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Abstract

During development, transcriptional properties of progenitor
cells are stably propagated across multiple cellular divisions.
Yet, at each division, chromatin faces structural constraints
imposed by the important nuclear re-organization operating
during mitosis. It is now clear that not all transcriptional regu-
lators are ejected during mitosis, but rather that a subset of
transcription factors, chromatin regulators and epigenetic his-
tone marks are able to ‘bookmark’ specific loci, thereby
providing a mitotic memory. Here we review mechanisms of
mitotic bookmarking and discuss their impact on transcriptional
dynamics in the context of multicellular developing embryos.
We document recent discoveries and technological advances,
and present current mathematical models of short-term tran-
scriptional memory.
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Introduction
During development of multicellular organisms, tran-
scriptional programs must be faithfully transmitted
during each cellular division to ensure cell fate main-
tenance. Two steps of the cell cycle, mitosis and repli-
cation exhibit particular topological constraints,
hindering stable inheritance of transcriptional reper-
toires. However it is now well established that mitosis is
not always accompanied by a total erasure of past chro-
matin states, from mother to daughter cells [1]. On the
contrary, memory of active and repressed chromatin
www.sciencedirect.com
states exists, both at the short-term between successive
mitoses and in longer time scale through multiple gen-
erations [2].

In this review, we focus on recent advances in under-
standing how active states are transmitted through
cellular divisions in vivo. We will discuss potential
mechanisms and possible mathematical models of
mitotic bookmarking and present their consequences in
developing multicellular embryos.

Mechanisms of short-term memory have also been
analyzed in the context of cultured cell lines and recent
reviews summarize these findings [1,3]. Similarly, long-

term memory of repressed states mediated by Polycomb
family has been intensively reviewed and will not be
discussed [4].
Mitosis, a challenging chromatin
environment?
During mitosis, genome undergoes a dramatic meta-
morphose, resulting in clear morphological features of
mitotic cells. This chromatin landscape was long
thought to represent a hostile environment, incompat-
ible with transcription and transcription factor binding
[5].

However, recent studies using sensitive techniques
nuance this view. While chromatin folding and
compartmentalization are wiped out during mitosis

[3,6], local accessibility can be maintained. ATAC-Seq
experiments on mitotic Drosophila embryos revealed
that patterns of accessibility are largely maintained
through mitosis for several regulatory elements [7]. One
may think that this is peculiar to the early fly embryo,
where divisions are particularly fast. However genome
accessibility is also widely preserved during mitosis in
murine erythroblast cells, yet with local loci specific
modulations [8]. Mitotic chromatin landscape has not
yet been examined in vertebrate embryos, probably
because of the relatively rapid loss in synchrony of di-
visions, operating as early as the 4-cell stage in zebrafish

embryos [9]. This technical issue should be bypassed by
recent developments of single cell technologies. Indeed,
single cell Hi-C experiments were performed in Em-
bryonic Stem Cells (ESCs) throughout the cell cycle,
thus revealing a much more dynamic picture of chro-
mosome organization than previous bulk experiments
with unsynchronized cells [10].
Current Opinion in Systems Biology 2018, 11:41–49
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Mitotic bookmarking and development
Transmission of chromatin states from mother to

daughter cells can be achieved passively or via active
mechanisms. Among known active supports of mitotic
memory, stand three classes of regulators: epigenetic
histone marks/chromatin regulators, general transcrip-
tion factors (GTF) and sequence specific transcription
factors (TF) (Figure 1).

The vastmajority of experiments aiming to assessmitotic
retention of these particular factors has been performed
in cultured cells with more or less conflicting conclu-
sions, partly due to the level of purity of the mitotic

population, cross linking conditions and to the methods
of detection (global decoration by imaging versus specific
binding assessed by ChIP). In this section, rather than
providing an exhaustive survey of potential mitotic
bookmarkers [1], we focus on potential supports for
transmission of active chromatin states in the context of
multicellular developing embryos (Figure 2).
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Passive mechanisms of mitotic bookmarking
So far, clear evidences of passive supports of memory are
lacking. In a recent work, by monitoring transcriptional
activation in living earlyDrosophila embryos, it was shown
that experiencing transcription prior to mitosis does not
always lead to a rapid post-mitotic activation [11]. With a
mesodermal enhancer, memory of active transcriptional
states is unequivocally occurring [12], while with a dorsal
ectoderm enhancer, memory is not detected [11].

However, given the widespread maintenance of chro-

matin accessibility during mitosis in the fly embryo, a
passive mechanism is plausible (Figure 1).

In interphase, gene expression seems to be partially
regulated by local permissive or repressive environ-
ments, triggered by nuclear compartmentalization
resulting from protein liquideliquid demixing through
phase separation [13] (e.g. HP1 in embryos [14]). The
impact of phase separation during mitosis remains
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Figure 2

Known mitotic chromatin landscapes. Potential supports of memory are illustrated by examples reported in embryos from different model organisms. A.
Example of an accessible chromatin in mitotic Drosophila embryos, as shown by ATAC-seq experiments by Ref. [7]. B. Example of a histone modification
mark, present in zebrafish embryonic dividing cells, revealed by fluorescent immunostaining (Dapi in blue, acetylated histone 3 and 4 in red) [23]. C.
Representative example of mitotic chromosomal decoration by a transcription factor (Essrb), in mouse embryo at morula stage [30]. D. Illustration of
mitotic retention of a chromatin regulator, the histone methyltransferase Ash1 in living Drosophila embryos. Snapshot images from a time-lapse movie
[20].
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elusive, however mitotic structures can be assembled
through phase separation in early Caenorhabditis elegans
embryos [15]. Therefore, it is tempting to speculate

that part of the mitotic maintenance of regulatory region
accessibility could be due to local biochemical nuclear
compartmentalization via phase separation. Whether
this phenomenon stands as a passive or active support of
mitotic memory is an open question.

Epigenetic marks, their readers and writers
Owing to decades of genetic and biochemical studies, it
is well established that antagonistic actions of Polycomb
group proteins (PcG) and Trithorax group proteins
(TrxG) allow for dynamic regulation of developmental
www.sciencedirect.com
genes, yet with a cellular memory [4,16]. Epigenetic
transmission of active transcriptional states is supported
by conserved multifaceted TrxG complexes [4,16].

Among the best-characterized TrxG function is its his-
tone methyltransferase activity leading to the trime-
thylation of lysine 4 of histone H3 tails (H3K4me3).

Whether H3K4me3 qualifies as an epigenetic mark
during development is debated. Indeed, using a sensi-
tive imaging technique (proximal ligation assay) in
Drosophila embryos, H3K4me3 does not appear to be
stable through replication [17], whereas it is clearly
retained at discrete loci during mitosis [18]. In another
model organism, Xenopus embryos, H3K4me3 has been
Current Opinion in Systems Biology 2018, 11:41–49
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functionally associated to memory of active transcrip-
tional states using nuclear transfer experiments [19].
Contrary to the myriad of available data concerning PcG
complexes, little is known concerning the mechanisms
of TrxG recruitment and particularly during mitosis
in vivo. Generally speaking, we can distinguish two non-
mutually exclusive mechanisms of mitotic epigenetic
bookmarking: either through histone-modified tails

(epigenetic mark), protected or not by their ‘reader’
enzymes or through their re-establishment after mitosis
by chromatin ‘writer’ enzymes (Figure 1).

In Drosophila embryos, Ash1, a ‘writer’ member of TrxG,
decorates mitotic chromosomes [20] (Figure 2). It is not
known whether the mark deposited by this enzyme,
H3K36me2 is also retained during mitosis. Interestingly,
Ash1 enhances the recruitment of other histone meth-
yltransferases like Trx and its mammalian homolog MLL
[21], which in turn triggers H3K4 trimethylation at

promoters [16,22].

Another mitotically retained member of TrxG family is
the bromodomain-containing protein 4 (BRD4), shown
to coat mitotic chromosomes of zebrafish embryos [23],
even before zygotic transcriptional activation. Although
with little validation in embryos, extensive work in
mammalian cultured cells shows that BRD4 is a pleio-
tropic transcriptional and epigenetic regulator [24].
Interestingly H4K5ac, a mark recognized by BRD4 is
detectable at particular promoters during mitosis in

mammalian cells [25] as well as acetylated H4 in
zebrafish embryos [23] and could thus be considered as
a true ‘epigenetic’ bookmark (Figure 2).

Mitotic bookmarking by RNA Pol II machinery
Very few studies directly examined the localization of
Pol II machinery during mitosis in embryos. The early fly
embryo exhibits synchronous mitotic waves, whereby
various steps of mitosis can be visualized in a single
embryo. Using this ideal context, it was recently shown
that active Pol II (Pol II-Ser5P) is present during pro-
phase but is largely evicted at metaphase [7]. During
mitosis, the clear majority of transcription ceases.
However recent studies that employ sensitive tech-

niques (for example pulse-labeling nascent RNA)
nuance this statement and reveal low-level mitotic
transcription in cell culture [26]. These paradigm-
shifting findings would need to be confirmed in physi-
ological conditions in vivo. However, they are in agree-
ment with mitotic retention of GTF as the TATA
binding protein, TBP, shown to bind mitotic chromo-
somes in ES [27] cells and to decorate chromatin in
dividing mouse blastocysts [28].

Mitotic bookmarking by transcription factors
In developing embryos, very few sequence specific
transcription factors have been shown to remain
Current Opinion in Systems Biology 2018, 11:41–49
associated to their targets during mitosis. However
recent whole-genome profiling and live imaging revealed
that several pluripotency TFs have the ability to bind
mitotic chromosomes in cultured dividing ES cells
[1,29]. This mitotic retention might also occur in mouse
embryos but remains to be demonstrated. So far, among
the few reported mitotically bound TF during develop-
ment, stand Essrb (Figure 2) and Klf4 in dividing mouse

blastomeres [30,31] and HNF1beta, retained during
renal development in mice (Pontoglio lab, personal
communication). Future investigations regarding TF
retention during mitosis in embryos would require
testing multiple fixation procedures and cross-
validations with live imaging approaches. Indeed, form-
aldehyde fixation can lead to the artifactual displacement
of some TFs from mitotic chromosomes [32,33].

Interestingly, the majority of the known mitotically
retained TFs, for example some pluripotency factors

(e.g. Oct4/Sox2/Klf4) function as pioneer factors [34].
Pioneer factors are a particular class of TFs, able to
engage their target DNA at compacted nucleosomal
regions, thereby fostering subsequent access to classical
non-pioneer TF to their targets [35]. It is thus legiti-
mate to ask whether pioneer factors might have intrinsic
properties to bind chromatin during mitosis. However,
little is known regarding the functional importance of
pioneer factors for mitotic memory in developing
multicellular organisms. Intriguingly, the pioneer factor
Zelda, an essential activator of the early zygotic genome

in Drosophila embryos, is not retained during mitosis and
does not contribute to mitotic memory [11]. This could
reflect that mitotic bookmarking is not a general feature
of all pioneer factors, or alternatively, that Zelda is not a
canonical pioneer factor.

Mitotic retention: stable versus dynamic
bookmarking
Whole-genome kinetics of nucleosome turnover is much
more dynamic that what conceptual ideas of stable
epigenetic inheritance of chromatin states may provide.
In cultured cells, histone modifications can be often
erased and re-established several time during the cell
cycle [36]. This finding may not be contradictory with

mitotic bookmarking, when the binding properties of
chromatin regulators are examined with advanced fluo-
rescent microscopy methods (FCS, FRAP or SPT [37]).

In early Drosophila embryos, quantitative in vivo analysis
of Ash1 dynamic properties demonstrate that this
mitotically retained histone methyltransferase engages
chromatin dynamically with estimated residence times
in the order of seconds [20].

Similarly, in ES cells, pluripotency transcription factors

bind mitotic chromosomes dynamically (e.g. residence
time of Sox2 w10 s) [1,29,38].
www.sciencedirect.com
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Of note, dynamic binding could be attributed to either
sequence specific binding events, or to non sequence
specific DNA binding [38]. The long-lived interactions,
in the order of seconds generally reflect sequence spe-
cific bindings [29]. However, evidence for non-specific
DNA binding during mitosis exists (e.g. FoxA) [39].

In order to clearly distinguish specific from non-specific

binding events, one should ideally use mitotic Chip-seq
experiments with quantitative imaging of DNA binding
mutant versions of the TF assessed [37].

In sharp contrast to the dynamic mode of binding
described earlier, some factors can bind to mitotic
chromosomes in a stable manner. This is exemplified
with TBP, which exhibits an average residence time in
the order of minutes, in living dividing ES cells [27]. In
conclusion, mitotic retention can occur through dy-
namic or stable binding, via sequence specific binding

and non-specific binding.
Consequences of mitotic binding on
transcriptional dynamics
Mitotic retention does not directly bestow a book-

marking function. To firmly prove that a mitotically
retained factor is involved in ‘memory’, one need to
examine the consequences of its transient mitotic-
specific depletion on dynamics of post-mitotic tran-
scriptional activation.

These experiments are challenging and have thus far
never been performed in embryos. However knockdown
experiments of candidate bookmarking factors have
been performed in synchronized mitotic cells [26,27,38]
and in Dictyostelium [40]. Generally two types of outputs
are assessed: whole-genome approaches to examine bulk

transcriptional levels or live imaging following tran-
scriptional reporters in single cells.

Mitotic-specific depletion of the hematopoietic tran-
scription factor GATA1 in erythroid precursors delays the
reactivation of key lineage specifying mitotically book-
marked genes [41]. Similarly, TBP mitotic transient
depletion in ES cells delays the reactivation of the global
ES cell transcriptional programme [27]. While displaying
an overall genome-wide picture, these ensemble ap-
proaches lack temporal resolution. The MS2/MCP

system allows to directly monitor actively transcribing
loci (tagged with MS2 repeats) in living cells [42]. This
technique not only measures the dynamics of transcrip-
tional activation but also provides access to the lineage
and thus to mitotic memory of active genes.

Using such approaches, memory of active genes has
been first visualized in Dictyostellium [40], in mammalian
cells [25] and more recently in Drosophila [12]. Using a
stochastically expressed transgene, Ferraro et al. [12]
www.sciencedirect.com
could distinguish transcriptionally active mother nuclei
from their inactive neighbors. Quantitative analyses
reveal that there is a higher probability for rapid reac-
tivation after mitosis, when the mother was active. This
bias corresponds to transcriptional mitotic memory. In
the future, generalization of live imaging of transcription
methods should allow for memory detection in other
model organisms.
Mathematical modeling of memory
A quantitative measure of mitotic memory is the dif-
ference in the timing of post-mitotic re-activation be-
tween descendants of active and inactive mothers. This

difference can be explained by the fact that these two
populations ’travel’ through different states prior to
activating transcription after mitosis. We can distinguish
one active (ON) state and various inactive states (OFF),
interpreted as more or less favorable chromatin land-
scapes [43]. The number of rate limiting kinetic steps
leading from an inactive to an active state and vice versa
can be higher than one, with lifetimes of inactive states
ranging from one to several hundreds of minutes [43].
By stabilizing a competent yet inactive state (OFF1),
mitotic bookmarking could prevent the decline of a

mother cell to a less permissive state (OFF2), allowing a
faster transcriptional recovery of the daughters
(Figure 3).

A rather general class of mathematical models of
memory can be based on Markov chains, used to explain
transcriptional memory in Drosophila embryos [11]
(Figure 3). Originally, Markov chains were used to
describe memoryless processes. However, these models
can acquire memory by an operation called “projection”.
By projection, instead of following the dynamics of all
the states of the system, one observes only the result of

this “hidden” dynamics, namely the mRNA production.
The projected dynamics exhibit memory in the sense
that the future of the observed variable (mRNA pro-
duction) depends not only on its present, but also on all
past events that occurred prior to a time T (T is called
memory length). This method, known as Mori-Zwanzig
projection operator technique [44], has been recently
applied to analyze propagation of signals in gene net-
works, as those occurring during vertebrate neural tube
patterning [45]. In the model presented here (Figure 3),
memory results from hidden states preservation,

whereas memory length corresponds to the required
time to forget differences between initial values of these
states. For a finite-state, continuous-time Markov chain
model, this time can be easily computed as the inverse
of the smallest, non-zero eigenvalue of the transition
rate matrix, in absolute value [46]. In the case of two
inactive states, characterized by lifetimes T1 and T2,
respectively (Figure 3), memory length (T) is the har-
monic mean of the states lifetimes, which is long when
both lifetimes are long. Thus, this model suggests that
Current Opinion in Systems Biology 2018, 11:41–49
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Modeling memory of active states in an embryo. A. Snapshots of live imaging of an MS2-reporter transgene in a Drosophila embryo at nuclear cycle (nc)
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memory length T, computed from the eigenvalues of the transition rate matrix, is T1T2/(T1+T2). Prior to mitosis, active mother nuclei (bookmarked) will be
in state ON, whereas the population of inactive mothers will be distributed among states OFF1 and OFF2. During mitosis, the ON state is no longer
accessible (transcription ceases). Therefore, previously active nuclei will be simply downgraded to state OFF1 while, provided that mitosis length is short
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OFF1 to ON. The path to activation is shorter and consequently, the probability per unit of time to activate transcription after mitosis is increased for
descendants of active mothers. Within a developmental pattern, this memory bias could favor the temporal coordination in gene activation (i.e. syn-
chrony), with consequences in terms of cell fate.
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efficient memory requires slow dynamics. Slow dy-
namics could in principle be favored by the presence of
mitotic bookmarking, but this remains to be
demonstrated.
Consequences of memory during
development
In the context of a developing multicellular embryo,
mitotic memory can lead to a multitude of conse-
quences, sometimes with opposite outcomes.

Inheritance of active transcriptional states ensures fi-
delity of transcriptional programs during their propaga-

tions through mitosis. Combined with other priming
mechanisms during interphase, such as local chromatin
opening at enhancers and promoter poising with paused
polymerase, mitotic memory results in augmented
transcriptional precision with less inter-cellular vari-
ability in levels of expression [47]. In sharp contrast, by
allowing some cells to re-activate transcription faster
than others, mitotic memory can enhance transcrip-
tional noise [48]. From a theoretical point of view,
memory can be seen as a ‘low pass filter’, buffering fast
fluctuations, while allowing longer-lived fluctuations.

Depending on memory length relative to mitosis dura-
tion and the architecture of the gene regulatory network
(e.g existence of feedback loops), mitotic memory can
thus create precision and increase noise, but both are
valuable during development [47]. For example, tem-
poral precision in gene expression has been shown to be
essential to gastrulation in the fast developing Drosophila
embryo [49]. However, in slower developing embryos
such as the mouse blastocyst, heterogeneity in gene
expression has been proposed as advantageous since it
allows for mis-patterning corrections [50].

Mitotic memory thus allows for a spectrum of conse-
quences ranging from stability to flexibility and plas-
ticity. However, for the particular developmental
contexts of trans-differentiation or reprogramming,
transcriptional states must be erased rather than
memorized. Accordingly, demethylation of H3K4 facili-
tates reprogramming of Xenopus embryos [19] and mouse
epiblast cells [22].
Prospects
The vast majority of our knowledge regarding memory
stems from studies performed in drug-synchronized cells
in culture and has not yet been mirrored in multicellular
developing embryos. This ismainly attributed to the dual
technical challenge of profiling small number of cells/
embryos and imaging living organisms.

With the recent technological advances in gene editing,
signal amplification, microscopy combined to the possi-
bility to probe the entire genome of limitedmaterial [51],
developmental biology is embracing a new exciting era.
www.sciencedirect.com
Synergizing quantitative biological data with synthetic
biology frameworks [52] and mathematical modeling
opens promising avenues for a better understanding of
mechanisms and functional relevance of memory.

Recent combination of optogenetics with concomitant
detection of transcriptional readouts in living embryos
[53] should greatly facilitate testing the direct impact of

candidate bookmarking factors on kinetics of transcrip-
tional post-mitotic reactivation.

Decoding the role of mitotic bookmarking in developing
model organisms endows two obvious consequences for
human therapy. Indeed defective mitotic bookmarking
has been associated to human pathological conditions, as
exemplified by HNF1beta [54]. Moreover understanding
how cells remember their past should greatly facilitate
the design of reprogramming strategies for gene therapy.
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