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Abstract: A model for acoustic transmission through a 2D square crystal of R-radius bubbles with
a lattice constant L was previously proposed. Assuming a purely monopole response of the bubbles,
this model offers a simple analytical expression of the transmission. However, it is not applicable
when the bubbles are too close to each other (L/R < 5). This article proposes an extension of the model
by including the dipole response of the bubbles. Comparisons with numerical and experimental
results show that the new expression gives a good estimate of the concentration at which the monopole
model is no longer valid, but fails at properly predicting the transmission.

Keywords: acoustics; bubble; metamaterial

1. Introduction

As they are compressible, bubbles can easily oscillate, which makes them powerful acoustic
sources and scatterers. Since the pioneering work by Minnaert [1], they have been found to be
ubiquitous as sources of noise in rivers [2], the oceans [3] or even our body [4]. An interesting,
and practically important, aspect of the acoustics of bubbles is the coupling they exhibit when several
bubbles are close to each other. The acoustical modes of pairs of bubbles [5,6], lines of bubbles [7,8],
clouds of bubbles [9,10] and arrays of bubbles [11] have been studied in the past decades.

The acoustic transmission through a 2D array of bubbles was found to be well captured by a simple
analytical model [11], which proved to be efficient for predicting ultrasonic super-absorption [12] or
nonlinear effects [13]. However, it is only applicable when bubbles are not too close to each other,
presumably because it considers spherical oscillations of the bubbles, while other modes become
important when the concentration of bubbles increases. In this article, we propose to explore the
possibility of improving the model by taking into account the dipole response of the bubbles.

The article is organized as follows. In Section 2, we present the mechanism of the coupling at play
between bubbles and recall the acoustic response function of a 2D square crystal of bubbles when only
the monopole response of the bubbles is taken into account. We show how numerical simulations
(Section 3) and experiments (Section 4) confirm the validity of the model when the arrays are not too
concentrated, but show large deviation otherwise. Leaving technical details for Appendix B, Section 5
presents the results of an extension of the model, which takes dipolar terms into account.
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2. A Model for the Acoustic Transmission through an Array of Bubbles

When a bubble is excited by a monochromatic pressure P exp[−iωt], if its radius is small compared
to the wavelength of the incident wave, the pressure field it generates takes the simple form of
a spherical wave with a complex amplitude p at distance r given by:

p(r, t) =
fs

r
P exp[iω(r/v− t)], (1)

where v is the speed of sound in the host fluid and fs is the scattering function of the bubble.
This function depends on the frequency of the excitation (ω) and the radius of the bubble (R). It can be
written as the response function of a damped harmonic oscillator:

fs(ω, R) =
R(ω0

ω

)2 − 1− i(kR + δ)
, (2)

where ω0 is the resonance angular frequency and δ the dissipation damping factor [14,15], kR being
associated with the radiative damping (k = ω/v is the acoustic wavenumber in the fluid).
The resonance frequency of a bubble, known as the Minnaert resonance [1], is remarkable because of
its low-frequency character: for a 0.1 mm-radius air bubble in water, for example, ω0/2π = 32 kHz,
which corresponds to an acoustic wavelength in water of about 47 cm, hence a factor of almost 500
between the radius of the resonant scatterer and the exciting wavelength.

An interesting effect, due to the intense acoustic field the scatter, is the strong acoustic coupling
that takes place between several bubbles. As an illustration, let us look at the case of two identical
bubbles separated by a distance L and excited by the same incident pressure pinc, at angular frequency
ω (see Figure 1a). The total pressure experienced by Bubble 1, p1, is the sum of the incident field and
the pressure scattered by Bubble 2:

p1 = pinc + p2
fs

L
exp[ikL], (3a)

where p2 is the total pressure experienced by Bubble 2, which has the symmetrical form:

p2 = pinc + p1
fs

L
exp[ikL]. (3b)
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Figure 1. (a) A pair of R-radius bubbles, separated by a distance L. (b) An infinite array of R-radius
bubbles, with a lattice distance L, excited by a plane wave with amplitude Pinc.
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Solving Equations (3), one obtains that the total pressure for each bubble is given by:

p1 = p2 = pinc ×
(

1− fs

L
exp[ikL]

)−1
. (4)

Then, looking at the pressure generated by the couple of bubbles at Point M (see Figure 1a), we obtain:

pM = p1
fs

r
exp[ikr] + p2

fs

r
exp[ikr]

= pinc
f (2)s
r

exp[ikr], (5)

where we used Equations (2) and (4) to express the scattering function for the couple of bubbles:

f (2)s =
2R(ω0

ω

)2 − 1− R
L cos kL− i(kR + R

L sin kL + δ)
. (6)

It thus appears that the maximum response of the couple of bubbles is not for ω = ω0, as in
the case of an individual bubble, but for ω = ω0/

√
1 + (R/L) cos(kL). The effect is stronger if the

bubbles are close to each other (kL� 1), and it leads to a decrease of the resonant frequency. Note that,
in this case, the radiative damping is doubled; a phenomenon known as super-radiation [16].

The previous approach can be extended to the case of an infinite 2D array of identical bubbles
in the x,y plane (see Figure 1b). When all the bubbles are excited by pinc, the total pressure field
they generate takes the form of two plane-waves, in the +z and −z directions: Fs pinc exp[ikz] and
Fs pinc exp[−ikz]. For bubbles of radii R on a square lattice, with a lattice constant L, the response
function of the array is, for kL� 1,

Fs(ω) =
iKR

(ω0/ω)2 − I − i(KR + δ)
, (7a)

with K = 2π/(kL2) and I = 1 − 2
√

πR/L (see the details in [11]). From Equation (7a),
it is straightforward to determine the transmission through a layer of bubbles for a plane wave
at normal incidence:

T = 1 + Fs. (7b)

The minimum of transmission is predicted to be δ/(KR+ δ) and to happen at a frequency given by:

ωmin

ω0
=

1√
1− 2

√
πR/L

. (8)

The minimum of transmission is thus for a frequency higher than the Minnaert frequency.
This behavior might seem contradictory with the previous example of a couple of bubbles, as well
as with the general behavior of clouds of bubbles that are known to exhibit a collective resonance at
a frequency lower than the Minnaert frequency of the individual bubbles [9,17]. It can be explained by
the infinite size of the array and by the long-range coupling between the bubbles. Indeed, as can be
seen in Equation (6), bubbles that are at a distance r such that cos kr = −1 will contribute to an increase
of the resonant frequency of the system; respectively, the bubbles in the next half-wavelength ring will
contribute to a decrease of the frequency. As the number of bubbles in each ring compensates the 1/r
range of the coupling, each ring has exactly the same contribution. One could thus expect to obtain no
frequency shift. However, because there is a lack of bubbles in the first ring, close to the central bubble,
the net effect is effectively an increase of the frequency.
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3. Numerical Simulations

The predicted transmission of Equations (7) can be tested by numerical simulations. We performed
two types of simulations: one with a Multiple Scattering Theory (MST) code (Multel) [18], the other
one with a Finite Element Method (FEM) (Using COMSOL Multiphysics v. 5.2. www.comsol.com.
COMSOL AB, Stockholm, Sweden). In both cases, an infinite array of air bubbles was considered,
with a radius of 0.1 mm, and several lattice constants were inspected. For FEM simulations,
the viscosities of the fluids were considered, which means that viscous dissipation was taken into
account. For MST, however, only dissipation of the monopole mode was included, by using an ad-hoc
complex velocity in air, as detailed in [11]. The results of the simulations are reported in Figure 2,
in which the amplitude of transmission is shown as a function of frequency for different concentrations
of bubbles: L/R = 8, 5, 4 and 3. We see that for L/R > 5, the model leads to a reasonable prediction
of the transmission. For arrays with bubbles closer to each other, however, the agreement is not
satisfactory. In the L/R = 4 case, the model over-predicts the frequency shift. For the L/R = 3 array,
the simulations still exhibit a clear minimum, around 170 kHz, whereas the model predicts a much
flatter behavior, with a higher transmission level.
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Figure 2. Comparison between the model (Equations (7), solid lines) and the numerical simulations by
MST (Multel, crosses) and FEM (COMSOL, circles) for the transmission through arrays of R = 0.1 mm
air bubbles in water with different lattice constants L.

4. Experimental Results

Experiments are also possible to measure the acoustic transmission through an array of bubbles.
In this case, the fluid is not water, but a yield-stress fluid, which can trap bubbles and is acoustically
very similar to water. We developed two techniques of injection. The first one, illustrated in Figure 3a,
consists of moving a small capillary at a chosen location and then injecting a single bubble.
By programming the successive positions visited by the capillary, one can thus obtain the desired
pattern. This technique, however, is time consuming, which is a problem for injecting large samples.
Indeed, the lifetime of a bubble is finite, because its gas tends to dissolve in the fluid. If the injection
is too slow, there is therefore a risk that the first bubble has already disappeared by the time the

www.comsol.com
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last bubble is injected. As a consequence, we usually employ a quicker technique that consists of
moving the same capillary at a constant speed along a horizontal line. If the capillary is under pressure,
it delivers bubbles at regular intervals. By injecting lines at different heights, one can obtain a 2D
structure as the one displayed in Figure 3b. Details on this technique can be found in [11].

Figure 3. Two examples of bubbles injected in a yield-stress fluid. (a) “Bubble by bubble” injection.
A capillary (see the top right part of the photo), attached to a 3D positioning system, injects bubbles in
the fluid at successive pre-programmed positions. Here, the outer diameter of the capillary is 150µm,
and the radii of the bubbles are between 120µm (in letter M) and 150µm (in letters S and C). (b) “Line by
line” injection (sowing). The same capillary is displaced at a constant speed along horizontal lines
at different heights. Here, the radius of the bubbles is R = 110µm (±5µm), and the horizontal and
vertical distances (see the inset) are L1 = 527µm and L2 = 465µm (±1µm).

Note that the samples obtained by the rapid technique are not truly 2D crystals of bubbles: if the
distance between successive bubbles in a row is fairly constant, the alignment from one line to the other
is not preserved. As shown in the inset of Figure 3b, we measured distance L1 between neighboring
bubbles in a row and distance L2 from one line to the other. The lattice constant was then estimated by
taking L =

√
L1L2, i.e., the average distance that represents the surface area concentration of bubbles.

We injected arrays of bubbles in a cell filled with yield-stress fluid and placed the cell in a large tank
of water, between two ultrasonic transducers. We were thus able to measure the transmission through
the array of bubbles (see [11] for details on the technique). Figure 4 shows the amplitude and phase of
the transmission recorded for three different arrays (see Table 1 for their characteristics), compared to
the model prediction. The results are very comparable to the numerical study: the agreement is correct
for R/L = 5.7; the model predicts a too large shift in frequency for L/R = 4.5; and for the highest
concentration (L/R = 2.9), the predicted transmission is too high compared to the measurements.
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Figure 4. Amplitude (a) and phase (b) of the acoustic transmission through arrays of air bubbles in
a yield-stress fluid (see Table 1 for the geometrical parameters of the samples). Black symbols show the
result for the yield-stress fluid alone, without bubbles. Solid lines are the predictions of Equation (7).

Table 1. Geometrical parameters of the three samples of Figure 4. Sample 2 (L/R = 4.5) is the one
shown in Figure 3b.

Sample R L1 L2 L/R

1 96µm 514µm 573µm 5.7
2 110µm 527µm 465µm 4.5
3 110µm 376µm 276µm 2.9

5. Discussion

The model has been shown to fail when bubbles in the array are too close to each other, typically
for L/R < 5. An idea for improvement is to remove the assumption of a purely monopolar response
of the bubbles. Indeed, a spherical response is expected for a single bubble, given the large wavelength
of the acoustic field at resonance, but when many bubbles are getting close to each other, one may
wonder whether the responses of higher order could not be exalted. We propose to examine the role of
the dipole contribution.

Let us extend Equation (1) to the case of a bubble excited by a pressure P and a pressure gradient
P′ = dP/dz. The scattered field is then given by:

p(r, θ) = P fs
eikr

r
− iP′ f ′s

eikr

kr

(
1 +

i
kr

)
cos θ, (9)

where θ is the angle with the z direction and f ′s the dipole scattering function of the bubbles.
For the bubbles, we consider that a good approximation of this response function is f ′s = −k2R3

(see Appendix A). Note that, at resonance, f ′s is four orders of magnitude less than fs, which justifies
our previous assumption. As detailed in Appendix B, the dipole response of the bubble array adds up
with the monopole one, with a response function F′s :

T = 1 + Fs + F′s (10)

= 1 +
iKR

(ω0/ω)2 − I − i(KR + δ)
− iKR(kR)2

1 + 2.88π(R/L)3 . (11)
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The dipole scattering of the bubbles being much weaker than the monopole one, we could expect
the last term of Equation (11) to bring a negligible contribution to the transmission. This is not always
true because rather than comparing F′s to Fs, one needs to compare F′s to 1 + Fs, which reaches small
values close to the minimum of transmission. We can establish that monopole and dipole contributions
will be of the same order of magnitude when δ/KR ' KR(kR)2, which results in the following
criterion on L/R:

L/R =

(
δ

4π2

)−1/4
. (12)

In our case of 0.1-mm bubbles in water or yield-stress fluid, we have δ ' 0.1, giving a criterion of
L/R ' 4.5. This is indeed compatible with our observation that the monopole model is sufficient as
long as L/R > 5. However, the correction brought by this dipole model does not give a satisfactory
comparison with the simulations and the experiments, as illustrated in Figure 5a for two cases.
The minimum of transmission is well shifted to lower frequency, as required, but the shift is too
large. In Figure 5b, we report the frequency of the minimum of transmission as a function of L/R,
as found in the simulations and the experiments, and as predicted by the two models. It is clear that
the dipole model does not bring any improvement to the theory. It probably means that other modes of
deformation of the bubbles must be taken into account if one wants to properly model the transmission
for arrays with L/R < 5. In such a case, a simple analytical expression will not be available, which
means that numerical simulation remains the best tool for studying such concentrated configurations.
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Figure 5. (a) Examples of transmission predictions by the dipole model taking into account the
dipolar contribution (Equation (11)), in the cases of Sample 2 (circles) and simulation for L/R = 3
(crosses). In both cases, the model with the dipole (dashed lines) predicts a minimum of transmission at
a frequency lower than what is measured or calculated. (b) Frequency of the minimum of transmission
as a function of L/R, as found in simulations (full circles) and experiments (open squares) and as
predicted by the monopole (solid line) and dipole (dashed line) models.
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Abbreviations

The following abbreviations are used in this manuscript:

MST Multiple Scattering Theory
FEM Finite Element Method

Appendix A. Dipole Response Function of a Spherical Inclusion

For a spherical inclusion of radius a and density ρb in a fluid with viscosity η and density ρ,
the low frequency limit (kR� 1) of the dipole scattering function is given by (see Equation (44) in [19]):

f ′s = −R
(kR)2

9

(
1− ρb

ρ

)
3− (κR)2 − 3iκR

1− (κR)2 2ρb+ρ
9ρ − iκR

, (A1)

where k is the longitudinal wavenumber in the liquid and κ =
√

iωρ/η. For a R = 100µm inclusion
in water (η = 10−3 Pa.s) at 100 kHz, we calculate |κR| ' 80 � 1. This means that the (κR)2 terms
dominate in (A1), which leads to f ′s ' −k2R3 for a gas inclusion (ρb � ρ).
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Appendix B. Details on the Calculation for Including the Dipole Response of the Bubbles

Let us consider a scatterer excited by a pressure P and a pressure gradient P′. The sound field it
generates at distance r and angle θ is given by:

p(r, θ) = P fs
eikr

r
− iP′ f ′s

d
dr

(
eikr

ikr

)
cos θ, (A2)

where fs and f ′s are its monopole and dipole response function, respectively. A 2D array of such
scatterers (see Figure A1) generates a total sound field at point M,

Ptot(z) = ∑
n

p

(√
ρ2

n + z2, cos−1

[
z√

ρ2
n + z2

])
, (A3)

where the summation is over all the scatterers n of the plane. By replacing the discrete sum by
a continuous integral, we obtain:

Ptot(z) '
∫

2π
ρdρ

L2 p

(√
ρ2 + z2, cos−1

[
z√

ρ2 + z2

])
(A4)

' iPK fseikz + P′(K/k) f ′seikz. (A5)

Figure A1. The pressure field generated by scatterer n at Point M is given by Equation (A2).

The next step is to evaluate P and P′, which are not only due to the incident wave: the contributions
from all the scatterers must be taken into account. Let us isolate scatterer zero and calculate the field
generated at Point M by all the scatterers except this one:

Ptot(z) = ∑
n 6=0

p

(√
ρ2

n + z2, cos−1

[
z√

ρ2
n + z2

])
, (A6)

= P fsM− iP′( f ′s/k)D, (A7)

where we defined the two infinite sums:

M = ∑
n 6=0

eikrn

rn
(A8a)

D = ∑
n 6=0

eikrn

rn

(
1 +

i
krn

)
cos θn, (A8b)
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with rn =
√

ρ2
n + z2 and cos θn = z/rn. When approximating these discrete summations by integrals,

we exclude the central scatterers by introducing cutoff distances, denoted as b and c:

M '
∫ ∞

ρ=b
2π

ρdρ

L2
eikr

r
= iKeik

√
z2+b2

(A9a)

D '
∫ ∞

ρ=c
2π

ρdρ

L2
eikrn

rn

(
1 +

i
krn

)
cos θn = iKz

eik
√

z2+c2

√
z2 + c2

. (A9b)

Direct evaluations of Equations (A8a) and (A8b) with a large number of scatterers (106) show that
a good agreement is obtained with Equations (A9a) and (A9b) when taking b = L/

√
π and c = L/1.44.

The effective pressure and pressure gradient experienced by each scatterer are thus given by:

P = pinc + iKeikb fsP → P =
pinc

1− iK fseikb (A10a)

P′ = ikpinc + K
eikc

kc
f ′s P′ → P′ =

ikpinc

1− K f ′seikc/(kc)
. (A10b)

Injecting Equations (A10a) and (A10b) into Equation (A5) yields Equation (11).
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