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Abstract. We describe a system to prove properties of programs. The
key feature of this approach is a method to automatically synthesize in-
ductive invariants of the loops contained in the program. The method is
generic, i.e., it applies to a large set of programming languages and ap-
plication domains; and lazy, in the sense that it only generates invariants
that allow one to derive the required properties. It relies on an existing
system called GPiD for abductive reasoning modulo theories [14], and
on the platform for program verification Why3 [16]. Experiments show
evidence of the practical relevance of our approach.

1 Introduction

Hoare logic – together with strongest post-conditions or weakest pre-conditions
calculi – allow one to verify properties of programs defined by bounded sequences
of instructions [20]. Given a pre-condition φ satisfied by the inputs of program
P, algorithms exist to compute the strongest formula ψ such that φ {P} ψ holds,
meaning that if φ holds initially then ψ is satisfied after P is executed, and any
formula ψ′ that holds after P is executed is such that ψ |= ψ′. To check that
the final state satisfies some formula ψ′, we thus only have to check that ψ′ is
a logical consequence of ψ. However, in order to handle programs containing
loops, it is necessary to associate each loop occurring within the program with
an inductive invariant. An inductive invariant for a given loop L is a formula
that holds every time the program enters L (i.e., it must be a logical consequence
of the preconditions of L), and is preserved by the sequence of instructions in L.
Testing whether a formula is an inductive invariant is a straightforward task, and
the difficulty resides in generating candidate invariants. These can be supplied
by the programmer, but this is a rather tedious and time-consuming task; for
usability and scalability, it is preferable to generate those formulas automatically
when possible. In this paper, we describe a system to generate such invariants
in a completely automated way, via abductive reasoning modulo theories, based
on the methodology developed in [13]. Roughly speaking, the algorithm works
as follows. Given a program P decorated with a set of assertions that are to be
established, all loops are first assigned the same candidate invariant >. These in-
variants are obviously sound: they hold before the loops and are preserved by the
sequence of instructions in the loop; however they are usually not strong enough



to prove the assertions decorating the program. They are therefore strengthened
by adding hypotheses that are sufficient to ensure that the assertions hold; these
hypotheses are generated by a tool that performs abductive inferences, and the
strengthened formulas are candidate invariants. Additional strengthening steps
are taken to guarantee that these candidates are actual invariants, i.e., that they
are preserved by the sequence of instructions in the loop. These steps are iterated
until a set of candidate invariants that are indeed inductive is obtained.

We rely on two existing systems to accomplish this task. The first one is
Why3 (see, e.g., http://why3.lri.fr/ or [16]), a well-known and widely-used
platform for deductive program verification that is used to compute verification
conditions and verify assertions. The second system, GPiD, is designed to gen-
erate implicants1 of quantifier-free formulas modulo theories [14]. This system is
used as an abductive reasoning procedure, thanks to the following property: if
φ 6|= ψ, finding a hypothesis φ′ such that φ ∧ φ′ |= ψ is equivalent to finding φ′

such that φ′ |= φ ⇒ ψ. GPiD is generic, since it only relies on the existence of
a decision procedure for the considered theory (counter-examples are exploited
when available to speed-up the generation of the implicants when available).
Both systems are connected in the Ilinva framework.

Related Work. A large number of different techniques have been proposed to
generate loop invariants automatically, especially on numeric domains [9,10],
but also in more expressive logics, for programs containing arrays or express-
ible using combination of theories [26,8,23,18,22,24]. We only briefly review the
main ideas of the most popular and successful approaches. Methods based on
abstract interpretations (see, e.g., [11,25]) work by executing the program in a
symbolic way, on some abstract domain, and try to compute over-estimations of
the possible states of the memory after an unbounded number of iterations of
the loop. Counter-examples generated from runs can be exploited to refine the
considered abstraction [17,19]. The idea is that upon detection of a run for which
the assertion is violated, if the run does not correspond to a concrete execution
path, then the considered abstraction may be refined to dismiss it.

Candidate invariants can also be inferred by generating formulas of some
user-provided patterns and testing them against some particular executions of
the program [15]. Those formulas that are violated in any of the runs can be re-
jected, and the soundness of the remaining candidates can be checked afterwards.
Invariants can be computed by using iterative backward algorithms [27], starting
from the post-condition and computing weakest pre-conditions until a fixpoint
is reached (if any). Other approaches [21] have explored the use of quantifier
elimination to refine properties obtained using a representation of all execution
paths.

The work that is closest to our approach is [13], which presents an algorithm
to compute invariants as boolean combinations of linear constraints over integers.
The algorithm is similar to ours, and also uses abduction to strengthen candi-

1 An implicant of a formula ψ is a formula φ such that φ |= ψ. It is the dual notion of
that of implicates

http://why3.lri.fr/


date invariant so that verification conditions are satisfied. The algorithms differ
by the way the verification conditions and abductive hypotheses are proceeded:
in our approach the conditions always propagate forward from an invariant to
another along execution paths, and we eagerly ensure that all the loop invariants
are inductive. Another difference is that we use a completely different technique
to perform abductive reasoning: in [13] is based on model construction and quan-
tifier elimination for Presburger arithmetic, whereas our approach uses a generic
algorithm, assuming only the existence of a decision procedure for the under-
lying theory. This permits to generate invariants expressed in theories that are
out of the scope of [13].

Contribution. The main contribution is the implementation of a general frame-
work for the generation of loop invariants, connecting the platform Why3 and
GPiD. The evaluation demonstrates that the system permits to generate loop
invariants for a wide range of theories, though it suffers from a large search space
which may induce a large computation time.

2 Verification Conditions

In what follows, we consider formulas in a base logic expressing properties of
the memory and assume that such formulas are closed under the usual boolean
connectives. These formulas are interpreted modulo some theory T , where |=T
denotes logical entailment w.r.t. T . The memory is modified by programs, which
are sequences of instructions; they are inductively defined as follows:

P = empty | I ; P
′

I = 〈base-instruction〉 | assume φ | assert φ

| if C then P1 else P2 | while C do P1{φ} end

where P′, P1 and P2 are programs, C is a condition on the state of the memory,
φ is a formula and I is an instruction. Assumptions correspond to formulas
that are taken as hypotheses, they are mostly useful to specify pre-conditions.
Assertions correspond to formulas that are to be proved. Base instructions are
left unspecified, they depend on the target language and application domain;
they may include, for instance, assignments and pointer redirection. The formula
φ in the while loop is a candidate loop invariant, it is meant to hold every time
condition C is tested. In our setting each candidate loop invariant will be set to
> before invoking Ilinva (except when another formula is provided by, e.g., the
user), and the program will iteratively update these formulas. We assume that
conditions contain no instructions, i.e., that the evaluation of these conditions
does not affect the memory. We write P ∼ P′ if programs P and P′ are identical
up to the loop candidate invariants.

An example of a program is provided in Figure 1. It uses assignments on
integers and usual constructors and functions on lists as base instructions. It
contains one loop with candidate invariant > (Line 3) and one assertion (Line
6).



1 let i← 1 ;
2 let L← list(1,nil) ;
3 while unknown() do {>}
4 i← i + 1 ;
5 L← list(i, L) ;

6 assert head(L) = length(L) ;

Fig. 1: A simple program on lists

It contains one loop for which we will
generate an invariant.

A location is a finite sequence of natural
numbers. The empty location is denoted by
ε and the concatenation of two locations `
and `′ is denoted by `.`′. If ` is a location
and S is a set of locations then `.S denotes
the set {`.`′ | `′ ∈ S}. The set of locations
in a program P or in an instruction I is in-
ductively defined as follows:

– If P is an empty sequence then loc(P) = {0}.
– If P = I ; P′ then loc(P) = {0} ∪ 0.loc(I) ∪ {(i+ 1).p | i ∈ N, i.p ∈ loc(P′)}.
– If I is a base instruction or an assumption/assertion, then loc(I) = ∅.
– If I = if C then P1 else P2 then loc(I) = 1.loc(P1) ∪ 2.loc(P2).
– If I = while C do P1{φ} end then loc(I) = 1.loc(P1).

For instance, a program I1 ; I2 where I1, I2 denote base instructions has three
locations: 0 (beginning of the program), 1 (between I1 and I2) and 2 (end of the
program). Note that there are no locations within an atomic instruction. The
program in Figure 1 has eight locations, namely 0, 1, 2, 2.1.0, 2.1.1, 2.1.2, 3, 4.
We denote by P|` the instruction occurring just after location ` in P (if any):

– If P = I ; P′ then P|0 = I, P|0.` = I|` and P|(i+1).` = P′|i.`.
– If I = if C then P1 else P2 then I|1.` = P1|` and I|2.` = P2|`.
– If I = while C do P1{φ} end then I|1.` = P1|`.

Note that ` 7→ P|` is a partial function, since locations denoting the end of a
sequence do not correspond to an instruction. We denote by lloc(P) the set of
locations ` in P such that P|` is a loop and by loops(P) = {P|` | ` ∈ lloc(P)} the
set of loops occurring in P. For instance, if P denotes the program in Figure 1,
then P|1 is let L← list(1,nil), and lloc(P) = {2}.

We denote by < the usual order on locations: ` < `′ iff either there exist
numbers i, j and locations `1, `2, `3 such that ` = `1.i.`2, ` = `1.j.`3 and i < j,
or there exists a location `′′ such that `′ = `.`′′.

We assume the existence of a procedure VCgen that, given a program P,
generates a set of verification conditions for P. These verification conditions are
formulas of the form φ⇒ ψ, each of which is meant to be valid. Given a program
P, the set of conditions VCgen(P) can be decomposed as follows:

1. Assertion conditions, which ensure that the assertion formulas hold at the
corresponding location in the program. These conditions also include addi-
tional properties to prevent memory access errors, e.g., to verify that the
index of an array is within the defined valid range of indexes. The set of
assertion conditions for program P is denoted by VCgena(P).

2. Propagation conditions, ensuring that loop invariants do propagate. Given
a loop L occurring at position ` in program P, we denote by VCgenind(P, `)
the set of assertions ensuring that the loop invariant for L propagates.



wp(φ, empty) = φ
wp(φ, I ; P) = wp(wp(φ, P), I)

wp(φ, assume φ′) = φ′ ⇒ φ
wp(φ, assert φ′) = φ′ ∧ φ

wp(φ, if C then P1 else P2) = C⇒ wp(φ, P1) ∧ ¬C⇒ wp(φ, P2)
wp(φ, while C do P1{ψ} end) = ψ ∧ ∀x. (ψ ⇒ wp(ψ, P1)) ∧ ∀x. (ψ ∧ ¬C⇒ φ)

The formula in the last line states that the loop invariant holds when the loop is
entered, that it propagates and that it entails the formula φ . The vector x denotes
the vector of variables occurring in P1.

Fig. 2: A Weakest Precondition Calculus

sp(φ, empty) = φ
sp(φ, I ; P′) = sp(sp(φ, I), P′)

sp(φ, assume φ′) = φ ∧ φ′

sp(φ, assert φ′) = φ
sp(φ, if C then P1 else P2) = sp(φ ∧ C, P1) ∨ sp(φ ∧ ¬C, P2)
sp(φ, while C do P1{ψ} end) = ψ ∧ ¬C

sp(φ, P) describes the state of the memory after P. The conditions corresponding to
loops are approximated by using the provided loop invariants (the corresponding veri-
fication conditions are not stated).

Fig. 3: A Strongest Postcondition Calculus

3. Loop pre-conditions, ensuring that the loop invariants hold when the corre-
sponding loop is entered. Given a loop L occurring at position ` in program
P, we denote by VCgeninit(P, `) the set of assertions ensuring that the loop
invariant holds before loop L is entered.

Thus, VCgen(P) = VCgena(P) ∪
(⋃

`∈lloc(P)(VCgenind(P, `) ∪VCgeninit(P, `))
)
.

Such verification conditions are generally defined using standard weakest pre-
condition or strongest post-condition calculi (see, e.g., [12]), where loop invariant
are used as under-approximations. Formal definitions are recalled in Figures
2 and 3 (the definition for the basic instructions depends on the application
language and is thus omitted). For the sake of readability, we assume, by a
slight abuse of notation, that the condition C is also a formula in the base logic.

This permits to define the goal of the paper in a more formal way: our aim
is to define an algorithm that, given a program P, constructs a program P′ ∼ P

(i.e., constructs loop invariants for each loop in P) such that VCgen(P′) only
contains valid formulas. Note that all the loops and invariants must be handled
globally since verification conditions depend on one another.



Algorithm 1: GPiD(φ,M,A,P)

1 if M unsatisfiable (modulo T ) or ¬P(M) then
2 return ∅;
3 if M |= φ then
4 return {M};
5 let m be a model of {¬φ} ∪M ;
6 let φ = Simplify(φ,M);
7 let A = {l ∈ A |M ∪ ¬φ 6|=T l,M 6|=T lc};
8 foreach l ∈ A such that m 6|= l do
9 let Al = {l′ ∈ A | l′ < l ∧m |= l′} ∪ {l′ ∈ A | l < l′};

10 let Pl = GPiD(φ,M ∪ {l} , Al,P);

11 return
⋃
l∈A Pl;

3 Abduction

As mentioned above, abductive reasoning will be performed by generating im-
plicants. Because it would not be efficient to blindly generate all implicants of a
formula, this generation is controlled by fixing the literals that can occur in an
implicant. We thus consider a set A of literals in the considered logic, called the
abducible literals.

Definition 1. Let φ be a formula. An A-implicant of φ (modulo T ) is a con-
junction (or set) of literals l1 ∧ · · · ∧ ln such that li ∈ A, for all i ∈ J1 . . nK and
l1 ∧ · · · ∧ ln |=T φ.

We use the procedure GPiD described in [14] to generate A-implicants. A simpli-
fied version of this procedure is presented in Algorithm 1. A call to the procedure
GPiD(φ,M,A,P) is meant to generateA-implicants of φ that: (i) are of the form
M ∪A′, for some A′ ⊆ A; (ii) are as general as possible; and (iii) satisfy property
P. When M itself is not an A-implicant of φ, a subset of relevant literals from
A is computed (Line 7), and for each literal in this subset, a recursive call is
made to the procedure after augmenting M with this literal and discarding all
those that become irrelevant (Lines 9 and 10). In particular, the algorithm is pa-
rameterized by an ordering < on abducible literals which is used to ensure that
sets of hypotheses are explored in a non-redundant way. The algorithm relies
on the existence of a decision procedure for testing satisfiability in T (Line 1).
In practice, this procedure does not need terminating or complete2, e.g., it may
be called with a timeout (any “unknown” result is handled as “satisfiable”). At
Line 8, a model of the formula {¬φ} ∪M is used to prune the search space, by
dismissing some abducible literals. In practice, no such model may be available,
either because no model building algorithm exists for the considered theory or
because of termination issues. In this case, no such pruning is performed. Prop-
erty P denotes an abstract property of sets of literals. It is used to control the

2 However, Theorem 2 only holds if the proof procedure is terminating and complete.



form of generated A-implicants, it is for example possible to force the algorithm
to only generate A-implicants with a fixed maximal size. For Theorem 2 to hold,
it is simply required that P be closed under subsets, i.e., that for all sets of
abducible literals B and C, B ⊆ C ∧ P(C)⇒ P(B).

Compared to [14], details that are irrelevant for the purpose of the present
paper are skipped and the procedure has been adapted to generate A-implicants
instead of implicates (implicants and implicates are dual notions).

Theorem 2 ([14]). The call GPiD(φ, ∅,A,P) terminates and returns a set of
A-implicants of φ satisfying P. Further, if P is closed under subsets, then for
every A-implicant I of φ satisfying P, there exists I ′ ∈ GPiD(φ, ∅,A,P) such
that I |=T I ′.

This procedure also comes with generic algorithms for pruning redundant A-
implicants i.e., for removing all A-implicants I such that there exist another
A-implicant I ′ such that I |=T I ′, see [14, Section 4].

4 Generating Loop Invariants

In this section, we present an algorithm for the generation of loop invariants. As
explained in Section 2, we distinguish between 3 kinds of verification conditions,
which will be handled in different ways: assertion and propagation conditions;
and loop pre-conditions. As can be seen from the rules in Figure 2, loop invariants
can occur as antecedents in verification conditions, this is typically the case
when a loop occurs just before an assertion in some execution path. In such
a situation, we say that the considered condition depends on loop L. When a
condition depends on a loop, a strengthening of the loop invariant of loop L

yields a strengthening of the hypotheses of the verification condition, i.e., makes
the condition less general (easier to prove).

This principle is used in Algorithm 2, which we briefly describe before going
into details. Starting with a program P in which it is assumed that every loop
invariant is inductive, the algorithm attempts to recursively generate invariants
that make all assertion conditions in P valid. It begins by selecting a non-valid
formula φ from VCgena(P) and a location ` ∈ lloc(P) such that φ depends on `,
then generates a set of hypotheses that would make φ valid (Line 4). For each
such hypothesis ξ, a loop location `′ such that `′ ≤ ` is selected, and a formula ξ′

that is a weakest precondition at `′ causing ξ to hold at location ` is computed
(Line 7). This formula is added to the invariant of the loop at location `′ (Line 8),
so that if this invariant was ψ, the new candidate invariant is ξ′∧ψ. If ξ′ does not
hold before entering the loop then ξ is discarded (Line 9); otherwise, the program
attempts to update the other loop invariants to ensure that ξ′ propagates (Line
10). When this succeeds, a recursive call is made with the updated invariants
(Line 12) to handle the other non-valid assertion conditions.

Procedure Abduce(φ) (invoked Line 4 of Algorithm 2) is described in Al-
gorithm 3. It generates formulas ξ that logically entail φ; it is used to generate
the candidate hypotheses for strengthening. It first extracts a set of abducible



Algorithm 2: Ilinva (Program P)

1 if all formulas in VCgena(P) are valid then
2 return P;

3 let φ be a non valid formula in VCgena(P), depending on a loop at location `;
4 let Ξ ←− Abduce(φ, P, `);
5 foreach ξ ∈ Ξ do
6 foreach `′ ∈ lloc(P) such that `′ ≤ ` do
7 let ξ′ ←− bp(ξ, P, `, `′);
8 let Pξ ←− Strengthen(P, `′, ξ′) ;
9 if VCgeninit(Pξ, `

′) is valid then
10 let P′ξ ←− Ind(Pξ, `

′) ;
11 if P′ξ 6= fail then
12 let P′′ξ ←− Ilinva(P′ξ);
13 if P′′ξ 6= fail then
14 return P′′ξ ;

15 return fail ;

Algorithm 3: Abduce(Formula φ, Program P, Location `)

1 let A ←− GetAbducibles(φ) ;
2 let A ←− {l | l ∈ A ∧ φ 6|=T l} ;
3 let Ξ ←− GPiD(φ, ∅,A,P)) ;
4 let Ξ ′ ←− {ξ1 ∨ · · · ∨ ξn | n ∈ N, ξi ∈ Ξ} ;
5 return Ξ ′

literals A by collecting variables and symbols from the program and/or from the
theory T and combining them to create literals up to a certain depth (procedure
GetAbducibles at Line 1). To avoid any redundancy, this task is actually done
in two steps: a set of abducible literals for the entire program is initially con-
structed (this is done once at the beginning of the search), and depending on the
considered program location, a subset of these literals is selected. The abducible
literals that are logically entailed by φ modulo T are filtered out (Line 2), and
procedure GPiD is called to generate A-implicants of φ. Finally, A-implicants
are combined to form disjunctive formulas. Note that another way of generat-
ing disjunction of literals would be to add these disjunction in the initial set of
abducible literals, but this solution would greatly increase the search space.

Each of the hypotheses ξ generated by Abduce(φ) is used to strengthen the
invariant of a loop occurring at position `′ ≤ ` (Line 8 in Algorithm 2). The
strengthening formula is computed using the Weakest Precondition Calculus
on ξ, on a program obtained from P by ignoring all loops between `′ and `,
since they have corresponding invariants. To this purpose we define a function
bp(φ, P, `, `′) which, for positions `′ ≤ `, back-propagates abductive hypotheses
from a location ` to `′ (see Figure 4). This is done by extracting the part of



path(P, `, `) = empty

path(P, `, `′.(i+ 1)) = path(P, `, `′.i) • P|`′.i if ` ≤ `′.i
path(P, `, `′.0) = path(P, `, `′) if ` ≤ `′

path(P, `.i.`′, `.(i+ 1)) = path(P, `.i.`′, `.i.m) m = max{j | `.i.j ∈ loc(P)}

bp(φ, P, `, `′) = wp(φ, P′) if P′ = path(RmLoops(P), `′, `)
fp(φ, P, `, `′) = sp(φ, P′) if P′ = path(RmLoops(P), `, `′)

RmLoops(P) denotes the program obtained from P by removing all while instructions
and • denotes the concatenation operator on programs.

Fig. 4: Backward and Forward Propagation of Abductive Hypotheses

Algorithm 4: Ind (Program P, Location `)

1 if all formulas in VCgenind(P, `) are valid then
2 return P;

3 let φ be a non-valid formula in VCgenind(P, `) ;
4 let Ξ ←− Abduce(φ, P, `);
5 foreach ξ ∈ Ξ do
6 foreach `′ ∈ lloc(P) such that ` is a prefix of `′ (with possibly ` = `′) do
7 let ξ′ ←− fp(ξ, P, `, `′);
8 let P′ξ ←− Strengthen(P, `′, ξ′) ;
9 if VCgeninit(P

′
ξ, `

′) is valid then
10 let P′′ξ ←− Ind(P′ξ, `) ;
11 if P′′ξ 6= fail then
12 return P′′ξ ;

13 return fail ;

the code path(P, `′, `) between the locations `′ and ` while ignoring loops, and
computing the weakest precondition corresponding to this part of the code and
the formula φ.

The addition of hypothesis ξ′ to the invariant of the loop at position `′

ensures that the considered assertion φ holds, but it is necessary to ensure that
this strengthened invariant is still inductive. This is done as follows. Line 9
of Algorithm 2 filters away all candidates for which the precondition before
entering the loop is no longer valid, and Algorithm 4 ensures that the candidate
still propagates. This algorithm behaves similarly to Algorithm 2 (testing the
verification conditions in VCgenind(P, `) instead of those in VCgena(P)), except
that it strengthens the invariants that correspond either to the considered loop,
or to other loops occurring within it (in the case of nested loops). Note that
in this case, properties must be propagated forward, from location ` to the
actual location of the strengthened invariant, using a Strongest Postcondition
Calculus (Function fp(φ, P, `, `′) in Figure 4). This technique avoids considering
hypotheses that do not propagate.



When applied on the program in Figure 1, Ilinva first sets the initial invari-
ant of the loop to > and considers the assertion φ : head(L) = length(L). As
the entailment > |= φ does not hold, it will call GPiD to get an implicant of
> ⇒ φ. Assume that GPiD returns the (trivial) solution φ. As φ indeed holds
when the loop is entered3, Ilinva will add φ to the invariant of the loop and
call Ind. Since φ does not propagate Ind will further strengthen the invariant,
yielding, e.g., the correct solution: φ ∧ i = head(L).

The efficiency of Algorithm 2 crucially depends on the order in which can-
didate hypotheses are processed at Line 5 for the strengthening operation. The
heuristic used in our current implementation is to try the simplest hypotheses
with the highest priority. Abducible atoms are therefore ordered as follows: first
boolean variables, then equations between variables of the same sort, then ap-
plications of predicate symbols to variables (of the appropriate sorts) and finally
deep literals involving function symbols (up to a certain depth). In every case,
negative literals are also considered, with the same priority as the corresponding
atom. Similarly, unit A-implicants are tested before non-unit ones, and single
A-implicants before disjunctions of A-implicants. In the iteration on line 6 of Al-
gorithm 2, the loops that are closest to the considered assertions are considered
first. Due to the number of loops involved, numerous parameters are used to
control the application of the procedures, by fixing limits on the number of ab-
ducible literals that may be considered and on the maximal size of A-implicants.
When a call to Ilinva fails, these parameters are increased, using an iterative
deepening search strategy. The parameter controlling the maximal number of
A-implicants in the disjunctions (currently either 1 or 2) is fixed outside of the
loop as it has a strong impact on the computation cost.

The following theorem states the main properties of the algorithm.

Theorem 3. Let P be a program such that VCgenind(P, `) and VCgeninit(P, `)
are valid for all ` ∈ lloc(P). If Ilinva (P) terminates and returns a program
P′ other than fail, then P ∼ P′ and VCgen(P′) is valid modulo T . Furthermore,
if the considered set of abducible literals is finite ( i.e., if there exists a finite
set A such that GetAbducibles(φ) ⊆ A for all formulas φ), then Ilinva (P)
terminates.

Proof. The proof is provided in the extended version4.

5 Implementation

5.1 Overview

The Ilinva algorithm described in Section 4 has been implemented by connect-
ing Why3 with GPiD. A workflow graph of this implementation is detailed in the

3 This can be checked by computing the weakest precondition of φ w.r.t. Lines 1, 2.
The obtained formula is head(list(1,nil)) = length(list(1,nil)) which is equivalent
to > (w.r.t. the usual definitions of list and head).

4 https://arxiv.org/abs/1906.11033

https://arxiv.org/abs/1906.11033


extended paper. Note that both systems themselves call external SMT solvers to
check the satisfiability of formulas. In particular, the GPiD toolbox is easy to
plug to any SMTlib2-compliant SMT solver. The framework is actually generic,
in the sense that it could be plugged with other systems, both to generate and
verify proof obligations and to strengthen loop invariants. It is also independent
of the constructions used for defining the language: other constructions (e.g., for
loops) can be considered, provided they are handled by the program verification
framework.

Given an input program written in WhyML, Why3 generates a verification
condition the validity of which will ensure that all the asserted properties are
verified (including additional conditions related to, e.g., memory safety) This
initial verification condition is split by Why3 into several subtasks. These condi-
tions are enriched with all appropriate information (e.g., theories, axioms,. . . )
and sent to external SMT solvers to check satisfiability. The conditions we are
interested in are those linked to the proofs of the program assertions, as well as
those ensuring that the candidate loop invariants are inductive. In our imple-
mentation, Why3 is taken as a black box, and we merely recover the files that
are passed from Why3 to the SMT solvers, together with additional configuration
data for the solvers we can extract from Why3. If the proof obligation fails, then
we relate the file to the corresponding assertion in the WhyML program and ex-
tract the set of abducible literals as explained in Section 4, restricting ourselves
to symbols corresponding to WhyML variables, functions and predicates. We
then tune the SMTlib2 file to adapt it for computations by GPiD and invoke
GPiD with the same SMT-solver as the one used by Why3 to check satisfiability,
as the problem is expected to be optimized/configured for it. We also configure
GPiD to skip the exploration of subtrees that will produce candidate invariants
that do not satisfy the loop preconditions. GPiD returns a stream of solutions
to the abductive reasoning problem. We then backward-translate the formulas
into the WhyML formalism and use them to strengthen loop invariants. For
efficiency, the systems run in parallel: the generation of abductive hypotheses
(by GPiD, via the procedure Abduce) and their processing in WhyML (via
Ilinva) is organized as a pipe-line, where new abduction solutions are computed
during the processing of the first ones.

To bridge Ilinva and Why3, we had to devise an interface, which is able to
analyze WhyML programs and to identify loop locations and the corresponding
invariants. It invokes Why3 to generate and prove the associated verification tasks,
and it recovers the failed ones. The library also includes tools to extract and
modify loop invariants, to extract variables and reference variables in WhyML
files, as well as types, predicates and functions, and wrappers to call the Why3

executable and external tools, and to extract the files sent by WhyML to SMT-
solvers.

5.2 Distribution

The Abdulot framework is available on GitHub [7]. It contains an revamped
interface to the GPiD libraries and algorithm, a generic library of the Ilinva



algorithm automatically plugged with GPiD, the code interface for Why3 and
the related executables. GPiD interfaces and related executables are generated
for CVC4, Z3 and AltErgo5 via their SMTlib2 interface. Note that the SMT
solvers are not provided by our framework, they must be installed separately
(all versions with an SMTlib2-compatible interface are supported). Additional
interfaces and executables can be produced using C++ libraries for MiniSAT,
CVC4 and Z3 if their supported version is available6.

The framework also provides libraries and toolbox executables to work with
abducible files, C++ libraries to handle WhyML files, helpers for the generation
of abducible literals out of SMTlib2 files, and an extensive lisp parser. It also
includes a documentation, which explains in particular how to extend it to other
solvers and program verification framework. All the tools can be compiled using
any C++ 11 compliant compiler. The whole list of dependencies is available in
the documentation, as well as a dependency graph for the different parts of the
framework.

6 Experiments

We use benchmarks collected from several sources [13,4,5,6,1,2,3] (see also [7]
for a more detailed view of the benchmark sources), with additional examples
corresponding to standard algorithms for division and exponentiation (involving
lists, arrays, and non linear arithmetic). Some of these benchmarks have been
translated7 from C or Java into WhyML. In all cases, the initial invariant
associated with each loop is >. We used Z3 for the benchmarks containing real
arithmetic, AltErgo for lists and arrays and CVC4 in all the other cases. All
examples are embedded with the source of the Ilinva tool.

6.1 Results

We ran Ilinva on each example, first without disjunctive invariants (i.e., taking
n = 1 in Procedure Abduce) then with disjunctions of size 2. The results
are reported in Figure 5. For each example, we report whether our tool was
able generate invariants allowing Why3 to check the soundness of all program
assertions before the timeout, in which case we also report the time Ilinva

took to do so (columns T(C) when generating conjunctions only and T(D) when
generating implicants containing disjunctions). We also report the number of
candidate invariants that have been tried (columns C(D) and C(D)) and the
number of abducible literals that were sent to the GPiD algorithm (column
Abd). Note that the number of candidate invariants does not correspond to the

5 Those are the three solvers the Why3 documentation recommends to work with as
an initial setup. (see also http://why3.lri.fr/@External Provers.)

6 The AltErgo interface provided by the tool uses an SMTlib2 interface that is under
heavy development and that, in practice, does not work well with the examples we
send it.

7 The translation was done by hand.

http://why3.lri.fr/


number of SMT calls that are made by the system: those made by GPiD to
generate these candidates are not taken into account. The timeout is set to
20 min. For some of the examples that we deemed interesting, we allowed the
algorithm to run longer. We report those cases by putting the results between
parentheses. Light gray cells indicate that the program terminates before the
timeout without returning any solution, and dark gray cells indicate that the
timeout was reached. Empty cells mean that the tool could not generate any
candidate invariant. The last column of both tables report the time Why3 takes
to prove all the assertions of an example when correct invariants are provided.

The tests were performed on a computer powered by a dual-core Intel i5
processor running at 1.3GHz with 4 GB of RAM, under macOS 10.14.3. We
used Why3 version 1.2.0 and the SMT solvers AltErgo (version 2.2.0), CVC4
(prerelease of version 1.7) and Z3 (version 4.7.1).

An essential point concerns the handling of local solver timeouts. Indeed,
most calls to the SMT solver in the abductive reasoning procedure will involve
satisfiable formulas, and the solvers usually take a lot of time to terminate on
such formulas (or in the worst case will not terminate at all if the theory is
not decidable, e.g., for problems involving first-order axioms). We thus need to
set a timeout after which a call will be considered as satisfiable (see Section 3).
Obviously, we neither want this timeout to be too high as it can significantly
increase computation time, nor too low, since it could make us miss solutions.
We decided to set this timeout to 1 second, independently of the solver used,
after measuring the computation time of the Why3 verification conditions already
satisfied (for which the solver returns unsat) across all benchmarks. We worked
under the assumption that the computation time required to prove the other
verification conditions when possible would be roughly similar.

6.2 Discussion

As can be observed, Ilinva is able to generate solutions for a wide range of
theories, although the execution time is usually high. The number of invariant
candidates is relatively high, which has a major impact on the efficiency and
scalability of the approach.

When applied to examples involving arithmetic invariants, the program is
rather slow, compared to the approach based on minimization and quantifier
elimination [13]. This is not surprising, since it is very unlikely that a purely
generic approach based on a model-based tree exploration algorithm involving
many calls to an SMT solver can possibly compete with a more specific pro-
cedure exploiting particular properties of the considered theory. We also wish
to emphasize that the fact that our framework is based on an external program
verification system (which itself calls external solvers) involves a significant over-
cost compared to a more integrated approach: for instance, for the Oxy examples
(taken from [13]), the time used by Why3 to check the verification conditions
once the correct invariants have been generated is often greater than the total
time reported in [13] for computing the invariants and checking all properties.



Abd T(C) C(C) T(D) C(D) Why3

O01 36 9.68 7 11.89 10 0.26
O02 536 3′18.9 66 1126 0.45
O04 108 50.47 32 2′31.4 156 0.26
O05 266 1′9.07 5 1′3.2 5 0.31
O06 390 6′13.6 56 18′5.1 552 0.72
O07 594 1′50.1 13 15′40.6 355 0.38
O08 210 2′35.5 61 9′35.8 528 0.42
O09 390 0 0 0.56
O10 90 1′39.54 65 12′56.9 0 0.35
O11 180 2′17.7 63 942 0.26
O12 782 0 0 0.53
O13 296 2′4.5 0 1621 0.30
O14 270 0 0 0.34
O15 36 32.53 21 888 0.27
O16 60 12.54 8 29.72 32 0.26
O17 36 40.88 26 2′42.5 134 0.33
O18 38 58.49 38 6′53.3 0 0.30
O19 60 1′59.5 111 1620 0.31
O20 546 380 870 0.49
O21 90 0.76 0 0.76 0 0.38
O22 270 2′10.1 20 2′11.9 20 0.48
O23 36 4.6 5 4.7 5 0.28
O25 60 1′23.4 20 2′38.4 44 0.39
O26 396 6′23.2 21 7′13.9 66 0.83
O28 2′3.9 137 16′22.8 1331 0.31
O29 61776 0 0 0.65
O30 36 31.43 26 41.66 45 0.26
O31 67050 0 0 0.49
O32 40 0.865 0 0.833 0 0.50
O33 90 1′11.3 12 1′19.9 21 0.45
O34 6768 0.798 0 0.79 0 0.44
O35 18 18.42 25 2′7.9 200 0.26
O36 61778 0 0 1.09
O37 36 0.752 0 0.769 0 0.34
O38 630 444 3′54.4 0 0.48
O39 546 1581 1840 0.40
O40 272 0 0 0.84
O41 0 0 0.37
O42 271 1′50.4 25 605 1.12
O43 60 4.27 2 3.67 2 0.29
O44 22.481 13 5′7.8 290 0.35
O45 0 0 1.50
O46 513 813 0.61

Abd T(C) C(C) T(D) C(D) Why3

509 130 (1h50′) (95) 0 0.66
534 172k 8 0 0.62
H04 120 2′54.8 223 1383 0.31
H05 1260 0 0 0.37

list0 60 6′30.4 77 1722 0.40
list1 20 40.82 3 3′26.2 385 0.47
list2 720 40 0 0.40
list3 126 3′35.1 11 930 0.44
list4 816 18 0
list5 468 22 0 0.44
array0 0 0 0.72
array1 0 0 0.50
array2 0 0 0.50
array3 0 0 0.82
expo0 171 (6h36′) (9) 0 0.40
expo1 2130 0 0
square 705 62 148
real0 965 81 213 0.55
real1 965 73 115 0.55
real2 240 9 2 0.40
realO0 36 4′9.6 25 5′32.18 40 0.47
realS 66 1′5.3 5 1′0.1 5 0.33
real3 17460 0 0
BM 1260 3′15.2 74 33 3.35

Scmp 0 0 0.83
Dmd 42 6 0 1′44.9
B00 639k 0 0 0.76
DIV0 560 3′58 35 534 0.83
DIV1 310 14.6 19 14.6 19 0.44
DIVE 42250 0 0

Fig. 5: Experimental Results



Of course, our choice also has clear advantages in terms of genericity, generality
and evolvability.

When applied to theories that are harder for SMT solvers, the algorithm
can still generate satisfying invariants. However, due to the high number of
candidates it tries, combined with the heavy time cost of a verification (which
can be several seconds), it may take some time to do so.

The number of abducible literals has a strong impact on the efficiency of
the process, leading to timeouts when the considered program contains many
variables or function/predicate symbols. It can be observed that the abduction
depth is rather low in all examples (1 or 2).

Our prototype has some technical limitations that have a significant impact
on the time cost of the execution. For instance, we use SMTlib2 files for commu-
nication between GPiD and CVC4 or Z3, instead of using the available APIs.
We went back to this solution, which is clearly not optimal for performance, be-
cause we experienced many problems coping with the numerous changes in the
specifications when updating the solvers to always use the latest versions. The
fact that Why3 is taken as a black box also yields some time consumption, first
in the (backward and forward) translations (e.g., to associate program variables
to their logical counterparts), but also in the verification tasks, which have to
be rechecked from the beginning each time an invariant is updated. Our aim in
the present paper was not to devise an efficient system, but rather to assess the
feasability and usefulness of this approach. Still, the cost of the numerous calls
to the SMT solvers and the size of the search tree of the abduction procedure
remain the bottleneck of the approach, especially for hard theories (e.g., non-
linear arithmetics) for which most calls with satisfiable formulas yield to a local
timeout (see Section 6.1).

7 Conclusion and Future Work

By combining our generic system GPiD for abductive reasoning modulo theories
with the Why3 platform to generate verification conditions, we obtained a tool to
check properties of WhyML programs, which is able to compute loop invariants
in a purely automated way.

The main drawback of our approach is that the set of possible abducible
literals is large, yielding a huge search space, especially if disjunctions of A-
implicants are considered. Therefore, we believe that our system in its current
state is mainly useful when used in an interactive way. For instance, the user
could provide the properties of interest for some of the loops and let the system
automatically compute suitable invariants by combining these properties, or the
program could rely on the user to choose between different solutions to the
abduction problem before applying the strengthening. Beside, it is also useful for
dealing with theories for which no specific abductive reasoning procedure exists,
especially for reasoning in the presence of user-defined symbols or axioms.

In the future, we will focus on the definition of suitable heuristics for auto-
matically selecting abducible literals and ordering them, to reduce the search



space and avoid backtracking. The number of occurrences of symbols should be
taken into account, as well as properties propagating from previous invariant
strengthening. A promising approach is to use dynamic program analysis tools
to select relevant abducibles. It would also be interesting to adapt the GPiD
algorithm to explore the search space width-first, to ensure that simplest solu-
tions are always generated first. Another option is to give Ilinva a more precise
control on the GPiD algorithm, e.g., to explore some branches more deeply,
based on information related to the verification conditions. GPiD could also be
tuned to generate disjunctions of solutions in a more efficient way.

From a more technical point of view, a tighter integration with the Why3

platform would certainly be beneficial, as explained in Section 6.2. The frame-
work could be extended to handle procedures and functions (with pre- and -post
conditions).

A current limitation of our tool is that it cannot handle problems in which
Why3 relies on a combination of different solvers to check the desired properties.
In this case, Ilinva cannot generate the invariants, as the same SMT solver is
used for each abduction problem (trying all solvers in parallel on every problem
would be possible in theory but this would greatly increase the search space).
This problem could be overcome by using heuristic approaches to select the most
suited solver for a given problem.

From a theoretical point of view, it would be interesting to investigate the
completeness of our approach. It is clear that no general completeness result
possibly holds, due to usual theoretical limitations, however, if we assume that
a program P′ ∼ P such that VCgen(P′) is valid exists, does the call Ilinva(P) al-
ways succeed? This of course would require that the invariants in P′ can be
constructed from abducibles occurring in the set returned by the procedure
GetAbducibles.
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