λ > 0. For any k < ∞ such that

Lk :=
{

v ∈ W (Rd), ‖v‖L2 = 1, E(v) ≤ k
}

6= ∅,

there holds
inf
v∈Lk

1≤p≤∞

‖v‖Lp > 0.

This lemma, along with the conservation of the energy and the invariance through scaling factors (with Remark
1.1), indicates that the solution to (1.1) is not dispersive, no matter how small the initial data are. For instance, its L∞

norm is bounded from below: to be more precise, there holds for all t ∈ R (see the proof of the above result)

‖u(t)‖L∞ ≥ exp
[

− E(u(t))

2M(u(t))

]

= exp
[

− E(uin)

2M(uin)

]

.
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Actually, a specific Gaussian function (1.2) called Gausson and its derivates through the invariants of the equation
and the scaling effect,

Gd
ω,x0,v,θ

(t, x) = exp

[

i

(

θ + 2λωt− v · x+
|v|2
2

t

)

+ ω − λ|x− x0 − vt|2
]

, t ∈ R, x ∈ R
d,

for any ω, θ ∈ R, x0, v ∈ R
d, are known to be solutions to (1.1), as proved in [14] (and already noticed in [5]). It has

also been proved that other radial stationary solutions to (1.1) exist in dimension d ≥ 3 (see [14]), but the Gausson is
clearly special since it is the unique positive C2 stationary solution to (1.1) (also proved in [14]) and also since it is
orbitally stable ([2], following the work of [8]).

Theorem 1.4 ([2, Theorem 1.5]). Let ω ∈ R. For any ε > 0, there exists η > 0 such that for all u0 ∈ W (Rd)
satisfying

inf
θ,x0

∥

∥

∥
u0 − eω+iθGd(.− x0)

∥

∥

∥

W (Rd)
< η,

the solution u(t) of (1.1) with initial data u0 satisfies

sup
t

inf
θ,x0

∥

∥

∥
u(t)− eω+iθGd(.− x0)

∥

∥

∥

W (Rd)
< ε.

1.3. Main results

From now on, we assume λ > 0 unless it is explicitly precised.

1.3.1. Existence of breathers. The Gausson is an explicit important solution to (1.1). However, it is not the only
solution that can be made explicit:

Proposition 1.5. Any Gaussian initial data

exp
[d

2
− x⊤Ainx

]

, (1.3)

with Ain ∈ Sd(C) :=
{

M ∈ Md(C),M
⊤ = M

}

(where ⊤ designates the transposition) such that ReAin is positive
definite, gives rise to a Gaussian solution to (1.1) of the form

uAin(t, x) := b(t) exp
[d

2
− x⊤A(t)x

]

. (1.4)

Furthermore, b(t) is explicitly given by the knowledge of A whereas the evolution of A is given by a first-order
matrix ordinary differential equations (see the system of equations (6.14), (6.15) and (6.16) of [5]). In dimension
d = 1, this system simply becomes a system of two first-order ODEs. Yet, this system can be even more simplified,
as it can be summarized into a particular second-order ODE, whose evolution can be better understood (see [7, 3]). In
particular, as already noticed, an important feature is that both solutions to the system of two first-order ODEs and the
second-order ODE are periodic, whatever the initial data are.

Before introducing this ODE, we define

C
+ := {z ∈ C,Re z > 0} .

Proposition 1.6. For any α ∈ C
+, consider the ordinary differential equation

r̈α =
1

r3α
− 2λ

rα
, rα(0) = Reα =: αr, ṙα(0) = Imα =: αi.

It has a unique solution rα ∈ C∞(R) with values in (0,∞). Moreover, it is periodic.

We can now properly define the breathers in dimension d = 1.
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Proposition 1.7 (Breathers for logNLS in dimension 1). For any α ∈ C
+, set

uα(t, x) :=

√

αr

rα(t)
exp
[1

2
− iΦ(t)− x2

2rα(t)2
+ i

ṙα(t)

rα(t)

x2

2

]

, t, x ∈ R,

where

Φ(t) :=
1

2

∫ t

0

1

rα(s)2
ds+ λ

∫ t

0
ln

rα(s)

α0
ds− λt.

Then uα is solution to (1.1) in dimension d = 1.

We emphasize that these solutions to (1.1) are periodic in time up to a time-depending complex argument; to be

more precise, uα exp
[

−iφα(t)
]

(with φα(t) real) is periodic. Therefore, excluding the case α = (2λ)−
1
2 which is

the Gausson, this explains why we call those solutions breathers. It is worth pointing out that other solutions to (1.1)
in dimension 1, to be more precise

Gω,x0(t, x) := exp
[

−2itλω + ω − λ(x− x0)
2
]

, t, x ∈ R,

for any ω, x0 ∈ R, are known to be periodic in time, but their shape does not evolve (|Gω,x0 | is independent of time)
contrary to these breathers.

From these results, the behaviour of these breathers and their shapes are in complete correlation with the knowl-
edge of rα and its evolution in time. Therefore, it is interesting to study rα more deeply. In particular, we can study
its period, more precisely its evolution with respect to the initial data of rα. Indeed, it cannot be easily computed
(its expression is rather complex, with an integral which cannot be explicitly computed), and one can wonder what
regularity with respect to the parameters it has. Still, some approximations are available in two cases: the case of
small oscillations (around (2λ)−

1
2 ) and the case of "big" oscillations. An interesting feature in the latter was found as

it appears that the period can become very large. We also postpone a discussion about the behaviour of uα in this case
in Section 2.3.

Theorem 1.8. The period Tα of rα is continuous with respect to α. In addition, it satisfies Tα −→ π√
2λ

when

α → (2λ)−
1
2 and Tα ∼

√

π
λ
αr exp

[

α2
i

4λ + 1
4λα2

r

]

when γ → ∞ or Re γ → 0.

Those breathers can also be generalized in higher dimension d ≥ 2. Indeed, as already noticed in [5], if the
Gaussian initial data (1.3) is such that ReAin and ImAin commute, then ReA(t) and ImA(t) commute for any
t ∈ R (since [ReA(t), ImA(t)] is constant) and can be orthogonally co-diagonalized by the same time-independent
orthogonal basis. To this aim, define the orthogonal group Od(R) and set

Sd(C)
Re+ := {A ∈ Sd(C); ReA is positive definite } ,

Sd(C)
Re++ :=

{

A ∈ Sd(C)
Re+; ReA and ImA commute

}

.

Proposition 1.9 (Characterization of breathers for logNLS). Let d ∈ N
∗ and A ∈ Sd(C)

Re++. Set

uAin(x) = exp
[d

2
− x⊤Ax

]

, x ∈ R
d,

and uA the solution to (1.1) with initial data uAin.
Then there exists R ∈ Od(R) and α1, . . . , αd ∈ C

+ such that for all x ∈ R
d,

uA(t, Rx) = uα1(t, x1)u
α2(t, x2) . . . u

αd(t, xd).

However, in dimension d ≥ 2, those generalized breathers are only a particular case among the more generalized
class of Gaussian solutions of the form (1.4). It has also already been pointed out (in [5]) that the positive definiteness
of ReA(t) is preserved and the oscillations are bounded in amplitude. Even more, the spectrum of ReA(t) can be
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bounded by below by a positive time-independent constant ainf but also by above, and along with the relation between
ReA(t) and |b(t)|,

|b(t)| =
(

detReA(0)

detReA(t)

)
1
4

,

we see that some features of the breathers remain true even though the periodicity is lost.
We denote those Gaussian solutions to (1.1) by taking care of the invariants and the scaling factor: for any

Ain ∈ Sd(C)
Re+, x0, v ∈ R

d, ω, θ ∈ R, we set

Gd
Ain,ω,x0,v,θ

(t, x) := exp

[

i

(

θ + 2λωt− v · x+
|v|2
2

t

)

+ ω

]

uAin(t, x− x0 − vt),

where uAin is the solution to (1.1) with initial data (1.3).

1.3.2. Nonlinear superposition. In the context of solitons or breathers for a non-linear dispersive equation, an im-
portant question is the understanding of the interactions between them for an initial data made of the sum of several
decoupled solitons or breathers. The qualitative information which come from this study should allow to better under-
stand the dynamics and behaviours induced by the equation and its flow. One of the usual related topics is the problem
of the existence of multi-soliton solution, i.e. a solution which converges (in some sense) to the sum of solitons when
t → ∞, and of its stability in order to investigate whether or not they are generic objects for the dynamics of this
equation.

The inverse scattering transform method was the first method used to construct multi-solitons for NLS equation
[34]. However, such a method is restricted to equations which are completely integrable (like the Korteweg-de Vries
equation and the cubic nonlinear Schrödinger equation in dimension 1). Another method, using energy techniques,
meaning that it relies on the use of the second variation of the energy as a Lyapunov functional to control the difference
of a solution with the soliton sum, appeared in the early 2000 [25] and has been used a lot since (e.g. [24, 26, 13, 12]).

Known results on the question of stability of multisolitary wave solutions are based on asymptotic stability, which
means that the solution converges (in some sense) as t → ∞ to the sum of several solitary waves. It is relatively
natural to expect that, at least when the interactions are local and the composing solitons are exponentially decaying
at infinity, a multi-soliton will be orbitally stable if all the composing solitons are orbitally stable. For some equations,
like the generalized Korteweg–de Vries (gKdV) and the nonlinear Schrödinger equation (NLS), the orbital stability in
H1 of this sum has been shown under an assumption of sufficient relative speed between the solitons and flatness of
the nonlinearity (see for instance [25, 26] and the references in there). For instance, the KdV equation is also known
for having special explicit solutions, called N -solitons (N ≥ 2), corresponding to the superposition of N traveling
waves with different speeds that interact and then remain unchanged after interaction and behaving asymptotically in
large time as the sum of N traveling waves (see [28]). Those N -solitons are also orbitally stable in H1 with a more
precise description of the asymptotic stability (see [25]).

On the other hand, as soon as one of the solitons of the sum is unstable, the multi-soliton constructed for this
sum is expected to be unstable. Such a result has been proved by R. Côte and S. Le Coz [12] for the subcritical
NLS equation with unstability in H1. We can also cite [11, 18, 31] for partial results in the L2-subcritical case and
[17, 22, 29, 30] for results on instability with a supercritical nonlinearity.

However, even if it is unstable, a multi-soliton may still exist for this sum with (at least) one unstable soliton as
soon as the relative speed is great enough ([12]). Thus, even though this multi-soliton should be unstable, a solution
with initial data close to this multi-soliton (for instance equal to the sum of solitons) will remain close to it for
some time, which should be long if the solitons in the sum get away from each other, since the interactions between
them become smaller and smaller as the distance between the solitons increases (remember that the solitons vanish
at infinity, and often decrease exponentially). Such a study can even be generalized to a sum of standing solitons
(meaning that the minimum relative speed is 0), as long as they are far away from each other.

One can also wonder if breathers are stable, or also if multi-breathers exist and are stable too. Indeed, some
breathers are known to be stable, for instance in H2 for the MKdV equation [1]. However, to the best of our knowledge,
the question of existence and even more stability of multi-breathers have been little studied. Alternatively, the previous
problem of nonlinear superposition (i.e. how long a solution with initial data a sum of breathers will remain close to
this sum) seems an interesting first question in this way.
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For (1.1), we have a large class of Gaussian functions solution which includes solitons (Gaussons) and breathers.
However, the only thing we know about them is that the Gausson is orbitally stable. To be able to understand further
the behaviour of this equation, some numerical methods have been developed by W. Bao, R. Carles, C. Su and Q.
Tang [3, 4]. In the latter, some numerical simulations have been performed and very interesting and new features have
been found. For instance, some of the behaviours found in these simulations along with the orbital stability of the
Gausson suggest not only the existence of multi-solitons [15], but also their stability, at least in dimension 1.

But we will mostly focus in particular on the first two simulations in Fig. 4.5 of this article, who falls into our
study with λ = 1. Beginning with two Gaussons whose distance from each other is 10 (for the first simulation) or
6 (for the second), the behaviour of the solution is rather different. For the former, it gives the impression that the
interactions between the two Gaussons are so small that nothing seems to happen: the numerical solution has the
same form at any time as the initial data and is almost constant for a very large time. On the other hand, for the latter,
the interactions between the Gaussons make them move closer from each other, very slowly at first but then faster
and faster, until they cross each other at time t = 13.6 without (almost) any change in their form, except two little
structures which go to infinity on both sides. From this moment, we observe an almost periodic behaviour: the two
"Gaussons" oscillate, crossing each other almost regularly, whereas some other little structures appear (less and less
regularly) and go to infinity.

Therefore, a huge change in the behaviour of the solution is seen from a small change in the distance between
the two Gaussons. In particular, the first simulation seems to show that the structure is rather stable, which is very
surprising since no standing multi-solitons have been proved to be stable or even exist for any equation (to the best of
our knowledge). Yet, the simulation may not reflect the real solution for large times, thus we will simply say that the
solution remain close to the sum of the two Gaussons for a large time.

The main result of this paper is a partial result about this observation, with an estimate of the L2 distance between
the sum of solitons/breathers/Gaussian solutions of (1.1) and the solution of (1.1) with the previous sum as initial data.

Theorem 1.10 (Nonlinear superposition principle for logNLS). Let d ∈ N
∗. There exists Cd > 0 such that the

following holds. Consider λ > 0, N ∈ N
∗ and take xk ∈ R

d, Ak
in ∈ Sd(C)

Re+, ωk ∈ R and θk ∈ R for k = 1, . . . , N
and v ∈ R. Let u the solution to (1.1) with initial data uin(x) :=

∑

Gd
Ak

in,ωk,xk,v,θk
(0, x) for any x ∈ R

d. Define Ak(t)

provided by Proposition 1.5 for each Ain
k and set

τ− := inf
t,k,j

σ(ReAk(t)), τ+ := sup
t,k,j

σ(ReAk(t)).

Then 0 < τ− ≤ τ+ < ∞ and there exist ε0 > 0 depending only on δω := max
k

|ωk − ωk+1|, τ−, τ+ and N such

that if

ε :=

(

min
k

|xk+1 − xk|
)−1

< ε0,

then for all t ≥ 0

∥

∥

∥
u(t, .) −

∑

Gd
Ak,ωk,xk,v,θk

(t, .)
∥

∥

∥

L2(R)
≤ CdN

3
2

λ τ+

ε
d
2
+1√τ−

exp

[

− τ−
4ε2

+max
j

ωj + 2λt

]

.

Remark 1.11. If the real and imaginary parts of Ak commute, then Proposition 1.9 applies and gives αk
1 , . . . , α

k
d

coming from Ak for all k = 1, . . . , N . Hence, it is easy to prove that

τ− =
1

2
min
t,k,j

rαk
j
(t)−2, τ+ =

1

2
max
t,k,j

rαk
j
(t)−2.

Furthermore, if all the Aks are equal to λ Id, then τ− = τ+ = λ and the inequality becomes

∥

∥

∥
u(t)−

∑

Gd
Ak ,ωk,xk,v,θk

(t)
∥

∥

∥

L2(R)
≤ CdN

3
2

λ
3
2

ε
d
2
+1

exp

[

− λ

4ε2
+max

j
ωj + 2λt

]

, ∀t ≥ 0.
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This result gives an interesting time during which the solution u remains close to G :=
∑

Gd
Ak ,ωk,xk,v,θk

when
the minimum distance between the solitons/breathers/Gaussian solutions is great enough. Indeed, take δ > 0 as small
as we want. The previous result say that the inequality

∥

∥

∥
u(t, .)−

∑

Gd
Ak ,ωk,xk,v,θk

(t, .)
∥

∥

∥

L2(R)
≤ δ

holds for all t ∈ [0, tδ ] where

tδ :=
τ−

8λ ε2
− ω

2λ
+

d
2 + 1

2λ
ln ε+

1

2λ
ln

[

δ
√
τ−

CdN
3
2λτ+

]

,

with ω := maxj ωj , as soon as ε is small enough. Thus, if we fix everything except (xk)k and then take a sequence of
family (xnk)1≤k≤N,n∈N∗ such that

εn :=

(

min
k

|xnk+1 − xnk |
)−1

−→
n→∞

0,

the resulting tnδ can be expanted as

tnδ =
τ−

8λ ε2n
+

d
2 + 1

2λ
ln εn +O(1) ∼ τ−

8λ ε2n
.

For instance, if all the Aks are equal to λ Id, then τ− = λ and we get at first order

tnδ ∼ 1

8ε2n
.

It is interesting to see that this time is in square of the minimal distance between the Gaussian functions which are
in the sum. This can explain the difference we have seen in the previous two numerical examples of [4] and the fact
that a rather small change in the distance between the two Gaussons imply a bigger change in the time until which the
solution remains close to the sum.

1.4. Outline of the paper

Section 2 is devoted to the study of the solution to (1.1) with Gaussian initial data. We recall in there the way to
get explicit solutions (as already proved in [5, 7, 3]) which leads to Propositions 1.6 and 1.7, and study more carefully
the characteristics of rα, in particular its period by proving Theorem 1.8. We also finish by a discussion about how
the behaviour of rα affects the behaviour of uα (in Section 2.3) and by a brief proof of Proposition 1.9. In Section 3,
we prove Theorem 1.10. The proof rely on a computation inspired from the energy estimate in L2 (available thanks
to Lemma 3.1) and on Lemma 3.2, whose proof takes most of the Section.

Acknowledgements

The author wishes to thank Rémi Carles and Matthieu Hillairet for enlightening and constructive discussions about
this work and the writing of this paper.

2. PROPAGATION OF GAUSSIAN DATA

In this section, we prove Propositions 1.7 and 1.9 and we describe more precisely the behaviour of rα, and in
particular its period. As already noticed in [5] and more rigorously analyzed in [7, 3], an important feature of (1.1)
is that the evolution of initial Gaussian data remains Gaussian. In particular, the case d = 1 is interesting since we
obtain a system of 2 ODEs which can be reduced into a single ODE.
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2.1. From (1.1) to ordinary differential equations

We seek a solution to (1.1) (in dimension d = 1) under the form:

u(t) = b(t) exp
(1

2
− 1

2
µ(t)x2

)

, t, x ∈ R,

where µ(t), b(t) ∈ C with Reµ(t) > 0 for all t. We can also assume b(0) = 1 thanks to Remark 1.1.

Remark 2.1. We recall the expression of the (one-dimensional) Gausson

exp
(1

2
− λx2

)

.

This explains why we took this form: b(t) = 1 and µ(t) = 2λ is therefore a solution.

It has already been shown in [5] that b takes the form

b(t) =

(

µr(t)

µr(0)

)
1
4

eiφ(t),

where φ(t) is given by

φ(t) = −1

2

∫ t

0
µr(s) ds+

λ

2

∫ t

0
ln

µr(s)

µr(0)
ds+ λt,

and the evolution of µ (µ(t) ∈ C) is driven by this ordinary differential equation

−iµ̇(t) + µ(t)2 = 2λµr(t).

The latter can actually be rewritten in a simpler way: indeed, µ can be expressed as (see [7])

µ =
1

r2
− i

ṙ

r
, (2.1)

where r is real and satisfies the ODE

r̈ =
1

r3
− 2λ

r
. (2.2)

Remark 2.2. The initial data of r are given by the initial data of µ through (2.1), thus the two degrees of freedom can
be put back on r. Indeed, r(0) = (µr(0))

− 1
2 can take any positive value whereas ṙ(0) = −(µr(0))

− 1
2 µi(0) can take

any real value independently. Thus, for any α = αr + iαi such that αr > 0 and αi ∈ R, we will denote by rα the
solution to (2.2) with initial data rα(0) = αr and ṙα(0) = αi.

Hence, for any α = αr + iαi such that αr > 0 and αi ∈ R (i.e. α ∈ C
+),

uα(t) :=

√

αr

rα(t)
exp
(

iφα(t) +
1

2
− 1

2rα(t)2
x2 + i

ṙα(t)

rα(t)

x2

2

)

, t, x ∈ R,

where

φα(t) = −1

2

∫ t

0

1

rα(s)2
ds− λ

∫ t

0
ln

rα(s)

αr
ds+ λt,

is solution to (1.1).

Remark 2.3. In particular, in the continuity of Remark 2.1, the Gausson (1.2) is uα for α = (2λ)−
1
2 . Indeed, we can

easily prove that rα(t) = (2λ)−
1
2 and φα(t) = 0 for all t ∈ R with those initial data.
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2.2. Study of rα

First of all, we rescale the equation in order to make the 2λ factor disappear. Indeed, if we define

τγ(t) :=
√
2λ rα

( t

2λ

)

, t ∈ R,

with γ :=
√
2λαr + i αi√

2λ
, then τγ satisfies

τ̈γ =
1

τ3γ
− 1

τγ
, τγ(0) = γr := Re γ > 0, τ̇γ(0) = γi := Im γ. (2.3)

Thus, there remains to study τγ instead of rα.
First, we should prove that τγ is well defined. For any γ ∈ C

+, the Cauchy-Lipschitz theorem gives a local
definition of τγ . However, since f(x) := x−3 − x−1 → +∞ when x → 0+, we need to check that τγ(t) never
touches 0 in finite time in order to prove that τγ(t) is defined for all t ∈ R. Such a result can be proved thanks to a
conserved quantity. Indeed, (2.3) has an Hamiltonian structure of the form:

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
,

where

H(p, q) =
1

2
p2 + F (q),

with

F (q) =
1

2q2
+ ln q

an anti-derivative of f . In particular, H is conserved by the flow of the equation, hence there holds

E(τγ) := 2H(τ̇γ , τγ) = (τ̇γ)
2 +

1

(τγ)2
+ 2 ln τγ = Eγ , (2.4)

where

Eγ := γ2i +
1

(γr)2
+ 2 ln γr. (2.5)

We emphasize that
F (q) → +∞, when either q → 0 or q → +∞. (2.6)

Hence, it is easy to prove that τγ(t) never touches 0 (and has actually a positive lower bound) and also has an upper
bound.

Proposition 2.4. For any γ ∈ C
+, τγ ∈ C∞(R) and there holds for all t ∈ R

1

1 +
√

Eγ − 1
≤ τγ(t) ≤ exp

Eγ

2
,

where Eγ ≥ 1 is defined by (2.5).

Proof. In view of the previous remark, proving the lower bound readily leads to the fact that τγ ∈ C∞(R) since f is
C∞ on (0,∞). To prove this lower bound, we use (2.4). Indeed, for any t ∈ I where I is the (maximal) interval of
definition for τγ , there holds

2 ln τγ(t) = −2 ln
1

τγ(t)
≥ −2

( 1

τγ(t)
− 1
)

,

where we used the fact that for all x > 0, lnx ≤ x− 1. Thus, plugging this inequality into (2.4) yields

1

(τγ)2
− 2
( 1

τγ(t)
− 1
)

≤ Eγ , i.e.
( 1

τγ(t)
− 1
)2

≤ Eγ − 1.
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In particular, there also holds
1

τγ(t)
− 1 ≤

√

Eγ − 1,

and then the lower bound for τγ(t) and the fact that τγ is defined on R readily follow. On the other hand, there also
holds thanks to (2.4)

2 ln τγ ≤ Eγ ,

which leads to the upper bound.

Actually, the behaviour of τγ can be better characterized. Indeed, we also emphasize that

f(1) = 0, f(x) < 0 ∀x > 1, f(x) > 0 ∀x ∈ (0, 1).

Thus, the phase portrait (drawn in Figure 1) is rather simple and looks like that of Lotka-Volterra or prey-predator
system. In particular, the trajectories are actually the level sets of H(p, q). Then they describe closed Jordan curves
symmetric to the x-axis that surround the point (1, 0) in the phase portrait, represented by

p = ±
√

Eγ − 2F (q) for γ− ≤ q ≤ γ+,

where 0 < γ− < 1 < γ+ are the two solutions to the equation 2F (q) = Eγ with unknown q. These values are
uniquely determined because of the strong monotonicity of F in the intervals (0, 1) and (1,∞) and F (1) = 1 < Eγ

and (2.6). Thus, similar arguments as for the Lotka-Volterra system can be applied, and then lead to the following
Proposition.

0 1 2 3 4 5−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0 Phase portrait

0 1 2 3 4 5−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0 Phase portrait

Figure 1: Phase portraits. At the left-hand side, the arrows give the direction of the flow; the green and magenta lines
are the horizontal and vertical isoclines respectively; the red lines are some trajectories, which fits the level set of
H(p, q). At the right-hand side, a part of some trajectories are drawn along with the isoclines again.

Proposition 2.5. For any γ ∈ C
+, τγ is periodic. Moreover, for any γ ∈ C

+ \ {1}, we have Eγ > 1 and therefore
the period Tγ is given by

Tγ = 2

∫ γ+

γ−

dx
√

Eγ − 1
x2 − 2 lnx

, (2.7)

where γ− (resp. γ+) is the only solution on (0, 1) (resp. (1,∞)) of

1

x2
+ 2 lnx = Eγ .

Proof. For a more precise proof, we refer to the Chapters 3.VII. and 11.X. of [33], by adapting it for a smaller interval
than (−∞,+∞). This is also a re-writing of equation (6.28) of [5].
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Now, we prove Theorem 1.8, starting by the continuity of the period with respect to the parameters. With the
previous result, we know that the definition of γ− and γ+ depends only on Eγ , hence the period depends on γ only
through Eγ , which is continuous with respect to γ thanks to (2.7). Therefore, we only need to prove the continuity of
Tγ is continuous with respect to Eγ .

Proposition 2.6. Tγ is continuous with respect to Eγ , hence also with respect to γ.

0 5 10 15 200

1

2

3

4

5

6 Evolution of some r with λ=0.5

0 5 10 15 200

1

2

3

4

5 Energy
r(0)=1.200
r(0)=2.025
r(0)=2.850
r(0)=3.675
r(0)=4.500

Figure 2: Plot of τγ (left) for 5 real γ between 1.2 and 4.5 and their energies (right).

0 10 20 30 40 50

−4

−2

0

2

4

Figure 3: Plot of some trajectories of τγ in the phase space for 5 real γ between 10 and 50.

First, we shall prove the regularity of γ− and γ+ with respect to Eγ (hence also to γ).

Lemma 2.7. γ− and γ+ are C∞ with respect to Eγ ∈ (1,∞).

Proof. The definition of γ− and γ+ leads to those two properties:
{

F (q)− Eγ

2 = 0

q ∈ (0, 1)
⇐⇒ q = γ−(Eγ),

{

F (q)− Eγ

2 = 0

q > 1
⇐⇒ q = γ+(Eγ).

Moreover, we know that F is C∞ on (0,∞) and that for all q ∈ R \ {1}, there holds

F ′(q) = f(q) 6= 0.

Therefore the conclusion readily follows from the implicit function theorem.
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Proof of Proposition 2.6. First, we cut the integral in (2.7) into 2 :

∫ γ+

γ−

dx
√

Eγ − 1
x2 − 2 ln x

=

∫ 1

γ−

dx
√

Eγ − 1
x2 − 2 ln x

+

∫ γ+

1

dx
√

Eγ − 1
x2 − 2 lnx

. (2.8)

Thanks to this equality, we prove the continuity of Tγ by proving the continuity of the two integrals in the right-hand
side. For example, for the latter, there holds

∫ γ+

1

dx
√

Eγ − 1
x2 − 2 ln x

=

∫ (γ+)2

1

dy

2
√
y
√

Eγ − 1
y
− ln y

=

∫ δ+

0

dz

2
√
1 + z

√

Eγ − 1
1+z

− ln(1 + z)

=

∫ 1

0

δ+ dx

2
√

1 + δ+x
√

Eγ − 1
1+δ+x

− ln(1 + δ+x)
, (2.9)

where δ+ = (γ+)
2 − 1 > 0. In particular, δ+ is continuous with respect to Eγ , therefore the integrand is continuous

with respect to Eγ . Moreover, setting gδ+(x) =
1

1+δ+x
− ln(1 + δ+x), there holds

gδ+(1) = Eγ , g′δ+(x) = (δ+)
2 x

(1 + δ+x)2
≥ (δ+)

2

(1 + δ+)2
x ∀x ∈ [0, 1].

Thus, there holds for all x ∈ [0, 1]

Eγ − gδ+(x) ≥
(δ+)

2

(1 + δ+)2

∫ 1

x

y dy =
(δ+)

2

2(1 + δ+)2
(1− x2) ≥ (δ+)

2

2(1 + δ+)2
(1− x).

Hence, there also holds
δ+

2
√

1 + δ+x
√

Eγ − 1
1+δ+x

− ln(1 + δ+x)
≤ 1 + δ+
√

2(1− x)
.

The continuity of the right-hand side of (2.9) readily follows from the theorem of continuity under integral sign. In
the same way, the first integral in the right-hand side of (2.8) can be transformed into

∫ 1

γ−

dx
√

Eγ − 1
x2 − 2 lnx

=

∫ 1

(γ−)2

dy

2
√
y
√

Eγ − 1
y
− ln y

=

∫ 1
(γ

−
)2

1

dz

2z
3
2

√

Eγ − z + ln z

=

∫ δ−

0

dz

2(1 + z)
3
2

√

Eγ − (1 + z) + ln(1 + z)

=

∫ 1

0

δ− dz

2(1 + δ−z)
3
2

√

Eγ − (1 + δ−z) + ln(1 + δ−z)
,

where δ− = 1
(γ−)2

− 1 > 0. Setting hδ−(x) := 1 + δ−x− ln(1 + δ−z), there holds in the same way:

hδ−(1) = Eγ , h′δ−(x) = (δ−)
2 x

1 + δ−x
≥ (δ−)2

1 + δ−
x ∀x ∈ [0, 1].

Hence similar arguments can be applied here and yield the continuity of the previous integral. Thus, we obtain the
continuity of Tγ with respect to Eγ , hence also with respect to γ since Eγ is continuous with respect to γ.
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Now that the continuity of the period with respect to the parameters is proved, and since it is impossible to get
a simpler expression of this period, we shall find some approximations. In particular, the question (i) of the Chapter
11.XI. of [33] is also interesting since, along with the fact that f ′(1) = −2, it gives the limit of the period of τγ when
γ goes to 1. We can also cite [32] for a proof of this result.

Proposition 2.8. When γ → 1, Tγ →
√
2π.

On the other hand, another interesting question is the period in the case of big oscillations. As one may think from
the phase portrait (Fig 1) and even more from the big trajectories (Fig 3), a small increase in the initial energy (the
energy of the trajectories in Fig 3 goes from 4 to 6) induces a big increase for the maximum of τγ (from 20 to 50) and
for the period. To prove this behaviour, explicit computations and inequalities are required and yield the following
result.

Proposition 2.9. When γ → ∞ or Re γ → 0,

Tγ ∼
√
2π exp

Eγ

2
.

Proof. First, we emphasize that the condition γ → ∞ or Re γ → 0 is equivalent to the simpler condition Eγ → +∞,
and therefore also to the facts that γ− → 0 and γ+ → +∞. To be more precise for γ+, there holds

2 ln γ+ + o(1) = Eγ , i.e. γ+ ∼ exp
Eγ

2
.

Then we cut the integral in (2.7) in two: before 1 and after 1. First,

∫ 1

γ−

dx
√

Eγ − 1
x2 − 2 ln x

=

∫ 1

γ−

dx
√

1
(γ−)2

− 1
x2 − 2 ln x

γ−

= γ−

∫ 1
γ
−

1

dy
√

1
(γ−)2

(

1− 1
y2

)

− 2 ln y

= (γ−)
2

∫ 1
γ
−

1

dy
√

1− 1
y2

− 2(γ−)2 ln y

≤ (γ−)
2

∫ 1
γ
−

1

dy
√

1− 1
y2

− 2(γ−)2(y − 1)

≤ (γ−)
2

∫ 1
γ
−

1

dy
√

(

y+1
y2

− 2(γ−)2
)

(y − 1)
.

Moreover, there holds for all y ∈ [1, 1
γ−

]

y + 1

y2
≥ γ− + (γ−)

2,

so that

∫ 1

γ−

dx
√

Eγ − 1
x2 − 2 ln x

≤ (γ−)2
√

γ− − (γ−)2

∫ 1
γ
−

1

dy√
y − 1

≤ γ−
√

1
γ−

− 1

[1

2

√

y − 1
]

1
γ
−

1

≤ γ−
2

−→ 0.
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On the other hand, we will prove a lower and an upper bound for the second part of the integral. For the lower
bound, we recall that 2F (γ+) = Eγ , so for all x ∈ [1, γ+]

Eγ −
1

x2
=

1

(γ+)2
− 1

x2
+ 2 ln γ+ ≤ 2 ln γ+.

Therefore,
∫ γ+

1

dx
√

Eγ − 1
x2 − 2 lnx

≥
∫ γ+

1

dx
√

2 ln γ+ − 2 ln x

≥ γ+

∫ 1

1
γ+

dy√−2 ln y
. (2.10)

The last integral converges as γ+ → ∞ to

∫ 1

0

dy√−2 ln y
=

∫ ∞

0

e−z dz√
2z

=

∫ ∞

0

√
2 e−ζ2 dζ =

√

π

2
.

Hence, the right-hand side of (2.10) is equivalent to
√

π

2
exp

Eγ

2
.

For the upper bound, with a change of variables x = ey and with y+ = ln γ+ → +∞, we first obtain
∫ γ+

1

dx
√

Eγ − 1
x2 − 2 lnx

=

∫ y+

0

ey dy
√

Eγ − e−2y − 2y
.

Moreover, using the convexity of y 7→ e−2y , there holds for all y ∈ [0, y+]

e−2y ≤ 1− y

y+
(1− e−2y+).

Thus, using also the fact that Eγ = e−2y+ + 2y+, we obtain
∫ γ+

1

dx
√

Eγ − 1
x2 − 2 lnx

≤
∫ y+

0

ey dy
√

Eγ −
(

1− y
y+

(1− e−2y+)
)

− 2y

≤
∫ y+

0

ey dy
√

(

2− 1−e−2y+

y+

)

(y+ − y)

≤ ey+
√

2− 1−e−2y+

y+

∫ y+

0

e−z dz√
z

≤ γ+
√

2− 1−e−2y+

y+

∫ (y+)2

0
2e−z2 dz ∼

√

π

2
exp

Eγ

2
.

The conclusion readily follows.

2.3. Discussion on uα

Those results show an interesting and surprising feature: the "period" of uα (i.e. the period of rα) can be very
long. Moreover, if we take a Gaussian initial data very concentrated

u0(t) = exp
(1

2
− δx2

)
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with δ > 0 large compared to λ, the solution will first disperse, very quickly at the beginning but more and more
slowly, until a time when this behaviour turns round. Then the solution will re-concentrate, slowly at first and more
and more quickly until it comes back to its initial value (up to a complex modulation) at a time around

√

π

2
exp

Eγ

2
=

√

πλ

2δ
exp

δ

2λ
.

Indeed, in the proof of Proposition 2.9, we also proved implicitly that τγ is most of the time greater than 1 when Eγ

is large. Even more, we proved that the time during which τγ is less than 1, given by

2

∫ 1

γ−

dx
√

Eγ − 1
x2 − 2 lnx

,

goes in fact to 0 as Eγ goes to ∞.
For instance, the absolute value of the breather with δ = 35 and λ = 0.5 in the initial data is plotted in Figure 4.
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t=58.48
t=87.73

Figure 4: Plot of the breather for λ = 0.5 with initial data exp
(

1
2 − δx2

)

with δ−1 = 2× 352 for some times between

0 and 43.86 (left) and between 43.86 and 87.73 (right).

2.4. Proof of Proposition 1.9

The proof of this theorem relies on the following result which characterizes Sd(C)
Re++.

Lemma 2.10. For any A ∈ Sd(C)
Re++, there exists R ∈ Od(R) and β1, . . . , βd ∈ C

+ such that

A = RDR⊤,

where

D =







β1
. . .

βd






.

Proof. By definition, Ar := ReA and Ai := ImA are real symmetric and commute. Therefore, they can be or-
thogonally co-diagonalized, which means that we have a R ∈ Od(R) and Dr and Di real diagonal matrices such that
Ar = RDrR

⊤ and Ai = RDiR
⊤. Moreover, since Ar is positive definite, the diagonal coefficients of Dr are positive.

Therefore, A = RDR⊤ where D = Dr + iDi is a diagonal matrix whose diagonal coefficients are in C
+.
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Proof of Proposition 1.9. Set R ∈ Od(R), β1, . . . , βd ∈ C
+ and D given by Lemma 2.10 for A. Since uA is a

solution to (1.1) which is invariant under an orthogonal transformation, uA(t, Rx) is also solution to (1.1) with initial
data

uAin(Rx) = exp
[d

2
− x⊤Dx

]

= uα1
in (x1) . . . u

αd

in (xd),

where for all j ∈ {1, . . . , d}
αj :=

1
√

2Re βj
− i

Imβ
√

2Re βj

Since every uαj is solution to (1.1) in dimension 1, we know that

uα1(t)⊗ · · · ⊗ uαd(t)

is solution to (1.1) with the same previous initial data. Thus, by uniqueness of the solution in Cb(R,W (Rd)), there
holds

uA(t, R .) = uα1(t)⊗ · · · ⊗ uαd(t).

3. NONLINEAR SUPERPOSITION

In this section, we prove Theorem 1.10 (in any dimension d ∈ N
∗). This result is directly inspired from the energy

estimate in L2 found in [10] to prove the uniqueness of the solution for (1.1) in the case λ < 0. This energy estimate
is the consequence of the following lemma:

Lemma 3.1 ([10, Lemma 1.1.1]). There holds
∣

∣

∣
Im
(

(z2 ln|z2|2 − z1 ln|z1|2)(z2 − z1)
)
∣

∣

∣
≤ 2|z2 − z1|2, ∀z1, z2 ∈ C.

Indeed, taking u1 and u2 two solutions to (1.1), u := u1 − u2 satisfies

i ∂tu+
1

2
∆u = −λ

(

u1 ln |u1|2 − u2 ln |u2|2
)

.

Thus, we directly get

1

2

d

dt
‖u(t)‖2L2 = −λ Im

∫

(

u1 ln |u1|2 − u2 ln |u2|2
)

(u1 − u2) dx ≤ 2|λ| ‖u(t)‖2L2 .

We emphasize that this inequality does not involve the H1 norm of u1 or u2: it only involves the L2 norm of u. on
the other hand, if v is solution to (1.1) with initial data u1(0) + u2(0), one can wonder how close v(t) will stay to
u(t) := u1(t) + u2(t). If now we set w := v − (u1 − u2) = v − u, then it satisfies

i ∂tw +
1

2
∆w = −λ

(

v ln |v|2 − u1 ln |u1|2 − u2 ln |u2|2
)

.

Therefore, there holds

1

2

d

dt
‖w(t)‖2L2 = −λ Im

∫

(

v ln |v|2 − u1 ln |u1|2 − u2 ln |u2|2
)

(v − u) dx

= −λ Im

∫

(

v ln |v|2 − u ln |u|2
)

(v − u) dx

− λ Im

∫

(

u ln |u|2 − u1 ln |u1|2 − u2 ln |u2|2
)

(v − u) dx

1

2

∣

∣

∣

∣

d

dt
‖w(t)‖2L2

∣

∣

∣

∣

≤ 2|λ| ‖w‖2L2 + |λ|
∫

∣

∣

∣
u ln |u|2 − u1 ln |u1|2 − u2 ln |u2|2

∣

∣

∣
|w| dx

≤ 2|λ| ‖w‖2L2 + |λ|
∥

∥

∥
u ln |u|2 − u1 ln |u1|2 − u2 ln |u2|2

∥

∥

∥

L2
‖w‖L2 .
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Dividing by ‖w‖L2 , we obtain
∣

∣

∣

∣

d

dt
‖w(t)‖L2

∣

∣

∣

∣

≤ 2|λ| ‖w‖L2 + |λ|
∥

∥

∥
u ln |u|2 − u1 ln |u1|2 − u2 ln |u2|2

∥

∥

∥

L2
.

This estimate can also be generalized to more than 2 solutions with the same computation: for any integer N ≥ 2
and any solutions v, u1, . . . , uN to (1.1), the function w := v − u where u :=

∑

uj satisfies the inequality

∣

∣

∣

∣

d

dt
‖w(t)‖L2

∣

∣

∣

∣

≤ 2|λ| ‖w‖L2 + |λ|

∥

∥

∥

∥

∥

∥

u ln |u|2 −
N
∑

j=1

uj ln |uj |2
∥

∥

∥

∥

∥

∥

L2

. (3.1)

This estimate can be useful up to two conditions. First, we must know a time t0 where v(t0) and u(t0) are close in
L2. Then, we also need a way to estimate the last term in the right-hand side. This term should be small for instance
if the uis are "well separated". Such a thing may be hard to prove in general, but it is easier if we have an explicit
expression for the uis. This is the case for the breathers and Gaussons, or more generally for the Gaussian functions
solution. In particular, if their centers are far away from each other, then this term is actually very small:

Lemma 3.2. For any d ∈ N
∗, there exists Cd > 0 such that the following holds. Let N ∈ N

∗ and take xk ∈ R
d,

ωk ∈ R, Λk ∈ Sd(C)
Re+ and θk : R → R a real measurable function for k = 1, . . . , N , and define for all x ∈ R

d

gk(x) = exp
[

iθk(x) + ωk − (x− xk)
⊤Λk(x− xk)

]

,

as well as
g(x) =

∑

k=1,...,N

gk(x).

If

ε :=

(

min
k 6=j

|xj − xk|
)−1

< ε0 := min

(

√

λ+

max(
√
δω + 1,

√
lnN)

,

√

λ−
d+ 2

)

where δω := max
j,k

|ωk − ωj|, λ+ = max
k

Re σ(Λk) and λ− = min
k

Re σ(Λk) > 0, then

∥

∥

∥

∥

∥

g ln|g| −
N
∑

k=1

gk ln|gk|
∥

∥

∥

∥

∥

L2(R)

≤ CdN
3
2

λ+

ε
d
2
+1
√

λ−
exp

[

− λ−
4ε2

+max
j

ωj

]

. (3.2)

Such an estimate allows us to prove Theorem 1.10.

Proof of Theorem 1.10. Thanks to Proposition 1.9, we know that each Gk := Gd
Ak ,ωk,xk,v,θk

can be written under the
form

Gk(t, x) = exp
[

iθk(t, x) + ω̃k(t)− (x− xk − vt)⊤Ak(t)(x− xk − vt)
]

,

with τ+ = sup
t,k

Re σ(Ak(t)) and τ− = inf
t,k

Reσ(Ak(t)) and

ω̃k(t) = ωk −
1

4
ln

detReAk(t)

detReAk(0)
.

In particular, we have

sup
t,ℓ,k

|ω̃ℓ(t)− ω̃k(t)| ≤ δω̃ := δω +
d

4
ln

τ+

τ−
.

Hence, setting G :=
∑

k Gk and

ε0 :=
1√
2
min

( √
τ+

max(
√
δω̃ + 1,

√
lnN)

,

√

τ−
d
2 + 1

)

,
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and since |xk − vt− (xj − vt)| = |xk − xj| for all k 6= j, there holds from Lemma 3.2

∥

∥

∥

∥

∥

G ln|G| −
N
∑

k=1

Gk ln|Gk|
∥

∥

∥

∥

∥

L2(R)

≤ CdN
3
2

τ+

ε
d
2
+1√τ−

exp

[

− τ−
4ε2

+max
j

ωj

]

as soon as ε < ε0. Plugging this into (3.1), we get

d

dt
‖w(t)‖L2 ≤ 2|λ| ‖w‖L2 + CdN

3
2

λ τ+

ε
d
2
+1√τ−

exp

[

− τ−
4ε2

+max
j

ωj

]

,

where w = u−G. The result readily follows from the Gronwall lemma and the fact that w(0) = 0.

3.1. Proof of Lemma 3.2

This lemma shows that we can approximate the non-linearity in the equation for the sum of the Gaussian functions
by the sum of the non-linearity of each Gaussian, as soon as these Gaussian are well separated. This kind of result is
rather usual, as we often find it when talking about multi-solitons for instance. The proof usually uses the exponential
decay at infinity of the solitons along with the fact that the non-linearity is locally Lipschitz. Here, we have a better
decay at infinity for our functions (which are Gaussian), but our non-linearity F (z) := z ln|z|2 is not Lipschitz at
0, therefore this kind of result is not obvious at first sight. However, F is actually almost Lipschitz in the following
sense:

Lemma 3.3. For all z, z̃ ∈ C such that |z| ≤ 1, |z̃| ≤ 1 and z 6= 0, there holds

|F (z̃)− F (z)| ≤ |z − z̃|
[

6− ln|z|2
]

.

This lemma is interesting: for any x, x̃ ∈ (0, 1], the mean value inequality would only give

|F (x)− F (x̃)| ≤ |x− x̃|
[

6− 2 lnmin(x, x̃)
]

.

In particular, if we fix x and make x̃ goes to 0, the right-hand side goes to ∞ whereas the left-hand side only goes
to F (x) = x lnx2. Therefore the above inequality is not optimal and not fitted when we take x̃ which may be very
small compared to x or even sometimes vanish. The Lemma shows that we can actually take either lnx or ln x̃ in the
right-hand side without having to know which one of x or x̃ is the smallest. Another advantage is that the expression
of any ln |gj(x)|2 is clearly simpler than ln |g(x)|2, which will allow us to have simpler computations when applying
the previous lemma with z = gj(x) and z̃ = g(x).

Proof. For this proof only, we use the identification C ≈ R
2, and we see F as a function from R

2 to itself :

F : z =

[

zr
zi

]

∈ R
2 7→ z ln|z|2 =

[

zr ln|z|2
zi ln|z|2

]

.

Then, F is differentiable on C \ {0} and we can compute for z 6= 0

DF (z) =





ln|z|2 + 2 z2r
|z|2 2zrzi

|z|2

2zrzi
|z|2 ln|z|2 + 2

z2i
|z|2



 = R−1
z

[

ln|z|2 + 2 0

0 ln|z|2
]

Rz,

where Rz is the rotation which maps z onto the real positive half-line. Hence, there holds for all z ∈ C
∗

‖DF (z)‖2 ≤ 2(|ln|z||+ 1).

Then, we compute for z and z̃ satisfying the assumptions above :

F (z̃)− F (z) =

∫ 1

0
DF (z + t(z̃ − z)) (z̃ − z) dt,
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|F (z̃)− F (z)| ≤
∫ 1

0
‖DF (z + t(z̃ − z))‖2 dt |z̃ − z|

≤ 2

∫ 1

0

(
∣

∣

∣
ln|z + t(z̃ − z)|

∣

∣

∣
+ 1
)

dt |z̃ − z|. (3.3)

By assumption, there holds:
∣

∣

∣
|z| − t|z̃ − z|

∣

∣

∣
≤ |z + t(z̃ − z)| ≤ (1− t)|z|+ t|z̃| ≤ 1.

Since y 7→ ln y is increasing and non-positive on (0, 1], we have for a.e. t ∈ [0, 1]

∣

∣

∣
ln|z + t(z̃ − z)|

∣

∣

∣
= − ln|z + t(z̃ − z)| ≤ − ln

∣

∣

∣
|z| − t|z̃ − z|

∣

∣

∣
.

Putting this in (3.3), we get

|F (z̃)− F (z)| ≤ 2

∫ 1

0
(1− ln

∣

∣

∣
|z| − t|z̃ − z|

∣

∣

∣
) dt |z̃ − z| = 2

∫ |z|

|z|−|z̃−z|
(1− ln|v|) dv

≤ 2
[

2v − v ln|v|
]|z|

|z|−|z̃−z|
= 4|z̃ − z|+ 2(|z| − |z̃ − z|) ln

∣

∣

∣
|z| − |z̃ − z|

∣

∣

∣
− 2|z| ln|z|.

Then, we need to estimate the difference between the two last terms with the following lemma.

Lemma 3.4. For any a ∈ (0, 1] and δ ≥ 0 such that a− δ ≥ −1, there holds

(a− δ) ln|a− δ| − a ln a ≤ δ(1 − ln a).

The conclusion follows from applying this lemma with a = |z| and δ = |z̃ − z|.

Proof of Lemma 3.4. Take a and δ satisfying the assumptions of the Lemma.

• If δ < a, then 0 ≤ a− δ ≤ a, so in particular ln|a− δ| ≤ ln a, which yields

(a− δ) ln|a− δ| − a ln a ≤ (a− δ) ln a− a ln a = −δ ln a.

• If δ ≥ 2a, in the same way, we have a− δ ≤ −a < 0, in particular ln|a− δ| ≥ ln a which yields

(a− δ) ln|a− δ| − a ln a ≤ (a− δ) ln a− a ln a = −δ ln a.

• Otherwise, if a ≤ δ < 2a, then −1 < a−δ
a

= 1− δ
a
≤ 0 and we can compute

(a− δ) ln|a− δ| − a ln a = (a− δ) ln

∣

∣

∣

∣

a− δ

a

∣

∣

∣

∣

− δ ln a ≤ a− δ ln a ≤ δ(1 − ln a).

where we have used the fact that y ln|y| ≤ 1 for all y ∈ [−1, 0].

Substituting z̃ by g(x) and z by gk(x) (which does not vanish) for some k, we see that the ln |z|2 in the right-hand
side becomes a quadratic function in x, which is totally harmless compared with the decay at infinity of the Gaussons,
provided that we use this inequality with gk only where gk is "predominant". To be more precise, we will apply such
an estimate on Ik defined by

Ik =
{

x ∈ R
d, |x− xk| ≤ |x− xj | ∀j 6= k

}

,

where | | is the usual Euclidian norm in R
d. It is easy to see that, since the xi are all different from each other, there

holds for all j 6= k

Ld(Ij ∩ Ik) = 0,
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where Ld is the Lebesgue measure in R
d. Moreover, there also holds

R
d =

⋃

j

Ij ,

so that
∫

Rd

=
∑

j

∫

Ij

.

However, we also need |g(x)| and |gk(x)| to be smaller than 1 everywhere in order to apply the previous lemma,
which means that we need the ωjs to be negatively great enough, but we show that we can stick to this case.

Proposition 3.5. Set ω := maxj ωj . For all x ∈ R, there holds
∑

j

|gj(x)| ≤ Neω.

Proof. It easily follows from the fact that for any j and any x ∈ R
d, there holds |gj(x)| ≤ eωj ≤ eω

We define g̃k := N−1e−ω gk and g̃ := N−1e−ω g, so that

|g̃(x)| ≤
∑

k

|g̃k(x)| ≤ 1,

∣

∣

∣

∣

∣

∣

g(x) ln|g(x)|2 −
N
∑

j=1

gj(x) ln|gj(x)|2
∣

∣

∣

∣

∣

∣

= Neω

∣

∣

∣

∣

∣

∣

g̃(x) ln|g̃(x)|2 −
N
∑

j=1

g̃j(x) ln|g̃j(x)|2
∣

∣

∣

∣

∣

∣

. (3.4)

Then, we can use Lemma 3.3, which leads to

Proposition 3.6. For all k ∈ {1, . . . , N} and x ∈ R
d, there holds

∣

∣

∣

∣

∣

∣

g̃(x) ln|g̃(x)|2 −
N
∑

j=1

g̃j(x) ln|g̃j(x)|2
∣

∣

∣

∣

∣

∣

≤ 2
∑

j 6=k

|g̃j(x)|
[

δωj + δωk + 3 + 2 lnN + λ+|x− xk|2 + λ+|x− xj|2
]

,

where δωj := ω − ωj for all j.

Proof. We recall that for all j,

|g̃j(x)| = exp
[

−δωj − lnN − (x− xj)
⊤Λj(x− xj)

]

,

which also yields that
− ln |g̃j(x)| ≤ δωj + lnN + λ+|x− xj |2.

Then, we can easily compute
∣

∣

∣

∣

∣

∣

g̃(x) ln|g̃(x)| −
N
∑

j=1

g̃j(x) ln|g̃j(x)|

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣
g̃(x) ln|g̃(x)| − g̃k(x) ln|g̃k(x)|

∣

∣

∣
+

∣

∣

∣

∣

∣

∣

∑

j 6=k

g̃j(x) ln|g̃j(x)|

∣

∣

∣

∣

∣

∣

≤ |g̃(x)− g̃k(x)|
[

3− ln|g̃k(x)|
]

+
∑

j 6=k

|g̃j(x)||ln|g̃j(x)||

≤

∣

∣

∣

∣

∣

∣

∑

j 6=k

g̃j(x)

∣

∣

∣

∣

∣

∣

[

3− ln|g̃k(x)|
]

+
∑

j 6=k

|g̃j(x)||ln|g̃j(x)||

≤
∑

j 6=k

|g̃j(x)|
[

3− ln|g̃k(x)| − ln|g̃j(x)|
]

.

The conclusion readily follows.
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Thanks to (3.4), we can readily come back in terms of g and gj .

Corollary 3.7. For all k ∈ {1, . . . , N} and x ∈ R, there holds
∣

∣

∣

∣

∣

∣

g(x) ln|g(x)|2 −
N
∑

j=1

gj(x) ln|gj(x)|2
∣

∣

∣

∣

∣

∣

≤ 2
∑

j 6=k

|gj(x)|
[

δωj+δωk+3+2 lnN+λ+|x− xk|2+λ+|x− xj |2
]

. (3.5)

Thus, we can estimate this difference in L2(Ik) norm.

Proposition 3.8. If ε ≤ ε0 (where ε0 is defined in Lemma 3.2) then
∥

∥

∥

∥

∥

∥

g(x) ln|g(x)|2 −
N
∑

j=1

gj(x) ln|gj(x)|2
∥

∥

∥

∥

∥

∥

L2(Ik)

≤ CdN
λ+

ε
d
2
+1
√

λ−
e
ω− λ

−

8ε2 .

To prove this result, we need to use Corollary 3.7 and estimate the L2(Ik) norm of each term of the sum in (3.5).
For this, we will use the following lemma:

Lemma 3.9. For any d ∈ N
∗, there exists Cd > 0 such that for all γ > 0, R > 0 and x0 ∈ R

d such that R ≥ γ−
1
2

and |x0| ≤ 2R, there holds

∫

Rd\B(0,R)
|x|4e−γ|x|2 dx ≤ Cd

Rd+2

γ
e−γR2

and
∫

Rd\B(0,R)
e−γ|x|2 dx ≤ Cd

Rd−2

γ
e−γR2

∫

Rd\B(0,R)
|x− x0|4e−γ|x|2 dx ≤ Cd

Rd+2

γ
e−γR2

.

Before proving this Lemma, we recall the usual and useful estimate for the Gauss error function.

Lemma 3.10. For any y ≥ 1 and γ > 0, there holds
∫ ∞

y

e−γx2
dx <

1

2γy
e−γy2 .

Proof of Lemma 3.10. We easily compute:

∫ ∞

y

e−γx2
dx <

∫ ∞

y

x

y
e−γx2

dx =
1

y

[

−e−γx2

2γ

]∞

y

=
1

2γy
e−γy2 .

Proof of Lemma 3.9. For the first estimate, a radial change of variables yields
∫

Rd\B(0,R)
|x|4e−γ|x|2 dx = Cd

∫ ∞

R

r3+de−γr2 dr = Cd × J3+d,

where Jm =
∫∞
R

rme−γr2 dr for any m ∈ N. With an integration by parts, we get

Jm+2 =
1

2γ
Rm+1e−γR2

+
m+ 1

2γ
Jm.

Since we have R > γ−
1
2 and since there holds

J0 <
1

2γR
e−γR2

and J1 =
1

2γ
e−γR2

,

we can easily prove by induction that

Jm ≤ Cm

γ
Rm−1e−γR2

,
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which leads to the first estimate. The second estimate can be proved in the same way. As for the third estimate, we
use the fact that for x ≥ y

|x− x0|4 ≤ C0(|x|4 + |x0|4),
which yields

∫

Rd\B(0,R)
|x− x0|4e−γ|x|2 dx ≤ C0

(
∫

Rd\B(0,R)
|x|4e−γ|x|2 dx+ |x0|4

∫

Rd\B(0,R)
e−γ|x|2 dx

)

≤ Cd

(
∫ ∞

R

r3+de−γr2 dr + |x0|4
∫ ∞

R

rd−1e−γr2 dr

)

≤ Cd

(

Rd+2

γ
e−γR2

+
|x0|4Rd−2

γ
e−γR2

)

≤ Cd
Rd+2

γ
e−γR2

.

Proof of Proposition 3.8. Thanks to Corollary 3.7, we have

∥

∥

∥

∥

∥

∥

g(x) ln|g(x)| −
N
∑

j=1

gj(x) ln|gj(x)|

∥

∥

∥

∥

∥

∥

L2(Ik)

≤
∑

j 6=k

‖gj(x)‖L2(Ik)

[

δωj + δωk + 3 + 2 lnN
]

+ λ+

∥

∥

∥
gj(x)|x− xk|2

∥

∥

∥

L2(Ik)
+ λ+

∥

∥

∥
gj(x)|x− xj|2

∥

∥

∥

L2(Ik)
. (3.6)

For j 6= k, we know that for any x ∈ Ik, there holds

|xj − xk| ≤ |x− xj|+ |x− xk| ≤ 2|x− xj|,

and thus

|x− xj | ≥
1

2
|xj − xk|.

Hence, Ik ⊂ R
d \ B(xj, R

k
j ) where Rk

j := 1
2 |xj − xk|. Therefore, using also the fact that y⊤Λjy ≥ λ−|y|2 for all

y ∈ R
d, we get

‖gj(x)‖2L2(Ik)
≤
∫

Rd\B(xj ,R
k
j )
exp
[

2ωj − 2λ−|x− xj|2
]

,

∥

∥

∥
gj(x)|x− xk|2

∥

∥

∥

2

L2(Ik)
≤
∫

Rd\B(xj ,R
k
j )
|x− xk|4 exp

[

2ωj − 2λ−|x− xj|2
]

,

∥

∥

∥
gj(x)|x− xj |2

∥

∥

∥

2

L2(Ik)
≤
∫

Rd\B(xj ,R
k
j )
|x− xj|4 exp

[

2ωj − 2λ−|x− xj |2
]

.

Since ωj ≤ ω, and with a change of variable, we get

‖gj(x)‖2L2(Ik)
≤
∫

Rd\B(0,Rk
j )
exp
[

2ωj − 2λ−|y|2
]

,

∥

∥

∥
gj(x)|x− xk|2

∥

∥

∥

2

L2(Ik)
≤
∫

Rd\B(0,Rk
j
)
|y − (xk − xj)|4 exp

[

2ωj − 2λ−|y|2
]

,

∥

∥

∥
gj(x)|x− xj |2

∥

∥

∥

2

L2(Ik)
≤
∫

Rd\B(0,Rk
j )
|y|4 exp

[

2ωj − 2λ−|y|2
]

.

Now, we apply Lemma 3.9 in order to estimate all the L2(Ik) norms of the right-hand side. However, we need to
check the assumptions. We already know that |xk − xj | = 2Rk

j . Moreover, there holds from the same equality and
with the definition of ε

Rk
j ≥ 1

2ε
. (3.7)
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The fact that ε0 ≤
√

λ−

2 yields Rk
j ≥ (2λ−)

− 1
2 . Along with the fact that ωj ≤ ω, this leads to

‖gj(x)‖2L2(Ik)
≤ Cd

(Rk
j )

d−2

λ−
e2ω−2λ−(Rk

j )
2

,

∥

∥

∥
gj(x)|x− xk|2

∥

∥

∥

2

L2(Ik)
≤ Cd

(Rk
j )

d+2

λ−
e2ω−2λ−(Rk

j )
2

,

∥

∥

∥
gj(x)|x− xj|2

∥

∥

∥

2

L2(Ik)
≤ Cd

(Rk
j )

d+2

λ−
e2ω−2λ−(Rk

j )
2

.

Since we also assumed

ε0 ≤
√

λ+

max(
√
δω + 1,

√
lnN)

,

(3.7) leads to

max(δω + 1, lnN) ≤ λ+

ε2
≤ 4λ+(R

k
j )

2,

so that

[

δωj + δωk + 3 + 2 lnN
]

‖gj(x)‖L2(Ik)
≤ Cd λ+

(Rk
j )

d
2
+1

√

λ−
eω−λ−(Rk

j )
2

,

λ+

∥

∥

∥
gj(x)|x− xk|2

∥

∥

∥

L2(Ik)
≤ Cd λ+

(Rk
j )

d
2
+1

√

λ−
eω−λ−(Rk

j )
2

,

λ+

∥

∥

∥
gj(x)|x− xj|2

∥

∥

∥

L2(Ik)
≤ Cd λ+

(Rk
j )

d
2
+1

√

λ−
eω−λ−(Rk

j )
2

.

Moreover, we know that the function fd(ξ) := ξ
d
2
+1e−λ−ξ2 is decreasing for ξ ∈

[

√

d
2
+1

2λ−

,∞
)

. Therefore, as there

also holds ε0 ≤
√

λ−

d+2 , then (3.7) also yields

Rk
j ≥ 1

2ε
≥
√

d
2 + 1

2λ−
,

hence
[

δωj + δωk + 3 + 2 lnN
]

‖gj(x)‖L2(Ik)
≤ Cd

λ+

ε
d
2
+1
√

λ−
e
ω− λ

−

4ε2 ,

λ+

∥

∥

∥
gj(x)|x− xk|2

∥

∥

∥

L2(Ik)
≤ Cd

λ+

ε
d
2
+1
√

λ−
e
ω− λ

−

4ε2 ,

λ+

∥

∥

∥
gj(x)|x− xj|2

∥

∥

∥

L2(Ik)
≤ Cd

λ+

ε
d
2
+1
√

λ−
e
ω− λ

−

4ε2 .

We get the result by putting these into (3.6).

Proof of Lemma 3.2. Define ε0 as in Proposition 3.8. By definition of the sets Ik (k ∈ {1, . . . , N}) and using Propo-
sition 3.8 for ε ≤ ε0, we get

∥

∥

∥

∥

∥

∥

g ln|g| −
N
∑

j=1

gj ln|gj |

∥

∥

∥

∥

∥

∥

2

L2(R)

=
∑

k

∥

∥

∥

∥

∥

∥

g ln|g| −
N
∑

j=1

gj ln|gj |

∥

∥

∥

∥

∥

∥

2

L2(Ik)

≤
∑

k

CdN
2 (λ+)

2

εd+2λ−
e
2ω− λ

−

2ε2

≤ CdN
3 (λ+)

2

εd+2λ−
e
2ω− λ

−

2ε2 .
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