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Using the quasiclassical concept of Berry curvature we demonstrate that a Dirac exciton—a pair
of Dirac quasiparticles bound by Coulomb interactions—inevitably possesses an intrinsic angular
momentum making the exciton effectively self-rotating. The model is applied to excitons in two-
dimensional transition metal dichalcogenides, in which the charge carriers are known to be described
by a Dirac-like Hamiltonian. We show that the topological self-rotation strongly modifies the ex-
citon spectrum and, as a consequence, resolves the puzzle of the overestimated two-dimensional
polarizability employed to fit earlier spectroscopic measurements.

Introduction.— An exciton is a bound electron-hole
(e-h) pair optically excited in semiconductors. In most
semiconductors, the electrons and holes behave like con-
ventional Schrodinger quasiparticles and the correspond-
ing exciton energy spectrum represents a hydrogenlike
Rydberg series ﬁ] In contrast, the electrons and holes
in two-dimensional (2D) transition-metal dichalcogenides
(TMDs) mimic massive Dirac quasiparticles [2] result-
ing in an intrinsic quantum mechanical entanglement be-
tween conduction and valence band states as well as in
a finite Berry curvature entering the quasiclassical equa-
tion of motion B—B] Moreover, the nonlocal screenin
of the Coulomb interactions in thin dielectric layers ﬂ%
suggests deviations from the conventional 1/r behavior
at small e-h distances r ~ rg, where ro = 2wy is de-
termined by the 2D polarizability x [§]. Here, we show
that both ingredients — the Berry curvature and the
nonlocal screening — are crucial for a realistic exciton
model aimed to describe the exciton energy spectrum
in 2DTMDs. In what follows we employ a quasiclassi-
cal approach where the Berry curvature B] and the 2D
Keldysh potential ﬂg] are taken into account on equal
footing while quantizing the e-h relative motion. We uti-
lize the model to fit the spectroscopic measurements for
WS, [9] and WSe, [10], see Fig. @ employing the only
fitting parameter rg. The resulting ro ~ 4 nm agrees
with the ab initio prediction ] If the Berry curvature
were neglected, 7o has to be taken twice as large to fit the
same spectra. This discrepancy has been pointed out by
Chernikov et al. in Ref. [d], where 79 ~ 8 nm has been
employed. Our model is able to explain why the polariz-
ability required to fit the measurements ﬂg, ] is in fact
twice smaller (x ~ 0.7 nm), in accordance with ab initio
predictions Nﬁ] The reason is that the Berry curvature
results in a centrifugal-like term in the effective quasi-
classical Hamiltonian, hence, reducing the quasiclassical
phase space available for the relative e-h motion as if
there were an additional angular momentum even for s-
states, see Fig. In this sense, the excitons turn out
to be self-rotating. The reduced phase space makes the
energy level spacing smaller, similar to what the nonlo-
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FIG. 1. Excitonic spectrum: measurements and theory. The
experimental data have been taken from Refs. Iﬂ] and IE]
for WSz and WSes, respectively. The theoretical spectra
have been calculated quasiclassically from Eq. [IZ) taking
into account nonlocal screening and self-rotation. Our the-
ory employs reduced exciton masses p = 0.16mo for WS, and
uw = 0.17mo for WSez (here, mo is the free electron mass)
computed ab initio in Ref. ] We assume that the screen-
ing is due to the polarizability of the 2D layer x = ro/(27)
with 7o being the only fitting parameter. In contrast to the
conventional model Iﬂ] strongly overestimating 7o, we found
that ro = 4.65 nm for WSz and ro = 3.84 nm for WSeas,
in agreement with the ab initio calculations ] suggesting
ro ~ 4 nm in such materials. Dotted lines show the first ex-
cited states (2s states) within the standard hydrogenic model
([6) to emphasize the qualitative difference with our findings.

cal screening (i.e., the Keldysh potential) does. In what
follows we consider the model in detail.

Approach.— The two-body problem for Dirac parti-
cles is not trivial m—lﬁ] because of the intrinsic cou-
pling between conduction and valence band states mak-
ing the electron and hole states entangled even without
Coulomb interactions. We employ an effective exciton
Hamiltonian that accounts for this coupling and has sev-
eral advantages over that proposed in Ref. ﬂﬁ], see the
Supplemental Material [20] for details. The Hamiltonian
can be written as H = Hy + V(r), where V(r) is the e-h
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interaction in relative coordinates, and Hy is given by

H h;ﬁz hk %eiie (1)
0 — . .
hk,/f%ew A

Here, A is the band gap, u is the exciton reduced
mass, and tan(f) = k,/k,. The spectrum of Hy
has two branches: a single parabolic branch E, =
A+ % describing excitonic states and, in contrast
to Ref. @], a dispersionless band Ep = 0 being
the vacuum state from which the excitons are ini-
tially excited. The corresponding eigenstates of Hy can

be written as ur = (cos (%) ,sin(2)e?)” and uy =

(sin (2), —cos (£)e?)?, where tan (3) = /25, In
order to make the model analytically tractable even for
arbitrary V (r) we rewrite H in the quasiclassical form [3]

h2k2
2p

where (2 is the exciton Berry curvature ﬂ2_1|, @] The lat-
ter can be computed as [23] © = Vi x A, with A being the
Berry connection A = i{ug|Vi|u) = — sin? (2) Vib.
While the semiclassical expression ([2) is general, the pre-
cise form of the quantum Hamiltonian (1) yields the par-
ticular Berry curvature Q. = h?A/(uE?) ~ h?/(ud)
that is twice the one-particle Berry curvature |2, 123, [24],
in agreement with Ref. B] The two-particle Berry curva-
ture introduced here is a quantity describing the topology
of an e-h pair, not of an electron and a hole separately.
Since the potential V(r) is circularly symmetric we em-
ploy cylindrical coordinates. To first order in 0.V, the
total quasiclassical energy then reads

Hexc =A+

1 1
+§Q«Vkay+ZQv%ﬁ+V@%(m
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Eiwot = Er+V(r) + 2urE? Or (m+ 5) SNC)

where m = 0,41, 42, ... is the magnetic quantum num-
ber, and E, = A + % (k?_ + T—;) One notices that the
last term is due to the Berry curvature that couples the
quantum number m and lifts the m <> —m degeneracy as
pointed out in Refs. [3,[4]. The 1/2 offset is furthermore
due to the Darwin-like term Q2V2V/4 in Eq. (@), and one
obtains the hydrogen model in the large-gap limit with
A — c0. Solving Eq. [B) with respect to the radial wave
vector k., we then employ the Bohr-Sommerfeld quanti-
zation rule that in our case results in

T2

l/mm_w<n+%), (4)

r1

where n = 0,1, 2, ... is the radial quantum number and
71,2 are the quasiclassical turning points. Note that there
are in general six solutions for k, but only one is real
and positive. As we need only s-states to compare with
experiments, we set m = 0 everywhere from now on and
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FIG. 2. The plots show the phase space available for relative
quasiclassical motion of a massive Dirac e-h pair in the ground
and first excited s-states as well as the relative energy spacing
between them. The relative spacing AEo1/E} is proportional
to the ratio between the two shaded areas. Parameters are
taken to be relevant for WSy. (a) Here, the Coulomb inter-
action with the effective dielectric constant ¢ = 5.2 adjusted
to fit the binding energy measured ﬂg] Neither the dielectric
constant nor the level spacing turn out to be compatible with
the values measured. (b) The Coulomb-Berry model results in
a reduced phase space ratio and, as a consequence, reduced
relative level spacing between the n = 0 and n = 1 states.
The effective dielectric constant taken to fit the binding en-
ergy is twice smaller than in (a). (c¢) Both Berry curvature and
Keldysh potential are taken into account on the same foot-
ing. The relative level spacing (and the phase space ratio) is
reduced even stronger, matching the measured spectrum at
the screening radius of a few nm. (d) An approximate model
where the Berry curvature is emulated by an internal angular
momentum j = 1/2 proving the concept of the self-rotating
excitons in WSs.

consider a set of four models gradually approaching a
simple but realistic one.

Coulomb model without Berry curvature.— This is the
simplest exciton model possible, where the second term
in Eq. @) is neglected, and V = —e?/(er). Equation (@)
then explicitly reads

i 241 e2 1
JofEG e o

where r; = 0, as there is no tangential momentum, see
Fig. 2(a), and 72 = €?/¢(A — Eio). This results in the
spectrum

etu 1

E,=A— —_ —
2¢2h2 (n + 1/2)2

(6)

where n = 0,1, 2,... is the radial quantum number. In
order order to fit the binding energy for WSy (0.32 eV
[9]) we have to take rather unrealistic effective dielectric
constant € = 5.2. Moreover, the level spacing remains
heavily overestimated, see Fig. [l and Fig. 2l(a). These



observations all together indicate that the standard ex-
citon model is not suitable for 2DTMDs.

Coulomb-Berry model.— Here, we retain the Berry
curvature in Eq. (@), which for the Coulomb interaction
reads

K2k2 e2h2A
Etot = A + - + : (

A
24 depr3 )

2p

FElot contains now a centrifugal-like term that makes the
phase space near r = 0 classically unavailable similar to
what the conventional centrifugal term would do once
m # 0. This is the most important intrinsic property of
a self-rotating exciton that we believe to be crucial for a
realistic model. Indeed, a real positive solution of Eq. (1)

. R2k2
with respect to A+ TR

is only possible when

(and, hence, with respect to k)

e? 3 o/ h2e2A
Eiot + — > —4
er 2r

. 8
o (8)
As consequence, the e-h distance r cannot be smaller
than r1, where

1 [3,/e2h?A €2
= e B (9)
Etot 2 2€/L €

Since r1 must be positive we find that the effective Bohr
radius rp = eh?®/(ue?) must be larger than the effective
Compton length A\¢ = h//uA. (The exact condition
reads: rp > Acy/16/27.) The Compton length Ac has
a similar meaning here as in high-energy physics: It con-
stitutes the cutoff below which spontaneous particle cre-
ation and annihilation processes become important and
the concept of an exciton as a two-particle system is no
longer valid. From the band theory point of view, this
corresponds to the critical regime when the exciton bind-
ing energy approaches the size of the band gap. The real-
istic parameters we employ in Fig.[[land Table [ suggest
that both A¢ and rp are a few angstrom that makes our
excitons strongly nonhydrogenic even if the interaction is
Coulomb-like.

Note that the Berry curvature is hidden not only in the
integrand of Eq. @) but in its limits as well. On the one
hand, this makes an explicit solution rather cumbersome
but possible. Indeed, Eq. () can be solved explicitly
with respect to k, with the relevant branch given by

k, = 2_,LL<E+1+’L\/§C

a

(1+iv3)c - A)’

2
B2\ 3 6 3

where

\3/27b —2a3 — /(27b — 2a3)% — 44"
2 )

and a = By 4 €2/(er), b = (e>h*A)/(4epur®). The lower
limit is given by Eq. (@), whereas the upper limit can be

|[E, —Al,eV n=0n=1 n=2 n=3n=4
WS, (selfrot.) 0.320 0.080 0.035(5) 0.020 0.0128
WS, (Berry) 0.315 0.081 0.036 0.020 0.013
WSes (self-rot.) 0.370 0.0925 0.041(1) 0.023 0.014

WSesz (Berry) 0.344 0.0922 0.041 0.023 0.014

TABLE 1. The j = 1/2 effective self-rotating exciton spectrum
(@0 is a good approximation for the quasiclassical Coulomb-
Berry model introduced here. The dielectric constant is cho-
sen to fit the binding energies F;, measured in Refs. Iﬂ] and
[d): e =26 (E, = 0.32 eV, A = 241 eV) for WSy, and
€ =25 (Ey =037 eV, A =202 eV) for WSez. The exciton
reduced mass is the same as in Fig. [Il

approzimately taken equal to 7o given below Eq. (B). The
latter is possible because the Berry term (being propor-
tional to 1/r?®) decreases much faster than the Coulomb
potential at 7 — co. On the other hand, the topologi-
cal centrifugal effect occurs due to the pseudospin — the
quantity associated with the 2 x 2 matrix structure of
the effective Hamiltonian (IJ). Similar to the real spin
the pseudospin can be seen as an internal angular mo-
mentum of our exciton. The explicit diagonalization of
our initial Hamiltonian H has been performed in Ref. m]
within the shallow bound state approximation resulting
in the s-states spectrum given by

etu 1

E,=A— , :
2e2h? (n +[j] + 1/2)?

(10)

where j = 1/2 is the pseudospin quantum number. In Ta-
ble [l we compare the exciton energy spectra calculated
from Eqs. ([I0) and @) and find very good agreement for
all excited states. The models do not agree on the ground
state energy because of at least two reasons: (i) the qua-
siclassical approximation is unreliable at low energies, (ii)
the shallow bound state condition (A — E,,)/A < 1 may
not be satisfied for n = 0. The latter may indeed take
place for WSey where the band gap A = 2.02 eV HE] is
somewhat smaller than in WSy (A = 2.41 eV [d]) hence
resulting in a stronger discrepancy between the quasiclas-
sical and quantum models.

Figure 2(b) shows how the Berry curvature reshapes
the quasiclassically available phase space for the ground
and lowest excited states. As compared to Fig. 2l(a),
the ratio between the two substantially decreases, hence,
reducing the relative level spacing. If we again try to
fit the binding energy for WSy by tuning the dielectric
constant, we obtain the very reasonable number ¢ = 2.52
close to what one expects for graphene on SiOs substrate
(esio, ~ 4) with the upper surface exposed to air (e ~
1) resulting in € ~ 2.5. However, the level spacing is not
reduced strong enough to describe the exciton spectra on
a quantitative level. To improve the predictive power of
our approach we change the screening model.

Keldysh-Berry model.— Until now we have assumed
that the dielectric function is local in real space, i.e., ¢
independent in reciprocal space. This is not true for 2D



semiconducting systems, where the dielectric function is
given by ¢, = 1+ 2mxq B, 26, ] The real-space e-h
interaction potential is known as the Keldysh potential
7] given by

R T GRTG)

where Hy is the Struve function, Yy is the Bessel function
of the 2nd kind, and ry is the screening radius being
the only fitting parameter. The Berry term in Eq. (@)
contains now 0,V given by

oV Te? r r
L [Yl (a) e (aﬂ - 12

Because of the complexity of the r dependence in
Eqgs. (), [@2), it is no longer possible to obtain explicit
expressions for 71 2 in Eq. @), but we can write the con-
dition for the existence of real values of k,.:

35/ RPAOV
— > ) ——.
Etot V(T) = 2 2MT (97" (13)

One can see that this condition cannot be satisfied near
r = 0, which again confirms the quasiclassical inaccessi-
bility of this region as if there were a nonzero tangential
momentum. The available phase space can be qualita-
tively evaluated from Fig. Rlc). The ratio between phase
spaces available for the ground and 1st excited states is
further reduced making the level spacing even smaller
than in the Coulomb-Berry model. The absolute value
of binding energy measured in Refs. ﬂg, ] is matched
at ro of a few nm compatible with ab initio calculations
[11].

Self-rotating exciton model.— The Keldysh-Berry
model while being realistic is too cumbersome for an ex-
press analysis of the experimental data. Aiming at a sim-
plified model we employ the correspondence between the
topological self-rotation and pseudospin angular momen-
tum j = 1/2; see Table [l Generalizing this correspon-
dence to any circularly symmetric potential, the quasi-
classical energy for the excitonic s-states can be written
as

2,.2 2.9
Eiot = A+ mky + iy
24 212

+V(r), (14)

where j = 1/2 is the the pseudospin angular momentum,
and V(r) is given by Eq. (). The third term then mim-
ics the Berry-curvature contribution and offers a good
fit in the relevant intermediate-coupling regime, when
a = e?\/u/A/he ~ 1 (or A\c approaches rg). However,
it becomes less accurate when A is drastically increased
(v < 1) and the Berry curvature vanishes as 1/A. In the
opposite limit of decreasing A the self-rotating model be-
comes again inapplicable as soon as Eq. (I3)) cannot be
satisfied for a certain r > 0. This means that the sys-
tem experiences an abrupt transition to a state that is no

longer excitonic and that we do not aim to characterize
here. The fitting model ([I4) does not describe this tran-
sition but matches the relevant physics once the system
is already in a self-rotating regime, see the Supplemental
Material [20] for details.

The quantization condition with the effective j = 1/2
self-rotation reads

/Tzdr\/il—/; (Bt — A — V()] - i_z —n <n+ %) , (15)

where 712 are determined by imposing the zero condi-
tion on the integrand. The qualitative justification of
this model follows from Fig. 2l(d): the quasiclassically
available phase space appears to be very close to the one
obtained within a somewhat more accurate approach de-
picted in Fig. Blc). The major merit of the j = 1/2
effective model is its transparency in describing the self-
rotation and non-Coulomb potential on the equal foot-
ing. It can easily be employed to fit the exciton spectra
in Dirac materials @] once they will be measured in fu-
ture.

We use Eq. (IT) to compute the energy for a given n;
see Fig.[[l The model perfectly fits the exciton spectrum
measured in WSs employing rg ~ 4 nm, as predicted ab
initio in ] The agreement is less good in the case
of WSe,. This may be due to a certain incompatibility
between the experimental data ﬂQ, @] and ab initio pre-
dictions ]: The exciton binding energy measured in
WSe, turns out to be higher than in WS, whereas the
ab initio theory ﬂl_1|] predicts an opposite trend. Once
the band gap A = 2.02 eV (and, hence, the binding en-
ergy Ey = 0.37 V) is reduced by a few tens of meV the
exciton spectrum can be fitted for WSey as good as for
WS,. However, we emphasize that our model fits the
data anyway much better than the conventional exciton
model without Berry curvature.

Conclusion.— The very fact that the exciton spectrum
in 2DTMDs ﬂQ, 1d, @] does not resemble the conventional
Rydberg series has been discussed in multiple papers re-
cently (3, 4, [14-17, 27, M] The commonly-accepted
explanation [9] in terms of the nonlocal screening of the
bare Coulomb potential ﬂg] fits well the exciton spectrum
measured ﬂg] as long as an unrealistically high 2D polar-
izability is assumed. To cure this inconsistency, contri-
butions from the Berry curvature need to be considered.
The Berry curvature provides a strong repulsion when
r — 0 even for s-states with no angular momentum. We
have shown that this repulsion can be accounted for in
a model where the excitons in 2DTMDs are self-rotating
in a way similar to the quasiparticles on the surface of
a strong topological insulator @], thus opening further
perspectives for excitonic engineering in van der Waals
heterostructures [39].
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Appendix A: Effective exciton Hamiltonian

Here, we justify the effective excitonic Hamiltonian
suggested in the main text. We focus on the K-
valley, where free electrons (e) are described by the two-
dimensional Dirac Hamiltonian given by

—i0
o, - M _ hvke 7
hoke? —M

where tanf = ky/k;, and A = 2M is the fundamental
band gap. The corresponding free hole (h) Hamiltonian
Hj, at zero center-of-mass momentum reads @]

_ i0
i, — ]\/{.6 hvke .
hvke™" M

Here, we have assumed that the electron and hole have
opposite momenta for optical excitons we consider. The
angle @ has therefore been changed to 6 + 7 for holes.
This has been done in ﬂﬁ] at a later stage.

These two Hamiltonians suggest the same quasiparticle
dispersion

(A1)

(A2)

er =/ (hwk)? + M2, (A3)
that in turn suggests the same effective mass m* =
M/v? = A/(2v?) for both e and h. The kinetic term
for the minimal exciton model with zero center-of-mass
momentum should therefore read as h?k?/(2u), where

= memp/(me +mp) = m*/2 = M/(2v?) = A/ (4v?)
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is the reduced effective mass. This model, however, does
not take into account the pseudospin degree of freedom
that makes the electron and hole states entangled even
without Coulomb interaction.

The correct two-particle e-h Hamiltonian with van-
ishing interaction is given by the Kronecker sum Hy =
H.®I,+1,® Hj, with I> being the 2x 2 unit matrix. Since
the one-particle electron Hamiltonian H. already has an
electron and a hole branch, one might not see the "need”
to extend the dimension of our Hilbert space. However,
this is a flaw since electron and hole branches are inti-
mately related on the single-particle level in Dirac-like
Hamiltonians such that they do not represent two differ-
ent particles. That is why the two-body problem consists
of a tensor product of two Dirac particles, each of which
has its own electron and hole branch. Hence, we have

[19]

0 ePhkv e "Phkv 0
e Yhkv 2M 0 e Whkv
e hkv 0 —2M  €“hkv
0 ePhkv e "Phkv 0

Hy= (A4)

The Hamiltonian Hy has four eigenvalues:

{o, 0, +2VH202k2 + M2, -2V R202k2 + M2} .

The physical meaning of the four states can be analyzed
having two excited particles in play. The exciton state

cos (%) 0
. 0 cos (%)
P= €' sin (%) 0
0 e gin (%)

where

hvk
tan® = —.
an i

The transformed matrix Hj = P~1H4P then reads

—M ¢, ePhkv 0 0
, e hkv M + ey 0 0
Hy = i0 g
0 0 —M — e, ehkv
0 0 e hkv M —¢y

(AG)
where g, is given by equation (A3]). The upper left block
2% 2 has two eigenvalues {O, +2v/h*02k2 + MQ} describ-

ing excitonic quasiparticles we are interested in. The
block is decoupled from the rest and can be seen as a

corresponds to an electron in the conduction band and a
hole in the valence band. One of two zero-energy states
corresponds to the exciton vacuum when all the holes are
in the conduction band and all the electrons are in the
valence band. The second zero-energy state corresponds
to the inverse population (inverted vacuum) when all the
electrons are in the conduction band and all the holes
are in the valence band. Finally, the negative-dispersion
branch corresponds to a single electron in the valence
band and a single hole in the conduction band that is
an exciton created in the inverted vacuum. Obviously,
the latter two configurations are not relevant for our set-
ting with the low-intensity optical excitations. Thus, we
extract the excitonic part out of the Hamiltonian Hy.
This is done in two steps. First, we extract the relevant
2 x 2 block via an appropriate unitary transformation.
This block contains the positive excitonic band plus a
zero-energy flat band. While we are interested, from a
purely spectral point of view, only in the positive branch,
the coupling to the zero-energy band bears relevant in-
formation about the Berry-curvature contributions that
we discuss in more detail in the following section. In a
second step, we consider the 2 x 2 block up to second
order in momentum. Its Dirac-type structure allows us
to calculate directly the Berry curvature of the exciton
branch. The consistency of its expression with that of
a quasiclassical approach corroborates the validity of the
effective quantum Hamiltonian obtained within our work.

In detail, to transform H, into the block-diagonal form,
we use the transformation matrix

sin (%) 0
0 sin (%)
—e' cos (%) 0 ’ (45)
0 e cos (%)

h2v2k2 + M2

reduced excitonic Hamiltonian:
e hkv
e P hkv R2v2k2 + M2 |

Hy, = < B
(AT)

Note that the dispersion 2v/h?v2k2 + M2 once writ-
ten in the effective mass approximation suggests cor-
rect reduced mass u = M/(2v%) = A/(4v?). Once the
Schrédinger terms are neglected and the missing momen-
tum is compensated by the factor of 2 in the off-diagonal
terms we obtain the reduced excitonic Hamiltonian given

by
HRCN _ M 2hk1}€i9 '
2 Qhkve=®  —M

This form has been suggested by Rodin and Castro Neto
in Ref. HE] but it has two major drawbacks:

(A8)



e Its spectrum ++/(2hvk)2 + M? suggests the effec-

tive reduced mass M /4v? twice smaller than needed
(M/2v?). As a consequence, the excitonic Berry
curvature would read QECN(k = 0) = 2h%0? /M? =
8h?v? /A%, which is twice as large as the one ob-

tained by Zhou et al. [3].

e The lower dispersionless branch describing zero-
energy states is substituted by an “antiparticle”
branch that contradicts to physical meaning of the
vacuum state from which the excitons are excited.

To remedy the situation we must retain both Dirac and
Schrodinger terms in equation (AT). At the same time,
the Hamiltonian must be parametrized in such a way that
the lower spectral branch always remains dispersionless.
The dispersionless vacuum state is of utmost importance
for optically excited excitons where electron and hole mo-
menta are antiparallel and, hence, cancel each other once
an exciton recombines. Any vacuum state with disper-
sion suggests some uncompensated momentum and vio-
lates momentum conservation for direct-gap optical ex-
citons.

We aim for an exciton model in terms of the effective
mass, so that we consider the case of small k£ and ex-
pand the energy of e-h relative motion up to the terms
quadratic in k. If we keep quadratic terms in both lines
of the matrix (A7), then we end up with the spectrum
quartic in k. To avoid this inconvenience we expand each
element of the matrix up to the lowest non-zero order as
follows:

—M+Vh*02k2 + M? x k2, R202k2 + M2 — 2M.
Then, we modify the Dirac part in order to compensate
parasitic terms in the dispersionless branch arising due

to the different approximations done in these two terms,
and Hs reads

202 k2
1

HST = R A9
2 (e_“g\/ghvk (A9)

e\/2hvk
2M '

Despite different approximations done in lower and upper
lines of equation (A9]) the Hamiltonian obtained satisfies
all physical criteria we demand:

e HSY results in two spectral branches, Fy = 0 and

By =2M+ 52}(/2[’“2 , where the latter suggests correct
reduced mass, p = M/2v%.

e The vacuum state remains dispersionless, as it is
expected from the correct excitonic Hamiltonian
(A7) and physical constrains explained above.

e The two spectral branches remain entangled, as it
is again expected for Dirac excitons.

e The Hamiltonian contains the Schrédinger term
that preserves the exciton from a collapse.

Equation (A9) can be rewritten in terms of the reduced
effective mass = M/20? as

e~ OnkyJM oM '

We use this version in our quasiclassical model as an
effective exciton Hamiltonian with vanishing interaction.
It is clear that, once p is fixed, there is only one possible
form of H$™ providing a dispersionless branch for the
vacuum state. One can easily obtain the Berry curvature
of the exciton band, which is written at kK = 0 as

HST = (A10)

h? K2
u_A T YmrA

Qe (k=0) = =20.(k=0), (All)
i.e. it is twice the electronic Berry curvature Q. (k = 0) =
h? /m*A derived form H., see equation . This agrees
with the quasiclassical analysis of Ref%], where the
exciton Berry curvature was shown to be Qexo(k = 0) =
Qe (k =0) — Qp(k = 0), in terms of the Berry curvature
of the one-particle Dirac models (AT]) and (A2), for the
electron and the hole, respectively. Since in this case, one
has Q¢ (k) = —Qy(k), one obtains Qexc(k = 0) = 2Q(k =
0), in agreement with the Berry curvature obtained from
our effective 2 x 2 Hamiltonian (AT0).

Appendix B: Semi-quantitative justification for the
self-rotating exciton model in the intermediate
coupling regime

‘We now use the semi-classical exciton Hamiltonian de-
rived in Ref. B] taking into account the Berry curvature,

p
Hove = A+ % +V{(r) (B1)
+21—hﬂ(p)- [axgs«) X p] + iQ(p)VzV(T),

in terms of the relative coordinate r and momentum p =
hk of the exciton, and use

Q.(p=0)=0"

exc (k = O) (B2)

for the Berry curvature, see equation (AI1)). We further-
more introduce the “Compton length” Ao = h/\/Apu,
which constitutes one of the natural length scales of the
problem (it could also be called the gap length here) and
that we will use in the expression of the Hamiltonian,
which reads (in cylinder coordinates)

/\2 2
2 r

A2, 0V 1
+V(r) + Z£ (m-i— —) ;

o or > (B3)

where m = 0,£1,4£2,... is the quantum number of
the tangential momentum, and k, is the radial wave-
vector. If we now consider a Coulomb interaction V (r) =



—e?/er = —aA(A¢/r), in terms of the dimensionless cou-
pling strength o = (e?/he)\/i/A, one can write down
the Hamiltonian in a dimensionless manner

Notice that one could also have chosen the Bohr radius
TR = h26/ue2 as a natural length scale. This choice is
mostly made in the context of the 2D hydrogen model. It
is related to the Compton length by Ac = arp — a third
length scale is given by the comparison between interac-
tion and gap, ¢ = e?/eA, and one finds the hierarchy

{=al = d’rp. (B5)

The Compton length has a similar meaning here as in
high-energy physics. It constitutes the lower bound of
the length scale above which the exciton problem can be
treated in terms of relativistic quantum mechanics, such
as in our present approach. On length scales lower than
Ac, one needs to take into account spontaneous electron-
hole creation processes that could eventually provide (on
the average) additional screening to the effective interac-
tion potential V(r). For @ < 1, the Bohr radius is indeed
larger than A¢, and the above-mentioned processes can
be safely neglected. This argument in terms of length
scales is in line with one obtained from energy scales:
in order to be allowed to restrict the exciton dynamics
to a single band (i.e. an electron in the conduction and
a hole in the valence band), one needs to ensure that
the exciton energy ~ e?/erp (for a typical exciton size
given by the Bohr radius, as for the s state) is small as
compared to the gap A, but the ratio is precisely given
by e?/ergA = ¢/rp = a2, such that one obtains again
a < 1.

While the above expression (B4) is well adapted to
connect the problem to the non-interacting case, by set-
ting o — 0, it does not really allow us to appreciate the
relative role of the two interaction terms. In units of rp,

the Hamiltonian then reads

Hexc =14 04_2 (T‘%kf +m2i>

A 2 r2

4 3
2B 1\ (rs
aT+2(m+2)( ), (B6)

r

and one now realizes that in the weak-coupling limit
(o < 1), where the typical length scale is indeed set by
the Bohr radius, one retrieves the 2D hydrogen problem
since the Berry-curvature term becomes less relevant (a*
instead of the leading o). This may be seen as a con-
sistency test of the quasiclassical treatment since one ex-
pects indeed to retrieve the hydrogen problem, described
in terms of a simple one-band Schrodinger equation, in
this limit. In our case (2D transition-metal dichalco-
genides), however, we are in an intermediate-coupling
regime, with A ~ 2 eV and m. ~ my ~ 0.1mg (mo
is the bare electron mass) suggesting o ~ (2...3) /e, that
is on the order of unity for a typical dielectric constant
of € ~ 2.5.

From the above discussion we see that the self-rotating
model is a good description in this limit of intermediate
couplings. Naturally, the Berry-curvature term scales as
(rp/r)3, thus prohibiting strictu sensu a description in
terms of a centrifugal term that scales as (rz/r)%. How-
ever, the typical exciton radius in the s (and even p)
states is on the order of rp, for principal quantum num-
bers that are not too large. In this case, one might try to
merge the Berry-curvature and the centrifugal term in a
rather crude manner,

m? + a’*m +a?/2 ~ 52 + ¢, (B7)
where j = (m + a?/2) and we have introduced a correc-
tive term (the error one makes in absorbing the Berry-
curvature term in a j2), ¢ = a?/2 — a*/4. While this
corrective term vanishes for o = /2, it is 1/4 for a =1
that yields j = m + 1/2 as stipulated within the self-
rotating model.

While our analysis shows that the self-rotating approx-
imation is indeed a good one for values of a ~ 1, it breaks
down in the weak-coupling limit, where one retrieves the
hydrogen problem. Furthermore, it might also be inap-
propriate in the discussion of large values of m (and n)
where the effective radius (i.e. the extension of the wave
function) is substantially larger than rp. From a the-
oretical point of view, it might therefore be reasonable
to compare the different models (just Coulomb for the
moment) in these large-m and large-n limits even if this
limit does not seem relevant in the physical properties
of excitons in 2D transition-metal dichalcogenides on the
experimental side. This would allow us to test the limits
of the self-rotating approximation for a ~ 1.



