
HAL Id: hal-02323468
https://hal.science/hal-02323468v1

Submitted on 5 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Prenex Separation Logic with One Selector Field
Mnacho Echenim, Radu Iosif, Nicolas Peltier

To cite this version:
Mnacho Echenim, Radu Iosif, Nicolas Peltier. Prenex Separation Logic with One Selector Field.
Automated Reasoning with Analytic Tableaux and Related Methods - 28th International Conference,
2019, London, United Kingdom. pp.409-427, �10.1007/978-3-030-29026-9_23�. �hal-02323468�

https://hal.science/hal-02323468v1
https://hal.archives-ouvertes.fr

Prenex Separation Logic with One Selector Field

Mnacho Echenim1, Radu Iosif2 and Nicolas Peltier1

1 Univ. Grenoble Alpes, CNRS, LIG, F-38000 Grenoble France
2 Univ. Grenoble Alpes, CNRS, VERIMAG, F-38000 Grenoble France

Abstract. We show that infinite satisfiability can be reduced to finite satisfiabil-
ity for all prenex formulas of Separation Logic with k ≥ 1 selector fields (SLk).
This fact entails the decidability of the finite and infinite satisfiability problems
for the class of prenex formulas of SL1, by reduction to the first-order theory
of a single unary function symbol and an arbitrary number of unary predicate
symbols. We also prove that the complexity of this fragment is not elementary
recursive, by reduction from the first-order theory of one unary function symbol.
Finally, we prove that the Bernays-Schönfinkel-Ramsey fragment of prenex SL1

formulas with quantifier prefix in the language ∃∗∀∗ is PSPACE-complete.

1 Introduction

Separation Logic [8,11] (SL) is a logical framework used to describe properties of the
heap memory, such as the placement of pointer variables within the topology of com-
plex data structures (lists, trees, etc.). The features that make SL attractive for program
verification are the ability of defining (i) weakest pre- and post-condition calculi that
capture the semantics of programs with pointers, and (ii) compositional verification
methods, based on inferring local specifications of methods and threads independently
of the context in which they evolve. The search for automated push-button program
verification methods motivates the understanding of the decidability, complexity and
expressive power of various dialects of SL, used as assertion languages in Hoare-style
proofs [8], or logic-based abstract domains in static analysis [3].

Formal definitions are provided later, but essentially, SL can be viewed as the first
order theory of one partial finite function from U→ Uk, called a heap, where U denotes
the universe of memory locations (i.e., addresses), to which two non-classical connec-
tives are added: (i) the separating conjunction φ1 ∗ φ2, that asserts a split of the heap
into disjoint heaps satisfying φ1 and φ2 respectively, and (ii) the separating implication
or magic wand φ1 −∗φ2, stating that each extension of the heap by a disjoint heap sat-
isfying φ1 must satisfy φ2. The number k denotes the number of selector fields and we
use the notation SLk to make this number explicit. Quantification over elements of U
is allowed. A fragment of separation logic that is practically relevant in verification is
when k = 1, i.e., every allocated cell points to a unique cell. This fragment allows, e.g.,
to describe simply linked lists.

As a simple example of application, let us consider the following Hoare triple with
left-hand side that is the weakest precondition of an arbitrary formula φ with respect to
a selector update in a program handling lists:

{∃x . i 7→ x ∗ (i 7→ j−∗φ)} i.next = j {φ}

Informally, the formula ∃x . i 7→ x∗ (i 7→ j−∗φ) holds when the heap can be separated
into disjoint parts, one in which cell i is allocated (the formula i 7→ x states that the heap
maps i to x), and one that, when extended by allocating cell i to j, satisfies φ. In other
words, the formula states that cell i is allocated and that φ holds after i is redirected to
j. A typical verification condition checks whether this formula is entailed by another
precondition ψ, generated by a program verifier or supplied by the user. The entailment
ψ |= ∃x . i 7→ x ∗ (i 7→ j −∗ φ) is valid if and only if the formula θ

def
= ψ∧ ∀x . ¬(i 7→

x∗ (i 7→ j−∗φ)) is unsatisfiable. In addition, if φ and ψ are formulas in prenex form3 then,
because the assertions i 7→ x and i 7→ j unambiguously define a specific part of the heap
(the cell corresponding to i), the quantifiers of φ can be hoisted outside of the separating
conjunction and implication, and the formula θ can be written in prenex form.

Deciding the satisfiability of (prenex) SL formulas is thus an important ingredient
for push-button program verification. Unlike first order logic, some SL formulas do not
have a prenex form (see Example 2 on Page 7). Moreover, satisfiability is decidable
(and PSPACE-complete) for quantifier-free SL-formulas, but it is undecidable for first-
order SL-formulas, even when k = 1. In fact SL1 is as expressive as second-order logic
in the presence of ∗ and −∗ whereas the fragment of SL1 without −∗ is decidable but not
elementary recursive [2]. In [6], we investigated the Bernays-Schönfinkel-Ramsey frag-
ment of SLk, i.e., the fragment containing formulas of the form ∃x1, . . . , xn∀y1, . . . ,ym . φ
where φ is a quantifier-free formula of SLk. We proved that for k > 1, satisfiability is
undecidable in general and decidable if −∗ only occurs in the scope of an odd number of
negations. However, nothing is known concerning the prenex fragment of SL1. In this
paper we fill in this gap and show that:
1. the prenex fragment of SL1 is decidable but not elementary recursive, and
2. the Bernays-Schönfinkel-Ramsey fragment of SL1 is PSPACE-complete.

The results are established using reductions to and from the fragment of first or-
der logic with one monadic function symbol [1]. The decidability of this fragment is a
consequence of the celebrated Rabin Tree Theorem [10], which established the decid-
ability of monadic second order logic of infinite binary tree (S2S). As in our previous
work [6] and unlike most existing approaches, we consider both the finite and infinite
satisfiability problems (other approaches usually assume that the universe is infinite).
Essential to our reductions to and from this fragment is a result (proven in [6]) stating
that each quantifier-free SLk formula, for k ≥ 1, is equivalent to a boolean combination
of formulas of some specific forms, called test formulas. Similar translations exist for
quantifier-free SL1 [9,2] and for SL1 with one quantified variable [5]. In addition we
show in the present paper that the infinite satisfiability reduces to the finite satisfiability
for quantified boolean quantifications of test formulas.

2 Preliminaries

In this section, we briefly review some usual definitions and notations (missing defi-
nitions can be found in, e.g., [7] or [1]). We denote by Z the set of integers and by N
the set of positive integers including zero. We define Z∞ = Z∪{∞} and N∞ = N∪{∞},

3 Q1x1 . . .Qnxn . ϕ, where Q1, . . . ,Qn are the first order quantifiers ∃ or ∀ and ϕ is quantifier-free.

where for each n ∈ Z we have n+∞ =∞ and n <∞. For two positive integers m ≤ n, we
denote by ~m . . n� the set {m,m + 1, . . . ,n}. For a countable set S we denote by ||S || ∈N∞
the cardinality of S . A decision problem is in (N)SPACE(n) if it can be decided by a
(nondeterministic) Turing machine in space O(n) and in PSPACE if it is in SPACE(nc)
for some input-independent integer c ≥ 1.

2.1 First Order Logic

Syntax Let Var be a countable set of variables, denoted by x,y,z and B and U be
distinct sorts, where B denotes booleans and U denotes memory locations. A function
symbol f has #(f) ≥ 0 arguments of sort U and a sort σ(f), which is either B or U.
If #(f) = 0, we call f a constant. We use ⊥ and > for the boolean constants false and
true, respectively. First-order (FO) terms t and formulas ϕ are defined by the following
grammar:

t := x | f (t, . . . , t︸︷︷︸
#(f)

) ϕ := ⊥ | > | ϕ∧ϕ | ¬ϕ | ∃x . ϕ | t ≈ t | p(t, . . . , t︸︷︷︸
#(p)

)

where x ∈ Var, f and p are function symbols, σ(f) = U and σ(p) = B. We write ϕ1∨ϕ2
for ¬(¬ϕ1∧¬ϕ2), ϕ1→ ϕ2 for ¬ϕ1∨ϕ2, ϕ1↔ ϕ2 for ϕ1→ ϕ2∧ϕ2→ ϕ1 and ∀x . ϕ for
¬∃x . ¬ϕ. The size of a formula ϕ, denoted by size(ϕ), is the number of occurrences of
symbols in ϕ. A variable is free in ϕ if it occurs in ϕ but not in the scope of a quantifier.
We denote by fv(ϕ) the set of variables that are free in ϕ. A sentence is a formula ϕ such
that fv(ϕ) = ∅. The Bernays-Schönfinkel-Ramsey fragment of FO [BSR(FO)] is the set
of sentences of the form ∃x1 . . .∃xn∀y1 . . .∀ym . ϕ, where ϕ is a quantifier-free formula
in which all function symbols f of arity #(f) > 0 have sort σ(f) = B. We denote by FO1

the set of formulas built on a signature containing only one function symbol of arity 1,
the equality predicate and an arbitrary number of unary predicate symbols4.

Semantics First-order formulas are interpreted over FO-structures (called structures,
when no confusion arises) S = (U,s, i), where U is a nonempty countable set, called the
universe, the elements of which are called locations, s : Var→ U is a function mapping
variables to locations called a store, and i interprets each function symbol f by a func-
tion f i :U#(f)→U, if σ(f) = U and f i :U#(f)→{⊥,>} if σ(f) = B. A structure (U,s, i) is
finite when ||U|| ∈N and infinite otherwise. We write S |= ϕ iff ϕ is true when interpreted
in S. This relation is defined recursively on the structure of ϕ, as usual. When S |= ϕ,
we say that S is a model of ϕ. A formula is satisfiable when it has a model. We write
ϕ1 |= ϕ2 when every model of ϕ1 is also a model of ϕ2 and by ϕ1 ≡ ϕ2 we mean ϕ1 |= ϕ2
and ϕ1 |= ϕ2. The (in)finite satisfiability problem asks, given a formula ϕ, whether a
(in)finite model exists for this formula.

We now recall and refine an essential known result concerning the satisfiability
problem for formulas in FO1:

Theorem 1. The finite satisfiability problem is decidable for first-order formulas in
FO1. Furthermore, the problem is nonelementary even if the formula contains no unary
predicate symbols.

4 The fragment FO1 is denoted by [all, (ω), (1)]= in [1].

Proof. The decidability result is proven in [1, Corollary 7.2.12, page 341]. The com-
plexity lower bound is established in [1, Theorem 7.2.15, page 342] for arbitrary do-
mains, however a careful analysis of the proof reveals that it also holds for finite do-
mains. Indeed, the proof goes by showing that a domino problem of nonelementary
complexity can be polynomially reduced to the satisfiability problem for a first-order
formula ϕ satisfying the conditions of the lemma. The initial domino problem is not im-
portant here and its definition is omitted. To establish the desired result, we only have
to prove that satisfiability is actually equivalent to finite satisfiability for the obtained
formula ϕ. The formula ϕ output of the reduction is of the following form (see [1, Page
345]): ϕ = α∧γ∧η′[D(x)/δ(x),Pi(x,y)/πi(x,y), where:

– α= ∃x∀y . f (x)≈ x∧ f n+1(y)≈ x. This formula states that the domain can be viewed
as a tree of height at most n+1, where the (necessarily unique) element correspond-
ing to the variable x is the root of the tree, and where f maps every other node to
its parent.

– The formula δ is based on an equivalence relation En−1 on nodes in a (possibly
infinite) tree, which is inductively defined as follows:
• All nodes are E0-equivalent.
• For m > 1, two nodes are Em-equivalent if for every Em−1-equivalence class K,

either both nodes have no child in K or both nodes have a child in K.
The formula δ(x) states that x is a child of the root with at most one child in each
En−1-equivalence class. We also denote by E the intersection

⋂n
i=1 Ei.

– γ = ∀x,y . δ(x)∧ δ(y)∧ βn(x,y)→ x ≈ y, where βn(x,y) is a formula stating that x
and y have height at most n and are En-equivalent.

– For i = 0, . . . ,r, πi(x,y) is a formula stating that there exists a z satisfying the fol-
lowing property denoted by P(i,a,b): z is a child of the root and for every En−1-
equivalence class K and for all j,k ∈ {0,1}, if x and y have exactly j and k children
in K respectively, then z has exactly 2 + 4i + 2 j + k children in K.

– η′ is equivalent to a closed formula defined over a signature containing a unary
predicate symbol D and r + 1 binary predicate symbols P0,. . . ,Pr, in which ev-
ery quantification ranges over elements x satisfying D(x). It is thus of the form
∃x . D(x)∧ψ or ∀x . D(x)→ ψ.

– η′[D(x)/δ(x),Pi(x,y)/πi(x,y)] denotes the formula η′ in which every occurrence of
a formula D(x) (resp. Pi(x,y)) is replaced by δ(x) (resp. πi(x,y)). Thus it is equiv-
alent to a formula in which every quantification ranges over elements x satisfying
δ(x).

The formal definitions of η′, δ(x) and πi(x,y) are unimportant and omitted.
Let I = (U,s, i) be a model of ϕ, with f = f i. We denote by r the root of the tree,

i.e., the unique element of U with (U,s[x 7→ r], i) |= ∀y . f (x) ≈ x∧ f n+1(y) ≈ x. Given
i ∈ [0,r] and a,b ∈ U, if (U,s[x 7→ a,y 7→ b], i) |= πi(x,y), then we denote by µ(i,a,b)
a set containing an arbitrarily chosen element z satisfying P(i,a,b) in the definition
of πi(x,y) along with all the children of z, otherwise µ(i,a,b) is empty. Observe that
µ(i,a,b) is always finite because the number of children of z in each equivalence class
is bounded by 2+4× i+2+1 ≤ 2+4× r +2+1, moreover the number of E-equivalence
classes is finite [1, bottom of Page 343].

We show that ϕ admits a finite model I′. The set B of elements b such that (U,s[x 7→
b], i) |= δ(x) is finite [1, Page 344, Lines 21-22]. Let Π be the set: Π =

⋃
{µ(i,a,b) |

a,b ∈ B, i ∈ [0,r]}. Since B is finite and every set µ(i,a,b) is finite, Π is also finite.
With each element a ∈ U and each E-equivalence class K, we associate a set ν(a,K)
containing exactly one child of a in K if such a child exists, otherwise ν(a,K) is empty.
We now consider the subset U′ of U defined as the set of elements a such that for
every m ∈ N, fm(a) occurs either in {r} ∪ B∪Π or in a set ν(b,K), where b ∈ U and K
is an E-equivalence class. Note that r ∈ U′ and that if a ∈ U′ then necessarily f(a) ∈ U′.
Furthermore, if f(b) ∈ U′ and b ∈ ν(f(b),K) then b ∈ U′.

It is easy to check that U′ is finite. Indeed, since (U,s, i) |= α and no new node or
edge is added, all nodes are of height less or equal to n+1. Furthermore, all nodes have
at most ||B||+ ||Π ||+ #K children in U′, where #K denotes the number of E-equivalence
classes.

We denote by I′ = (U′,s, i′) the restriction of I to the elements of U′ (we may
assume that s is a store on U′ since ϕ is closed). We prove that I′ |= ϕ.

– Since U′ contains the root, and I |= α, we must have I′ |= α.
– Observe that U′ necessarily contains ν(b,K), for every b ∈ U′, since by definition

the parent of the (unique) element of ν(b,K) is b. Thus at least one child of b is kept
in each equivalence class. Thus the relations Em on elements of U′ are preserved
in the transformation: for every a,b ∈ U′, a,b are Em-equivalent in the structure I
iff they are equivalent in the structure I′. Further, the height of the nodes cannot
change. Therefore, for every a,a′ ∈ U′:

(U′,s[x 7→ a,y 7→ a′], i′) |= βn(x,y) iff (U,s[x 7→ a,y 7→ a′], i) |= βn(x,y)

By definition, for every a ∈ B and m ∈N, fm(a) ∈ {a, r}, thus B⊆U′. Because no new
edges are added, we deduce:

(U′,s[x 7→ a], i′) |= δ(x)⇔ (U,s[x 7→ a], i) |= δ(x)⇔ a ∈ B

Consequently, since I |= γ, we have I′ |= γ.
– All elements in µ(i,a,a′) with a,a′ ∈ B occur in U′ (because if b ∈ µ(i,a,a′) and

m ∈ N then fm(b) ∈ {r}∪B∪µ(i,a,a′)), thus, for all a,a′ ∈ B:

(U′,s[x 7→ a,y 7→ a′], i′) |= πi(x,y)⇔ (U,s[x 7→ a,y 7→ a′], i) |= πi(x,y)

Since all quantifications in η′ range over elements in B, we deduce, by a straight-
forward induction on the formula, that I and I′ necessarily agree on the formula
η′[D(x)/δ(x),Pi(x,y)/πi(x,y)]. Consequently, I′ |= η′[D(x)/δ(x),Pi(x,y)/πi(x,y)].

ut

2.2 Separation Logic

Syntax Let k ∈ N be a strictly positive integer. The logic SLk is the set of formulas
generated by the grammar:

ϕ := ⊥ | > | emp | x ≈ y | x 7→ (y1, . . . ,yk) | ϕ∧ϕ | ¬ϕ | ϕ∗ϕ | ϕ−∗ϕ | ∃x . ϕ

where x,y,y1, . . . ,yk ∈ Var. The connectives ∗ and −∗ are respectively called the separat-
ing conjunction and separating implication (magic wand). The symbols ∨, →, ↔ and
∀ are defined as in first-order logic, and in addition, we write ϕ1(ϕ2 for ¬(ϕ1 −∗¬ϕ2)
((is called septraction).

A tuple (y1, . . . ,yk) ∈ Vark is sometimes denoted by y. The size and free variables of
an SLk formula ϕ are defined as for first-order formulas. The prenex fragment of SLk (de-
noted by PRE(SLk)) is the set of sentences Q1x1 . . .Qnxn . φ, where Q1, . . . ,Qn ∈ {∃,∀}
and φ is a quantifier-free SLk formula. The Bernays-Schönfinkel-Ramsey fragment of
SLk [BSR(SLk)] is the set of sentences ∃x1 . . .∃xn∀y1 . . .∀ym . φ, where φ is a quantifier-
free SLk formula. Since there are no function symbols of arity greater than zero in SLk,
there are no restrictions, other than the form of the quantifier prefix, defining BSR(SLk).

Semantics SLk formulas are interpreted over SL-structures (called structures when no
confusion arises) I = (U,s,h), where U and s are defined as for first-order formulas5

and h : U⇀fin U
k is a finite partial mapping of locations to k-tuples of locations, called

a heap. A structure (U,s,h) is finite when ||U|| ∈ N and infinite otherwise (note that the
heap is always finite, but that the universe may be finite or infinite).

Given a heap h, we denote by dom(h) the domain of the heap, by img(h) def
= {`i | ∃` ∈

dom(h),h(`) = (`1, . . . , `k), i ∈ ~1 . . k�} its range and we let elems(h) def
= dom(h)∪ img(h).

A element x is allocated in (U,s,h) if it belongs to dom(h). For a store s, we define its
range img(s) def

= {` | x ∈ Var, s(x) = `}. If x = (x1, . . . , xn) is a vector of pairwise distinct
variables and e = (e1, . . . ,en) is a vector of elements of U of the same length as x, then
s[x 7→ e] denotes the store that maps xi to ei (for all i ∈ ~1 . . n�) and coincides with s
on every variable distinct from x1, . . . , xn. Two heaps h1 and h2 are disjoint if and only if
dom(h1)∩dom(h2) = ∅, in which case h1] h2 denotes their union (h1] h2 is undefined
if h1 and h2 are not disjoint). The relation (U,s,h) |= ϕ is defined inductively, as follows:

(U,s,h) |= emp ⇔ h = ∅

(U,s,h) |= x ≈ y ⇔ s(x) = s(y)
(U,s,h) |= x 7→ (y1, . . . ,yk)⇔ h(s(x)) = (s(y1), . . . ,s(yk))∧dom(h) = {s(x)}
(U,s,h) |= ϕ1∧ϕ2 ⇔ (U,s,h) |= ϕ1 and (U,s,h) |= ϕ2
(U,s,h) |= ¬ϕ ⇔ (U,s,h) 6|= ϕ
(U,s,h) |= ∃x . ϕ ⇔ there exists e ∈ U s.t. (U,s[x 7→ e],h) |= ϕ
(U,s,h) |= ϕ1 ∗ϕ2 ⇔ there exist disjoint heaps h1,h2 such that h = h1] h2

and (U,s,hi) |= ϕi, for i = 1,2
(U,s,h) |= ϕ1−∗ϕ2 ⇔ for all heaps h′ disjoint from h such that (U,s,h′) |= ϕ1,

we have (U,s,h′] h) |= ϕ2

Satisfiability, entailment and equivalence are defined for SLk as for FO formulas. The
finite [resp. infinite] satisfiability problem for SLk asks whether a finite [resp. an infinite]
model exists for a given formula. We write φ ≡fin ψ [φ ≡inf ψ] whenever (U,s,h) |= φ⇔
(U,s,h) |= ψ for every finite [infinite] structure (U,s,h).

As stated in the introduction, SL formulas do not admit prenex forms in general,
because the quantifiers cannot be shifted outside of separating connectives. This is an

5 In contrast to most existing work in Separation Logic, we do not assume that U is infinite.

essential difference with FO, where each formula is equivalent to a linear-size formula
in prenex form. In particular, the equivalences φ ∗ ∀x . ψ(x)⇔ ∀x . φ ∗ψ(x) and φ−∗
∃x . ψ(x)⇔∃x . φ−∗ψ(x) do not always hold.

Example 2. For instance, the formula (∀x . x 7→ x) ∗> is satisfiable only on universes
of cardinality 1 (because ∀x . x 7→ x entails that the domain of the heap is of size 1 and
contains all locations), but the formula ∀x . (x 7→ x ∗>) is satisfiable if and only if the
universe is finite and each location points to itself. �

2.3 Test formulas for SLk

This section presents the definitions and results from [6], needed for self-containment.

Definition 3. The following patterns are called test formulas of SLk, for any k ≥ 1:

x ↪→ y def
= x 7→ y∗> |U | ≥ n def

= >(|h| ≥ n, n ∈ N
alloc(x) def

= x 7→ (x, . . . , x)︸ ︷︷ ︸
k times

−∗⊥ |h| ≥ |U | −n def
= |h| ≥ n + 1−∗⊥,n ∈ N

x ≈ y |h| ≥ n def
=

{
|h| ≥ n−1∗¬emp, if n > 0
>, if n = 0

where x,y ∈ Var, y ∈ Vark is a k-tuple of variables and n ∈ N is a positive integer. A
literal is a test formula or its negation and a minterm is any conjunction of literals.

The semantics of test formulas is intuitive: x ↪→ y holds when x denotes a location and y
is the image of that location in the heap, alloc(x) holds when x denotes a location in the
domain of the heap (allocated), |h| ≥ n, |U | ≥ n and |h| ≥ |U |−n are cardinality constraints
involving the size of the heap, denoted by |h| and that of the universe, denoted by |U |.
We recall that |h| ranges over N, whereas |U | is always interpreted as a number larger
than |h| and possibly infinite. The truth value of the test formulas of the form |U | ≥ n
and |h| ≥ |U |−n depend on the universe U, hence such test formulas are called universe-
dependent. The truth value of the other test formulas depend only on the store and heap,
thus they are called universe-independent. Clearly, all universe-dependent test formulas
are trivially equivalent to true (for |U | ≥ n) or false (for |h| ≥ |U | − n) when interpreted
over an infinite universe. Observe that not all atoms of SLk are test formulas, for instance
x 7→ y and emp are not test formulas. However, it is easy to check that any atom may
be written as a boolean combination of test formulas, for instance x 7→ y is equivalent
to x ↪→ y∧¬|h| ≥ 2 and emp is equivalent to ¬|h| ≥ 1.

The following result establishes a translation of quantifier-free SLk formulas into
boolean combinations of test formulas. A literal is a test formula or its negation and a
minterm is any conjunction of literals.

Lemma 4. Given a quantifier-free SLk formula φ, there exist finite sets of minterms
µfin(φ) and µinf (φ) such that φ ≡fin ∨

M∈µfin(φ) M and φ ≡inf ∨
M∈µinf (φ) M. Furthermore,

the size of every M ∈ µfin(φ)∪µinf (φ) is polynomial w.r.t. size(φ), and given a minterm
M, the problem of checking whether M ∈ µfin(φ) [resp. M ∈ µinf (φ)] is in PSPACE.

Proof. See [6]. ut

Given a quantifier-free SLk formula φ, the number of minterms in µfin(φ) [resp. in µinf (φ)]
is exponential in the size of φ, in the worst case. An optimal decision procedure does
not generate and store these sets explicitly, but rather enumerate minterms lazily.

Example 5. The formula x 7→ y ∗ y 7→ x ∗ ¬emp is equivalent to the minterm: x ↪→
y∧ y ↪→ x∧ x 6≈ y∧ |h| ≥ 3. Indeed, because the atoms x 7→ y, y 7→ x and ¬emp must
be satisfied on disjoint heaps, the initial formula entails that x,y are distinct and that
the heap contains at least 3 allocated elements (x, y and an additional element distinct
from x and y). The formula x 7→ y−∗ x 7→ z is equivalent to the disjunction of minterms
alloc(x)∨ (¬|h| ≥ 1∧ y ≈ z). Indeed, if x is allocated then the heap cannot be extended
by a disjoint heap satisfying x 7→ y hence the separating implication trivially holds,
otherwise the implication holds iff the heap is empty and y ≈ z. �

3 From Infinite to Finite Satisfiability

We begin by showing that for prenex SL-formulas, the infinite satisfiability problem can
be reduced to the finite satisfiability problem. The intuition is that two SL-structures
defined on the same heap and store can be considered as equivalent if both have enough
locations outside of the heap.

Definition 6. Let X be a set of variables and let n ∈ N. Two SL-structures I = (U,s,h)
and I′ = (U′,s′,h′) are (X,n)-similar (written I∼n

X I
′) iff the following conditions hold:

1. h = h′.
2. For every x ∈ X, if s(x) ∈ elems(h) or s′(x) ∈ elems(h′) then s(x) = s′(x).
3. ||U \ elems(h)|| ≥ n + ||X|| and ||U′ \ elems(h)|| ≥ n + ||X||.
4. For all x,y ∈ X, I |= x ≈ y iff I′ |= x ≈ y.

Condition 1 entails that elems(h) ⊆ U∩U′. We prove that any two SL-structures that are
(fv(φ),m)-similar are indistinguishable by any formula φ prefixed by m quantifiers.

Proposition 7. Let φ = Q1x1 . . .Qmxm . ψ be a prenex SLk formula, with Qi ∈ {∀,∃} for
all i = 1, . . . ,m, where ψ is a quantifier-free boolean combination of universe-independent
test formulas. If I ∼m

fv(φ) I
′ and I |= φ then I′ |= φ.

Proof. Let I = (U,s,h) and I′ = (U′,s′,h′). Assume that I ∼m
fv(φ) I

′ and I |= φ. By
Condition 1 in Definition 6 we have h = h′. We prove that I′ |= φ by induction on m.

– If m = 0, then we have φ = ψ, we show that I and I′ agree on every atomic formula
in φ, which entails by an immediate induction that they agree on φ. By Condition
4 in Definition 6, we already have that I and I′ agree on every atom x ≈ x′ with
x, x′ ∈ fv(φ). By Condition 1, I and I′ agree on all atoms |h| ≥ n. Consider an atom
` ∈ {y0 ↪→ (y1, . . . ,yk), alloc(y0)}, with y0, . . . ,yk ∈ fv(φ). If for every i ∈ ~0 . . k�
we have s(yi) ∈ elems(h) then by Condition 2 we deduce that s′ and s coincide on
y0, . . . ,yk hence I and I′ agree on ` because they share the same heap. The same
holds if s′(yi) ∈ elems(h), ∀i ∈ ~0 . . k�. If both conditions are false, then we must
have I 6|= ` and I′ 6|= `, by definition of elems(h), thus I and I′ also agree on ` in
this case.

– Assume that m ≥ 1 and Q1 = ∃, i.e., φ = ∃x1 . φ
′. Then there exists e ∈ U such

that (U,s[x1 7→ e],h) |= φ′. We construct an element e′ ∈ U′ as follows. If e = s(y),
for some y ∈ fv(φ), then we let e′ = s′(y). If ∀y ∈ fv(φ),e , s(y) and if e ∈ elems(h)
then we let e′ = e. Otherwise, e′ is an arbitrarily chosen element in U′ \ (s′(fv(φ))∪
elems(h)). Such an element necessarily exists, because by Condition 3 in Definition
6, U′ contains at least m + ||fv(φ)|| ≥ 1 + ||s(fv(φ))|| elements distinct from those
in elems(h). Let J = (U,s[x1 7→ e],h) and J ′ = (U,s[x1 7→ e],h), we prove that
J ∼m−1

fv(φ)∪{x1}
J ′. This entails the required results since by the induction hypothesis

we deduce J ′ |= φ′, so that I′ |= φ.
• Condition 1 trivially holds.
• For Condition 2, assume that there exists a variable x ∈ fv(φ)∪ {x1} such that

either s[x1 7→ e](x) ∈ elems(h) or s′[x1 7→ e′](x) ∈ elems(h), and s[x1 7→ e](x) ,
s′[x1 7→ e′](x). Since I ∼m

fv(φ) I
′, if x ∈ fv(φ) then [s(x) ∈ elems(h)∨ s′(x) ∈

elems(h)]⇒ s(x) = s′(x), thus necessarily x = x1. In this case, s[x1 7→ e](x) = e
and s′[x1 7→ e′](x) = e′. Since e , e′ by hypothesis, there can be no y ∈ fv(φ)
such that s(y) = e because otherwise by construction we would have e = s(y) =

s′(y) = e′. By definition of e′ we cannot have e ∈ elems(h) either, so e′ is nec-
essarily in U′ \ (s′(fv(φ))∪ elems(h)) and the disjunction e ∈ elems(h)∨ e′ ∈
elems(h) cannot hold.

• Condition 3 follows from the fact that I ∼m
fv(φ) I

′ because we have m− 1 +

||fv(φ)∪{x1}|| = m + ||fv(φ)||.
• We now establish Condition 4. Let x, x′ ∈ fv(φ) ∪ {x1}. If x, x′ ∈ fv(φ) then
s[x1 7→ e] and s′[x1 7→ e′] coincide with s and s′ respectively on x and x′,
henceJ andJ ′ must agree on x ≈ x′ since I ∼m

fv(φ) I
′. The result also trivially

holds when x = x′ = x1. Now assume that x = x1 and x′ , x1. If e = s(y) for
some y ∈ fv(φ), then J |= x ≈ x′ iff I |= y ≈ x′. By definition of e′, we also
have e′ = s′(y), hence J ′ |= x ≈ x′ iff I′ |= y ≈ x′. Since both y and x′ are in
fv(φ), we have J |= x ≈ x′ ⇔ I |= y ≈ x′ ⇔ I′ |= y ≈ x′ ⇔J ′ |= x ≈ x′. If the
previous condition does not hold then necessarily e , s(x′), and J 6|= x1 ≈ x′. If
e ∈ elems(h), then by definition of e′, we have e′ = e. If J ′ |= x1 ≈ x′ then we
must have s′(x′) = s′(x1) = e′ = e ∈ elems(h), which by Condition 2 entails that
s′(x′) = s(x′) = e, hence J |= x1 ≈ x′, a contradiction. Finally, if e < elems(h),
then by definition of e′, e′ cannot occur in s′(fv(φ)), thus J ′ 6|= x1 ≈ x′.

– Finally, assume that m≥ 1 and Q1 =∀. Then φ=∀x1 . φ
′. Let φ2 =∃x1 . φ

′
1, where φ′1

denotes the nnf of ¬φ′. Assume that I′ 6|= φ, then I′ |= φ2, because ¬φ ≡ ∃x1 . ¬φ
′ ≡

∃x1 . φ
′
1 = φ2. By the previous case, using the symmetry of ∼m

fv(φ) and the fact that
φ and φ2 have exactly the same free variables and number of quantifiers, we have
I |= φ2, i.e. I 6|= φ, a contradiction. ut

We define the following shorthands:

x ∈ h def
= ∃y0,y1, . . .yk . y0 ↪→ (y1, . . . ,yk)∧

∨k
i=0 x ≈ yi

dist(x1, . . . , xn) def
=

∧n
i=1

∧i−1
j=1¬(xi ≈ x j)

λp
def
= ∃x1, . . . , xp . (dist(x1, . . . , xp)∧

∧p
i=1¬xi ∈ h)

It is clear that (U,s,h) |= λp iff ||U \ elems(h)|| ≥ p. In particular, λp is always true on
an infinite universe. Observe, moreover, that λp belongs to the PRE(SLk) fragment, for
any p ≥ 2 and any k ≥ 1.

The following lemma reduces the infinite satisfiability problem to the finite version
of this problem. This is done by adding an axiom ensuring that there are enough lo-
cations outside of the heap. Note that there is no need to consider test formulas of the
form |U | ≥ n [resp. |h| ≥ |U | − n] because they always evaluate to true [resp. false] on
infinite SL-structures.

Theorem 8. Let φ= Q1x1 . . .Qmxm . ψ be a prenex SLk formula, where Qi ∈ {∀,∃} for i =

1, . . . ,m and fv(φ) = ∅. Assume that ψ is a boolean combination of universe-independent
test formulas. The two following assertions are equivalent.
1. φ admits an infinite model.
2. φ∧λm admits a finite model.

Proof. (1)⇒ (2): Assume that φ admits an infinite model (U,s,h). Let U′ be a finite
subset of U containing elems(h) and m additional elements. It is clear that (U,s,h) ∼m

∅

(U′,s,h). Indeed, Condition 1 holds since the two structures share the same heap, Condi-
tions 4 and 2 trivially hold since the considered set of variables is empty, and Condition
3 holds since U is infinite and the additional elements in U′ do not occur in elems(h).
Thus (U′,s,h) |= φ by Proposition 7, and (U′,s,h) |= λm, by definition of U′.

(2)⇒ (1): Assume that φ∧λm has a finite model (U,s,h). Let U′ be any infinite set
containing U. Again, we have (U,s,h) ∼m

∅
(U′,s,h). As in the previous case, Conditions

1, 4 and 2 trivially hold, and Condition 3 holds since U′ is infinite and (U,s,h) |= λm. By
Proposition 7, we deduce that (U′,s,h) |= φ. ut

4 PRE(SL1) is Decidable but Not Elementary Recursive

Using Lemma 4 and Theorem 8 we shall prove that the satisfiability problem is decid-
able for the prenex fragment of SL1. This shows that PRE(SL1) is strictly less expressive
than SL1, because SL1 has an undecidable satisfiability problem [2]. For this purpose,
we first define a translation of quantified boolean combination of test formulas into FO
that is sat-preserving on finite structures. Let d be a unary predicate symbol and for
i = 1, . . . ,k, let fi be a unary function symbol. We define the following transformation
from quantified boolean combinations of test formulas into first order formulas:

Θ(x ≈ y) def
= x ≈ y

Θ(x ↪→ (y1, . . . ,yk)) def
= d(x)∧

∧k
i=1 yi ≈ fi(x)

Θ(alloc(x)) def
= d(x)

Θ(|U | ≥ n) def
= ∃x1, . . . , xn . dist(x1, . . . , xn)

Θ(|h| ≥ n) def
= ∃x1, . . . , xn . dist(x1, . . . , xn)∧

∧n
i=1 d(xi)

Θ(|h| ≥ |U | −n) def
= ∃x1, . . . , xn∀y .

∧n
i=1 y 6≈ xi→ d(y)

Θ(¬φ) def
= ¬Θ(φ)

Θ(φ1∧φ2) def
= Θ(φ1)∧Θ(φ2)

Θ(∃x . φ) def
= ∃x . Θ(φ)

Proposition 9. Let φ be a quantified boolean combination of test formulas. The formula
φ has a finite SL model if and only if Θ(φ) has a finite FO model.

Proof. An FO-structure I = (U,s, i) on the signature d, f1,. . . ,fk corresponds to an SL-
structure I′ = (U′,s′,h) iff U=U′, s= s′, di = dom(h) and for every j ∈ ~1 . . k�, fij(x) = y j

if h(x) = (y1, . . . ,yk). It is clear that for every finite first-order structure I there exists a
finite SL-structure I′ such that I corresponds to I′ and vice-versa. Furthermore, if I
corresponds to I′ then it is straightforward to check that I′ |= φ⇔I |= Θ(φ). ut

If φ is an SL1 formula, then clearly Θ(φ) is in FO1, with one monadic boolean function
symbol d and one function symbol f1 of sort σ(f) = U. This yields the following result:

Theorem 10. The finite and infinite satisfiability problems are decidable for PRE(SL1).

Proof. Given a formula ψ = Q1x1 . . .Qnxn . φ of PRE(SL1), where φ is quantifier-free,
let µ def

=
∨

M∈µinf (φ) M be the infinite-domain equivalent expansion of φ as a disjunction
of minterms. We have ψ ≡inf Q1x1 . . .Qnxn . µ (Lemma 4) and Q1x1 . . .Qnxn . µ admits
an infinite model if and only if Q1x1 . . .Qnxn . µ∧ λn admits a finite model (Theorem
8; note that µ contains no occurrence of universe-dependent formulas, as such formulas
are always true or false in infinite universes). But Q1x1 . . .Qnxn . µ∧ λn has a finite
SL model if and only if Θ(Q1x1 . . .Qnxn . µ∧ λn) has a finite FO model (Proposition
9). Since the latter formula belongs to FO1, its finite satisfiability problem is decidable
(Theorem 1). The finite case is similar. ut

The complexity lower bound is established thanks to the following proposition.

Proposition 11. There is a polynomial reduction of the finite satisfiability problem for
first-order formulas with one monadic function symbol f and no predicate symbols
other than ≈ to the finite [resp. infinite] satisfiability problem for quantified boolean
quantifications of test formulas in SL1.

Proof. By flattening we may assume that all the equations occurring in the considered
first-order formula are of the form f (x) ≈ y or x ≈ y, where x,y are variables. For finite
domains, the reduction is immediate: it suffices to add the axiom ∀x . alloc(x), stating
that the heap is a total function, and to replace all equations of the form f (x)≈ y by x ↪→
y. It is straightforward to check that satisfiability is preserved (f is encoded in the heap).
For infinite domains, it is not possible to add the axiom ∀x . alloc(x) as the resulting
formula is unsatisfiable6, so the first-order formula is translated on one that holds on the
(finite) domain of the heap. We thus add the axiom ¬emp∧∀x,y . x ↪→ y→ alloc(y),
and we replace every quantification ∀x . φ (resp. ∃x . φ) by a quantification over the
domain of the heap: ∀x . alloc(x)→ φ (resp. ∃x . alloc(x)∧φ). It is straightforward to
check that satisfiability is preserved. Note that infinite satisfiability is equivalent to finite
satisfiability, since the quantifications range over elements occurring in the heap. ut

6 Since the domain of the heap is finite.

Note there is no obvious reduction from the usual first-order satisfiability problem (i.e.,
on arbitrary models), because the heap is always finite in SL-structures. This explains
why we had to refine in Theorem 1 the complexity lower bound from [1] to cope with
finite satisfiability.

Theorem 12. The finite and infinite satisfiability problems are not elementary recursive
for PRE(SL1).

Proof. The proof follows immediately from the lower bound complexity result of The-
orem 1 and from the reductions in Proposition 11. ut

5 The BSR(SL1) Fragment is PSPACE-complete

The last result concerns the tight complexity of the BSR(SL1) fragment. For k ≥ 2, we
showed that BSR(SLk) is undecidable, in general, and PSPACE-complete if the positive
occurrences of the magic wand are forbidden7 [6]. Here we show that BSR(SL1) is
PSPACE-complete. The result does not directly follow from the Σ p

2 -complexity of the
satisfiability problem for ∃∗∀∗ first-order formulas with one unary function symbol8

because only partial finite functions are considered in our context. The proof is based
on the following definitions and results.

Definition 13. A model (U,s,h) of a formula ϕ is minimal if ϕ admits no model of the
form (U′,s′,h′) with U′ (U.

Proposition 14. Let ϕ=∀y1, . . . ,ym . φ be a prenex formula with free variables x1, . . . , xn
(with n > 0) where φ is a boolean combination of universe-independent test formulas,
and let I = (U,s,h) be a minimal model of ϕ. Then U = {h j(s(xi)) | i ∈ ~1 . . n�, j ∈ N}.

Proof. Let U′ = {h j(s(xi)) | i ∈ ~1 . . n�, j ∈ N} and assume that U′ , U; note that U′ , ∅
since n > 0. Let s′ be a store on U′ coinciding with s on x1, . . . , xn and let h′ be the
restriction of h to U′. Both s′ and h′ are well-defined by construction of U′, and h′ is
a heap on U′. Since U is minimal, (U′,s′,h′) 6|= ϕ, thus there exist b1, . . . ,bm ∈ U

′ such
that by letting s′1

def
= s′[yi 7→ bi | i ∈ ~1 . . m�], we have (U′,s′1,h

′) |= ¬φ. Since the atomic
formulas in φ are universe-independent, we deduce that (U,s′1,h

′) |= ¬φ. Further, s′1 and
s[yi 7→ bi | i ∈ ~1 . . m�] coincide on all the variables x1, . . . , xn,y1, . . . ,ym that are free in
φ, thus (U,s[yi 7→ bi | i ∈ ~1 . .m�],h′) |= ¬φ. Finally, h and h′ coincide on every element
of U′ and by definition we have s(xi),b j ∈ U

′ for i ∈ ~1 . . n� and j ∈ ~1 . . m�, hence
(U,s[yi 7→ bi | i ∈ ~1 . .m�],h) |= ¬φ, and (U,s,h) 6|= ϕ, which contradicts our assumption.

Definition 15. Let ϕ be a formula with free variables x1, . . . , xn and let I = (U,s,h) be
a structure. A line for (I,ϕ) is a sequence of pairwise distinct elements a1, . . . ,a` in U
such that:

1. ∀i ∈ ~1 . . `−1�, ai+1 = h(ai).

7 For infinite satisfiability, it is enough to forbid positive occurrences of the magic wand con-
taining universally quantified variables only.

8 See [1, Theorem 6.4.19].

2. ∀i ∈ ~1 . . `−1�, ∀e ∈ U, if h(e) = ai+1 then e = ai.
3. ∀i ∈ ~1 . . `�, ∀ j ∈ ~1 . . n�, ai , s(x j).

The next proposition shows that there is a bound on the length of any line in a minimal
model.

Proposition 16. Let ϕ=∀y1, . . . ,ym . φ be a prenex formula with free variables x1, . . . , xn
where φ is a boolean combination of domain-independent test formulas, and let I =

(U,s,h) be a model of ϕ. If (I,ϕ) admits a line of length strictly greater than m + 2 then
I is not minimal.

Proof. Let a1, . . . ,al be a sequence of elements satisfying the conditions of Definition 15
with l>m+2. Let I′ = (U′,s′,h′), where U′ def

= U\{a2}, s′ is a store on U′ coinciding with
s on all variables x such that s(x) ∈U′, dom(h′) def

= dom(h)\{a2}, h′(a1) def
= a3 and h′(x) def

=

h(x) if x ∈ dom(h′) \ {a1}. Note that s and s′ coincide on all variables x1, . . . , xn free in
ϕ since ∀i ∈ ~1 . . n�, a2 , s(xi), by Definition 15 (3). Since I is minimal, necessarily
I′ 6|= ϕ, thus there exist b′1, . . . ,b

′
m ∈U

′ such that by letting s′1
def
= s′[y j 7→ b′j | j ∈ ~1 . .m�],

we have (U′,s′1,h
′) |=¬φ. Since l>m+2 and a1, . . . ,al are distinct by Definition 15, there

exists i ∈ ~2 . . l− 1� such that ai+1 < {b′1, . . . ,b
′
m}. We define a sequence b1, . . . ,bm ∈ U

as follows. For every j ∈ ~1 . . m�, if there exists o ∈ ~3 . . i� such that b′j = ao, then we

let b j
def
= ao−1; otherwise, b j

def
= b′j. Note that b j is well-defined, because a1, . . . ,al are

distinct, hence there exists at most one o satisfying the above condition.
We emphasize some useful consequences of the above definitions before proving

that (U′,s′1,h
′) |= φ. Let V = {x1, . . . , xn}∪ {y j | j ∈ ~1 . . m�,s′1(y j) < {a3, . . . ,ai}}. By def-

inition s and s′ coincide on x1, . . . , xn, and s1(y j) = b j = b′j = s′1(y j) if b′j < {a3, . . . ,ai},
hence s′1 and s[y j 7→ b j | j ∈ ~1 . . m�] coincide on every variable in V . Furthermore,
for every variable x ∈ V , s1(x) ∈ U \ {a2, . . . ,ai}. Indeed, either x ∈ {x1, . . . , xn} and in
this case s(x) < {a1, . . . ,an} by Definition 15 (3); or x = y j for some j ∈ ~1 . . m�, and
then s1(x) = b j = b′j < {a3, . . . ,ai}, so that s1(x) ∈ U′ \ {a3, . . . ,ai} = U \ {a2, . . . ,ai}. Fi-
nally, if x occurs in φ and x < V then x = y j for some j ∈ ~1 . . m� such that b′j = ao,
with o ∈ ~3 . . i�, thus s′1(x) = ao and s1(x) = b j = ao−1, and therefore s′1(x) ∈ {a3, . . . ,ai}

and s1(x) ∈ {a2, . . . ,ai−1}. Let s1
def
= s[y j 7→ b j | j ∈ ~1 . . m�]; we show that (U′,s′1,h) and

(U,s1,h) coincide on every test formula ` in φ.
` = x ≈ y. If x,y ∈ V then the proof is immediate since s1 and s′1 coincide on x and y. If

x ∈V and y <V then s1(x) = s′1(x) ∈U\{a2, . . . ,ai} and s1(y),s′1(y) ∈ {a2, . . . ,ai} hence
x ≈ y is false in both structures. The proof is symmetric if x < V and y ∈ V . If x,y < V
then s′1(x) = ao, s′1(y) = ao′ , with s1(x) = ao−1 and s1(y) = ao′−1. Since the a1, . . . ,al
are pairwise distinct we have s′1(x) = s′1(y)⇔ o = o′⇔ o−1 = o′−1⇔ s1(x) = s1(y).

` = alloc(x). If x ∈ V then s1(x) = s′1(x) , a2 Thus s1(x) ∈ dom(h)⇔ s′1(x) ∈ dom(h)⇔
s′1(x) ∈ dom(h′). If x < V then s′1(x) ∈ {a3, . . . ,ai} and s1(x) ∈ {a2, . . . ,ai−1} (with i< l)
thus alloc(x) is true in both structures.

` = x ↪→ y. We distinguish several cases.
• If x,y ∈ V then s1(x) = s′1(x) and s1(y) = s′1(y), with s1(x) , a2, hence h(s1(x)) =

s1(y)⇔ h(s′1(x)) = s′1(y)⇔ h′(s′1(x)) = s′1(y), thus (U,s1,h) |= `⇔ (U′,s′1,h
′) |= `.

• If x,y < V then s′1(x) = ao, s′1(y) = ao′ , with s1(x) = ao−1, s1(y) = ao′−1 and
o,o′ ≥ 3 thus h′(s′1(x)) = s′1(y)⇔ o = o′−1⇔ h(s1(x)) = s1(y).

• If x ∈ V and y < V , then s′1(y) = ao with s1(y) = ao−1 and o ∈ ~3 . . i�. We dis-
tinguish two cases. If x ∈ {x1, . . . , xn}, then h(s1(x)) < {a1, . . . ,al} (by Definition
15 (2)) thus h(s1(x)) = h′(s′1(x)) , s1(y),s′1(y) and ` is false in both structures.
Otherwise, x = y j, for some j ∈ ~1 . . m� such that b′j < {a3, . . . ,ai}. If b′j = a1

then h(s1(x)) = a2 and h′(s′1(x)) = a3, thus h(s1(x)) = s1(y) ⇔ a2 = s1(y) ⇔
a2 = ao−1 ⇔ o = 3 ⇔ a3 = s′1(y) ⇔ h′(s′1(x)) = s′(y), hence ` has the same
truth value in (U,s1,h) and (U′,s′1,h

′). If b j , a1 then h′(s1(x)) = h(s1(x)), and
s1(x) < {a1, . . . ,ai}, thus h(s1(x) < {a2, . . . ,ai+1}, hence ` is false in both struc-
tures.

• If y ∈ V and x < V then there exists o ∈ ~3 . . i� such that s1(x) = ao−1 and s′1(x) =

ao, with s1(y) = s′1(y) < {a2, . . . ,ai}. We have h′(s′1(x)) = ao+1 and h(s1(x)) =

ao, thus h′(s′1(x)),h(s1(x)) ∈ {a3, . . . ,ai+1}. By definition of i, ai+1 < {b1, . . . ,bm}

(since ai+1 < {b′1, . . . ,b
′
m} and i + 1 > i), moreover ai+1 < s({x1, . . . , xn}) by Defi-

nition 15 (3). Thus ai+1 , s1(y). Since s1(y) < {a2, . . . ,ai} we deduce that s1(y) <
{a3, . . . ,ai+1}, thus ` is false in both structures.

As a consequence, (U′,s′1,h
′) and (U,s1,h) necessarily coincide on φ, and consequently

(U,s1,h) |= ¬φ, hence (U,s,h) 6|= ∀y1, . . . ,ym . φ which contradicts our hypothesis. ut

Lemma 17. Let ϕ=∀y1, . . . ,ym . φ be a prenex formula of SL1 of free variables x1, . . . , xn
(with n > 0) where φ is a boolean combination of universe-independent test formulas.
If (U,s,h) is a finite minimal model of ϕ then ||U|| ≤ 2n · (m + 3).

Proof. Let I = (U,s,h) be a minimal finite model of ϕ and let ai = s(xi) for i = 1, . . . ,n.
We inductively define a sequence li (1 ≤ i ≤ n) of natural numbers as follows: li is the
minimal natural number such that either hli (ai) < dom(h) or h(hli (ai)) ∈ {a1, . . . ,an} ∪

{h j(ai) | j ∈ ~1 . . li−1�}∪ {h j(ak) | k ∈ ~1 . . i−1�, j ∈ ~1 . . lk�}. Because the domain of h
is finite, the numbers li always exist, for all i = 1, . . . ,n. Note that by construction, given
i ∈ ~1 . . i�, if h j(ai) , hk(ai) for all k < j and h j(ai) <

{
hk(ap)

∣∣∣ k ∈ N} for all p < i, then
j ≤ li. Hence, since by Proposition 14, we have U = {h j(s(xi)) | i ∈ ~1 . . n�, j ∈ N}, we
deduce that U =

⋃n
i=1{h

j(ai) | j ∈ ~0 . . li�}. Furthermore, by definition of li, all locations
h j(ai), for i ∈ ~1 . . n� and j ∈ ~1 . . li�, are pairwise distinct.

We define the following subsets of U: U1
def
= {ai | i ∈ ~1 . . n�}, U2

def
= {hli (ai) | i ∈

~1 . . n�,hli (ai) < dom(h)}, and U3
def
= {h(hli (ai)) | i ∈ ~1 . . n�,hli (ai) ∈ dom(h)}. By def-

inition, U2 ∪U3 contains at most n elements, thus ||U1∪U2∪U3|| ≤ 2n. We have that
every element c such that there exist a , b with h(a) = h(b) = c is in U3. Indeed, assume
that there exist two such elements a,b ∈ U. Then there exist i, j ∈ ~1 . . n�, i′ ∈ ~0 . . li�,
j′ ∈ ~0 . . l j� such that a = hi

′

(ai) and b = h j′ (a j). We assume by symmetry that i ≤ j.
Then by definition of l j we must have j′ = l j, so that h(b) = c ∈U3. The reader may refer
to Figure 1 for an illustration. Now, consider a sequence of the form (h j(ai), . . . ,h j′ (ai))
(with j ≤ j′) containing no element in U1 ∪U2 ∪U3. By definition, this sequence ful-
fills Conditions 3 and 1 from Definition 15. If the sequence does not fulfill Condi-
tion 2, then there exist k ∈ ~ j . . j′ − 1� such that hk+1(ai) is a fork element, hence
hk+1(ai) ∈ U3, which contradicts our hypothesis. Consequently, (h j(ai), . . . ,h j′ (ai)) is a
line for (I,ϕ). By Proposition 16 such lines cannot be of length greater than m+2, there-
fore U\(U1∪U2∪U3) contains at most (m+2) ·L elements, where L is the number of se-
quences (h j(ai), . . . ,h j′ (ai)) of maximal length not containing elements in U1∪U2∪U3.

Thus ||U|| ≤ (m + 2) · L + 2n. By definition, all such sequences necessarily start by some
element h(a), where a ∈ U1 ∪U2 ∪U3, thus there are at most ||U1∪U2∪U3|| ≤ 2n such
sequences. Hence L ≤ 2n and ||U|| ≤ 2n · (m + 3). ut

l4

a1

a2

a3

a4

l1

u

v

w

l2 l3

Fig. 1. Heap decomposition example. We have l1 = 5, l2 = 1, l3 = 3 and l4 = 1. Moreover,
U1 = {a1,a2,a3,a4}, U2 = {u} and U3 = {u,v,w}.

Corollary 18. The finite and infinite satisfiability problems for formulas of BSR(SL1)
are PSPACE-complete.

Proof. PSPACE-hardness follows from the proof that satisfiability of the quantifier free
fragment of SL2 is PSPACE-complete [4, Proposition 5]. Indeed, this proof does not
depend on the universe being infinite or the fact that k = 2. There remains to show
PSPACE-membership for both problems. Observe that this does not directly follow
from Lemmas 4 and 17, because (i) the sets µinf (φ) and µfin(φ) are of exponential size
hence no efficient algorithm can compute them and, (ii) Lemma 17 only holds for
universe-independent formulas. W.l.o.g., we assume that the considered formula con-
tains at least one free variable and is of the form ∀y1, . . . ,ym . φ. It is sufficient to focus on
the finite satisfiability problem. Indeed, by Lemma 4, ∀y1, . . . ,ym . φ ≡

inf ∨
M∈µinf (¬φ) M.

By Theorem 8, ∀y1, . . . ,ym . φ has an infinite model iff ∀y1, . . . ,ym . φ∧λn+m has a finite
model, where the size of λn+m is quadratic in n+m. Moreover, since λn+m is a BSR(SL)
formula, ∀y1, . . . ,ym . φ∧λn+m is also a BSR(SL) formula. Hence infinite satisfiability
can be reduced polynomially to finite satisfiability.

Let ψ=
∨

M∈µfin(¬φ) M (note that the size of ψ is exponential w.r.t. that of φ). Let L be
the maximal number l such that a test formula |h| ≤ l or |h| ≤ |U | − l occurs in µinf (φ). By
Lemma 4, the number L is polynomial w.r.t. size(φ). We guess a structure I = (U,s,h)
and check that it is a model of ϕ as follows. We first guess the set C of literals of the
form |U | ≤ i, |U | < i, |h| ≤ i, |h| > i, |h| ≤ |U | − i, or |h| > |U | − i with i ∈ ~0 . . L� that are
true in I. It is clear that ϕ is satisfiable iff ϕ∪C is satisfiable for some such set C. Up
to redundancy, C contains at most 6 literals (one literal of each kind). With each test
formula ` ∈ C we may associate an equivalent formula γ(`) in BSR(SL1) built on atoms
x ≈ y or alloc(x) using the following equivalence statements:

– |h| ≤ i ⇔ ∀x′1, . . . , x
′
i+1 . dist(x′1, . . . , x

′
i+1)→

∨i+1
j=1¬alloc(x′j),

– |h| ≤ |U | − i ⇔ ∃x′1, . . . , x
′
i . dist(x′1, . . . , x

′
i)∧

∧i
j=1¬alloc(x j),

– |U | ≤ i ⇔ ∀x′1, . . . , x
′
i+1¬dist(x′1, . . . , x

′
i+1).

Let ϑ be the conjunction of all formulas γ(`) where ` ∈ C. Note that ϑ contains
(up to redundancy) at most 3L + 2 existential variables and 3L + 2 universal variables.
Now consider the formula ψ′ obtained from ψ by replacing every test formula such
that ` ∈ C (resp. ` ∈ C) by > (resp. ⊥). Let ϕ′ be the formula obtained by putting
∀y1, . . . ,ym . ¬ψ′ ∧ ϑ in prenex form. It is clear that ϕ′ is in BSR(SL1) and that all
test formulas in ϕ′ are universe-independent, furthermore ϕ′ contains at most n′ =

n+ (3L+2) free or existential variables and m′ = m+ (3L+2) universal variables. More-
over, ϕ′ ≡ ϕ∧ϑ, hence ϕ′ is satisfiable iff ϕ admits a model satisfying C. By Lemma
17, ϕ′ is satisfiable iff ϕ′ admits a model (U,s,h) such that ||U|| ≤ 2n′× (m′+3). We may
thus check that ϕ′ is satisfiable by fixing such a set U, guessing the value of s(x) on each
variable x free in ϕ, guessing some heap h on U, and checking that (U,s,h) |= C and that
(U,s,h) |= ϕ. The former test is easy to perform by counting the number of allocated and
nonallocated cells. For the latter test, we check the negation (U,s,h) 6|= ϕ, by testing that
there exists a store s′ coinciding with s on x1, . . . , xn such that (U,s′,h) |= ¬φ, i.e., such
that (U,s′,h) |=

∨
M∈µfin(¬φ) M. To this aim, we guess the value of each variable yi in s′,

guess a minterm M, check that M ∈ µfin(¬φ) (which can be done in polynomial space
by Lemma 4) and check that (U,s′,h) validates every test formula in M (it is clear that
this can be done in polynomial time). ut

6 Conclusion

We have shown that the prenex fragment of Separation Logic over heaps with one se-
lector, denoted as SL1, is decidable in time not elementary recursive. Moreover, the
Bernays-Schönfinkel-Ramsey BSR(SL1) is PSPACE-complete. These results settle an
open question raised in [6] and allow one to draw a precise boundary between decidable
and undecidable cases inside BSR(SLk). As far as applications are concerned, the logic
BSR(SL1) can be used to reason on singly linked data-structures, where ∗ and −∗ are
used to state dynamic transformations of the heap and the quantifiers are useful to state
general properties of the considered data-structure (e.g., to check that a loop invariant is
preserved). Theorem 8, relating infinite and finite satisfiability, holds for any k ≥ 1 and
we believe that it could pave the way to further decidability results for prenex fragments
of SLk.

Acknowledgments The authors wish to thank Stéphane Demri, Etienne Lozes and
Alessio Mansutti for the insightful discussions during the preparation of this paper.

References

1. Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Perspec-
tives in Mathematical Logic. Springer, 1997.

2. Rémi Brochenin, Stéphane Demri, and Etienne Lozes. On the almighty wand. Information
and Computation, 211:106 – 137, 2012.

3. C. Calcagno and D. Distefano. Infer: An Automatic Program Verifier for Memory Safety of
C Programs. In Proc. of NASA Formal Methods’11, volume 6617 of LNCS. Springer, 2011.

4. Cristiano Calcagno, Hongseok Yang, and Peter W O’hearn. Computability and complexity
results for a spatial assertion language for data structures. In FST TCS 2001, Proceedings,
pages 108–119. Springer, 2001.

5. Stéphane Demri, Didier Galmiche, Dominique Larchey-Wendling, and Daniel Méry. Separa-
tion Logic with One Quantified Variable. In CSR’14, volume 8476 of LNCS, pages 125–138.
Springer, 2014.

6. Mnacho Echenim, Radu Iosif, and Nicolas Peltier. The Bernays-Schönfinkel-Ramsey Class
of Separation Logic on Arbitrary Domains. In Foundations of Software Science and Compu-
tation Structures - 22nd International Conference, FOSSACS 2019, Held as part of ETAPS
2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, volume 11425 of LNCS, pages
242–259. Springer, 2019.

7. M. Fitting. First-Order Logic and Automated Theorem Proving. Texts and Monographs in
Computer Science. Springer-Verlag, 1990.

8. Samin S Ishtiaq and Peter W O’Hearn. Bi as an assertion language for mutable data struc-
tures. In ACM SIGPLAN Notices, volume 36, pages 14–26, 2001.

9. Étienne Lozes. Expressivité des logiques spatiales. Thèse de doctorat, Laboratoire de
l’Informatique du Parallélisme, ENS Lyon, France, November 2004. URL: http://www.
lsv.ens-cachan.fr/Publis/PAPERS/PS/PhD-lozes.ps.

10. Michael O. Rabin. Decidability of Second-Order Theories and Automata on Infinite Trees.
Transactions of the American Mathematical Society, 141:1–35, 1969. URL: http://www.
jstor.org/stable/1995086.

11. J.C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In Proc. of
LICS’02, 2002.

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/PhD-lozes.ps
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/PhD-lozes.ps
http://www.jstor.org/stable/1995086
http://www.jstor.org/stable/1995086

	Prenex Separation Logic with One Selector Field
	Mnacho Echenim, Radu Iosif and Nicolas Peltier

