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Market impact with multi-timescale liquidity
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† Ladhyx, UMR CNRS 7646, École Polytechnique, 91128 Palaiseau Cedex, France
‡ Capital Fund Management, 23 rue de l’Université, 75007, Paris, France

(October 18, 2017)

We present an extended version of the recently proposed “LLOB” model for the dynamics of latent
liquidity in financial markets. By allowing for finite cancellation and deposition rates within a continuous
reaction-diffusion setup, we account for finite memory effects on the dynamics of the latent order book.
We compute in particular the finite memory corrections to the square root impact law, as well as the
impact decay and the permanent impact of a meta-order. The latter is found to be linear in the traded
volume and independent of the trading rate, as dictated by no-arbitrage arguments. In addition, we
consider the case of a spectrum of cancellation and deposition rates, which allows us to obtain a square
root impact law for moderate participation rates, as observed empirically. Our multi-scale framework also
provides an alternative solution to the so-called price diffusivity puzzle in the presence of a long-range
correlated order flow.

Keywords: Market microstructure; price formation; limit order book; market impact

Introduction

Understanding the price formation mechanisms is undoubtably among the most exciting challenges
of modern finance. Market impact refers to the way market participants’ actions mechanically
affect prices. Significant progress has been made in this direction during the past decades
[1, 2, 3, 4]. A notable breakthrough was the empirical discovery that the aggregate price impact
of a meta-order1 is a concave function (approximately square-root) of its size Q [5, 6, 7, 8]. In
the recent past, so called “latent” order book models [7, 9, 10, 11] have proven to be a fruitful
framework to theoretically address the question of market impact, among others.

As a precise mathematical incarnation of the latent order book idea, the zero-intelligence
LLOB model of Donier et al. [11] was successful at providing a theoretical underpinning to
the square root impact law. The LLOB model is based on a continuous mean field setting,
that leads to a set of reaction-diffusion equations for the dynamics of the latent bid and ask
volume densities. In the infinite memory limit (where the agents intentions, unless executed,
stay in the latent book forever and there are no arrivals of new intentions), the latent order
book becomes exactly linear and impact exactly square-root. Furthermore, this assumption
leads to zero permanent impact of uninformed trades, and an inverse square root decay of
impact as a function of time. While the LLOB model is fully consistent mathematically, it
suffers from at least two major difficulties when confronted with micro-data. First, a strict

∗Corresponding author. Email: michael.benzaquen@polytechnique.edu
1A “meta-order” (or parent order) is a bundle of orders corresponding to a single trading decision. A meta-order is typically
traded incrementally through a sequence of child orders.
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square-root law is only recovered in the limit where the execution rate m0 of the meta-order is
larger than the normal execution rate J of the market itself – whereas most meta-order impact
data is in the opposite limit m0 . 0.1J . Second, the theoretical inverse square-root impact de-
cay is too fast and leads to significant short time mean-reversion effects, not observed in real prices.

The aim of the present paper is to show that introducing different timescales for the renewal
of liquidity allows one to cure both the above deficiencies. In view of the way financial markets
operate, this step is very natural: agents are indeed expected to display a broad spectrum of
timescales, from low frequency institutional investors to High Frequency Traders (HFT). We
show that provided the execution rate m0 is large compared to the low-frequency flow, but small
compared to J , the impact of a meta-order crosses over from a linear behaviour at very small
Q to a square-root law in a regime of Qs that can be made compatible with empirical data.
We show that in the presence of a continuous, power-law distribution of memory times, the
temporal decay of impact can be tuned to reconcile persistent order flow with diffusive price
dynamics (often referred to as the diffusivity puzzle) [2, 12, 13]. We argue that the permanent
impact of uninformed trades is fixed by the slowest liquidity memory time, beyond which
mean-reversion effects disappear. Interestingly, the permanent impact is found to be linear in
the executed volume Q and independent of the trading rate, as dictated by no-arbitrage arguments.

Our paper is organized as follows. We first recall the LLOB model of [11] in Section 1. We then
explore in Section 2 the implications of finite cancellation and deposition rates (finite memory) in
the reaction-diffusion equations, notably regarding permanent impact (Section 3). We generalize
the reaction-diffusion model to account for several deposition and cancellation rates. In particular,
we analyse in Section 4 the simplified case of a market with two sorts of agents: long memory agents
with vanishing deposition and cancellation rates, and short memory high frequency agents (some-
how playing the role of market makers). Finally, we consider in Section 5 the more realistic case
of a continuous distribution of cancellation and deposition rates and show that such a framework
provides an alternative way to solve the diffusivity puzzle (see [14]) by adjusting the distribution of
cancellation and deposition rates. Many details of the calculations are provided in the Appendices.

1. Locally linear order book model

We here briefly recall the main ingredients of the locally linear order book (LLOB) model as
presented by Donier et al. [11]. In the continuous “hydrodynamic” limit we define the latent volume
densities of limit orders in the order book: ϕb(x, t) (bid side) and ϕa(x, t) (ask side) at price x and
time t. The latter obey the following set of partial differential equations:

∂tϕb = D∂xxϕb − νϕb + λΘ(xt − x)−Rab(x) (1a)

∂tϕa = D∂xxϕa − νϕa + λΘ(x− xt)−Rab(x) , (1b)

where the different contributions on the right hand side respectively signify (from left to right):
heterogeneous reassessments of agents intentions with diffusivity D (diffusion terms), cancellations
with rate ν (death terms), arrivals of new intentions with intensity λ (deposition terms), and
matching of buy/sell intentions (reaction terms). The price xt is conventionally defined through
the equation ϕb(xt, t) = ϕa(xt, t). The non-linearity arising from the reaction term in Eqs. (1a)
and (1b) can be abstracted away by defining φ(x, t) = ϕb(x, t)− ϕa(x, t), which solves:

∂tφ = D∂xxφ− νφ+ s(x, t) , (2)

2
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Figure 1. Stationary order book φst(ξ) as computed by Donier et al. [11]. The linear approximation holds up to
ξc =

√
Dν−1 and the volume Qlin. of the grey triangles is of order Qlin. := Lξ2c = Jν−1.

where the source term reads s(x, t) = λ sign(xt − x) and the price xt is defined as the solution of

φ(xt, t) = 0 . (3)

Setting ξ = x−xt, the stationary order book can easily be obtained as: φst(ξ) = −(λ/ν) sign(ξ)[1−
exp(−|ξ|/ξc)] where ξc =

√
Dν−1 denotes the typical length scale below which the order book can

be considered to be linear: φst(ξ) ≈ −Lξ (see Fig. 1). The slope L := λ/
√
νD defines the liquidity

of the market, from which the total execution rate J can be computed since:

J := ∂ξφ
st(ξ)

∣∣
ξ=0

= DL. (4)

Donier et al. [11] focussed on the infinite memory limit, namely ν, λ→ 0 while keeping L ∼ λν−1/2

constant, such that the latent order book becomes exactly linear since in that limit ξc →∞. This
limit considerably simplifies the mathematical analysis, in particular concerning the impact of a
meta-order. An important remark must however be introduced at this point: although the limit
ν → 0 is taken in [11], it is assumed that the latent order book is still able to reach its stationary
state φst(ξ) before a meta-order is introduced. In other words, the limit ν → 0 is understood in a
way such that the starting time of the meta-order is large compared to ν−1.

2. Price trajectories with finite cancellation and deposition rates

As mentioned in the introduction we here wish to explore the effects of non-vanishing cancellation
and deposition rates, or said differently the behaviour of market impact for executiong times larger
than ν−1. The general solution of Eq. (2) is given by:

φ(x, t) = (Gν ? φ0) (x, t) +

∫
dy

∫ ∞

0
dτ Gν(x− y, t− τ)s(y, τ) , (5)

where φ0(x) = φ(x, 0) denotes the initial condition, and where Gν(x, t) = e−νtG(x, t) with G the
diffusion kernel:

G(x, t) = Θ(t)
e−

x2

4Dt√
4πDt

. (6)

Following Donier et al. [11], we introduce a buy (sell) meta-order as an extra point-like source of
buy (sell) particles with intensity rate mt such that the source term in Eq. (2) becomes: s(x, t) =
mtδ(x− xt) · 1[0,T ] + λ sign(xt − x), where T denotes the time horizon of the execution. In all the
following we shall focus on buy meta-orders – without loss of generality since within the present

3
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Table 1. Price trajectories for different impact regimes (see Eq. (8)). We set β0 := 1
2

[m0/(2πJ)]1/2.

framework everything is perfectly symmetric. Performing the integral over space in Eq. (5) and
setting φ0(x) = φst(x) yields:

φ(x, t) = φst(x)e−νt +

∫ min(t,T )

0
dτ mτGν(x− xτ , t− τ)− λ

∫ t

0
dτ erf

[
x− xτ√
4D(t− τ)

]
e−ν(t−τ) .(7)

The equation for price, (3), is not analytically tractable in the general case, but different interesting
limit cases can be investigated. In particular, focussing on the case of constant participation rates
mt = m0, one may consider:

• (i) Small participation rate m0 � J vs large participation rate m0 � J .

• (ii) Fast execution νT � 1 (the particules in the book are barely renewed during the meta-
order execution) vs slow execution νT � 1 (the particles in the book are completely renewed,
and the memory of the initial state has been lost).

• (iii) Small meta-order volumes Q := m0T � Qlin. (for which the linear approximation of the
stationary book is appropriate, see Fig. 1) vs large volumes Q � Qlin. (for which the linear
approximation is no longer valid).

So in principle, one has to consider 23 = 8 possible limit regimes. However, some regimes are
mutually exclusives so that only 6 of them remain. A convenient way to summarize the results
obtained for each of the limit cases mentioned above is to expand the price trajectory xt up to first
order in

√
ν as:1

xt = α
[
z0
t +
√
νz1

t +O(ν)
]
, (8)

where z0
t and z1

t denote respectively the 0th order and 1st order contributions. Table 1 gathers
the results for fast execution (νT � 1) and small meta-order volumes (Q � Qlin.). Note that the
leading correction term z1

t is negative, i.e. the extra incoming flux of limit orders acts to lower
the impact of the meta-order, see Fig. 2. The price trajectory for slow execution and/or large
meta-order volumes, on the other hand, simply reads:

xt =
m0ν

λ
t . (9)

The corresponding calculations and explanations are given in Appendix A.

1Note that working at constant L implies λ = O
(√
ν
)
.
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3. Permanent impact as a finite memory effect

As mentioned in the introduction, the impact relaxation following the execution is an equally
important question. We here compute the impact decay after a meta-order execution. In the limit
of small cancellation rates, we look for a scaling solution of the form z1

t = TF (νt) (see Eq. (8))
where F is a dimensionless function. We consider the case where νT � 1 and Q � Qlin.. Long
after the end of the execution of the meta-order, i.e. when t � T , Eq. (3) together with Eqs. (7)
and (8) becomes (to leading order):

0 = −λαT√
D
F (νt)e−νt − 2λα

∫ t

0
dτ

z0
t − z0

τ√
4πD(t− τ)

e−ν(t−τ)

−2λαT
√
ν

∫ t

0
dτ

F (νt)− F (ντ)√
4πD(t− τ)

e−ν(t−τ) . (10)

Letting u = νt and z0
t = β/

√
u (see Table 1) yields:

0 =
√
πe−uF (u) + β

∫ u

0
dv

√
v −√u√
uv(u− v)

ev−u +

∫ u

0
dv

F (u)− F (v)√
u− v ev−u . (11)

Finally seeking F asymptotically of the form F (u) = F∞ +Bu−γ + Cu−δe−u one can show that:

F (u) = F∞ −
β√
u

[
1− e−u

]
(u� 1) , (12)

with the permanent component given by F∞ = β
√
π, where β depends on the fast/slow nature of

the execution (see Table 1).

Injecting the solution for F (u) in Eq. (8), and taking the limit of large times, one finds that
the t−1/2 decay of the 0th order term is exactly compensated by the βu−1/2 term coming from
F (u), showing that the asymptotic value of the impact, given by I∞ = α

√
νTF∞, is reached

exponentially fast as νt → ∞ (see Fig. 2). This result can be interpreted as follows. At the end
of execution (when the peak impact is reached), the impact starts decaying towards zero in a
slow power law fashion (see [11]) until approximately t ∼ ν−1, beyond which all memory is lost
(since the book has been globally renewed). Impact cannot decay anymore, since the previous
reference price has been forgotten. Note that in the limit of large meta-order volumes and/or slow
executions, all memory is already lost at the end of the execution and the permanent impact
trivially matches the peak impact (see Fig. 2).

An important remark is in order here. Using Table 1, one finds that I∞= 1
2ξc(Q/Qlin.) in both

the small and large participation regime. In other words, we find that the permanent impact is
linear in the executed volume Q, as dictated by no-arbitrage arguments [15, 16] and compatible
with the classical Kyle framework [17].

4. Impact with fast and slow traders

4.1. Set up of the problem

As stated in the introduction, one major issue in the impact results of the LLOB model as presented
by Donier et al. [11] is the following. Empirically, the impact of meta-orders is only weakly depen-
dent on the participation rate m0/J (see e.g. [7]). The corresponding square root law is commonly

5
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t

xt

x1

t
T

x1

⌫�1

⌫�1

Figure 2. Top graph: Price trajectory during and after a buy meta-order execution for νT � 1. (Black curve) 0th
order result from [11]. (Orange curve) 1st order result. (Blue curve) 1st order correction (see Eq. (8)). Bottom graph:
Price trajectory for νT � 1. Note that the x-axis is not to scale since ν−1 � (resp. �) T .

written as:

IQ := 〈xT 〉 = Y σ

√
Q

V
, (13)

where σ is the daily volatility, V is the daily traded volume, and Y is a numerical constant of
order unity. Note that IQ only depends on the total volume of the meta-order Q = m0T , and not
on m0 (or equivalently on the time T ).

As one can check from Table 1, the independence of impact on m0 only holds in the large
participation rate limit (m0 � J). However, most investors choose to operate in the opposite limit
of small participation rates m0 � J , and all the available data is indeed restricted to m0/J . 0.1.
Here we offer a possible way out of this conundrum. The intuition is that the total market turnover J
is dominated by high frequency traders/market makers, whereas resistance to slow meta-orders can
only be provided by slow participants on the other side of the book. More precisely, consider that
only two sorts of agents co-exist in the market (see Section 5 for a continuous range of frequencies):

(i) Slow agents with vanishing cancellation and deposition rates: νsT → 0, while keeping the
corresponding liquidity Ls := λs/

√
νsD finite; and

(ii) Fast agents with large cancellation and deposition rates, νfT � 1, such that Lf :=
λf/
√
νfD � Ls.

The system of partial differential equations to solve now reads:

∂tφs = D∂xxφs − νsφs + ss(x, t) (14a)

∂tφf = D∂xxφf − νfφf + sf(x, t) , (14b)

where sk(x, t) = λk sign(xkt − x) +mktδ(x− xkt), together with the conditions:

mst +mft = m0 (15)

xst = xft = xt . (16)

Equation (15) means that the meta-order is executed against slow and fast agents, respectively
contributing to the rates mst and mft. Equation (16) simply means that there is a unique transaction
price, the same for slow and for fast agents. The total order book volume density is then given by
φ = φs + φf. In particular, in the limit of slow/fast agents discussed above the stationary order
book is given by the sum of φst

s (x) ≈ −Lsx and φst
f (x) ≈ −(λf/νf)sign(x) (see Fig. 3). The total

6
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�⌫�1

�st(x)

�st(x)

x

⇠c
⇠

Qlin

�f⌫
�1
f

�st
f

�st
s

�Ls

x?

Figure 3. Stationary double-frequency order book φst(x) = φst
s (x) (purple) + φst

f (x) (green) (see Section 4).

transaction rate now reads

J = D
∣∣∂x
[
φst

s + φst
f

]∣∣
x=0

= Js + Jf, (17)

where Jf � Js (which notably implies that J ≈ Jf).

4.2. From linear to square-root impact

We now focus on the regime where the meta-order intensity is large compared to the average
transaction rate of slow traders, but small compared to the total transaction rate of the market,
to wit: Js � m0 � J . In this limit Eqs. (14a) and (14b), together with the corresponding price
setting equations φk(xkt, t) ≡ 0 yield (see Appendix B):

xst =

(
2

Ls

∫ t

0
dτ msτ

)1/2

(18a)

xft =
νf

λf

∫ t

0
dτ mfτ . (18b)

Differentiating Eq. (16) with respect to time together with Eqs. (18) and using Eq. (15) yields:

mft =
m0√
1 + t

t?

, with t? :=
1

2νf

J2
f

Jsm0
, (19)

and mst = m0 − mft. Equation (19) indicates that most of the incoming meta-order is executed
against the rapid agents for t < t? but the slow agents then take over for t > t? (see Fig. 4). The
resulting price trajectory reads:

xt =
λf

Lsνf

(√
1 +

t

t?
− 1

)
, (20)

which crosses over from a linear regime when t� t? to a square root regime for t� t? (see Fig. 4).
For a meta-order of volume Q executed during a time interval T , the corresponding impact is linear
in Q when T < t? and square-root (with IQ independent of m0) when T > t?. This last regime
takes place when Q > m0t

?, which can be rewritten as:

Q

Vd
>

1

νfTd

J

Js
, (21)
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Figure 4. Execution rates mit (top) and price trajectory (bottom) within the double-frequency order book model
(see Section 4).

where Vd is the total daily volume and Td is one trading day. Numerically, with a HFT cancellation
rate of – say – νf = 1 sec−1 and Js = 0.1J , one finds that the square-root law holds when the
participation rate of the meta-order exceeds 3 10−4, which is not unreasonable when compared with
impact data. Interestingly the cross-over between a linear impact for small Q and a square-root
for larger Q is consistent with the data presented by Zarinelli et al. [18] (but note that the authors
fit a logarithmic impact curve instead).

4.3. Impact decay

Regarding the decay impact for t > T , the problem to solve is that of Eqs. (14a), (14b) and (16)
only where Eq. (15) becomes:

mst +mft = 0 . (22)

The solution behaves asymptotically (t � T ) to zero as xt ∼ t−1/2 (see Appendix B). Given the
results of Section 3 in the presence of finite memory agents, the absence of permanent impact may
seem counter-intuitive. In order to understand this feature of the double-frequency order book
model in the limit νs T → 0, νf T � 1, one can look at the stationary order book. As one moves away
from the price the ratio of slow over fast volume fractions (φs/φf) grows linearly to infinity. Hence,
the shape of the latent order book for |x| � x? matches that of the infinite memory single-agent
model originally presented by Donier et al. [11] (see Fig. 3). This explains the mechanical return of
the price to its initial value before execution, encoded in the slow latent order book. Note that in
the limit of very small but finite νs, the permanent impact is of order

√
νs, as obtained in Section 3.

4.4. The linear regime

The regime of very small participation rates for which m0 � Js, Jf is also of conceptual interest.
In such a case Eq. (18a) must be replaced with:

xst =
1

Ls

∫ t

0
dτ

msτ√
4πD(t− τ)

, (23)

8
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which together with Eqs. (18b), (15) and (16) yields, in Laplace space (see Appendix B):

m̂1p =
1

p

m0

1 +
√
pt†

, (24)

where t† = (m0/πJs)t
?, with t? defined in Eq. (19). For small times (t � t†) one obtains

mst = 2m0

√
t/t† while for larger times (t† � t < T ), mst = m0[1 −

√
t†/(πt)]. Finally using

again Eqs. (18b), (15) and (16) yields xt = (νf/λf)m0t for t � t† and xt = (νf/λf)m0

√
tt†/π for

t† � t < T , identical in terms of scaling to the price dynamics observed in the case Js � m0 � Jf

discussed above. The asymptotic impact decay is identical to the one obtained in that case as well.

5. Multi-frequency order book

The double-frequency framework presented in Sec. 4 can be extended to the more realistic case of
a continuous range of cancellation and deposition rates. Formally, one has to solve an infinite set
of equations, labeled by the cancellation rate ν:

∂tφν = D∂xxφν − νφν + sν(x, t) , (25)

where φν(x, t) denotes the contribution of agents with typical frequency ν to the latent order book,
and sν(x, t) = λν sign(xνt − x) + mνtδ(x − xνt), with λν = Lν

√
νD. Equation (25) must then be

completed with:

∫ ∞

0
dνρ(ν)mνt = mt (26a)

xνt = xt ∀ν , (26b)

where ρ(ν) denotes the distribution of cancellation rates ν, and where we have allowed for an
arbitrary order flow mt. Solving exactly the above system of equations analytically is too ambitious
a task. In the following, we present a simplified analysis that allows us to obtain an approximate
scaling solution of the problem for a power law distribution of frequencies ν.

5.1. The propagator regime

We first assume, for simplicity, that the order flow Jν is independent of frequency (see later for a
more general case), and consider the case when mt � J , ∀t. Although not trivially true, we assume
(and check later on the solution) that this implies mνt � J ∀ν, such that we can assume linear
response for all ν. Schematically, there are two regimes, depending on whether t� ν−1 – in which
case the corresponding density φν(x, t) has lost all its memory, or t � ν−1. In the former case
the price trajectory follows Eq. (23), while in the latter case it is rather Eq. (18b) that rules the
dynamics. One thus has:

For νt� 1 xt =
1

L
√
D

∫ t

0
dτ

mντ√
4π(t− τ)

(27a)

For νt� 1 xt =
ν1/2

L
√
D

∫ t

0
dτ mντ . (27b)

9
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Figure 5. Numerical determination of the kernel K(t, τ) := M−1(t, τ), for α = 0.25. One clearly sees that K decays
as (t− τ)−1/2 at large lags. The inset shows that K(t, t/2) behaves as tα−1/2, as expected.

Inverting Eqs. (27) and defining Ψ(t) := 2/
√
πt yields (see Appendix B and in particular Eq. (53)):

For νt� 1 mνt = L
√
D

∫ t

0
dτ Ψ(t− τ)ẋτ (28a)

For νt� 1 mνt = L
√
Dν−1/2ẋt . (28b)

Our approximation is to assume that mνt in Eq. (26a) is effectively given by Eq. (28a) as soon as
ν < 1/t and by Eq. (28b) when ν > 1/t such that Eq. (26a) becomes:

∫ 1/t

0
dνρ(ν)

[ ∫ t

0
dτΨ(t− τ)ẋτ

]
+

∫ ∞

1/t
dνρ(ν)

[
ν−1/2ẋt

]
=

mt

L
√
D
. (29)

Equation (29) may be conveniently re-written as1
∫ t

0 dτ
[
G(t)Ψ(t − τ) + H(t)t

1/2
c δ(t − τ)

]
ẋτ =

mt/(L
√
D). Formally inverting the kernel M(t, τ) :=

[
G(t)Ψ(t− τ) +H(t)t

1/2
c δ(t− τ)

]
then yields

the price dynamics ẋt as a linear convolution of the past order flow mτ≤t. Note that when mt → 0,
ẋt is also small and hence, using Eqs. (28), all mνt are all small as well, justify our use of Eqs. (27)
for all frequencies.

5.2. Resolution of the “diffusivity puzzle”

Let us now compute the functions G and H for a specific power-law distribution ρ(ν) defined as:

ρ(ν) = Zνα−1e−νtc , (30)

where α > 0, tc is a high-frequency cutoff, and Z = tαc /Γ(α).2 For such a distribution, one obtains
G(t) = 1 − Γ(α, tc/t)/Γ(α) and H(t) = Γ(α − 1/2, tc/t)/Γ(α). In the limit t � tc, G(t) ≈ 1 and
H(t) ≈ 0. In the limit t � tc, G(t) ≈ (t/tc)

−α/[αΓ(α)], and the dominant term in the first order

1We have implicitly defined the dimensionless functions G(t) =
∫ 1/t
0 dνρ(ν) and H(t) = t

−1/2
c

∫∞
1/t dνρ(ν)ν−1/2.

2Note that rigorously one should also introduce a low frequency cutoff νLF to ensure the existence of a stationary state of the

order book in the absence of meta-order. Otherwise, 〈ν−1〉 =∞ when α ≤ 1 and the system does not reach a stationary state
(see the end of Section 1 and [14] for a further discussion of this point).

10



October 18, 2017 BenzaquenBouchaud˙Multiscale

expansion of H(t) depends on whether α ≶ 1/2. One has H(t|α<1/2) ≈ 2(t/tc)
1/2−α/[Γ(α)(1− 2α)]

and H(t|α>1/2) ≈ Γ(α−1/2)/Γ(α). Focussing on the interesting case α < 1/2, one finds (see Fig. 5)
that inversion of the kernel M(t, τ) is dominated, at large times, by the first term G(t)Ψ(t − τ).
Hence, one finds in that regime:3

xt ≈
αΓ(α)

Ltαc
√
D

∫ t

0
dτ

mττ
α

√
4π(t− τ)

. (31)

Let us now show that this equation can lead to a diffusive price even in the presence of a long-range
correlated order flow. Assuming that 〈mtmt′〉 ∼ |t− t′|−γ with 0 < γ < 1 (defining a long memory
process, as found empirically [12, 2]), one finds from Eq. (31) that the mean square price is given
by:

〈x2
t 〉 ∝

∫∫ t

0
dτdτ ′

〈mτmτ ′〉(ττ ′)α√
(t− τ)(t− τ ′)

. (32)

Changing variables through τ → tu and τ ′ → tv easily yields 〈x2
t 〉 ∝ t1+2α−γ . Note that the LLOB

limit corresponds to a unique low-frequency for the latent liquidity. This limit can be formally
recovered when α→ 0. In this case, we recover the “disease” of the LLOB model, namely a mean-
reverting, subdiffusive price 〈x2

t 〉 ∝ t1−γ for all values of γ > 0. Intuitively, the latent liquidity in
the LLOB case is too persistent and prevents the price from diffusing. Imposing price diffusion, i.e.
〈x2
t 〉 ∝ t finally gives a consistency condition similar in spirit to the one obtained in [12]:

α =
γ

2
<

1

2
. (33)

Equation (33) states that for persistent order flow to be compatible with diffusive price dynamics,
the long-memory of order flow must be somehow buffered by a long-memory of the liquidity, which
makes sense. The present resolution of the diffusivity puzzle – based on the memory of a multi-
frequency self-renewing latent order book – is similar to, but different from that developed in [14].
In the latter study we assumed the reassessment time of the latent orders to be fat-tailed, leading
to a “fractional” diffusion equation for φ(x, t).

5.3. Metaorder impact

We now relax the constraint that λν ∝
√
ν and define Jν := Jhf(νtc)

ζ with ζ > 0, meaning that
HFT is the dominant contribution to trading, since in this case

J =

∫ ∞

0
dνρ(ν)Jν = Jhf

Γ(ζ + α)

Γ(α)
. (34)

(The case ζ < 0 could be considered as well, but is probably less realistic).

We consider a meta-order with constant execution rate m0 � Jhf. Since Jν decreases as the
frequency decreases, there must exist a frequency ν? such that m0 = Jν? , leading to ν?tc =
(m0/Jhf)

1/ζ . When ν � ν?, we end up in the non-linear, square-root regime where m0 � Jν and
Eq. (18a) holds. Proceeding as in the previous section, we obtain the following approximation for

3Taking into account the H(t) contribution turns out not to change the following scaling argument.
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the price trajectory:

Gζ(t)

[ ∫ t

0
dτΨ(t− τ)ẋτ1{t≤ν?−1} +

xtẋt

2
√
D
1{t>ν?−1}

]
+ t1/2c Hζ(t)ẋt =

m0

√
D

Jhf
. (35)

where, in the limit t� tc and α+ ζ < 1/2:

Gζ(t) :=

∫ 1/t

0
dνρ(ν)(νtc)

ζ ≈
(
tc
t

)α+ζ 1

Γ(α)(α+ s)
(36a)

Hζ(t) :=

∫ ∞

1/t
dνρ(ν)(νtc)

ζ−1/2 ≈
(
tc
t

)α+ζ−1/2 1

Γ(α)(1/2− α− s) . (36b)

At short times t� ν?−1, Eq. (35) boils down to Eq. (29) with α→ α+ ζ and one correspondingly
finds:

xt ∝ xc
m0

Jhf

(
t

tc

) 1

2
+α+ζ

, (37)

where xc :=
√
Dtc. For t � ν?−1, the second term in Eq. (35) dominates over both the first and

the third terms, leading to a generalized square-root law of the form:

xt ∝ xc
√
m0

Jhf

(
t

tc

) 1+α+ζ

2

, (38)

Compatibility with price diffusion imposes now that α+ζ = γ/2, which finally leads to (see Fig. 6):

xt ∝ xc
m0

Jhf

(
t

tc

) 1+γ

2

, when t� tc

(
Jhf

m0

)1/ζ

(39a)

xt ∝ xc
√
m0

Jhf

(
t

tc

) 2+γ

4

, when t� tc

(
Jhf

m0

)1/ζ

. (39b)

In the latter case, setting γ = 1/2 and Q = m0T , one finds an impact IQ := xT behaving as1

Q5/8 as soon as Q > υ(Jhf/m0)(1−ζ)/ζ , where we have introduced an elementary volume υ := Jhftc,
which is the volume traded by HFT during their typical cancellation time.

6. Conclusion

In this work, we have extended the LLOB latent liquidity model [11] to account for the presence of
agents with different memory timescales. This has allowed us to overcome several conceptual and
empirical difficulties faced by the LLOB model. We have first shown that whenever the longest
memory time is finite (rather than divergent in the LLOB model), a permanent component of
impact appears, even in the absence of any “informed” trades. This permanent impact is linear in
the traded quantity and independent of the trading rate, as imposed by no-arbitrage arguments.
We have then shown that the square-root impact law holds provided the meta-order participation
rate is large compared to the trading rate of “slow” actors, which can be small compared to the

1Note that 5/8 ≈ 0.6 is very close close to the empirical impact results reported by Almgren et al. and Brockmann et al. [6, 19]
in the case of equities, for which γ is usually close to 1/2.
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Figure 6. Price trajectory during a constant rate metaorder execution within the multi-frequency order book model.
For γ = 1/2, the impact crosses over from a t3/4 to a t5/8 regime.

total trading rate of the market – itself dominated by high-frequency traders. In the original
LLOB model where all actors are slow, a square-root impact law independent of the participation
rate only holds when the participation rate is large compared to the total market rate, which is
not consistent with empirical data. Finally, the multi-scale latent liquidity model offers a new
resolution of the diffusivity paradox, i.e. how an order flow with long-range memory can give
rise to a purely diffusive price. We show that when the liquidity memory times are themselves
fat-tailed, mean-reversion effects induced by a persistent order book can exactly offset trending
effects induced by a persistent order flow.

We therefore believe that the multi-timescale latent order book view of markets, encapsulated
by Eqs. (25) and (26), is rich enough to capture a large part of the subtleties of the dynamics
of markets. It suggests an alternative framework to build agent based models of markets that
generate realistic price series, that complement and maybe simplify previous attempts [7, 9]. A
remaining outstanding problem, however, is to reconcile the extended LLOB model proposed in
this paper with some other well known “stylized facts” of financial price series, namely power-law
distributed price jumps and clustered volatility. We hope to report progress in that direction
soon. Another, more mathematical endeavour is to give a rigorous meaning to the multi-timescale
reaction model underlying Eqs. (25) and (26) and to the approximate solutions provided in this
paper. It would be satisfying to extend the no-arbitrage result of Donier et al. [11], valid for the
LLOB model, to the present multi-timescale setting.

We thank J. Bonart, A. Darmon, J. de Lataillade, J. Donier, Z. Eisler, A. Fosset, S. Gualdi, I.
Mastromatteo, M. Rosenbaum and B. Tóth for extremely fruitful discussions.
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Appendix A

We here provide the calculations that link Eq. (8) and Table 1 during a meta-order execution
(t ≤ T ); the impact decay computations (t > T ) are given and discussed in Section 3.

In the limit of slow execution of the meta-order, one has (xt − xτ )2 � 4D(t− τ) such that Eq. (7)
together with Eq. (3) becomes:

0 = φst(xt)e
−νt +

∫ t

0
dτ

m0√
4πD(t− τ)

e−ν(t−τ) − 2λ

∫ t

0
dτ

xt − xτ√
4πD(t− τ)

e−ν(t−τ) . (40)

Interestingly, slow and short execution is only compatible with small meta-order volume1 (indeed,
combining m0 � J and νT � 1 implies m0T � Jν−1). Thus for slow and short execution, using
the linear approximation φst(xt) = −Lxt and letting Eq. (8) into Eq. (40) yields:

0 = −Lαz0
t +m0

√
t

πD
(41a)

0 = −L√νz1
t − 2λ

∫ t

0
dτ

z0
t − z0

τ√
4πD(t− τ)

. (41b)

Equation (41a) yields α = m0/(L
√
πD) and z0

t =
√
t, and it follows from Eq. (41b) that z1

t = −kt
where k =

√
4/π −

√
π/4.

In the limit of fast execution, one has (xt − xτ )2 � 4D(t− τ) such that the meta-order term
can be approximated through the saddle point method. Letting xτ ≈ xt − (t− τ)ẋt into the price
equation now yields:

0 = φst(xt)e
−νt +

∫ t

0
dτ m0

e−
ẋ2t (t−τ)

4D√
4πD(t− τ)

e−ν(t−τ) − λ
∫ t

0
dτ e−ν(t−τ) . (42)

Letting u = t− τ and given 4D/ẋ2
t � t such that

∫ t
0 du ≈

∫∞
0 du, Eq. (42) becomes:

0 = φst(xt)e
−νt +

m0√
ẋ2
t + 4Dν

+
λ

ν

(
e−νt − 1

)
. (43)

For short execution with small meta-order volume (we use φst(xt) = −Lxt), letting Eq. (8) into
Eq. (43) yields:

0 = −Lαz0
t +

m0

α|ż0
t |

(44a)

0 = −Lα√νz1
t −
√
νm0

α

ż1
t

(ż0
t )2
− λt . (44b)

Equation (44a) yields α =
√

2m0/L and z0
t =

√
t, and thus Eq. (44b) becomes ż1

t + z1
t /(2t) =

−1
2

√
J/(2m0). It follows that z1

t = − t
3

√
J/(2m0). For a fast, short and large meta-order, xt is

expected to go well beyond the linear region of the order book such that in a hand-waving static

1Equivalently, rapid and long execution is only consistent with large meta-order volume (combining m0 � J and νT � 1
implies m0T � Jν−1).
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approach (consistent with fast and short execution) one can match m0t and the area of a rectangle
of sides xt and λν−1 (see Fig. 1). Letting xt = bt yields b = m0ν/λ. Note that this result can
be recovered by letting xt = bt and φst(xt) = −λν−1 into Eq. (43). Indeed, at leading order one
obtains:

0 = −λ
ν

+
m0

|ẋt|
, (45)

from which the result trivially follows.

For long execution (νT � 1) the memory of the initial book is rapidly lost and one expects
Markovian behaviour. Letting again xt = bt into the price equation and changing variables through
τ = t(1− u) yields:

0 = m0

√
t

∫ 1

0
du

e−
b2tu

4D√
4πDu

e−νtu − λ
∫ 1

0
du e−νtu erf

√
b2tu
4D

=

(
m0 −

λb

ν

)
1√

b2 + 4Dν
erf
√(

b2

4D + ν
)
t . (46)

Interestingly, Eq. (46) yields b = m0ν/λ (regardless of execution rate and meta-order size), which
is exactly the result obtained above in the case of fast and short execution of a large meta-order
but for different reasons.

Appendix B

We here provide the calculations underlying the double-frequency order book model presented in
Section 4. In particular for the case Js � m0 � Jf, Eqs. (18) are obtained as follows. In the
limit of large trading intensities the saddle point methods (as detailed in Appendix A) can also be
applied to the case of nonconstant execution rates (one lets mτ ≈ mt about which the integrand is
evaluated, see [11]), in particular one obtains (equivalent to Eq. (44b)):

Lsxst|ẋst| = mst , (47)

which yields Eq. (18a). For the rapid agents (νfT � 1) we must consider the case of long execution.
In particular, an equation tantamount to Eq. (46) can also be derived in the case of nonconstant
execution rates. Proceeding in the same manner, one easilly obtains:

0 =

(
mft −

λfẋft

νf

)
1√

ẋ2
ft + 4Dνf

erf

√(
ẋ2
ft

4D + νf

)
t , (48)

which yields ẋft = mftνf/λf and thus Eq. (18b). Then, as mentioned in Section 4, the asymptotic
impact decay is obtained from Eqs. (14a), (14b) and (16) only where for t > T we replace Eq. (15)
with Eq. (22). Using Eq. (7) together with Eq. (3) in the limit νsT → 0, and νfT � 1 together
with (16) yields (t > T ):

Lsxt =

∫ T

0
+

∫ t

T
dτ

msτ√
4πD(t− τ)

(49a)

0 =

∫ T

0
+

∫ t

T
dτ

e−νf(t−τ)

√
4πD(t− τ)

[
mfτ − 2λf(xt − xτ )

]
. (49b)
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Asymptotically (t� T ) the system of Eqs. (49) becomes:

Lsxt =

∫ T

0

msτdτ√
4πD(t− τ)

+

∫ t

T

msτdτ√
4πD(t− τ)

(50a)

0 =

∫ t

0
dτ

e−νf(t−τ)

√
4πD(t− τ)

[mfτ − 2λf(xt − xτ )] . (50b)

We expect the asymptotic impact decay to be of the form xt = x∞ +B/
√
t. In addition Eq. (50b)

indicates that mft ∼ ẋt. We thus let mst = −mft = C/t3/2. Injecting into Eq. (50a) yields x∞ = 0
(no permanent impact) and:

LsB√
t

=
1√
t

[
m0fT√

4πD
+

C√
πDT

]
, (51)

where fT = T if t? � T and fT = T 2/(3t?) if t? � T . On the other hand, letting u = t − τ in
Eq. (50b) and using xt − xs ≈ (t− s)ẋt yields at leading order:

0 =

∫ ∞

0
du

e−νfu√
u

[
− C

t3/2
+
λfBu

t3/2

]
=

√
π

νft3

[
−C +

λfB

νf

]
, (52)

which combined with Eq. (51) easily leads to the values of B and C.

For the case m0 � Js, Jf, the calculations are slightly more subtle. Inverting Eq. (23) in Laplace
space yields:

mst = 2Ls

√
D

∫ t

0
dτ

ẋsτ√
π(t− τ)

. (53)

One can easily check this result by re-injecting Eq. (53) into Eq. (23). In turn, inverting Eq. (18b)
is straightforward and yields mft = (λf/νf)ẋft. Injecting ẋst = ẋft into Eq. (53) and using Eq. (15)
yields:

mst =
1√
t†

∫ t

0
dτ

m0 −msτ√
π(t− τ)

, (54)

which can be written as:

∫ t

0
dτ msτΦ(t− τ) = 2m0

√
t , with Φ(t) := δ(t)

√
πt† +

θ(t)√
t
. (55)

Taking the Laplace transform of Eq. (55) one obtains Φ̂(p)m̂sp = m0
√
π/p3/2 with Φ̂(p) =

√
πt† +√

π/p, which in turn yields Eq. (24).

16



October 18, 2017 BenzaquenBouchaud˙Multiscale

References

[1] Hasbrouck J 2007 Empirical market microstructure: The institutions, economics, and econometrics of
securities trading. (Oxford University Press)

[2] Bouchaud J P, Farmer J D and Lillo F 2008 How markets slowly digest changes in supply and demand
(Elsevier: Academic Press)

[3] Weber P and Rosenow B 2005 Quantitative Finance 5 357–364
[4] Bouchaud J P 2010 Price impact. Encyclopedia of quantitative finance. (Wiley)
[5] Grinold R C and Kahn R N 2000 Active Portfolio Management (McGraw Hill New York)
[6] Almgren R, Thum C, Hauptmann E and Li H 2005 Risk 18 5862
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