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Abstract
Thepower spectral density (PSD)of any time-dependent stochastic processXt is ameaningful featureof its
spectral content. In its text-bookdefinition, thePSD is theFourier transformof the covariance functionof
Xtover an infinitely large observation timeT, that is, it is defined as an ensemble-averagedproperty taken
in the limit  ¥T . A legitimate question iswhat informationon thePSDcanbe reliably obtained from
single-trajectory experiments, if one goes beyond the standarddefinition and analyzes thePSDof a single
trajectory recorded for afiniteobservation timeT. In quest for this answer, for ad-dimensionalBrownian
motion (BM)wecalculate the probability density functionof a single-trajectoryPSD for arbitrary
frequency f,finite observation timeT and arbitrarynumber kof projectionsof the trajectory ondifferent
axes.We showanalytically that the scaling exponent for the frequency-dependenceof thePSDspecific to
an ensemble ofBMtrajectories canbe alreadyobtained froma single trajectory,while thenumerical
amplitude in the relationbetween the ensemble-averaged and single-trajectoryPSDs is afluctuating
propertywhich varies fromrealization to realization.Thedistributionof this amplitude is calculated
exactly and is discussed indetail.Our results are confirmedbynumerical simulations and single-particle
tracking experiments,with remarkably good agreement. In additionwe consider a truncatedWiener
representationofBM, and the case of adiscrete-time lattice randomwalk.Wehighlight somedifferences in
the behavior of a single-trajectoryPSD forBMand for the two latter situations. The frameworkdeveloped
hereinwill allow formeaningful physical analysis of experimental stochastic trajectories.

1. Introduction

The power spectral density (PSD) of a stochastic processXt, which is formally defined as (see, e.g., [1])
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provides important insights into the spectral content ofXt.Here and inwhat follows, the symbol  ¼{ }denotes
averagingwith respect to all possible realizations of theprocess, i.e., the expectation.Often thePSDasdefined in
equation (1)has the form m ¥ = b( )f A f,S ,whereA is an amplitude andβ, (typically, onehas 0<β�2 [2]), is
the exponent characteristic of the statistical properties ofXt. In experiments andnumericalmodeling, thePSD is
determinedusing aperiodogramestimate for awide variety of systems inphysics, biophysics, geology etc.Aby far
non-exhaustive list of systems exhibiting 1/fβ spectra includes electrical signals in vacuum tubes, semiconductor
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devices,metalfilms andother condensedmatter systems [3–5], quantumdots [6–8], nano-electrodes [9] and two-
dimensional graphene layerswith awidely tunable concentrationof carriers [10]. ThePSDhas beenanalyzed, aswell,
for the trajectories of tracers in artificial crowdedfluids [11], for activemicro-rheologyof colloidal suspensions [12],
Kardar–Parisi–Zhang interfacefluctuations [13], for sequences of earthquakes [14], weather data [15–17], biological
evolution [18], humancognition [19], network traffic [20] and even for the loudness ofmusic recordings (see,
e.g., [21, 22]).

On the theoretical side, the PSDs showing the 1/f β dependences have been calculated analytically for diverse
situations, including, e.g., the dynamics in chaoticHamiltonian systems [23], periodically-driven bistable
systems [24],fluctuations of a phase-separating interface [25], several diffusive and non-diffusive transport
processes (see, e.g., [8, 26–29]), the runningmaximumof Brownianmotion (BM) [30], diffusion in presence of
strong quenched disorder [31–34] and the electric-field-driven ion transport through nanometer-scale
membrane pores [35]. The PSDof BM in an optical trap has been scrutinized in [36, 37], which permitted the
calibration of optical tweezers,making them a powerful tool for force spectroscopy, local viscometry, and other
applications (see, e.g. [38, 39]).

The systematicmeasurements of single particle trajectories startedwith Perrinmore than a century ago [40].
Just a few years laterNordlund [41]developed impressive experimental techniques, followed by a line of further
refinements up toKappler’smeasurements [42], to record sufficiently long trajectories to enable quantitative
analysis on the basis of individual trajectories—without the need of prior ensemble averaging. Nowadays, with
the advent ofmodernmicroscopy and supercomputing, scientists routinelymeasure long trajectoriesXt of
submicron tracer particles or even singlemolecules [11, 39, 43–47].

In parallel to this experimental progress, therewas a general shift of interest towards understanding
statistical properties of individual realizations of stochastic processes. In particular, a conceptually important
question often raisedwithin this context is if one can reliably extract information about the ensemble-averaged
properties of randomprocesses from single-trajectory data [46]. Considerable theoretical progress has been
achieved, for instance, infinding theway to get the ensemble-averaged diffusion coefficient from a single
Brownian trajectory, which task amounts to seeking properly defined functionals of the trajectorywhich possess
an ergodic property (see, e.g., [43–46, 48–56] for a general overview).

One of such functionals used in single-trajectory analysis is the time-averagedmean squared displacement
(MSD) (see, e.g., [39, 43–47])
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where the bar denotes time averaging and the lag time τ acts as the size of the analysis window sliding over the
time seriesXt. Forfinite observation timeT, the time-averagedMSDvaries randomly for different trajectories
even under identical physical conditions. For both normal and anomalous diffusion this variation ismainly seen
as an amplitude scatter of d t( )2 at given lag times, which remains remarkably constant (apart of relatively small
localfluctuations) as function of τ [57–60].

For the time-averagedMSD thefluctuations are often quantified in termsof the so-called ergodicity breaking
parameter  x= -{ }EB 12 , where the dimensionless variable x d t d t= ( ) { ( )}2 2 for a given τmeasures the

deviations fromthe trajectory-average  d t d t= å ={ ( )} ( ) ( )N1 i
N

i
2

1
2 [57, 61], withNbeing the number of

observed trajectories. Clearly, gºEB 2 withγbeing the coefficient of variation of thedistribution d t( ( ))P 2 .
For BM, thefluctuations decreasewith growing observation time such that t~ ( )TEB 4 3 [44, 50, 57], which

permits to deduce the diffusion coefficient specific to an ensemble of trajectories from just a single, sufficiently
long, trajectory.A similar decay of EB to zero for largeT is observed for fractional BM [62] and scaledBM [63].
However, for anomalousdiffusionwith scale-free distributions ofwaiting times [61] andprocesseswith systematic,
spatially varyingdiffusion coefficient [64] the inequality ¹EB 0 persists even in the limit  ¥T , which reveals
ageing in the sense that the properties of the system, such as the effective diffusivity, are perpetually changing
during themeasurement anddependonT [46, 57, 65]. In these systems, thefluctuations asmeasured byEBdonot
decay to zerowith increasingT, and thus time averages of physical observables remain randomquantities, albeit
withwell defineddistributions (see, e.g. [50, 57, 61]).Many other facets of the time-averagedMSD in equation (2)
andof theparameter EBwere exhaustively studied to date for a variety of diffusive processes, providing a solid
mathematical framework for the analysis of individual trajectories [39, 57, 62, 66–69].

Single-trajectory PSDs have been studied in several cases. In particular, the PSDof the loudness ofmusical
recordings was discussed in [21, 22] and the spectra of temperature data were presented in [16, 17].We note that,
of course, for these two examples averaging over ‘an ensemble’ does notmake any sense since the latter simply
does not exist, likewise, e.g., the case of the financialmarkets data for which the single-trajectoryMSDhas been
recently analyzed [70]. Further on, power spectra of individual time-series were examined for a two-state
stochasticmodel describing blinking quantumdots [26] and also for single-particle tracking experiments with
tracers in artificially crowdedfluids [11]. It was shown that, surprisingly enough, the estimation of the exponent
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characterizing the power spectrumof an ensemble from the single-trajectory PSD is rather robust. Next, in
[71, 72] the power spectra of the velocities of independentmotile amoeba (see also [47, 73])were analyzed,
revealing a robust high-frequency asymptotic 1/f 2 form, persisting for all recorded individual trajectories.

Clearly, these numerical observations raise several challenging questions. Indeed, could it be possible that
the exponent characterizing the frequency-dependence of the standard PSD, defined as an ensemble-average
property, can be observed already on a single-trajectory level? If true, does it hold for any stochastic transport
process or just for some particular examples?Moreover, inwhich range of frequencies can such a behavior be
observed?What are the distributions of the amplitudes entering the relation between a single-trajectory PSD and
its ensemble-average counterpart and howbroad are they? Evidently, numerical analyzesmay give a certain
degree of understanding of some particular features, but a deep insight can be obtained only in conjunctionwith
a fullmathematical solution. Unlike the single-trajectoryMSD, forwhich a deep knowledge has been already
acquired via an exact analytical analysis, a similar analysis of the statistical properties of a single-trajectory PSD is
lacking at present, although its ensemble-averaged counterpart is widely used as an important quantifier of
different properties of random trajectories in diverse areas of engineering, physics and chemistry.

In this paper, going beyond the text-book definition (1), we concentrate on the questionwhat information
can be reliably obtained if one defines the PSDof a single,finite-time realization ofXt.We here focus on the
paradigmatic process of BM.This choice is two-fold: first, BM is ubiquitous in naturewhich renders this analysis
particularly important. Second, it permits us to obtain an exactmathematical solution of the problem:we
calculate exactly themoment-generating function and the full probability density function of the single-
trajectory PSD and itsmoments of arbitrary order in themost general case of arbitrary frequency, arbitrary
(finite) observation time and arbitrary number of the projections of a d-dimensional BMonto the coordinate
axes. This furnishes yet another example of a time-averaged functional of BM,whosemoment-generating
function and full probability distribution can be calculated exactly (see, e.g., [74]).

Capitalizing on these results, we observe that for a sufficiently largeT (and frequency f bounded away from
zero) for any realization of the process a single-trajectory PSD is proportional to itsfirstmoment (1), and the
latter embodies the full dependence on the frequency and on the diffusion coefficient specific to an ensemble of
the trajectories. Thismeans that the frequency-dependence can be deduced from a single trajectory. In other words,
there is no need to perform averaging over an ensemble of trajectories—one long trajectory suffices.However,
the proportionality factor, connecting a single-trajectory PSD and its ensemble-averaged counterpart—a
numerical amplitude—is randomand varies from realization to realization. Due to this fact, one cannot infer the
value of the ensemble-averaged diffusion coefficient from the amplitude of a single-trajectory PSD. The
distribution function of this amplitude is calculated exactly here and its effective width is quantified using
standard criteria.

As a proof of concept, we revisit our predictions for a continuous-time BM—an idealized process with
infinitesimal increments—resorting to a numerical analysis based onMonte Carlo simulations of discrete-time
randomwalks, and also using experimental single-trajectory data for the diffusivemotion ofmicron-sized
polystyrene beads in aflow cell.We demonstrate that our theoretical prediction for the relation connecting a
single-trajectory PSD and its ensemble-averaged counterpart is corroborated by numerical and experimental
results. Additionally we show that the predicted distribution of the amplitude is consistent with numerical
results, whichmeans that the framework developed here is justified and allows for ameaningful analysis of
experimental trajectories.

Pursuing this issue further, we address several general questions emerging in connectionwith a comparison
of our analytical predictions against numerical simulations and experimental data. To this end, we first consider
Wiener’s representation of BM in formof an infinite Fourier series with random coefficients, whose truncated
version is often used in numerical simulations.We show that the distribution of the single-trajectory PSD
obtained fromWiener’s representation inwhich justN terms are kept, instead of an infinite number, has exactly
the same form as the one obtained for the continuous-time BMwhen fT is within the interval (0,πN). Outside of
this interval, the probability density function of the truncated PSD converges to a different form.

Weexamine the casewhen a trajectory of a continuous-timeBMis recorded at somediscrete timemoments, so
that it is represented by a set ofMpoints. The single-trajectory PSD, i.e., the periodogram,becomes a periodic
function of fTwith the primeperiod equal to 2πM.Weanalyze several aspects of this discrete-time problem:we
studyhow largeM shouldbe taken at afixed observation timeT so thatwemay recover the results obtained for the
continuous-timeBM.Weanalyze the limiting formsof the distributionof a single-trajectory periodogramand
show, inparticular, that for fTkeptfixed and  ¥M , the distribution converges to the formobtained for a
continuous-timeBM.On the contrary,when fT is left arbitrary so that itmay assume any valuewithin the prime
period, that is, pÎ ( )fT M0, 2 , the distribution of a single-trajectory periodogramconverges to a different limiting
formas  ¥M . Our analysis demonstrates thatwhen fTbelongs to a certain intervalwithin theprime period, a
single-trajectory periodogramequals, up to a randomnumerical amplitude, the ensemble-averagedperiodogram,
and the latter embodies the full dependence on f andT. Therefore, similarly to the continuous-time case, the
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correct spectrumcan beobtained already froma single trajectory.These new results are the foundation for theuse
of single trajectory PSD in thequantitative analysis of single or few recordedparticle trajectories, complementing
thewidelyused concept of the single trajectoryMSD.

The paper is outlined as follows: in section 2we introduce our basic notations. In section 3wefirst derive
explicit expressions for the variance of a single-trajectory PSD and the corresponding coefficient of variation of
the probability density function, and present exact results for themoment-generating function of a single-
trajectory PSD, its full probability density function andmoments of arbitrary order (section 3.1). Section 3.2 is
devoted to the relation connecting a single-trajectory PSD and its ensemble-averaged counterpart, while
section 3.3 discusses fluctuations of the amplitude in this relation.Next, in section 4we analyze the probability
density function of a single-trajectory PSDobtained by truncatingWiener’s representation of a continuous-time
BM. Section 5 presents an analogous analysis for the case when a continuous-time trajectory is recorded at
discrete timemoments. In section 6we concludewith a brief recapitulation of our results and outline some
perspectives for further research. Additional details are relegated to appendix A, inwhichwe present exact
results for the distributions in the special case f=0, and to appendix B, wherewe discuss several cases inwhich
the full distribution of a single-trajectory periodogram can be evaluated exactly in the discrete-time settings.

2. Brownianmotion: definitions andnotations

LetXt, tä (0,T)denote a Brownian trajectory in a d-dimensional continuum and ( )Xt
j with j=1, 2,K, d stand

for the projection of Xt on the axis xj. The projections
( )Xt

j are statistically independent of each other and
(likewise the BMXt itself) each projection ( )Xt

j is aGaussian process with zeromean and variance

 ={( ) } ( )( )X Dt2 , 3t
j 2

whereD is the diffusion coefficient of Xt . In a randomwalk sense, d dt= á ñ á ñ( )D x d22 , where dá ñx2 is the
variance of the step length and dtá ñ is themean time interval between consecutive steps.Hence,D contains the
dimension d of the unprojectedmotion.

In text-book notations, the PSDof each of the projections is defined by equation (1), that is,

m m¥ =
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where (taking into account that ( )Xt
j is real-valued) theT-dependent function m ( )( ) f T,S
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j . For BM, one thenfinds the standard result [1]
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Hence, for BM the standard PSD m ¥( )( ) f ,S
j , defined as an average over an ensemble of trajectories, is described

by a power-lawwith characteristic exponentβ=2 and an amplitudewhich is linearly proportional to the
diffusion coefficientD.

Going beyond the text-book definition in equation (5), we nowdefine the PSDof a single component ( )Xt
j :
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and another property of interest here, the partial PSDof the trajectory Xt
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inwhichwe take into account the contributions of k, (k=1, 2,K, d), components of a d-dimensional BM.

Clearly, for k=1 the definitions (8) and (9) coincide. The PSDs ( )( )S fT
j and ˜ ( )( )

S fT
k

are f- andT-parameterized
randomvariables: the firstmoment m ( )f T,S of a single-trajectory PSD (8) is given by the standard result (6),
while thefirstmoment of the partial PSD (9), due to statistical independence of the components, is given by

expression (6)multiplied by k. Our goal is to evaluate exactly the full probability density function for ˜ ( )( )
S fT

k
.
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3. Brownianmotion: results

To get an idea of how representative of the actual behavior of a single-trajectory PSD the result (6) is, wefirst look
at the variance s ( )f T,S

2 of a single-component single-trajectory PSD,

s m= -

= - - +
- -⎡

⎣⎢
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Expression (10) permits us to determine the corresponding coefficient of variation

g s m= ( ) ( ) ( )f T f T, , 11S S S

of the yet unknown distribution of a single-component single-trajectory PSD.
Infigure 1we depict γS, which is a function of the product f T exclusively.We observe that γS approaches

2 forfixedT and f 0, and tends to the asymptotic value 5 2 (thin horizontal line infigure 1)when
 ¥T at anyfixed f>0.Overall, for any value of fT the coefficient of variation appears to be greater than

unity,meaning that the standard deviation s ( )f T,S is greater than the average, m ( )f T,S , which signals that the
parental distribution is effectively ‘broad’, despite the fact that it evidently has well-definedmoments of arbitrary
order. As a consequence, the average described by equation (6)may indeed not be representative of the actual

behavior of a single-trajectory PSD. This fully validates our quest for the distribution ( ˜ ( ))( )
P S fT

k
.

3.1. Brownianmotion:moment-generating-function, distribution ( ˜ ( ))( )
P S fT

k
and itsmoments

Ourfirst goal is to calculate themoment-generating function of ˜ ( )( )
S fT

k
in equation (9), defined formally as the

following Laplace transform
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To calculateΦλ exactly, it appears convenient to useWiener’s representation of a given Brownian path ( )Xt
j in

the formof a Fourier series with random coefficients
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Figure 1.Coefficient of variation γ as function of ln( fT). The solid curve is the analytical expression for continuous-time BM,
g s m= ( ) ( )f T f T, ,S S S (see equations (6) and (10)). The thin horizontal line (blue) is the asymptotic value 5 2 attained by γS in
the limit  ¥fT . The dashed (green) and dotted (red) curves show the coefficient of variation g s m= ( ) ( )f T f T, ,R R R in the
discrete-time case (see section 5, equations (43) and (44))with the numberM of the recorded positions of a trajectory equal to 104 and
105, respectively. The vertical peaks of γR (of height = 2 ) appear at fT=πM, (that is, in themiddle of the prime period),
corresponding to fT=π×104 (green) and fT=π×105 (red). Note that the oscillations of γ apparent for small andmoderate
values of fT also exist for the discrete-time case close to the ‘peaks’ but are not resolved in thefigure due to the logarithmic scale. For
the discrete-time case on a linear scale γRhas a periodic term in fT (see section 5 andfigure 5 formore details).
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The corresponding single-trajectory partial PSD ˜ ( )( )
S fT

k
in equation (9) can be formally rewritten as
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Inserting expression (15) into (12) and using the identity
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we rewrite equation (12) in the factorized form
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where the subscript ζ in the averaging operator  ¼z{ } signifies that averaging over all paths of the component
( )Xt

j is replaced by an equivalent operation, the averaging over all possible values of z ( )
n

j . Performing this
averaging, as well as the integrations over dx and dy, we get
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We focus next on the infinite sums entering equation (19). They can be calculated exactly, and expressed via the
first and the secondmoments of a single-trajectory PSD,

å p
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where the average and the variance (as well as the corresponding coefficient gS of variation) of the single-
component single-trajectory PSD are defined in equations (6), (10), and (11), respectively.

Consequently we realize that themoment-generating function in equation (19) can be cast into amore
compact and physicallymeaningful form,which involves only the firstmoment and the variance (through the
coefficient γS of variation) of the single-trajectory PSD,

m l g m lF = + + -l
-[ ( ) ( ) ( ) ] ( )f T f T1 2 , 2 , . 21S S S

k2 2 2 2

This expression holds for any value of k, f andT.
Performing next the inverse Laplace transformof the function defined by equation (21), we arrive at the

following expression for the desired probability density function of the single-trajectory partialPSDdefined in
equation (9), which also (as the result in equation (21)) holds for arbitrary f, arbitraryT and arbitrary number k
of the projections of the trajectory Xt onto the coordinate axes,

6

New J. Phys. 20 (2018) 023029 DKrapf et al



p

g g m

g m
g

g m

= =
G - -

´ -
-

-

-

-

-

- +

-

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( ˜ ( ) )
( ) ( ) ( )

( ) ( )
( )

( )
P S f S

k

S

f T

S

f T
I

S

f T

2 2 2 1 ,

exp
1

2 ,

1

2 ,
. 22

T
k

S S S

S S

S

S S

2 2

2

2

2

k

k

k k

k

1
2

1
2

1
4

1
2

1
2

Here, ¼a ( )I is themodified Bessel function of the 1st kind andΓ(K) is theGamma-function.
Beforewe proceed further, two remarks are in order. First, we note that the distribution (22) is the Bessel

function distribution that has been used inmathematical statistics years ago as an example of a distributionwith
heavier thanGaussian tails (see, e.g., [75, 76]). Second, as alreadymentioned, for f=0 the coefficient of
variation is exactly equal to 2 and hence, the coefficient in front of the termquadratic inλ in expression (21)
vanishes. In this particular case the distribution (22) simplifies to theχ2-distributionwith k degrees of freedom,
which is presented in appendix A.

Expression (22) permits us to straightforwardly calculate themoments of the partial single-trajectory PSDof
arbitrary, not necessarily integer order > - +( )Q k 1 2,


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g
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where ( )F ...2 1 is theGauss hypergeometric function. Note that themoments of orderQ>2 for an arbitrary k are
all expressed through thefirst and the second (via γS)moments of the single-component single-trajectory PSD
only, since the parental Gaussian process ( )Xt

j is entirely defined by itsfirst twomoments.
The distribution in equation (22) and the formula for themoments of orderQ, equation (23), ensure that the

single-trajectory PSD ˜ ( )( )
S fT

k
has the form

g m=˜ ( ) ( ) ( ) ( )( ) ( )S f A f T, , 24T
k k

S S

where m ( )f T,S is thefirstmoment of this randomvariable, i.e., a deterministic function of f andTwhich sets

the scale of variation of ˜ ( )( )
S fT

k
, and g( )( )A k

S is a dimensionless randomamplitude, whosemoments of orderQ
are defined by the expression in the right-hand-side of equation (23). The relation in equation (24) has important
conceptual consequences onwhichwewill elaborate below.

3.2. Brownianmotion: single-trajectory PSD
One infers from figure 1 that upon an increase of f T the oscillatory terms in γS fade out, and γS saturates at the
value g = 5 2S . Let us defineωl as the value of f T when the amplitude of the oscillatory terms in γS equals

e+5 2 , where ε>0 is a smallfixed number. Given that the amplitude of the oscillatory terms is a
monotonically decreasing function of f T , one has that for f T >ωl the coefficient of variation

g w> - <∣ ( ) ∣/fT 5 2S l . Next, the decay law of the amplitude of oscillations can be readily derived from
equations (6) and (10) to give that, in the leading in ε order, w e~ ( )2 5l .

Then, for w>fT l, up to terms proportional to ε, which can bemade arbitrarily small, we see that the
moments of the random amplitude g( )( )A k

S in equation (24) are given by

 g =
G +

G
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+ + + ++

+
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2
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2
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S
Q

Q k
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meaning that in this limit g( )( )A k
S becomes just a real number ( )A k that is independent of f andT. This implies, in

turn, that with any necessary accuracy, prescribed by the choice of ε, and for any realization of a trajectory Xt ,

e w= + Î ¥˜ ( ) ( ( )) ( ) ( )( ) ( )S f
D

f
A O f T

4
1 , for , , 26T

k k
l2

where the symbolO(ε) signifies that the omitted terms, (stemming from the oscillatory terms in m ( )f T,S ,
s ( )f T,S

2 and hence, in g ( )f T,S ), have an amplitude smaller than ε.
Therefore, we arrive at the following conclusion, which is themain conceptual result of our analysis: for

continuous-time BMand wÎ ¥( )fT ,l , the frequency-dependence of the PSDof any single trajectory is the
same as that of the ensemble-averaged PSDwith any desired accuracy, set by ε. Consequently, in response to the
title question of ourwork, we conclude that for BM the 1/f 2-dependence of the power spectrum can be deduced
already froma single, sufficiently long trajectory, without any necessity to perform an additional averaging over
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an ensemble of such trajectories. In section 5 (see figure 7) belowwe show that this predictionmade for BM—a
somewhat idealized stochastic process with infinitesimal increments—holds indeed for discrete-time random
walks and single-trajectory experiments, inwhich a BM trajectory is recorded at discrete instants of time and for
afinite observation time.

Lastly, we note that since m ¥( )f ,S is linearly proportional to the diffusion coefficientD and the latter
appears to bemultiplied by a randomnumerical amplitude, one cannot infer the ensemble-averaged diffusion
coefficient from a single-trajectory PSD. The error in estimatingD from a single trajectory is given precisely by
the deviation of this amplitude from its averaged value. Belowwe discuss the fluctuations of this numerical
amplitude.

3.3. Fluctuations of the amplitude ( )A k

The exact limiting probability density function of the amplitude ( )A k in equation (26) follows from equation (22)
and reads

p
= =

G
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k
A I A

2

3 2
exp

4

3

2

3
. 27k

k

k

1
2

1
2

Infigure 2we depict this distribution for k= 1, 2 and 3 (curves from left to right).We observe that the very shape
of the distribution depends on the number of components which are taken into account in order to evaluate the
partial PSD. For k=1 (that is, for BM in one-dimensional systems, or in two or three-dimensions but when
only one of the components is being tracked), the distribution is amonotonically decreasing functionwith the
maximal value at =( )A 01 . In contrast, for k=2 and k=3, ( )( )P A k is a bell-shaped functionwith a left power-
law tail and an exponential right tail.

Infigure 2we also present a comparison of our analytical predictions in equation (27) against the results of
numerical simulations.We use twomethods to produce numerically the distributions of g( )( )A k

S defined in
equation (24) for the range of frequencies where ( )f S fT

2 is almost constant (see sections 4 and 5 formore
details). Thefirstmethod hinges onWiener’s representation of a BM in equation (13), which is truncated at the
upper summation limit atN=3.2×106 (see section 4 below formore details). Crosses (×) infigure 2 depict
the corresponding results obtained via averaging over 105 trajectories generated using such a representation of
BM. Further, we use a discrete-time representation of a BM—lattice randomwalks with unit spacing and
stepping events at each tick of the clock—which are produced byMonte Carlos simulations.We set the
observation timeT=1 and generate trajectories with =M 222 steps to get a single-trajectory periodogram. A
thorough discussion of the domain of frequencies inwhich the periodogram yields the behavior specific to a
continuous-time BMare presented below in section 5. Pluses (+) depict the results obtained numerically for
randomwalks averaged over 105 realizations of the process. Overall, we observe an excellent agreement between
our analytical predictions, derived for BM—a continuous-time process with infinitesimal increments, and the
numerical results. This signifies that the framework developed here is completely justified and can be used for a
meaningful interpretation of stochastic trajectories obtained in single-trajectory experiments.

Moreover, themoments of the distribution in equation (27) are given by equation (25).Wefind that the
average value is  ={ }( )A kk , as it should be, and the variance =( )( )A kVar 5 4k so that the distribution

Figure 2.Distribution of the randomamplitude g( )( )A k
S , defined in equation (24). The curves depict the limiting distribution

=( )( )P A Ak in equation (27) for k=1 (dashed), k=2 (dotted) and k=3 (solid). Symbols denote the results obtained for a BM
generated by the truncatedWiener’s representation (crosses×)withN=3.2×106 (see section 4) and byMonte Carlo simulations
(pluses+) of a discrete-time randomwalk (see section 5)withT=1 andM=222 steps.
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broadenswith increasing k. The coefficient of variation of the k-dependent distribution in equation (27) is equal
to ( )k5 4 meaning thatfluctuations become progressively less important for increasing k.We also remark that

themost probable values for the cases k=2 and k=3 are = »( )( )A 3 ln 3 4 0.82mp
2 and »( )A 1.74mp

3 ,
respectively, and arewell below their average values.

Lastly, we quantify the effective broadness of the distribution in equation (27), focusing on its heterogeneity
index

w =
+

( )( )
( )

( ) ( )
A

A A
, 28k

k

k k
1

1 2

where ( )A k
1 and ( )A k

2 are the amplitudes drawn from two different independent realizations of Xt . Such a
diagnostic tool has been proposed in [77–79] in order to quantify fluctuations in the first passage phenomena in
bounded domains, compare alsowith the discussion in [80, 81]. In our context, w( )k shows the likeliness of the
event that two values of the amplitudes ( )A k

1 and ( )A k
2 will be equal to each other.With the distribution (27) of the

randomvariable ( )A k the distribution w( )( )P k of the heterogeneity index can be calculated via its integral
representation [77, 78]
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Performing the integrals in relation (29), wefind the following exact expressions for the distribution of the
heterogeneity index: for k=1we have
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where ¼( )E is the complete elliptic integral of the second kind; for k=2 the distribution has the form
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while for k=3 it follows that
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Note that the third-order derivative with respect to p in relation (32) can be taken explicitly producing, however,
a rather cumbersome expression in terms of the complete elliptic integrals. For the sake of compactness, we
nonetheless prefer the current notation.

The probability density functions in equations (30)–(32) are depicted in figure 3.We observe that for k=1
the event inwhich two values of ( )A 1 deduced from two different independent trajectories are equal to each
other, (that is, when =( ) ( )A A1

1
2

1 and w = 1 2), is themost unlikely, since it corresponds to theminimumof the
distribution w w=( )( )P 1 in equation (30). Therefore, for the case k=1 themost probable outcome is that two
values of ( )A 1 obtained for two different realizations of BMwill be very different from each other. For k=2 and
k=3, w = 1 2 corresponds to themost probable event but still the distributions in equations (31) and (32)
appear to be rather broad so that a pronounced realization-to-realization variation of the amplitude is expected.

4. TruncatedWiener’s representation

In simulations of a continuous-time BMone often usesWiener’s representation (13), truncating it at the upper
summation limit at some integerN,
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The sample paths of such a partial sumprocess are known to converge to the sample paths of the BMat the rate
N1 . Focusing on a single-component single-trajectory PSD in equation (8) (generalization to the d-

dimensional case and a partial PSD ˜ ( )( )
S fT

k
in equation (9) is straightforward)wehave the following estimate for
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j ,
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Belowwe examine how accurately ( )( )S fT
tr reproduces ( )( )S fT

j .Wefirst consider the firstmoment of the
truncated series and its variance, which are given by
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Infigure 4we present a comparison of the averaged single-component single-trajectory PSD and of its
counterpart obtained from the truncatedWiener’s series (34), as well as of the corresponding coefficients of
variation of the two probability density functions.We observe a perfect agreement between the results obtained
from the complete series and the truncated ones.Moreover, we see that m ( )f T,tr and gtr exhibit a uniform
convergence to m ( )f T,S and γS, respectively, for pÎ ( )f T N0, . This implies that keeping justN=40 terms in
the truncatedWiener’s series permits us to describe reliably well the behavior of the pertinent properties over
more than two decades of variation of f T. Extending this interval up to three decades will require keeping
N≈320 terms, for four decadesN≈3200 terms, and so on.

Wefinally focus on themoment-generating function Fl( ( ))( )S fT
tr of ( )( )S fT

tr , andfind

m l g m lF = + + -l
-[ ( ) ( ) ( ) ] ( )f T f T1 2 , 2 , . 37tr tr

2
tr
2 2 1 2

Wenote that Fl( ( ))( )S fT
tr has exactly the same form as themoment-generating function (21) (with k = 1)

evaluated for a completeWiener’s series and hence, ( )( )S fT
tr has the distribution of exactly the same form as the

one in equation (22)with the only difference that the firstmoment and the variance have to be replaced by their
counterparts obtained via truncation of theWiener’s representation at some levelN. Given that for

pÎ ( )fT N0, these properties are identical (see figure 4), itmeans that in this interval of variation of f T
equation (37) coincides with (21), and the probability density function of ( )( )S fT

tr coincides with result (22).
Outside of this interval, i.e., for p>f T N , the coefficient of variation of the truncated PSD jumps from 5 2

Figure 3.Probability density function w w=( )( )P k for k=1 (solid line), k=2 (dashed line) and k=3 (dotted line).
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to 2 meaning that the distribution of ( )( )S fT
tr becomes the c2-distribution (see appendix A), which is evidently

a behavior.

5.Discrete sets of data

In experiments or inMonte Carlo simulations of BM, the particle position is recorded at some discrete time
moments such that one stores a given trajectory as afinite set of data. Here we analyze how the features unveiled
in the previous sections will change, if instead of continuous-time BMwe rather use a picture based on a
discrete-time randomwalk.

Suppose that the time interval (0,T) is divided intoM equally-sized subintervalsΔ=T/M, such that the
particle position is recorded at timemoments = Dt mm , = ¼m M1, 2, , .We use the convention that at t=0
the particle starts at the origin and focus on the behavior of a single-component PSD—the extension of our
analysis over the general case of k components is straightforward but results in rather cumbersome expressions.

As a first step, we convert the integrals in equation (8) into the corresponding sums to get a periodogram

   å= -
=

( ) ( ( )) ( )R f
T

f m m X Xcos , 38M
m

M

m m

2

0
1 2

1,2

1 2

wherewe nowdenote a single-trajectory PSD asRM( f ) to emphasize that it is a differentmathematical object as
compared to the PSD in equation (8). Sincewe nowhave only afinite amount of points instead of a continuum,
RT( f ) in equation (38)will be a periodic function of fT so that itmay only approximate the behavior of the PSD
for continuous-time BM in some range of frequencies at a given observation time. Further on, we use the scaling
property of BM to rewrite the latter expression as

Figure 4.Upper panel: Comparison of thefirstmoment m ( )f T,S of a single-component single-trajectory PSD and its analog
m ( )f T,tr in equation (36a), obtained by truncating the series inWiener’s representation at an integerN, as functions of fT. The solid
curve represents m ( )f T,S . The dashed (green) curve corresponds to m ( )f T,tr withN=20, the dotted (red) curve toN=40. Lower
panel: analogous results for the coefficients of variation g s m= ( ) ( )f T f T, ,S S S (solid curve) and g s m= ( ) ( )f T f T, ,tr tr tr

(dashed,N = 20 and dotted,N = 40, curves). Thin horizontal lines correspond to 5 2 (solid) and 2 (dashed).
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whereBm is now a trajectory of a standard lattice randomwalkwith unit spacing and stepping at each clock tick
m,m=0, 1, 2,K,M. Next, wewrite
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where sj=±1 are independent increments, and s0≡ 0. Then, expression (39) becomes
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Expression (41) is the discrete-time analog of the PSD in equation (15) obtained for the continuous-time BM.

5.1.Discrete-time case:mean and variance of a single-trajectory periodogram
At this point, itmay be expedient tofirst look at the ensemble-averaged single-trajectory periodogram in
equation (41) and at its variance, and to compare them against their continuous-time counterparts. Averaging
the expression in equation (41) and its squared value over all possible realizations of the increments sj, we have
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Note that these somewhat lengthy expressions (43) and (44) are exact, and valid for anyM,Δ and f.
To illustrate the behavior of m ( )f T,R , s ( )f T,R and of the corresponding coefficient of variation

g s m= ( ) ( )f T f T, ,R R R of the distribution of a single-trajectory periodogramRM( f ), wefirst depict infigure 5
these parameters as functions of fT for a rather small value ofM,M=10.We observe that they are periodic
functions of fTwith the prime period 2πM, (such thatfigure 1 presents a zoomof just one-half of the prime
period) and exhibit peaks in the center, that is, at fT=πM, and at the end-points of the prime period, that is, for
fT= 0 and fT=2πM.More specifically, we see that in themiddle of the prime period
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such that they both depend on the observation timeT and divergewhen  ¥T . In this case γR obeys
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and also staysfinite as  ¥M .
Consider next the behavior of m ( )f T,R and s ( )f T,R for fT=πM/2, that is, at one-quarter of the prime

period, and also for fT=2πM/3, that is, at one-third of the prime period.Here, we have
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Figure 5.Plot of m D( ( ) ( ))f T Dln ,R
2 in equation (43) (red dotted curve), s D( ( ) ( ))f T Dln ,R

2 in equation (44) (green dashed curve)
and g s m= ( ) ( )f T f T, ,R R R (solid curve) as functions of fT forM = 10. The thin horizontal line is g = - ( )M5 1 12 5 2R ,
see equation (47c). Note that we plot the logarithms of m ( )f T,R and s ( )f T,R instead of these properties themselves in order to be
able to show their full variation along the ordinate axis.
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which imply that here, as well, γR is given by equation (47c). Therefore, we have that for the last two situations the
firstmoment and the variance of a single-trajectory periodogramboth tend to zerowhenD  0 (that is, when

 ¥M at afixedT), which is similar to the behavior at one-half of the prime period. In contrast, here γR tends
to 5 2, which is the asymptotic coefficient of variation of the distribution of a single-trajectory PSD for the
continuous-time BM.

Infigure 6we present a comparison between the averaged PSD (6) for the continuous-time BMand its
discrete-time counterpart (43).We observe a nearly perfect agreement between these two representations for a
wide range of variation of fT .We see that the periodicity of m ( )f T,R starts tomatter in a noticeable way only at

» ´fT 4 102 forM=103, at » ´fT 3 103 forM=104 and only at fT≈2×104 forM=105, respectively.
Belowwewill quantify the onset of the deviation between equations (43) and (6)more accurately.

Next, we come back tofigure 1 inwhichwe compare the coefficient gS of variation of the distribution of a
single-trajectory PSD for the case of the continuous-time BM, and an analogous coefficient γR of variation of the
distribution in the discrete-time case, calculated using our results (43) and (44) forM=104 andM=105.Here
we observe that the agreement is even better and extends over a fairly large range of values of fT, until γR starts to
show a strong oscillatory behavior close to themiddle of the prime period (see alsofigure 5). Overall, it appears
that γR can be set equal to 5 2with an arbitrary accuracy dependent on the choice of ε (see section 3.2) on a
bounded interval w p wÎ -( )fT M,l l and, by symmetry, for p w p wÎ + -( )fT M M, 2l l .

Therefore, in response to the title question of this workwe conclude that one can indeed observe the
behavior specific to the continuous-time BM (that is, the 1/f 2 dependence of the averaged PSD and, by virtue of
equation (26), of a single-trajectory PSD) in the discrete-time settings. However, the spectrummust be analyzed
on afinite interval (ωl,ωr) of variation of fT, which is bounded frombelow byωl (see section 3.2)—ensuring that
γR becomes equal (with any necessary accuracy) to 5 2 and hence, does not contribute to the frequency-
dependence of a single trajectory PSD—and byωr from above, whenμR( f,T) starts to deviate fromμS( f,T).
Extending the arguments presented in section 3.2, we defineωr as the value of fT at which
m m e= +( ) ( )f T f T, , 1R S . To calculateωr, we note that the ratio of two ensemble-averaged PSDs can be very
accurately approximated by

m
m

»
( )
( )

( )
( )

( )
f T

f T

fT

M fT M

,

, 4 sin 2
, 49R

S

2

2 2

so thatwe find thatωr=2αM, whereα obeys a a e= +( )sin 12 2 . For small ε, the parameterα is given, to
leading order in ε, by a e= 3 . Recalling the definition ofωl (see section 3.2), we thus see that the

Figure 6.Comparison of the averaged PSD in equation (6) for the continuous-time BM (solid curve) and for the discrete case,
equation (43), (dashed curves), withM = 103 (blue),M = 104 (green) andM = 105 (red). The reducedfirstmoments
m ( )f f T D, 4S R

2
, of the PSD for the continuous- and the discrete-time cases are plotted versus the logarithmof fT over several

decades of variation of this parameter. Arrows indicate the values of fT at which the periodicity ofRM( f ) in equation (39) starts to
matter in a noticeable way.
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Figure 7. Logarithm of the power spectral density offive individual trajectories as a function of ( )fTln . The upper curves are the
numerical results based on theMonte Carlo simulations, while the lower set of curves corresponds to a BMgenerated using a
truncatedWiener’s representation.

Figure 8.Brownianmotion performed by 1.2 μmpolystyrene beads in aqueous solution.Upper panel: logarithmof the power spectral
density of five individual one-dimensional trajectories and the ensemble average obtained from150 trajectories as a function of ln f T,
compared to the theoretical relation S∼1/f 2, equation (26). The inset shows an image of an individual polystyrene bead. Lower
panel: distribution of the dimensionless amplitudes ( )A k for k=1 (black circles) and k=2 (blue triangles), obtained from150 bead
trajectories in the range 50�fT�400. The red solid curves depict the theoretical predictions =( )( )P A Ak in equation (27) for k=1
and k=2. The error bars are less than the size of the symbols.
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1/f 2-dependence can be observed once w w  1r l , whichmeans that the numberM of recorded positions of
each trajectory has to obey e ( )M 1 5 3 3 2 .

Infigure 7we plot the logarithmof a single-trajectory periodogram versus the logarithmof f T forfive
individual, randomly chosen trajectories of discrete-time lattice randomwalks and alsofive trajectories of a BM
generated by the truncatedWiener’s series (see section 4). For randomwalks, (whichmake a step of unit length
at each tick of the clock, so thatD=1/2), we set the observation timeT=1 and have = » ´M 2 4.2 1022 6

discrete points within the unit time interval. For such a choice of parameters, we set the accuracy parameter
ε=0.01 to getωl= 40 and w = ´1.45 10r

6.We observe that, indeed, for all thesefive trajectories and
w wÎ = =( )fln ln 3.69, ln 14.19l r , (that is, for f varying overmore than five decades), the relation

~˜ ( )( )
S f f1T

k 2 holds. Next, for a BMgenerated by the truncatedWiener’s representationwe setT=1,
D= 0.01 and takeN=3.2×106. Here, as well, for allfive trajectories we observe a perfect agreementwith our
prediction in equation (26) for wÎ =(fln ln 3.69l , p = )Nln 14.98 , that is, for f spanning overmore thanfive
decades.

Lastly, we plot infigure 8 (upper panel) a logarithmof a single-trajectory periodogram versus the logarithm
of f, forfive trajectories of polystyrene beads in experiments performedwithin aflow cell (see below formore
details). Each trajectory represents a one-dimensional projection of the beadmotion, which is a BMwith the
diffusion coefficient m» -D 0.365 m s2 1, as estimated from the bead’s squared displacement averaged over 150
trajectories. Note that the value ofD inferred from the averaged PSD appears to be pretty close,

m» -D 0.373 m s2 1. Again, we observe that the periodograms of the beadmotion agree verywell with our
prediction in equation (26), and clearly follow the 1/f 2-dependence for each individual trajectory.We stress
again the similarly to the behavior of theMSD (2) [57, 58] to the amplitude scatter of a single-trajectory PSD as
function of f: apart from some smallfluctuations, it is remarkably constant.

In the lower panel infigure 8, using a set of 150 individual experimental trajectories, we construct the
distribution of the amplitudeA in the 1/f 2-dependence and compare it against our prediction in equation (27).
The distributions of both one- and two-dimensionalmotions are shown, i.e., k=1 (projection along a line) and
k=2 (projection along the imaging plane), respectively. Specifically, the distributions of the amplitudes are
constructed by computingA=f 2S( f )/(4D) for 350 frequencies in the range 50� fT� 400.We note that the
agreementwith equation (27) is quite impressive for both k=1 and k=2, with the size of the error bars being
less than the size of the symbols.

In our experimental setup, we used aflow cellmade up of a cover slip and a plastic slide. Two holes were
drilled in the plastic slide to form the inlet and outlet of the chamber. Then the plastic slide and cover slip were
attached using double-sided tape and sealedwith nail polish, whichwas left to cure for 24 h. 1.2 μmpolystyrene
beads (SVP-10-5, Spherotech, Lake Forest, IL)were diluted in phosphate-buffered saline (PBS)with 0.05%
Tween 20. The sample was agitated, centrifuged and resuspended in PBSwith 1%bovine serum albumin (BSA)
and 0.05%Tween 20. Subsequently the bead suspensionwas introduced in the flow cell chamber and the holes
were sealedwith nail polish, followed by immediate imaging. The beadswere imaged in an invertedmicroscope
equippedwith a 40× objective (Olympus PlanApo,N.A. 0.95) and a sCMOS camera (Andor Zyla 4.2) operated
at 100 frames per second. Each recorded sequence consisted of 4096 frames. Bead tracking in the planewas
performed in LabView using a cross-correlation based tracking algorithm [82]. An image of a polystyrene bead is
shown in the inset offigure 8. Several rings are observed in the image because the bead is intentionally not in
focus, in order to increase tracking accuracy.

We close this subsectionwith the following remark. Estimating the diffusion coefficient or the temporal
evolution of theMSD, one often slices a long trajectory intomany smaller ones, which permits to create some
statistical average. In this case, it seems to be appropriate for a stationary process because one here estimates
either a constant (diffusion coefficient) or deals with amonotonically growing function of time. For the PSD the
situation ismuchmore subtle, because in the discrete-time case it is a periodic function of the parameterω, with
an oscillatory behaviorwithin each prime period. Therefore, in this case one needs tofit the PSDonly on a
particular interval of variation ofω described below our equation (49).While slicing the trajectories permits one
to create some statistical ensemble here, as well, this occurs at the expense of shrinking the interval [ωl,ωr], and it
is not clear a priori if such a procedure can be beneficial or detrimental to the analysis. This questionwill be
studied in detail elsewhere.

5.2.Discrete-time case:moment-generating function and distribution of a single-trajectory periodogram
The expression in equation (41)permits us towrite formally themoment-generating function and the
distribution of a single-trajectory periodogram as
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where the summation extends over all possible realizations of the sequence of the increments sj. These
expressions are exact, but they are of a little use, except for the (uninteresting) case whenM is sufficiently small
such that they can bewritten down in an explicit formby enumerations of all possible sequences of sj.

We notice next that theweighted sums
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appearing in equations (50a) and (50b) can be considered as two coupled discrete-time randomwalkswith
variable, generally irrational and incommensurate step-length. From this observation, some general conclusions
can be reached about the expressions in equations (50a) and (50b): (i) for arbitrarily largeM, bothWM andVM

are bounded fromabove by theirmaximal displacements,meaning that =( ( ) )P R f RM has a bounded support
and there is an upper cut-off valueRmax(M) abovewhich ( ( ))P R fM is identically zero. At the same time (apart
from some special cases, for instance, when fΔ/π is a rational number, see appendices A andB) the trajectories
WM andVM, for whatever largeM, will never visit the origin againwhich signifies that = º( ( ) )P R f 0 0M . (ii)
Moreover, wemay expect that for an arbitrarily largeM there is some gapRmin(M) belowwhich ( ( ))P R fM is
identically zero too, that is,WM andVM do not visit simultaneously some vicinity of the origin. These two specific
features of the discrete-time settingsmake a significant difference as compared to the truncatedWiener’s
representation, inwhich analogous sums zå = gn

N
n n1 and zå = hn

N
n n1 are not bounded, andmay, in principle, be

equal to zero, since the increments ζn are continuous randomvariables with the support (-¥ ¥, ).
We proceedwith the derivation of closed-form expressions for themoment-generating function and for the

distribution of a single-trajectory periodogram.Using the integral identity in equation (17), we cast
equations (50a) and (50b) into a formwhich permits to perform the averaging very directly. This leads to

ò ò p l l
F =

D
-

D
+ +l

-¥

¥

-¥

¥

=

⎜ ⎟⎛
⎝

⎞
⎠( ( )) ( ) ( ) ( )R f

M

D
x y

M

D
x y xa yb a

8
d d exp

8
cos 52M

j

M

j j2 2
2 2

1

and

ò ò p
= =

D
+
D

+
-¥

¥

-¥

¥

=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ( ) ) ( ) ( ) ( )P R f R

M

D
x y J

M x y R

D
xa yb b

8
d d

2
cos , 52M

j

M

j j2 0

2 2

2
1

where J0(K) is the Bessel function of the 1st kind. Expressions (52a) and (52b) are formally exact and hold for
arbitraryM, f andΔ.We note that there is a set ofmagic frequencies f such that fΔ=πqwith q a rational number,
when aj and bj become periodic functions of j and the kernel += ( )xa ybcosj

M
j j1 can bewritten down explicitly

in formof afinite series of cosines. Then, the integrations in equations (52a) and (52b) can be performed exactly
resulting in exact closed-form expressions for Fl( ( ))R fM and =( ( ) )P R f RM . Several examples of such
calculations are presented in appendices A andB.However, for arbitrary f, analytical calculation of the integrals
in results (52a) and (52b) is certainly beyond reach and one has to resort to some approximations.

5.3.Discrete-time case in the limitM? 1: limiting forms of themoment-generating function and of the
distribution of a single-trajectory periodogram
Meaningful approximations of expressions (52a) and (52b) can be obtained in the large-M limit. One has,
however, to distinguish between the case when fT isfixed and  ¥M , and the case when  ¥M but fT scales
withM andmay take any valuewithin the interval (0, 2πM).

5.3.1. Fixed fT and  ¥M
ForfixedT and not too largeλ, the parameter l lD =( ) ( )M D M DT8 82 3 2 is largewhenM? 1, so that the
exponential function in equation (52a) is small everywhere except for the vicinity of the origin.Moreover, the
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integrals in equations (52a) and (52b) look very similar to the ones appearing in the theory of Pearson’s random
walkswith a variable step length (see, e.g., [83]) and involve a kernel += ( )xa ybcosj

M
j j1 . It is well known that in

the limit  ¥M the behavior of such a kernel is determined overwhelmingly by its behavior in the vicinity of
x=0 and y=0, so that one has
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The accuracy of this approximation is checked infigure 9 inwhichwedepict a density plot of the differenceκ(x, y)
of += ( )xa ybcosj

M
j j1 andof the exponential function in the right-hand-side of (53). Already forM=102 the

differenceκ(x, y) is zero almost everywhere and in the regionswhere it deviates fromzero it is nonetheless
numerically very small.

Next, we have that for fTfixed andM?1 the ensemble-averaged periodogram and its variance admit the
following representations
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where the omitted terms have a bounded amplitude for any value of fT and decaywith the growth ofM in
proportion to the second inverse power ofM.

Inserting expression (53) into equations (52a) and (52b) and performing the integrations, we find that in the
limitM? 1, forfixed f T and boundedλ, themoment-generating function and the distribution of a single
trajectory periodogram are given up to terms of order ( )O M1 , by our previous results (21) and (22).

5.3.2. Arbitrary fTä (0, 2πM)and  ¥M
Wenow relax the condition that fT is fixed, and suppose that it can attain any valuewithin the prime period
2πM. In otherwords, we consider the situation inwhich f T scales withM such that the expansions (54a) and
(54b) are invalid, andwe can no longer discard the correction terms. In this case, wefind that themoment-
generating function of a single-trajectory periodogram is given by
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Differentiating this expression once and twice, and then settingλ=0, we observe that (55) correctly reproduces
thefirstmoment of the periodogram, but yields an incorrect expression for the variance,meaning that in this
limit the approximation (53) is insufficient (although it works fairly well in the previous case with fT keptfixed).
In otherwords, in order to obtain amoment-generating functionwhich reproduces correctlyfirst twomoments
of a single-trajectory periodogram, one has to go beyond this approximation. For Pearson’s randomwalks with
j-dependent step-lengths aj and bj this turns out to be quite a complicated problemwhichwe are not in the
position to solve here.

Conversely, on intuitive grounds, wemay conjecture such a formof themoment-generating functionwhich
reproduces thefirst and the secondmoment correctly. For  ¥M , this is given by

m l g m lF = + + -l
-[ ( ) ( ) ( ) ] ( )f T f T1 2 , 2 , , 56R R R

2 2 2 1 2

that is, has precisely the same form as themoment-generating function in the continuous-time case,
equation (21), but with thefirst twomoments replaced by the analogous properties of a single-trajectory
periodogram. Evidently, a generalization to the case of a k-component periodogram amounts tomerely
replacing 1/2 by k/2.

In turn, the form (56) implies that the distribution of a single-trajectory periodogram is given by
equation (22)with m ( )f T,S replaced by m ( )f T,R and s ( )f T,S

2 replaced by its discrete-time counterpart
s ( )f T,R

2 , that is,
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Weare unable to prove expression (56) (and hence, equation (57)) in the general case of arbitrary f. However, as
we have already remarked, there are plenty of cases inwhich themoment-generation function and the
distribution in equations (52a) and (52b) can be calculated exactly. In appendix Bwe present such calculations
for several particular values of the frequency, such that pD =f 2 3, fΔ=π/2, fΔ=2π and fΔ=π, and
show that the exact discrete-time results do indeed converge to the asymptotic forms (56) and (57). Therefore,
we have all grounds to believe that expression (57) is correct.

Lastly, we note that equation (57) permits us tomake a substantial generalization of the single-trajectory
relation (26).We see that for w p wÎ -( )fT M,l l (inwhich domain g = 5 2R with any necessary accuracy
set by the choice of ε), a single-trajectory periodogramobeys

m=( ) ( ) ( )R f A f T, , 58M R

implying that the spectrumof a single-trajectory periodogram should be the same as for the ensemble-averaged
periodogram, while only the amplitudeAwill be afluctuating property. The limiting distribution of the
amplitude is given by equation (27).

6. Conclusions and discussion

We studied here in detail the statistical properties of the PSDof a single trajectory of a d-dimensional BM.We
calculated exactly themoment-generating function, the full probability density function and themoments of

Figure 9.Density plot ofκ(x, y) (see the text below equation (53)). Upper panel:M=102 and fT=12. Lower panel:M=102 and
fT=120.
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arbitrary, not necessarily integer order of such a PSD in themost general case of arbitrary frequency f, arbitrary
(not necessarily infinite) observation timeT and arbitrary number of projections of a given trajectory onto the
coordinate axes.We showed that for a sufficiently largeT (and the frequency f>0) a single-trajectory PSD for
any realization of the process is proportional to itsfirstmoment, which embodies the full dependence on the
frequency and on the diffusion coefficient. This implies that the correct frequency-dependence specific to an
ensemble of trajectories can be deduced already from a single trajectory and solely the numerical proportionality
factor in this relation is random, and varies from realization to realization. Due to this fact, one cannot infer the
precise value of the ensemble-averaged diffusion coefficient from a single-trajectory PSD since the ensemble-
averaged PSD is linearly proportional to the diffusion coefficient which thus appears to bemultiplied by a
randomamplitude. The distribution function of this amplitudewas also calculated exactly here and its effective
widthwas quantified using standard criteria.

Moreover, we addressed several questions emerging in connectionwith the numerical and experimental
verification of our analytical predictions for the continuous-time BM. To this end, we first consideredWiener’s
representation of BM in formof an infinite Fourier series with random coefficients, whose truncated version is
often used in numerical simulations.We showed that the distribution of the single-trajectory PSDobtained
fromWiener’s series inwhich justN terms are kept, instead of an infinite number, has exactly the same form as
the one obtained for the continuous-time BMwhen fT is within the interval (0,πN). Outside this interval, the
probability density function of the truncated PSD converges to a different form.

Next, we examined the case when a trajectory of continuous-time BM is recorded at some discrete time
moments, so that thewhole trajectory is represented by a set ofM points and the PSD, called a periodogram,
becomes a periodic function of the product fTwith the prime period equal to 2πM.We analyzed several aspects
of this discrete-time problem.Namely, we studied howbigM should be taken at afixed observation timeT so
thatwemay recover the results obtained for the continuous-time BM.Apart of that, we studied the limiting
forms of the distribution of a single-trajectory periodogram and showed, in particular, that for fT kept fixed and

 ¥M , the latter converges to the formobtained for the continuous-time BM. In contrast, when fT is left
arbitrary so that itmay assume any valuewithin the prime period, that is, fTä (0, 2πM), the limiting distribution
of a single-trajectory periodogram converges to a different form as  ¥M . Our analysis revealed the
remarkable observation that for fT belonging to a certain interval within the prime period, a single-trajectory
periodogram equals, up to a randomnumerical amplitude, the ensemble-averaged periodogram, and the latter
embodies the full dependence on f andT. Therefore, similarly to the continuous-time case, the correct spectrum
can be obtained already froma single trajectory.

To check our analytical predictionswe performed numerical analyzes, using a truncatedWiener’s
representation and alsoMonte Carlo simulations of discrete-time randomwalks, as well as an experimental
analysis of BMof polystyrene beads in aqueous solution.We confirmed our prediction of the relation
connecting a single-trajectory PSD and its ensemble averaged counter-part and demonstrated that the former
indeed exhibits awell-defined 1/f 2-dependence, specific to a standard, ensemble-averaged PSD. Furthermore,
our numerical analysis confirmed the formof the distribution function of the amplitude in this relation.

The theoretical analysis for the case of BMpresented here can be extended in several directions. In particular,
onemay inquire about analogous distributions for anomalous diffusion processes [57], as exemplified, for
instance, by superdiffusive Lévymotion or subdiffusive continuous-time randomwalkswith a broad
distribution of thewaiting times. Another important example of transport processes is given by awide and
experimentally relevant class of anomalous diffusion processes called fractional BM, forwhich the
generalization of our analysis is relatively straightforward. Subdiffusive fractional BM is related to the
overdamped, generalized Langevin equationwith a power-lawmemory kernel typical for viscoelastic systems
[84]. However, superdiffusive fractional BMwas identified for active transport in biological cells [85].We also
mention the very active field of diffusionwith varying diffusion coefficients. These can be systematically varying
in space [64], time [86, 87], or be randomly varying in time [88–90] or space [91–93]. Lastly, a challenging field of
further research is to search for such periodic functions of the frequency in equation (1), in place of the
exponential function, for which a single-trajectory PSDwill possess an ergodic property so that its variancewill
tend to zero in the limit  ¥T .
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AppendixA.Moment-generating function and the distribution of the PSD for f=0

We focus in this appendix on themoment-generating function and on the probability density function of a
single-trajectory PSD for the continuous-time BMand of the discrete-time single-trajectory periodogram in the
special case f=0.

Consider first the case of BM.Thefirstmoment and the variance of the PSD for f=0 follow from
equations (6) and (10) and are given explicitly by

m =( ) ( )T
DT

0,
2

3
, A1S

2

and

s =( ) ( )T
D T

0,
8

9
, A2S

2
2 4

so that the coefficient of variation is g º 2S . Hence, in this case the coefficient in front of the quadratic term in
equation (21) vanishes and themoment-generating function obeys
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Taking the inverse Laplace transform,we thenfind that in this case the distribution ( ˜ ( ))( )
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that is, it is theχ2-distributionwith k degrees of freedom.Note that in contrast to the distribution (22)with f
bounded away from zero, the one in equation (A4) does not attain a limiting form as the observation time
 ¥T . For anyfixed S>0 one has

= ~  ¥( ˜ ( ) ) ( )( )
P S S

T
T0

1
, as . A5T

k

k

In the discrete-time case, for f=0, thefirstmoment m ( )T0,R of the periodogram, the variance s ( )T0,R
2

and the variation coefficient γR are given by equations (46a)–(46c), respectively.We notice that they converge, as
 ¥M , to their continuous-time counterparts in equations (A1) and (A2), and g g º 2R S , meaning that

in this limit themoment-generating function and the distribution of the periodogram converge to the forms in
equations (A3) and (A4).

For f=0 in the discrete-time case, themoment-generating function and the distribution of the
periodogram can be calculated exactly for arbitraryM, which permits us to estimate the rate of convergence.We
constrain our analysis to the case whenM is divisible by 4.We impose such a constraint just for a simplicity of
exposition, exact solutions can be also obtained for other values ofM resulting, however, in rather cumbersome
expressions without providing any additional insight.

We notice that for f=0 the coefficients bj in equation (42b) are identically equal to zero, which implies that
VM≡ 0, (51b), while the coefficients aj in equation (42a) are explicitly given by º + -a M j1j . Consequently,
the sum = å + -= ( )W M j s1M j j1 appearing in equations (50a) and (50b) can be thought of as a ‘randomwalk’
with a linearly ‘shrinking’ time-dependent step length (see, e.g., [94, 95] for other examples of such random
walks). In this case, the product of cosines in equations (52a) and (52b) can be explicitly written down as
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where the coefficient qM( j) is defined by
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with - =  +=( ) ( )q q q, 1M m
M m

1 being the q-Pochhammer symbol [96]. In other terms, qM( j) is the numerical
coefficient before the term q j in the polynomial += ( )q1m

M m
1 . For = ¥M , ¥( )q j is simply the number of all

possible partitions of an integer j into distinct parts. Note also that qM( j) is symmetric aroundm=0 such that
+ - = + +( ( ) ) ( ( ) )q M M m q M M m1 4 1 4M M , = ¼ +( )m M M1, 2, , 1 4.

Inserting next expression (A6) into equations (52a) and (52b) and performing the integrations, we arrive at
the following exact results for themoment-generating function and the distribution of a single-trajectory
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periodogramRM( f ) for f=0:
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Note thatRhas a discrete support on the interval ( )R0, max with = D +( )R D M M 1 2max
2 2 . Note, as well, that

the presence of a delta-function atR=0 is the consequence of the choice ofM; forMnot divisible by 4 the
coefficient in front of δ(R) equals zero because the ‘randomwalk’WMnever visits the origin.

Infigure A1, upper panel, we present a comparison of the expressions for themoment-generating functions
in equation (A3) for the continuous-time case and in equation (A8) for the discrete-time case, for different
densities of the discrete-time points for different values ofT.We observe that forT=1 andM=12
(corresponding toΔ=1/12) the agreement between the continuous- and the discrete-time results is fairly
good up toλ=103. ForT=10 andM=36, such that on average 3.6 points are recorded for a unit of time, the
discrete-time result agrees with the continuous-time one up to l = ´3 102. Increasing the number of points
up toM=60, so that we have now 6 (instead of 3.6) points per unit of time, a perfect agreement between

Figure A1.The case f=0. Upper panel: logarithmofΦλ versusλ for the continuous-time case (A3)with k=1, and for the discrete-
time case (A8). The diffusion coefficient isD=1/2. The solid curves from top to bottom correspond to the result (A3) forT=20,
T=10 andT=1, respectively. The dashed curves are the results for the discrete-time casewith differentT andM:T=1 and
M=12 (blue),T=10 andM=36 (magenta),T=10 andT=20withM=60 (green) andT=20withM=100 (red). Lower
panel: logarithmof -1 ,  being the cumulative distribution function, versus variable r m= ( )R T0,R forT=1.Dashed curve
(magenta) gives the cumulative distribution function for the continuous-timeχ2-distribution (A4). Symbols—squares (M = 8),
triangles (M = 12) and circles (M = 16)—correspond to  for the discrete-time distribution (A9).
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equations (A3) and (A8) extends up toλ=103. Lastly, for the observation timeT=20with 60 recorded points
(which corresponds to just 3 points per unit of timeT)wehave a perfect agreement between the discrete- and
continuous-time predictions for values ofλup toλ=3×102 and a significant departure forλ exceeding these
values. In contrast, forT=20 andM=102, such thatwe have 5 points for each unit of time, a perfect
agreement is observed for thewhole range of variation ofλ.We thus conclude that, in fact, oncewe seek to
achieve a good agreement between the continuous- and discrete-time expressions for themoment-generation
function, we do not need a very high precision in approximating the continuous-time trajectory by a discrete-
time one.

Next, in the lower panel offigure A1we compare the probability density functions obtained for the
continuous-time and the discrete-time cases. Since the distribution in the discrete-time case is a finite sumof
delta-functions (see equation (A9)) it is appropriate to compare not the distributions themselves, but rather their
integrated forms, the cumulative distribution functions  , obtained by integrating the forms in equations (A4)
and (A9) over dR from0 toR. Fromfigure A1 (lower panel)we conclude that here too just 16 recorded points per
unit of time appear to be enough to get a fairly good agreement between the distributions in the continuous- and
the discrete-time cases.

Appendix B. Several exact results for themoment-generating function and the
distribution of a single-trajectory periodogram

In this appendixwe present several stray examples for which themoment-generating function in equation (50a)
and the distribution of a single-trajectory periodogram in equation (50b) can be calculated exactly. Our aimhere
is to demonstrate that in all these particular cases the exactmoment-generating function and the distribution
converge to the forms (56) and (57) as  ¥M , which validates our conjecture. These particular choices of the
frequencywithin the prime period are: fΔ=π, fΔ=π/2, fΔ=2π/3 and the endpoint of the prime period,
fΔ=2π.We note that for all choices of the frequency thefirstmomentμR( f,T) and the varianceσR( f,T)
converge as  ¥M to different values, as compared to their continuous-time counterparts. Thismeans, in
turn, that for fTwithin the prime period these are the forms in equations (56) and (57)which describe the
moment-generating function and the distribution of the periodogram in the limit  ¥M , but not the
continuous-time results derived in section 3.

B.1. The case fΔ=π
We start with the simplest case, where the convergence of themoment-generating function (50a) and of the
distribution of a single-trajectory periodogram (50b) to the limiting forms in equations (56) and (57) can be
established analytically.Wewill again assume, for simplicity, thatM is divisible by 4.We hasten to remark that
such a constraint is not crucial—an exact solution can be obtained in the general case of an arbitraryM, but the
resulting expressions will bemore cumbersome.

For fΔ=π, the coefficients bj in equation (42b) all vanish, such that the ‘randomwalk’VM (51b) stays at the
origin. The coefficients aj in equation (42a) are periodic with period 2; that being, = +a aj j 2, and are given by

= + -( ( ) )a 1 1 2j
j whenM is divisible by 4. Consequently, the randomwalkWM in equation (51a) steps at

even timemoments and pauses at the odd ones. In this case, the firstmoment and the variance of a single-
trajectory periodogram are, respectively, given by equations (45a) and (45b), while the coefficient of variation
obeys equation (45c) and tends to 2 as  ¥M . Thismeans that the limiting formof the distribution of a
single trajectory periodogram for such a choice of f should be theχ2-distribution.We showbelow that this is
indeed the case.

ForM divisible by 4, the kernel in (52a) is given by
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where ( )a

b
is the binomial coefficient. Substituting equation (B1) into equation (52a) and integrating termby

term,wefind that for fΔ=π themoment-generating function is given by the following sumof exponential
functions:
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and hence, the distribution of a single-trajectory periodogram is given explicitly as a sumof delta-functions
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Note that again the delta-peak atR=0 is a consequence of the specific choice ofM. ForMnot divisible by 4 such
a peak is absent, precisely as it happens for a standard randomwalk, for which the parity of the numberM of
stepsmatters.

In the limit  ¥M it is legitimate to replace the summation operation by an integration and use
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to get from expression (B2) the following limiting expression for themoment-generating function
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Recalling that m p D = D( )T D,R
2 we see then that for  ¥M the right-hand-side of the latter equation
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which is precisely our conjectured expression (56) corresponding to g = 2R . The distribution is then obtained
upon inverting the Laplace transform to get
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which is theχ2-distribution conjectured in equation (57). The convergence of equation (B2)–(B6), and also of
(B3)–(B7) for different values ofM is demonstrated infigure B1.

B.2. The case pD =f 2
Consider the casewhen fT is at one-quarter of the prime period. In this case the coefficients aj and bj are periodic
functions of jwith period 4, i.e., = +a aj j 4 and = +b bj j 4.Within the period, their values are given by

- -
( )

j

a

b

1 2 3 4

0 0 1 1

0 1 1 0

B8j

j

such that randomwalkWM (51a) pauses atfirst two ‘time’moments and steps on two consecutive ones. The
randomwalkVM (51b)pauses at thefirst timemoment, thenmakes two steps and pauses again.
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Now,we again assume thatM is divisible by 4. Then, the kernel in (52a) reduces to
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such that the contributions dependent on x and on y appear in the factorized form. Inserting the latter expansion
into equation (52a) and integrating termby term,we get
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where  is defined by
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Figure B1.The case fΔ=π (one-half of the prime period). Upper panel: themoment-generating function as a function of l=λ/μR.
The solid (cyan) curve shows the limiting formof themoment-generating function in equation (56) (or equivalently, in
equation (B5)). Dotted (red) and dotted–dashed (blue) curves represent the exact discrete-timemoment-generating function in
equation (B2) forM=60 andM=20, respectively. The dashed curve depicts our continuous-time prediction in equation (21)with
f=π/Δ andT=1: it is presented here to demonstrate that themoment-generating function obtained in the discrete-time case does
converge to the form in equation (21) but to a distinctly different form in equation (56). Lower panel: the cumulative distribution
function  versus r m= R R. The solid curve represents the cumulative distribution function of our conjectured distribution in
equation (57) (or equivalently, in equation (B3)), while the symbols correspond to the cumulative distribution function of the exact
distribution in equation (B3):M = 40 (squares),M = 240 (triangles) andM = 300 (circles). The dashed curve depicts the cumulative
distribution function of the continuous-time result in equation (22)with f=π/Δ andT=1.
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The function  l( )m n; , is identically equal to zero for odd n. For even n, n=2k, wewrite
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Further on, for evenm,m=2q, the latter sum can bewritten down as afinite series of cosines
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such that  l( )q k; 2 , 2 is given explicitly by
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Equations (B10), (B14) and (B16)define completely themoment-generating function of a single-trajectory
periodogram in the case f=π/(2Δ). The distribution function follows straightforwardly by expanding  2 in a
series of exponentials and taking the inverse Laplace transform.

Infigure B2we plot our exact result for themoment-generating function in equation (B10) and the
corresponding result for the distribution function of a single-trajectory periodogram, together with the
conjectured expressions (56) and (57)with m ( )f T,R and γR defined by equations (47a) and (47c).We observe a
very convincing convergence of the exact results, upon an increase ofM, to the conjectured forms.

B.3. The case fΔ=2π/3
In this case the coefficients aj (42a) and bj (42b) are periodic functions of jwith period 3, and are given by
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We assume now thatM is divisible by 3. In this case the kernel
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Next, we use
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which gives, in combinationwith (B18), the following representation of the kernel
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Inserting the latter expansion into equation (52a) and integrating termby term,we obtain the following exact
result for themoment-generating function of a single-trajectory periodogram

 

å å

l l

F =
-

´ + - - -

l
= =

⎜ ⎟ ⎜ ⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

( )

k p

p
M

k
M

p p
M

p

2
1

2

4
;

2

3
2 ,

3

3

4
; ,

3
, B21

k

k

k

M

p

M

0

3

0

3M

M M

3

3 3

where  is defined in equations (B14) and (B16). Themoment-generating function is a finite sumof
exponentials and the corresponding distribution is a sumof delta-functions with coefficients which can be
readily deduced from equation (B21). Infigure B3we demonstrate thatΦλ in equation (B21), and also the

Figure B2.The case fΔ=π/2 (one-quarter of the prime period). Upper panel: the solid curve is the conjecturedmoment-generating
function in equation (56). The dotted and the dotted–dashed curves give the exactmoment-generating functions in the discrete-time
case withM=8 andM=16, respectively. The dashed line depicts our continuous-time prediction in equation (21)with f=π/(2Δ)
andT=1. Lower panel: solid curve depicts the cumulative distribution function of the conjectured distribution in equation (57)with
μR=2DΔ2, g = - ( )M5 1 12 5R ,D=1/2,M=12 andT=1. Symbols represent the exact cumulative function of the
distribution in the discrete-time case: squares correspond toM=36, triangles toM=48 and circles toM=60.
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cumulative distribution function of the distribution deduced from equation (B21), do indeed converge to the
conjectured forms (56) and (57)with m p D( ( ) )T2 3 ,R and s p D( ( ) )T2 3 ,R

2 , equations (48a) and (48b).

B.4. The case fΔ=2π
Wefinally consider the special case when fT is at the endpoint of the prime period. In this case, = + -a M j1j

and ºb 0j , such thatwe are led to the special case ( f= 0) studied already in appendix A. Convergence of the
discrete-timemoment-generating function in equation (A8) and the cumulative distribution function of the
distribution in equation (A9) to the conjectured forms in equations (56) and (57) is evident.
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