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Abstract

The power spectral density (PSD) of any time-dependent stochastic process X; is a meaningful feature of its
spectral content. In its text-book definition, the PSD is the Fourier transform of the covariance function of
X;over an infinitely large observation time T, that is, it is defined as an ensemble-averaged property taken
inthelimit T — oo. Alegitimate question is what information on the PSD can be reliably obtained from
single-trajectory experiments, if one goes beyond the standard definition and analyzes the PSD of a single
trajectory recorded for a finite observation time 7. In quest for this answer, for a d-dimensional Brownian
motion (BM) we calculate the probability density function of a single-trajectory PSD for arbitrary
frequency f, finite observation time T and arbitrary number k of projections of the trajectory on different
axes. We show analytically that the scaling exponent for the frequency-dependence of the PSD specific to
an ensemble of BM trajectories can be already obtained from a single trajectory, while the numerical
amplitude in the relation between the ensemble-averaged and single-trajectory PSDs is a fluctuating
property which varies from realization to realization. The distribution of this amplitude is calculated
exactlyand is discussed in detail. Our results are confirmed by numerical simulations and single-particle
tracking experiments, with remarkably good agreement. In addition we consider a truncated Wiener
representation of BM, and the case of a discrete-time lattice random walk. We highlight some differences in
the behavior of a single-trajectory PSD for BM and for the two latter situations. The framework developed
herein will allow for meaningful physical analysis of experimental stochastic trajectories.

1. Introduction

The power spectral density (PSD) of a stochastic process X;, which is formally defined as (see, e.g., [1])

T 2
f elfX, dt } (1)
0

provides important insights into the spectral content of X,. Here and in what follows, the symbol E{ ... } denotes
averaging with respect to all possible realizations of the process, i.e., the expectation. Often the PSD as defined in
equation (1) has the form pg(f, 00) = A / £, where A is an amplitude and 3, (typically, one has 0 < 3 < 2[2]),is
the exponent characteristic of the statistical properties of X;. In experiments and numerical modeling, the PSD is
determined using a periodogram estimate for a wide variety of systems in physics, biophysics, geology etc. A by far
non-exhaustive list of systems exhibiting 1/f” spectra includes electrical signals in vacuum tubes, semiconductor

— 00

. 1
ps(f, 00) = Thm FE{
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devices, metal films and other condensed matter systems [3—5], quantum dots [6—8], nano-electrodes [9] and two-
dimensional graphene layers with a widely tunable concentration of carriers [ 10]. The PSD has been analyzed, as well,
for the trajectories of tracers in artificial crowded fluids [11], for active micro-rheology of colloidal suspensions [12],
Kardar—Parisi—Zhang interface fluctuations [13], for sequences of earthquakes [14], weather data [15—17], biological
evolution [18], human cognition [19], network traffic [20] and even for the loudness of music recordings (see,
e.g.[21,22)).

On the theoretical side, the PSDs showing the 1/f” dependences have been calculated analytically for diverse
situations, including, e.g., the dynamics in chaotic Hamiltonian systems [23], periodically-driven bistable
systems [24], fluctuations of a phase-separating interface [25], several diffusive and non-diffusive transport
processes (see, e.g., [8, 26—29]), the running maximum of Brownian motion (BM) [30], diffusion in presence of
strong quenched disorder [31-34] and the electric-field-driven ion transport through nanometer-scale
membrane pores [35]. The PSD of BM in an optical trap has been scrutinized in [36, 37], which permitted the
calibration of optical tweezers, making them a powerful tool for force spectroscopy, local viscometry, and other
applications (see, e.g. 38, 39]).

The systematic measurements of single particle trajectories started with Perrin more than a century ago [40].
Just a few years later Nordlund [41] developed impressive experimental techniques, followed by a line of further
refinements up to Kappler’s measurements [42], to record sufficiently long trajectories to enable quantitative
analysis on the basis of individual trajectories—without the need of prior ensemble averaging. Nowadays, with
the advent of modern microscopy and supercomputing, scientists routinely measure long trajectories X, of
submicron tracer particles or even single molecules [11, 39, 43—47].

In parallel to this experimental progress, there was a general shift of interest towards understanding
statistical properties of individual realizations of stochastic processes. In particular, a conceptually important
question often raised within this context is if one can reliably extract information about the ensemble-averaged
properties of random processes from single-trajectory data [46]. Considerable theoretical progress has been
achieved, for instance, in finding the way to get the ensemble-averaged diffusion coefficient from a single
Brownian trajectory, which task amounts to seeking properly defined functionals of the trajectory which possess
an ergodic property (see, e.g., [43—46, 48—56] for a general overview).

One of such functionals used in single-trajectory analysis is the time-averaged mean squared displacement
(MSD) (see, e.g., [39,43—-47])

1

82(7) =
) T—1T1

[ s — x2ar, @
0

where the bar denotes time averaging and the lag time 7 acts as the size of the analysis window sliding over the
time series X,. For finite observation time T, the time-averaged MSD varies randomly for different trajectories
even under identical physical conditions. For both normal and anomalous diffusion this variation is mainly seen
as an amplitude scatter of §2(7) at given lag times, which remains remarkably constant (apart of relatively small
local fluctuations) as function of 7 [57-60].

For the time-averaged MSD the fluctuations are often quantified in terms of the so-called ergodicity breaking
parameter EB = E{£2} — 1, where the dimensionless variable £ = §%(7)/E{6%(7)} for a given T measures the
deviations from the trajectory-average E{6%(1)} = (1 / NN . 6%(7) [57, 611, with N'being the number of

i=

observed trajectories. Clearly, EB = ~2 with -y being the coefficient of variation of the distribution P (62(7)).

For BM, the fluctuations decrease with growing observation time such that EB ~ 47/(3T) [44, 50, 57], which
permits to deduce the diffusion coefficient specific to an ensemble of trajectories from just a single, sufficiently
long, trajectory. A similar decay of EB to zero for large T'is observed for fractional BM [62] and scaled BM [63].
However, for anomalous diffusion with scale-free distributions of waiting times [61] and processes with systematic,
spatially varying diffusion coefficient [64] the inequality EB = 0 persists even in thelimit T — oo, which reveals
ageing in the sense that the properties of the system, such as the effective diffusivity, are perpetually changing
during the measurement and depend on T'[46, 57, 65]. In these systems, the fluctuations as measured by EB do not
decay to zero with increasing T, and thus time averages of physical observables remain random quantities, albeit
with well defined distributions (see, e.g. [50, 57, 61]). Many other facets of the time-averaged MSD in equation (2)
and of the parameter EB were exhaustively studied to date for a variety of diffusive processes, providing a solid
mathematical framework for the analysis of individual trajectories [39, 57, 62, 66—69].

Single-trajectory PSDs have been studied in several cases. In particular, the PSD of the loudness of musical
recordings was discussed in [21, 22] and the spectra of temperature data were presented in [16, 17]. We note that,
of course, for these two examples averaging over ‘an ensemble’ does not make any sense since the latter simply
does not exist, likewise, e.g., the case of the financial markets data for which the single-trajectory MSD has been
recently analyzed [70]. Further on, power spectra of individual time-series were examined for a two-state
stochastic model describing blinking quantum dots [26] and also for single-particle tracking experiments with
tracers in artificially crowded fluids [11]. It was shown that, surprisingly enough, the estimation of the exponent
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characterizing the power spectrum of an ensemble from the single-trajectory PSD is rather robust. Next, in
[71,72] the power spectra of the velocities of independent motile amoeba (see also [47, 73]) were analyzed,
revealing a robust high-frequency asymptotic 1/f> form, persisting for all recorded individual trajectories.

Clearly, these numerical observations raise several challenging questions. Indeed, could it be possible that
the exponent characterizing the frequency-dependence of the standard PSD, defined as an ensemble-average
property, can be observed already on a single-trajectory level? If true, does it hold for any stochastic transport
process or just for some particular examples? Moreover, in which range of frequencies can such a behavior be
observed? What are the distributions of the amplitudes entering the relation between a single-trajectory PSD and
its ensemble-average counterpart and how broad are they? Evidently, numerical analyzes may give a certain
degree of understanding of some particular features, but a deep insight can be obtained only in conjunction with
a full mathematical solution. Unlike the single-trajectory MSD, for which a deep knowledge has been already
acquired via an exact analytical analysis, a similar analysis of the statistical properties of a single-trajectory PSD is
lacking at present, although its ensemble-averaged counterpart is widely used as an important quantifier of
different properties of random trajectories in diverse areas of engineering, physics and chemistry.

In this paper, going beyond the text-book definition (1), we concentrate on the question what information
can be reliably obtained if one defines the PSD of a single, finite-time realization of X,. We here focus on the
paradigmatic process of BM. This choice is two-fold: first, BM is ubiquitous in nature which renders this analysis
particularly important. Second, it permits us to obtain an exact mathematical solution of the problem: we
calculate exactly the moment-generating function and the full probability density function of the single-
trajectory PSD and its moments of arbitrary order in the most general case of arbitrary frequency, arbitrary
(finite) observation time and arbitrary number of the projections of a d-dimensional BM onto the coordinate
axes. This furnishes yet another example of a time-averaged functional of BM, whose moment-generating
function and full probability distribution can be calculated exactly (see, e.g., [74]).

Capitalizing on these results, we observe that for a sufficiently large T'(and frequency f bounded away from
zero) for any realization of the process a single-trajectory PSD is proportional to its first moment (1), and the
latter embodies the full dependence on the frequency and on the diffusion coefficient specific to an ensemble of
the trajectories. This means that the frequency-dependence can be deduced from a single trajectory. In other words,
there is no need to perform averaging over an ensemble of trajectories—one long trajectory suffices. However,
the proportionality factor, connecting a single-trajectory PSD and its ensemble-averaged counterpart—a
numerical amplitude—is random and varies from realization to realization. Due to this fact, one cannot infer the
value of the ensemble-averaged diffusion coefficient from the amplitude of a single-trajectory PSD. The
distribution function of this amplitude is calculated exactly here and its effective width is quantified using
standard criteria.

Asaproof of concept, we revisit our predictions for a continuous-time BM—an idealized process with
infinitesimal increments—resorting to a numerical analysis based on Monte Carlo simulations of discrete-time
random walks, and also using experimental single-trajectory data for the diffusive motion of micron-sized
polystyrene beads in a flow cell. We demonstrate that our theoretical prediction for the relation connecting a
single-trajectory PSD and its ensemble-averaged counterpart is corroborated by numerical and experimental
results. Additionally we show that the predicted distribution of the amplitude is consistent with numerical
results, which means that the framework developed here is justified and allows for a meaningful analysis of
experimental trajectories.

Pursuing this issue further, we address several general questions emerging in connection with a comparison
of our analytical predictions against numerical simulations and experimental data. To this end, we first consider
Wiener’s representation of BM in form of an infinite Fourier series with random coefficients, whose truncated
version is often used in numerical simulations. We show that the distribution of the single-trajectory PSD
obtained from Wiener’s representation in which just N terms are kept, instead of an infinite number, has exactly
the same form as the one obtained for the continuous-time BM when fT'is within the interval (0, 7N). Outside of
this interval, the probability density function of the truncated PSD converges to a different form.

We examine the case when a trajectory of a continuous-time BM is recorded at some discrete time moments, so
that itis represented by a set of M points. The single-trajectory PSD, i.e., the periodogram, becomes a periodic
function of fT'with the prime period equal to 2mM. We analyze several aspects of this discrete-time problem: we
study how large M should be taken at a fixed observation time T so that we may recover the results obtained for the
continuous-time BM. We analyze the limiting forms of the distribution of a single-trajectory periodogram and
show, in particular, that for fT'kept fixedand M — o0, the distribution converges to the form obtained for a
continuous-time BM. On the contrary, when fT'is left arbitrary so that it may assume any value within the prime
period, thatis, fT' € (0, 2mM), the distribution of a single-trajectory periodogram converges to a different limiting
formas M — oco. Our analysis demonstrates that when fT belongs to a certain interval within the prime period, a
single-trajectory periodogram equals, up to arandom numerical amplitude, the ensemble-averaged periodogram,
and the latter embodies the full dependence on fand T. Therefore, similarly to the continuous-time case, the
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correct spectrum can be obtained already from a single trajectory. These new results are the foundation for the use
of single trajectory PSD in the quantitative analysis of single or few recorded particle trajectories, complementing
the widely used concept of the single trajectory MSD.

The paper is outlined as follows: in section 2 we introduce our basic notations. In section 3 we first derive
explicit expressions for the variance of a single-trajectory PSD and the corresponding coefficient of variation of
the probability density function, and present exact results for the moment-generating function of a single-
trajectory PSD, its full probability density function and moments of arbitrary order (section 3.1). Section 3.2 is
devoted to the relation connecting a single-trajectory PSD and its ensemble-averaged counterpart, while
section 3.3 discusses fluctuations of the amplitude in this relation. Next, in section 4 we analyze the probability
density function of a single-trajectory PSD obtained by truncating Wiener’s representation of a continuous-time
BM. Section 5 presents an analogous analysis for the case when a continuous-time trajectory is recorded at
discrete time moments. In section 6 we conclude with a brief recapitulation of our results and outline some
perspectives for further research. Additional details are relegated to appendix A, in which we present exact
results for the distributions in the special case f = 0, and to appendix B, where we discuss several cases in which
the full distribution of a single-trajectory periodogram can be evaluated exactly in the discrete-time settings.

2. Brownian motion: definitions and notations

Let X, € (0, T) denote a Brownian trajectory in a d-dimensional continuum and X” withj = 1,2, ..., d stand
for the projection of X, on the axis x;. The projections X ) are statistically independent of each other and
(likewise the BM X, itself) each projection X7 is a Gaussian process with zero mean and variance

E{(XY)?} = 2Dt, (3)

where D is the diffusion coefficient of X,. Inarandom walk sense, D = (6x?) /(2d (67)), where (6x?) is the
variance of the step length and (67) is the mean time interval between consecutive steps. Hence, D contains the
dimension d of the unprojected motion.

In text-book notations, the PSD of each of the projections is defined by equation (1), that is,

1 (f, 00) = lim u(f, T), 4)

where (taking into account that X7 is real-valued) the T-dependent function M D(f, T)is given explicitly by

WO, T = f f dndts cos(f (1 — £)B{XPXD), )
]E{Xt(lj)Xéj)} = 2D min(#, t,) being the covariance of Xt(j). For BM, one then finds the standard result [1]
W(f, T) = [ - M] ©
f? T
such that
4D
U (f, 00) = I @)

Hence, for BM the standard PSD Jus ) (f, 00), defined as an average over an ensemble of trajectories, is described
by a power-law with characteristic exponent 3 = 2 and an amplitude which is linearly proportional to the
diffusion coefficient D.

Going beyond the text-book definition in equation (5), we now define the PSD of a single component X/:
s = & [ [ dndrscostf (6 — XX, ®)

and another property of interest here, the partial PSD of the trajectory X,

k
51 )(f) f f dndty cos(f (h — 1)
x [XPXP + XPXD+ L +xPxP, )

in which we take into account the contributions of k, (k = 1,2, ..., d), components of a d-dimensional BM.

Clearly, for k = 1 the definitions (8) and (9) coincide. The PSDs S}j )( f)and S;k) (f)are f- and T-parameterized
random variables: the first moment 5 ( f, T') of a single-trajectory PSD (8) is given by the standard result (6),
while the first moment of the partial PSD (9), due to statistical independence of the components, is given by

expression (6) multiplied by k. Our goal is to evaluate exactly the full probability density function for g;k) ).
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Figure 1. Coefficient of variation -y as function of In( fT). The solid curve is the analytical expression for continuous-time BM,

¥ = os(f, T)/ug(f, T) (see equations (6) and (10)). The thin horizontal line (blue) is the asymptotic value V5 /2 attained by vsin
thelimit fT' — oco. The dashed (green) and dotted (red) curves show the coefficient of variation v, = or(f, T)/pz(f, T)inthe
discrete-time case (see section 5, equations (43) and (44)) with the number M of the recorded positions of a trajectory equal to 10* and
10°, respectively. The vertical peaks of vg (of height =+/2) appear at fT' = M, (that s, in the middle of the prime period),
corresponding to fT = m x 10*(green)and fT = 7 x 10° (red). Note that the oscillations of -y apparent for small and moderate
values of fT also exist for the discrete-time case close to the ‘peaks’ but are not resolved in the figure due to the logarithmic scale. For
the discrete-time case on a linear scale v has a periodic term in fT (see section 5 and figure 5 for more details).

3. Brownian motion: results

To get an idea of how representative of the actual behavior of a single-trajectory PSD the result (6) is, we first look
at the variance o'§( f, T) of a single-component single-trajectory PSD,

o3(f, T) = B{SP(NY = w5(fs D)
_20D? o 2sin(fT) (17 — cos(2fT) — 16 cos(fT)) (10)
= 7 [1 (6 — cos(fT)) 5T + 107772 ]

Expression (10) permits us to determine the corresponding coefficient of variation
s =os(f> T)/us(f> T) an

of the yet unknown distribution of a single-component single-trajectory PSD.

In figure 1 we depict s, which is a function of the product f T exclusively. We observe that vsapproaches
J2 for fixed Tand f — 0,and tends to the asymptotic value /5 /2 (thin horizontal line in figure 1) when
T — ooatanyfixed f > 0. Overall, for any value of fT the coefficient of variation appears to be greater than
unity, meaning that the standard deviation o (f, T) is greater than the average, p15(f, T), which signals that the
parental distribution is effectively ‘broad’, despite the fact that it evidently has well-defined moments of arbitrary
order. As a consequence, the average described by equation (6) may indeed not be representative of the actual

behavior of a single-trajectory PSD. This fully validates our quest for the distribution P (ST(k) ().

. . . . . e . ak .
3.1. Brownian motion: moment-generating-function, distribution P (S; )( 1)) and its moments

Our first goal is to calculate the moment-generating function of SN'}k)( f) inequation (9), defined formally as the
following Laplace transform

Dy = BGSP () = Elexp(—A SV (F)). (12)

To calculate @, exactly, it appears convenient to use Wiener’s representation of a given Brownian path X in
the form of a Fourier series with random coefficients

‘ 50 6 _
X0 — J2 3 Gy sin((n 1/2)m)’ (13)
T o (n—1/2) T
where ( fj ) are independent, identically-distributed random variables with the distribution
. 1 4
P(CY) = —— exp(—(¢)?/4D). 14
(€)= =5 exp(—~((;))?/4D) (14)
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The corresponding single-trajectory partial PSD §}k) (f) in equation (9) can be formally rewritten as

k o) 2 o) 2
59f) = %z[(zgncsp] N [zhncaﬂ] ] s
=1 n=1

where the functions g, = ¢, (f, T)and h, = h,(f, T)are given explicitly by

T (=T sin(fT) + n7(n — 1/2)
(n—1/2)  (7*(n —1/2)* = (f1)*)

g, = (16a)

and

[ (ZDYTeos(D) (16b)

(n—1/2) (7*(n — 1/2)* — (fT)?)

Inserting expression (15) into (12) and using the identity

2
exp(—i—a) \/7 f dx exp(—ax? + ibx), (17)

we rewrite equation (12) in the factorized form

k
Q) = [ f f dx dyexp(——(x + yz))Ec{eXP( > (xg, + yh, )C(])]}] (18)

n=1

where the subscript ( in the averaging operator E{ ... } signifies that averaging over all paths of the component

XD is replaced by an equivalent operation, the averaging over all possible values of ¢ (nj ). Performing this
averaging, as well as the integrations over dx and dy, we get

@A:[ SAD 3 2)+(8AD) [Zgzhz —(Zgn )2]]"‘/2. (19)

nl=1

We focus next on the infinite sums entering equation (19). They can be calculated exactly, and expressed via the
first and the second moments of a single-trajectory PSD,

> 2
S+ h) = Z—Dus(f, T) (20a)

and

2 2
Z g hi — (Zgn ] = (;T—D) wa(f, Q2 =79, (20b)

nl=1

where the average and the variance (as well as the corresponding coefficient -5 of variation) of the single-
component single-trajectory PSD are defined in equations (6), (10), and (11), respectively.

Consequently we realize that the moment-generating function in equation (19) can be cast into a more
compact and physically meaningful form, which involves only the first moment and the variance (through the
coefficient vs of variation) of the single-trajectory PSD,

Dy =[1+2u5(fs YA + @ — v pue(f, T) ¥ +2 1)

This expression holds for any value of k, fand T.

Performing next the inverse Laplace transform of the function defined by equation (21), we arrive at the
following expression for the desired probability density function of the single-trajectory partial PSD defined in
equation (9), which also (as the result in equation (21)) holds for arbitrary f, arbitrary T'and arbitrary number k
of the projections of the trajectory X, onto the coordinate axes,

6
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k=1
2

T S
k1 -1 KL
22T(k/2) 2 — 732 — l)kT,us2 (f, 1

2_
xexp(— ! ;)IM[ vs— 1 S ] (22)

2= vsus(f, T)) 7| 2=7%5 ps(f, T)

2
Here, I, (...) is the modified Bessel function of the 1stkind and I'(...) is the Gamma-function.

Before we proceed further, two remarks are in order. First, we note that the distribution (22) is the Bessel
function distribution that has been used in mathematical statistics years ago as an example of a distribution with
heavier than Gaussian tails (see, e.g., [75, 76]). Second, as already mentioned, for f = 0 the coefficient of
variation is exactly equal to /2 and hence, the coefficient in front of the term quadratic in \ in expression (21)
vanishes. In this particular case the distribution (22) simplifies to the x*-distribution with k degrees of freedom,
which is presented in appendix A.

Expression (22) permits us to straightforwardly calculate the moments of the partial single-trajectory PSD of
arbitrary, not necessarily integer order Q > —(k + 1) /2,

P () =) =

B{GSH ()Y _ TQ+bE = heH2 ZFI(Q tk Qtk+1 k+1, , 1) (23)

p(f, T) L'(k) ’ 2 T2
where ,F(...) is the Gauss hypergeometric function. Note that the moments of order Q > 2 for an arbitrary kare
all expressed through the first and the second (via ys) moments of the single-component single-trajectory PSD
only, since the parental Gaussian process X7 is entirely defined by its first two moments.

The distribution in equation (22) and the formula for the moments of order Q, equation (23), ensure that the
single-trajectory PSD §}k) (f) has the form

SO(F) = AB (y9) pg(f, T), (24)

where ig(f, T)is the first moment of this random variable, i.e., a deterministic function of fand T which sets
the scale of variation of §}k) (f),and A® (75) is a dimensionless random amplitude, whose moments of order Q
are defined by the expression in the right-hand-side of equation (23). The relation in equation (24) has important
conceptual consequences on which we will elaborate below.

3.2. Brownian motion: single-trajectory PSD
One infers from figure 1 that upon an increase of fT the oscillatory terms in s fade out, and s saturates at the
value 7, = /5 /2. Let us define wjas the value of fT when the amplitude of the oscillatory terms in s equals
J5/2 + e,wheree > 0isasmall fixed number. Given that the amplitude of the oscillatory terms is a
monotonically decreasing function of fT, one has thatfor fT > w;the coefficient of variation
| %(fT > wp) — J5 /2| < e.Next, the decay law of the amplitude of oscillations can be readily derived from
equations (6) and (10) to give that, in the leading in € order, w; ~ 2/(5¢).

Then, for fT' > wj, up to terms proportional to €, which can be made arbitrarily small, we see that the
moments of the random amplitude A% () in equation (24) are given by

E{(AP ()} =

B ik, Qb L kel ) -

4Q+k/2D (k) 2 2 2 4

meaning that in this limit A®) (;) becomes just a real number A% that is independent of fand T. This implies, in
turn, that with any necessary accuracy, prescribed by the choice of ¢, and for any realization of a trajectory X;,

$9() = %A@u + 0(@), for fT € (wi o), 20

where the symbol O(e) signifies that the omitted terms, (stemming from the oscillatory terms in pg(f, T),
o2(f, T) and hence, in %(f> T)), have an amplitude smaller than e.

Therefore, we arrive at the following conclusion, which is the main conceptual result of our analysis: for
continuous-time BM and fT' € (wj, 00), the frequency-dependence of the PSD of any single trajectory is the
same as that of the ensemble-averaged PSD with any desired accuracy, set by €. Consequently, in response to the
title question of our work, we conclude that for BM the 1/f*-dependence of the power spectrum can be deduced
already from a single, sufficiently long trajectory, without any necessity to perform an additional averaging over
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Figure 2. Distribution of the random amplitude A®) (), defined in equation (24). The curves depict the limiting distribution
P(A® = A)inequation (27) for k = 1 (dashed), k = 2 (dotted) and k = 3 (solid). Symbols denote the results obtained for a BM
generated by the truncated Wiener’s representation (crosses X ) with N = 3.2 x 10° (see section 4) and by Monte Carlo simulations
(pluses +) of a discrete-time random walk (see section 5) with T = 1and M = 2% steps.

an ensemble of such trajectories. In section 5 (see figure 7) below we show that this prediction made for BM—a
somewhat idealized stochastic process with infinitesimal increments—holds indeed for discrete-time random
walks and single-trajectory experiments, in which a BM trajectory is recorded at discrete instants of time and for
a finite observation time.

Lastly, we note that since jig(f, 00) is linearly proportional to the diffusion coefficient D and the latter
appears to be multiplied by a random numerical amplitude, one cannot infer the ensemble-averaged diffusion
coefficient from a single-trajectory PSD. The error in estimating D from a single trajectory is given precisely by
the deviation of this amplitude from its averaged value. Below we discuss the fluctuations of this numerical
amplitude.

3.3. Fluctuations of the amplitude A%
The exact limiting probability density function of the amplitude A® in equation (26) follows from equation (22)
and reads

2T A 4 2
PAR = Ay = T 2° “ZAln[2A). 27
( ) J3 F(k/z)eXp( 3 ) 2(3 ) @7

In figure 2 we depict this distribution for k =1, 2 and 3 (curves from left to right). We observe that the very shape
of the distribution depends on the number of components which are taken into account in order to evaluate the
partial PSD. For k = 1 (that s, for BM in one-dimensional systems, or in two or three-dimensions but when
only one of the components is being tracked), the distribution is a monotonically decreasing function with the
maximal value at A = 0.In contrast, for k = 2and k = 3, P(A%)is a bell-shaped function with a left power-
law tail and an exponential right tail.

In figure 2 we also present a comparison of our analytical predictions in equation (27) against the results of
numerical simulations. We use two methods to produce numerically the distributions of A% (v;) defined in
equation (24) for the range of frequencies where f2Sr( f) is almost constant (see sections 4 and 5 for more
details). The first method hinges on Wiener’s representation of a BM in equation (13), which is truncated at the
upper summation limitat N = 3.2 x 10° (see section 4 below for more details). Crosses (x) in figure 2 depict
the corresponding results obtained via averaging over 10 trajectories generated using such a representation of
BM. Further, we use a discrete-time representation of a BM—Ilattice random walks with unit spacing and
stepping events at each tick of the clock—which are produced by Monte Carlos simulations. We set the
observation time T = 1 and generate trajectories with M = 222 steps to get a single-trajectory periodogram. A
thorough discussion of the domain of frequencies in which the periodogram yields the behavior specificto a
continuous-time BM are presented below in section 5. Pluses (+) depict the results obtained numerically for
random walks averaged over 10 realizations of the process. Overall, we observe an excellent agreement between
our analytical predictions, derived for BM—a continuous-time process with infinitesimal increments, and the
numerical results. This signifies that the framework developed here is completely justified and can be used for a
meaningful interpretation of stochastic trajectories obtained in single-trajectory experiments.

Moreover, the moments of the distribution in equation (27) are given by equation (25). We find that the
average valueis E{A®} = k, as it should be, and the variance Var(A®)) = 5k/4 so that the distribution

8
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broadens with increasing k. The coefficient of variation of the k-dependent distribution in equation (27) is equal
to \/5/(4k) meaning that fluctuations become progressively less important for increasing k. We also remark that
the most probable values for the cases k = 2and k = 3 are A,(nzp) =3 1n(3)/4 ~ 0.82and A,(ni,) ~ 1.74,
respectively, and are well below their average values.

Lastly, we quantify the effective broadness of the distribution in equation (27), focusing on its heterogeneity
index

Al(k)

k — "1
wH =
4k i]k,
1() é)

(28)

where A® and A{® are the amplitudes drawn from two different independent realizations of X,. Sucha
diagnostic tool has been proposed in [77-79] in order to quantify fluctuations in the first passage phenomena in
bounded domains, compare also with the discussion in [80, 81]. In our context, w® shows the likeliness of the
event that two values of the amplitudes A® and A{¥ will be equal to each other. With the distribution (27) of the
random variable A% the distribution P (w®) of the heterogeneity index can be calculated via its integral
representation [77, 78]

_
(1 - w?

Pt = o) — [ A<k>dA<k>p(A<k>)p(1 w A(")). (29)
0

- w

Performing the integrals in relation (29), we find the following exact expressions for the distribution of the
heterogeneity index: for k = 1 we have

243
w\/w(3 4+ w(d — 4w (2 — w)))
o E(exp(—7))
sinh(n/2)

P =w)=

3
, = h|1 + ———|, 30
7) = arcos ( 2ol w)) (30)

where E(...) is the complete elliptic integral of the second kind; for k = 2 the distribution has the form
2w = w)(39 - 20w(l — w))
(3 — 2w)* (1 + 2w)?

P(w® = w) (31)

while for k = 3 it follows that

16 dp?

Pw® =w) = fgﬂlw(l —w) [d—3 exp(f%n*) zFl(%, %; 2; exp(Zn*))] , (32)

with

(33)

n* = arcosh(4p2 ) e wz).

2w(l — w)

Note that the third-order derivative with respect to p in relation (32) can be taken explicitly producing, however,
arather cumbersome expression in terms of the complete elliptic integrals. For the sake of compactness, we
nonetheless prefer the current notation.

The probability density functions in equations (30)—(32) are depicted in figure 3. We observe that fork = 1
the event in which two values of AV deduced from two different independent trajectories are equal to each
other, (thatis, when A" = A{V and w = 1/2), is the most unlikely, since it corresponds to the minimum of the
distribution P (w") = w) in equation (30). Therefore, for the case k = 1 the most probable outcome is that two
values of A"V obtained for two different realizations of BM will be very different from each other. For k = 2 and
k = 3, w = 1/2 corresponds to the most probable event but still the distributions in equations (31) and (32)
appear to be rather broad so that a pronounced realization-to-realization variation of the amplitude is expected.

4. Truncated Wiener’s representation

In simulations of a continuous-time BM one often uses Wiener’s representation (13), truncating it at the upper
summation limit at some integer N,
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Figure 3. Probability density function P(w® = w) for k = 1 (solid line), k = 2 (dashed line)and k = 3 (dotted line).

Xt(tr) —

N
VT > S Sin((n - 1/2)7rt). (34)

T 2 n—-1/2) T

The sample paths of such a partial sum process are known to converge to the sample paths of the BM at the rate
1/~/N. Focusing on a single-component single-trajectory PSD in equation (8) (generalization to the d-

dimensional case and a partial PSD g}k) (f) in equation (9) is straightforward) we have the following estimate for

P,
- P N 2 N 2
n=1 n=1

Below we examine how accurately S}")( f) reproduces S}j ( f). We first consider the first moment of the
truncated series and its variance, which are given by

D N
po(f> T) = % > g7+ hy) (36a)
n=1

and

202 (XL LY (LU N >
on(f, T) = ( g,f] +[Zh3] +2(Zgnhn] . (36b)
n=1 n=1

4
m n=1

In figure 4 we present a comparison of the averaged single-component single-trajectory PSD and of its
counterpart obtained from the truncated Wiener’s series (34), as well as of the corresponding coefficients of
variation of the two probability density functions. We observe a perfect agreement between the results obtained
from the complete series and the truncated ones. Moreover, we see that /., (f, T) and ~,, exhibit a uniform
convergence to ig(f, T)and s, respectively, for fT € (0, wN). This implies that keeping just N = 40 terms in
the truncated Wiener’s series permits us to describe reliably well the behavior of the pertinent properties over
more than two decades of variation of f T. Extending this interval up to three decades will require keeping
N =~ 320 terms, for four decades N ~ 3200 terms, and so on.

We finally focus on the moment-generating function @, (S ( )) of S\ ( f), and find

Dy =[1+2p,(f, DA+ @ — v pi(f, T) N¥7V2, (37)

We note that ®, (S}tr) (f)) has exactly the same form as the moment-generating function (21) (withk = 1)
evaluated for a complete Wiener’s series and hence, S\ ( ) has the distribution of exactly the same form as the
one in equation (22) with the only difference that the first moment and the variance have to be replaced by their
counterparts obtained via truncation of the Wiener’s representation at some level N. Given that for

fT € (0, 7N) these properties are identical (see figure 4), it means that in this interval of variation of f T
equation (37) coincides with (21), and the probability density function of S}“) (f) coincides with result (22).
Outside of this interval, i.e., for fT > 7N, the coefficient of variation of the truncated PSD jumps from J5/2

10
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Figure 4. Upper panel: Comparison of the first moment p5(f, T) of a single-component single-trajectory PSD and its analog

ty (f> T) inequation (36a), obtained by truncating the series in Wiener’s representation at an integer N, as functions of fT. The solid
curve represents fis(f, T). The dashed (green) curve corresponds to 1, (f, T) with N = 20, the dotted (red) curve to N = 40. Lower
panel: analogous results for the coefficients of variation 75 = os(f, T)/us(f, T) (solid curve) and ,, = o (f, T) /. (f> T)
(dashed, N = 20 and dotted, N = 40, curves). Thin horizontal lines correspond to /5 /2 (solid) and +/2 (dashed).

to /2 meaning that the distribution of S{™( f) becomes the x-distribution (see appendix A), which is evidently
abehavior.

5. Discrete sets of data

In experiments or in Monte Carlo simulations of BM, the particle position is recorded at some discrete time
moments such that one stores a given trajectory as a finite set of data. Here we analyze how the features unveiled
in the previous sections will change, if instead of continuous-time BM we rather use a picture based ona
discrete-time random walk.

Suppose that the time interval (0, T) is divided into M equally-sized subintervals A = T/M, such that the
particle position is recorded at time moments t,, = Am, m = 1, 2, ..., M. We use the convention thatatt = 0
the particle starts at the origin and focus on the behavior of a single-component PSD—the extension of our
analysis over the general case of k components is straightforward but results in rather cumbersome expressions.

As afirst step, we convert the integrals in equation (8) into the corresponding sums to get a periodogram

n Y
Ru(f) = - > cos(fa(m — my)) Xam Xams (38)

m =0

where we now denote a single-trajectory PSD as Ry f) to emphasize that it is a different mathematical object as
compared to the PSD in equation (8). Since we now have only a finite amount of points instead of a continuum,
R(f)in equation (38) will be a periodic function of fT'so that it may only approximate the behavior of the PSD

for continuous-time BM in some range of frequencies at a given observation time. Further on, we use the scaling
property of BM to rewrite the latter expression as

11
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M
2D S cos(fAGm — 115)) By By (39)

m =0

Ry (f) =

where B,,, is now a trajectory of a standard lattice random walk with unit spacing and stepping at each clock tick
m,m = 0,1,2,..., M. Next, we write

m
By=>s (40)
=0

where s; = £1 are independent increments, and s, = 0. Then, expression (39) becomes

2DN [ [ & o)
RM(f) = [Zajsj] + [ijsj] S (41)
=1 -1

M
where
a 1
aj= Y cos(fAm) = E(COS(fAj) + cos(fAM)
m=j
+ cot(fA/2)(sin( fAM) — sin(fAf))) (42a)
and

M
b = Z sin( fAm) = %(sin(fAj) + sin( fAM)

m=j

+ cot(fA/2)(cos(fA]) — cos(fAM))). (42b)

Expression (41) is the discrete-time analog of the PSD in equation (15) obtained for the continuous-time BM.

5.1. Discrete-time case: mean and variance of a single-trajectory periodogram

At this point, it may be expedient to first look at the ensemble-averaged single-trajectory periodogram in
equation (41) and at its variance, and to compare them against their continuous-time counterparts. Averaging
the expression in equation (41) and its squared value over all possible realizations of the increments s;, we have

DN X, ., DA 1 (sin(fAM) + sin(fAM + 1))
wll T == ;(aj o= sinz(fA/Z)[l ey 2 M sin(fA) W
and
2 2 2
2 DA X, M 4 ) SN M LA
j=1 j=1 j=1 j=1 j=1 j=1
_ 20D*Atcos*(fA/2) B 1 _
= A [1 1M sinZ(F2) (7 — 7cos(2f A) + 6cos(fAM)

— cos(2f AM) + cosQQf A(M + 1))
— 6¢cos(fAM + 2)) + 12sin(fA)sin(fAM))
+ m@ + 5cos(2fA) + 8cos(fA)(1 — cos(fAM))
— 2cos(fAM) — 2cos(2f AM) + cos(2f A(M + 1))

— 6¢cos(fAM + 2)) + 16 sin(fA)sin(fAM))]. (44)

Note that these somewhat lengthy expressions (43) and (44) are exact, and valid for any M, A and f.

To illustrate the behavior of 115 (f, T), or(f, T)and of the corresponding coefficient of variation
% = or(f> T)/ug(f, T) of the distribution of a single-trajectory periodogram Ry( f), we first depict in figure 5
these parameters as functions of fT for a rather small value of M, M = 10. We observe that they are periodic
functions of fT'with the prime period 27M, (such that figure 1 presents a zoom of just one-half of the prime
period) and exhibit peaks in the center, that is, at fT' = mM, and at the end-points of the prime period, that is, for
fT'=0and fT = 2wM. More specifically, we see that in the middle of the prime period

12
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and v, = or(f, T)/ug(f, T) (solid curve) as functions of fT for M = 10. The thin horizontal line is ~, = J54/1 — 12/(5M) /2,
see equation (47¢). Note that we plot the logarithms of 115 (f, T)and og(f, T) instead of these properties themselves in order to be
able to show their full variation along the ordinate axis.

MR(%, T) — DA? (45a)

and

aﬁ(ﬂ, T) = 2D2A4(1 - i), (45b)
T M

leading to

= I 1_%. (45¢)

For fixed Tand M — oo, g (mM /T, T)and or(wM /T, T)both tend to zero, but their ratio  stays finite and
tends to v/2. Next, at the end-points of the prime period i, ( f, T)and oz (f, T) are given by

2TM 2DT? ( 3 1 )
, T = 1+ — + 46a
MR( T ) 3 oM 2M? ()
and
2TM D2T* 1
a}é(”—, T) _8 (1 + 5> o(—)), (46b)
T 9 5M  4M? M?
such that they both depend on the observation time Tand diverge when T' — oc. In this case y obeys
9 9 1
=21 - — + +o(—), d6c
" 10M ' 200M? M? (169

and also stays finiteas M — oo.

Consider next the behavior of yi, (f, T)and or(f, T) for fT = wM/2, thatis, at one-quarter of the prime
period, and also for fT' = 2wM/3, that is, at one-third of the prime period. Here, we have

™
——, T|=2DA\?
MR( T )

(47a)
and
ai(%, T) = 5D2A4(1 — 51]\24) (47b)
producing
'YRzg 1—51—1\2/1) (47¢)
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Figure 6. Comparison of the averaged PSD in equation (6) for the continuous-time BM (solid curve) and for the discrete case,
equation (43), (dashed curves), with M = 10> (blue), M = 10* (green)and M = 10° (red). The reduced first moments

fPusg(fs T) /4D of the PSD for the continuous- and the discrete-time cases are plotted versus the logarithm of fT over several
decades of variation of this parameter. Arrows indicate the values of fT"at which the periodicity of Ry,( f) in equation (39) starts to
matter in a noticeable way.

and
2mM 4DN?
— T = , 48a
MR( 3T ) 3 ( )
2 A4
aﬁ(ﬂ, T) _ M(l _ 2) (48b)
3T 9 5M

which imply that here, as well, vy is given by equation (47c). Therefore, we have that for the last two situations the
first moment and the variance of a single-trajectory periodogram both tend to zero when A — 0 (thatis, when
M — oo atafixed T), which is similar to the behavior at one-half of the prime period. In contrast, here vz tends
to +/5 /2, which is the asymptotic coefficient of variation of the distribution of a single-trajectory PSD for the
continuous-time BM.

In figure 6 we present a comparison between the averaged PSD (6) for the continuous-time BM and its
discrete-time counterpart (43). We observe a nearly perfect agreement between these two representations for a
wide range of variation of fT'. We see that the periodicity of i, (f, T) starts to matter in a noticeable way only at
fT ~ 4 x 10*for M = 10%,at fT ~ 3 x 10*for M = 10*and onlyat T ~ 2 x 10*for M = 10, respectively.
Below we will quantify the onset of the deviation between equations (43) and (6) more accurately.

Next, we come back to figure 1 in which we compare the coefficient ~; of variation of the distribution of a
single-trajectory PSD for the case of the continuous-time BM, and an analogous coefficient vy of variation of the
distribution in the discrete-time case, calculated using our results (43) and (44) for M = 10*and M = 10°. Here
we observe that the agreement is even better and extends over a fairly large range of values of fT, until vy starts to
show a strong oscillatory behavior close to the middle of the prime period (see also figure 5). Overall, it appears
that y can be set equal to /5 /2 with an arbitrary accuracy dependent on the choice of € (see section 3.2) ona
bounded interval fT € (w;, ™ — wy) and, by symmetry, for fT € (tM + wy, 27M — wy).

Therefore, in response to the title question of this work we conclude that one can indeed observe the
behavior specific to the continuous-time BM (that is, the 1/ dependence of the averaged PSD and, by virtue of
equation (26), of a single-trajectory PSD) in the discrete-time settings. However, the spectrum must be analyzed
on a finite interval (wj, w,) of variation of fT, which is bounded from below by w (see section 3.2)—ensuring that
~r becomes equal (with any necessary accuracy) to /5 /2 and hence, does not contribute to the frequency-
dependence of a single trajectory PSD—and by w, from above, when pi( £, T) starts to deviate from pis(f, 7).
Extending the arguments presented in section 3.2, we define w;, as the value of fI'at which
tr(f> T)/pg(f, T) = 1 + €. To calculate w,, we note that the ratio of two ensemble-averaged PSDs can be very
accurately approximated by

D (fT)?
us(f, T 4M%sin®(fT/2M)’

so that we find thatw, = 2aM, where a obeys a?/ sin?(a) = 1 + ¢. For small ¢, the parameter « is given, to
leading orderin ¢, by v = /3¢ . Recalling the definition of w (see section 3.2), we thus see that the

(49)
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Figure 7. Logarithm of the power spectral density of five individual trajectories as a function of In(fT). The upper curves are the
numerical results based on the Monte Carlo simulations, while the lower set of curves corresponds to a BM generated using a
truncated Wiener’s representation.
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Figure 8. Brownian motion performed by 1.2 ;zm polystyrene beads in aqueous solution. Upper panel: logarithm of the power spectral
density of five individual one-dimensional trajectories and the ensemble average obtained from 150 trajectories as a function of In f T,
compared to the theoretical relation S ~ 1/f7, equation (26). The inset shows an image of an individual polystyrene bead. Lower
panel: distribution of the dimensionless amplitudes A% for k = 1 (black circles) and k = 2 (blue triangles), obtained from 150 bead
trajectories in the range 50 < fT < 400. The red solid curves depict the theoretical predictions P(A%® = A)in equation (27) fork = 1
and k = 2. The error bars are less than the size of the symbols.
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1/f?-dependence can be observed once w, /w; > 1, which means that the number M of recorded positions of
each trajectory has to obey M > 1/(5+/33/2).

In figure 7 we plot the logarithm of a single-trajectory periodogram versus the logarithm of f T'for five
individual, randomly chosen trajectories of discrete-time lattice random walks and also five trajectories of a BM
generated by the truncated Wiener’s series (see section 4). For random walks, (which make a step of unitlength
at each tick of the clock, so that D = 1/2), we set the observation time T = 1andhave M = 2?2 ~ 4.2 x 10°
discrete points within the unit time interval. For such a choice of parameters, we set the accuracy parameter
€ = 0.01togetw;=40and w, = 1.45 x 10° We observe that, indeed, for all these five trajectories and
Inf e (Inw; = 3.69, Inw, = 14.19), (that is, for fvarying over more than five decades), the relation
S~;k) (f) ~1 / f?holds. Next, for a BM generated by the truncated Wiener’s representation weset T = 1,
D=0.01andtake N = 3.2 x 10°. Here, as well, for all five trajectories we observe a perfect agreement with our
prediction in equation (26) for Inf € (Inw; = 3.69, InwN = 14.98), that is, for fspanning over more than five
decades.

Lastly, we plotin figure 8 (upper panel) alogarithm of a single-trajectory periodogram versus the logarithm
of f, for five trajectories of polystyrene beads in experiments performed within a flow cell (see below for more
details). Each trajectory represents a one-dimensional projection of the bead motion, which is a BM with the
diffusion coefficient D ~ 0.365 pm? s~!, as estimated from the bead’s squared displacement averaged over 150
trajectories. Note that the value of D inferred from the averaged PSD appears to be pretty close,

D =~ 0.373 pm? s~1. Again, we observe that the periodograms of the bead motion agree very well with our
prediction in equation (26), and clearly follow the 1/f°-dependence for each individual trajectory. We stress
again the similarly to the behavior of the MSD (2) [57, 58] to the amplitude scatter of a single-trajectory PSD as
function of f: apart from some small fluctuations, it is remarkably constant.

In the lower panel in figure 8, using a set of 150 individual experimental trajectories, we construct the
distribution of the amplitude A in the 1/f*-dependence and compare it against our prediction in equation (27).
The distributions of both one- and two-dimensional motions are shown, i.e., k = 1 (projection alongaline) and
k = 2 (projection along the imaging plane), respectively. Specifically, the distributions of the amplitudes are
constructed by computing A = fS(f)/(4 D) for 350 frequencies in the range 50 < fT < 400. We note that the
agreement with equation (27) is quite impressive for both k = 1 and k = 2, with the size of the error bars being
less than the size of the symbols.

In our experimental setup, we used a flow cell made up of a cover slip and a plastic slide. Two holes were
drilled in the plastic slide to form the inlet and outlet of the chamber. Then the plastic slide and cover slip were
attached using double-sided tape and sealed with nail polish, which was left to cure for 24 h. 1.2 ym polystyrene
beads (SVP-10-5, Spherotech, Lake Forest, IL) were diluted in phosphate-buffered saline (PBS) with 0.05%
Tween 20. The sample was agitated, centrifuged and resuspended in PBS with 1% bovine serum albumin (BSA)
and 0.05% Tween 20. Subsequently the bead suspension was introduced in the flow cell chamber and the holes
were sealed with nail polish, followed by immediate imaging. The beads were imaged in an inverted microscope
equipped with a40x objective (Olympus PlanApo, N.A. 0.95) and a sCMOS camera (Andor Zyla 4.2) operated
at 100 frames per second. Each recorded sequence consisted of 4096 frames. Bead tracking in the plane was
performed in LabView using a cross-correlation based tracking algorithm [82]. An image of a polystyrene bead is
shown in the inset of figure 8. Several rings are observed in the image because the bead is intentionally not in
focus, in order to increase tracking accuracy.

We close this subsection with the following remark. Estimating the diffusion coefficient or the temporal
evolution of the MSD, one often slices along trajectory into many smaller ones, which permits to create some
statistical average. In this case, it seems to be appropriate for a stationary process because one here estimates
either a constant (diffusion coefficient) or deals with a monotonically growing function of time. For the PSD the
situation is much more subtle, because in the discrete-time case it is a periodic function of the parameter w, with
an oscillatory behavior within each prime period. Therefore, in this case one needs to fit the PSD onlyon a
particular interval of variation of w described below our equation (49). While slicing the trajectories permits one
to create some statistical ensemble here, as well, this occurs at the expense of shrinking the interval [w), w,], and it
is not clear a priori if such a procedure can be beneficial or detrimental to the analysis. This question will be
studied in detail elsewhere.

5.2. Discrete-time case: moment-generating function and distribution of a single-trajectory periodogram
The expression in equation (41) permits us to write formally the moment-generating function and the
distribution of a single-trajectory periodogram as
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1 2DAN [ X ’ M ’
@, (Ry(f) = R) = E{exp(— ARy (f))} = —MZ exp| — doajsi| + D obys (50a)
2% M= =1
and
1 2D [ M ’ M ’
PRy (f) =R) = —MZ 5|R — doajsi| + D obisi , (50b)
2" M= =1

where the summation extends over all possible realizations of the sequence of the increments s;. These
expressions are exact, but they are of a little use, except for the (uninteresting) case when M is sufficiently small
such that they can be written down in an explicit form by enumerations of all possible sequences ofs;.

We notice next that the weighted sums

M M (M
Wi = Z ajs; = Z Z cos(fAm) |s;, (51a)
j=1 j=1\m=j
and
M M (M
V= Z bjsj = Z Z sin( fAm) [sj, (51b)
=1 j=1\m=j

appearing in equations (50a) and (50b) can be considered as two coupled discrete-time random walks with
variable, generally irrational and incommensurate step-length. From this observation, some general conclusions
can be reached about the expressions in equations (50a) and (500): (i) for arbitrarily large M, both Wy,and V),
are bounded from above by their maximal displacements, meaning that P (Ry;(f) = R) has abounded support
and there is an upper cut-off value R, (M) above which P (R, (f)) is identically zero. At the same time (apart
from some special cases, for instance, when fA /7 is a rational number, see appendices A and B) the trajectories
Wisand V), for whatever large M, will never visit the origin again which signifies that P (Ry (f) = 0) = 0. (ii)
Moreover, we may expect that for an arbitrarily large M there is some gap Rin(M) below which P (Ry(f)) is
identically zero too, that is, Wj,and V), do not visit simultaneously some vicinity of the origin. These two specific
features of the discrete-time settings make a significant difference as compared to the truncated Wiener’s
representation, in which analogous sums 3", ¢ ¢, and Y"1, h,,(, are not bounded, and may, in principle, be
equal to zero, since the increments (,, are continuous random variables with the support (—oo, 00).

We proceed with the derivation of closed-form expressions for the moment-generating function and for the
distribution of a single-trajectory periodogram. Using the integral identity in equation (17), we cast
equations (50a) and (500) into a form which permits to perform the averaging very directly. This leads to

M

_ M © o _ M 2 2 ) ) )
D\(Ry(f)) = STDALN j:oo dx«ﬁw dy exp( SDAD: @2+ y?) Jl;[l cos(xa; + yb) (52a)

M 00 00 M(xZ +)/2)R M
PRu(f) =R) = ST D »[m«/:w dx dy ]0[1 T] H cos(xaj + )/bj), (52b)

j=1

and

where Jo(...) is the Bessel function of the 1st kind. Expressions (52a) and (52b) are formally exact and hold for
arbitrary M, fand A. We note that there is a set of magic frequencies f such that fA = mqwith g a rational number,
when a;and b;become periodic functions of j and the kernel Hj-vi | cos(xa; + ybj) can be written down explicitly
in form of a finite series of cosines. Then, the integrations in equations (52a) and (52b) can be performed exactly
resulting in exact closed-form expressions for @) (Ry(f)) and P (Ry(f) = R). Several examples of such
calculations are presented in appendices A and B. However, for arbitrary f, analytical calculation of the integrals
in results (52a) and (52b) is certainly beyond reach and one has to resort to some approximations.

5.3. Discrete-time case in the limit M >> 1: limiting forms of the moment-generating function and of the
distribution of a single-trajectory periodogram

Meaningful approximations of expressions (52a) and (52b) can be obtained in the large-M limit. One has,
however, to distinguish between the case when fT'is fixedand M — o0, and the case when M — oo but fT scales
with M and may take any value within the interval (0, 2 7M).

5.3.1. Fixed fTand M — oo
For fixed Tand not too large A, the parameter M /(8DA?)\) = M?/(8DT?))islarge when M >> 1, so that the
exponential function in equation (52a) is small everywhere except for the vicinity of the origin. Moreover, the
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integrals in equations (52a) and (52b) look very similar to the ones appearing in the theory of Pearson’s random
walks with a variable step length (see, e.g., [83]) and involve a kernel Hﬁ.\i | cos(xa;j + ybj). It is well known that in
thelimit M — oo the behavior of such a kernel is determined overwhelmingly by its behavior in the vicinity of
x = 0andy = 0,so thatone has

M | M
H cos(xa; + ybj) ~ exp 3 Z(xaj + ybj)Z . (53)

j=1 j=1

The accuracy of this approximation is checked in figure 9 in which we depict a density plot of the difference x(x, )
of Hin ; cos(xa;j + yb) and of the exponential function in the right-hand-side of (53). Already for M = 10° the
difference r(x, y) is zero almost everywhere and in the regions where it deviates from zero it is nonetheless
numerically very small.

Next, we have that for fT fixed and M >1 the ensemble-averaged periodogram and its variance admit the
following representations

4Dsin’*(fT/2) 1

pp(fs T) = pug(f, T) + 7 v;

+ 0(#) (54a)

and
2 D?
ox(f, T)=ci(f, T) + F(4(cos(2fT) — 6¢cos(fT) — 7)

sin(fT) )] 1 1

where the omitted terms have a bounded amplitude for any value of T and decay with the growth of M in
proportion to the second inverse power of M.

Inserting expression (53) into equations (52a) and (52b) and performing the integrations, we find that in the
limit M > 1, for fixed f T'and bounded ), the moment-generating function and the distribution of a single
trajectory periodogram are given up to terms of order O (1/M), by our previous results (21) and (22).

5.3.2. Arbitrary fT € (0,27M) and M — oo

We now relax the condition that fTis fixed, and suppose that it can attain any value within the prime period
27wM. In other words, we consider the situation in which f T'scales with M such that the expansions (54a) and
(54b) are invalid, and we can no longer discard the correction terms. In this case, we find that the moment-
generating function of a single-trajectory periodogram is given by

—1/2

2 M 2 A4 M M 2
y(Ru(f) = |1+ 4D]§ A(Z(af + bf)]A + 71611\34? (Z afbﬁ] - [Zajbj] o NGB!
j=1 j=1

ji=1

Differentiating this expression once and twice, and then setting A = 0, we observe that (55) correctly reproduces
the first moment of the periodogram, but yields an incorrect expression for the variance, meaning that in this
limit the approximation (53) is insufficient (although it works fairly well in the previous case with fT kept fixed).
In other words, in order to obtain a moment-generating function which reproduces correctly first two moments
of a single-trajectory periodogram, one has to go beyond this approximation. For Pearson’s random walks with
j-dependent step-lengths a;and b; this turns out to be quite a complicated problem which we are not in the
position to solve here.

Conversely, on intuitive grounds, we may conjecture such a form of the moment-generating function which
reproduces the first and the second moment correctly. For M — o0, this is given by

Dy = [1 + 2pp(f> DA+ @ — YR g (f> T) X712, (56)

that is, has precisely the same form as the moment-generating function in the continuous-time case,
equation (21), but with the first two moments replaced by the analogous properties of a single-trajectory
periodogram. Evidently, a generalization to the case of a k-component periodogram amounts to merely
replacing 1/2 by k/2.

In turn, the form (56) implies that the distribution of a single-trajectory periodogram is given by
equation (22) with yg(f, T) replaced by pi,(f, T)and o5(f, T) replaced by its discrete-time counterpart
o%(f, T), thatis,
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Figure 9. Density plot of r(x, ) (see the text below equation (53)). Upper panel: M = 10%and fT' = 12. Lower panel: M = 10> and
T = 120.

PRy (f) =R) =

1 [ 1 R )I[m R ] -

exp| —
V2 = Yrug(f> T) 2 — v ur(f> T) 2 — vk u(fo T)

We are unable to prove expression (56) (and hence, equation (57)) in the general case of arbitrary f. However, as
we have already remarked, there are plenty of cases in which the moment-generation function and the
distribution in equations (52a) and (52b) can be calculated exactly. In appendix B we present such calculations
for several particular values of the frequency, such that fA = 27/3, fA = 7/2,fA = 2wandfA = 7,and
show that the exact discrete-time results do indeed converge to the asymptotic forms (56) and (57). Therefore,
we have all grounds to believe that expression (57) is correct.

Lastly, we note that equation (57) permits us to make a substantial generalization of the single-trajectory
relation (26). We see that for fT € (wj, TM — wy) (in which domain ;, = J5 / 2 with any necessary accuracy
set by the choice of €), a single-trajectory periodogram obeys

Ru(f) = A pg(f, T), (58)

implying that the spectrum of a single-trajectory periodogram should be the same as for the ensemble-averaged
periodogram, while only the amplitude A will be a fluctuating property. The limiting distribution of the
amplitude is given by equation (27).

6. Conclusions and discussion

We studied here in detail the statistical properties of the PSD of a single trajectory of a d-dimensional BM. We
calculated exactly the moment-generating function, the full probability density function and the moments of
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arbitrary, not necessarily integer order of such a PSD in the most general case of arbitrary frequency f, arbitrary
(not necessarily infinite) observation time T'and arbitrary number of projections of a given trajectory onto the
coordinate axes. We showed that for a sufficiently large T (and the frequency f > 0) a single-trajectory PSD for
any realization of the process is proportional to its first moment, which embodies the full dependence on the
frequency and on the diffusion coefficient. This implies that the correct frequency-dependence specific to an
ensemble of trajectories can be deduced already from a single trajectory and solely the numerical proportionality
factor in this relation is random, and varies from realization to realization. Due to this fact, one cannot infer the
precise value of the ensemble-averaged diffusion coefficient from a single-trajectory PSD since the ensemble-
averaged PSD is linearly proportional to the diffusion coefficient which thus appears to be multiplied by a
random amplitude. The distribution function of this amplitude was also calculated exactly here and its effective
width was quantified using standard criteria.

Moreover, we addressed several questions emerging in connection with the numerical and experimental
verification of our analytical predictions for the continuous-time BM. To this end, we first considered Wiener’s
representation of BM in form of an infinite Fourier series with random coefficients, whose truncated version is
often used in numerical simulations. We showed that the distribution of the single-trajectory PSD obtained
from Wiener’s series in which just N terms are kept, instead of an infinite number, has exactly the same form as
the one obtained for the continuous-time BM when fT 'is within the interval (0, 7N). Outside this interval, the
probability density function of the truncated PSD converges to a different form.

Next, we examined the case when a trajectory of continuous-time BM is recorded at some discrete time
moments, so that the whole trajectory is represented by a set of M points and the PSD, called a periodogram,
becomes a periodic function of the product fT'with the prime period equal to 2wM. We analyzed several aspects
of this discrete-time problem. Namely, we studied how big M should be taken at a fixed observation time T'so
that we may recover the results obtained for the continuous-time BM. Apart of that, we studied the limiting
forms of the distribution of a single-trajectory periodogram and showed, in particular, that for fT kept fixed and
M — o0, the latter converges to the form obtained for the continuous-time BM. In contrast, when fT'is left
arbitrary so that it may assume any value within the prime period, thatis, fT € (0, 2rM), the limiting distribution
of a single-trajectory periodogram converges to a different form as M — oo. Our analysis revealed the
remarkable observation that for fT belonging to a certain interval within the prime period, a single-trajectory
periodogram equals, up to a random numerical amplitude, the ensemble-averaged periodogram, and the latter
embodies the full dependence on fand T. Therefore, similarly to the continuous-time case, the correct spectrum
can be obtained already from a single trajectory.

To check our analytical predictions we performed numerical analyzes, using a truncated Wiener’s
representation and also Monte Carlo simulations of discrete-time random walks, as well as an experimental
analysis of BM of polystyrene beads in aqueous solution. We confirmed our prediction of the relation
connecting a single-trajectory PSD and its ensemble averaged counter-part and demonstrated that the former
indeed exhibits a well-defined 1/f*-dependence, specific to a standard, ensemble-averaged PSD. Furthermore,
our numerical analysis confirmed the form of the distribution function of the amplitude in this relation.

The theoretical analysis for the case of BM presented here can be extended in several directions. In particular,
one may inquire about analogous distributions for anomalous diffusion processes [57], as exemplified, for
instance, by superdiffusive Lévy motion or subdiffusive continuous-time random walks with a broad
distribution of the waiting times. Another important example of transport processes is given by a wide and
experimentally relevant class of anomalous diffusion processes called fractional BM, for which the
generalization of our analysis is relatively straightforward. Subdiffusive fractional BM is related to the
overdamped, generalized Langevin equation with a power-law memory kernel typical for viscoelastic systems
[84]. However, superdiffusive fractional BM was identified for active transport in biological cells [85]. We also
mention the very active field of diffusion with varying diffusion coefficients. These can be systematically varying
in space [64], time [86, 87], or be randomly varying in time [88—90] or space [91-93]. Lastly, a challenging field of
further research is to search for such periodic functions of the frequency in equation (1), in place of the
exponential function, for which a single-trajectory PSD will possess an ergodic property so that its variance will
tend to zero in the limit T — oo.
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Appendix A. Moment-generating function and the distribution of the PSD for f = 0

We focus in this appendix on the moment-generating function and on the probability density function of a
single-trajectory PSD for the continuous-time BM and of the discrete-time single-trajectory periodogram in the
special case f = 0.

Consider first the case of BM. The first moment and the variance of the PSD for f = 0 follow from
equations (6) and (10) and are given explicitly by

2DT?
s(0, T) = =, (A1)
and
2m4
020, T) = 8D9T : (A2)

so that the coefficient of variation is 7, = /2. Hence, in this case the coefficient in front of the quadratic term in
equation (21) vanishes and the moment-generating function obeys

~ 4pT? |2
0,57 (0) = [1 + /\] : (A3)
Taking the inverse Laplace transform, we then find that in this case the distribution P (§%k) (0)) is given by
< (k) 3 \M/2 gk/2-1 ( 3 )
P(S;7(0)=9) = exp| — , A4
Cr©=9 (4DT2) T/ P\ (A

thatis, it is the x*-distribution with k degrees of freedom. Note that in contrast to the distribution (22) with f
bounded away from zero, the one in equation (A4) does not attain a limiting form as the observation time
T — oo.Foranyfixed S > 0onehas

PSP 0) = 9) ~ % as T — oo. (A5)

In the discrete-time case, for f = 0, the first moment 11, (0, T) of the periodogram, the variance 0% (0, T)
and the variation coefficient v are given by equations (46a)—(46¢), respectively. We notice that they converge, as
M — oo, to their continuous-time counterparts in equations (A1) and (A2),and 7, — % = V2, meaning that
in this limit the moment-generating function and the distribution of the periodogram converge to the forms in
equations (A3) and (A4).

For f = 0 in the discrete-time case, the moment-generating function and the distribution of the
periodogram can be calculated exactly for arbitrary M, which permits us to estimate the rate of convergence. We
constrain our analysis to the case when M is divisible by 4. We impose such a constraint just for a simplicity of
exposition, exact solutions can be also obtained for other values of M resulting, however, in rather cuambersome
expressions without providing any additional insight.

We notice that for f = 0 the coefficients b;in equation (42b) are identically equal to zero, which implies that
Vam =0, (51b), while the coefficients a;in equation (424) are explicitly given by a; = M + 1 — j. Consequently,
the sum Wy, = >j=1(M + 1 — j)sjappearing in equations (504) and (500) can be thought of as a ‘random walk’
with a linearly ‘shrinking’ time-dependent step length (see, e.g., [94, 95] for other examples of such random
walks). In this case, the product of cosines in equations (52a) and (52b) can be explicitly written down as

M M
H cos(ajx + bjy) = H cos((M + 1 — jx)

j=1 j=1

1 MM+1)/4 MM + 1
= 2— Z qM(i( 1 ) — m) cos(2mx), (A6)
m=—M(M+1)/4
where the coefficient g( j) is defined by
. 1 d/
jtdq’ =0

with (—¢, Qv = Hﬁf:l (1 + g™) being the g-Pochhammer symbol [96]. In other terms, ga(f) is the numerical
coefficient before the term g in the polynomial [T, (1 4+ ¢™). For M = oo, q,.(j) is simply the number of all
possible partitions of an integer j into distinct parts. Note also that gy( 7) is symmetric around m = 0 such that
Ay MM + 1)/4 — m) = g, (MM + 1) /4 + m)ym = 1,2, ... M(M + 1) /4.

Inserting next expression (A6) into equations (52a) and (520) and performing the integrations, we arrive at
the following exact results for the moment-generating function and the distribution of a single-trajectory
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Figure Al. The case f = 0. Upper panel: logarithm of ®, versus ) for the continuous-time case (A3) with k = 1, and for the discrete-
time case (A8). The diffusion coefficientis D = 1/2. The solid curves from top to bottom correspond to the result (A3) for T = 20,

T = 10and T = 1, respectively. The dashed curves are the results for the discrete-time case with different Tand M: T = 1 and

M = 12(blue), T = 10and M = 36 (magenta), T = 10and T = 20 with M = 60 (green) and T = 20 with M = 100 (red). Lower
panel: logarithm of 1 — F, F being the cumulative distribution function, versus variable p = R/, (0, T) for T = 1. Dashed curve
(magenta) gives the cumulative distribution function for the continuous-time x*-distribution (A4). Symbols—squares (M = 8),
triangles (M = 12) and circles (M = 16)—correspond to F for the discrete-time distribution (A9).

periodogram Ry(f) for f = 0:

MM+1)/4 2.,,2
By — LM > M(M(M+ H m)exp(_SDAm A)’ 48)
20 e M(M41) /4 4 M
and
1 MM+ 1
P(Ry(0) = R) = Z—M[qM((T))é(m
MM+1)/4 2.,,2
N L -
m=1

Note that R has a discrete support on the interval (0, Rp.,) with Ry, = DA2M (M + 1)?/2. Note, as well, that
the presence of a delta-function at R = 0is the consequence of the choice of M; for M not divisible by 4 the
coefficient in front of 6(R) equals zero because the ‘random walk’ Wy, never visits the origin.

In figure A1, upper panel, we present a comparison of the expressions for the moment-generating functions
in equation (A3) for the continuous-time case and in equation (A8) for the discrete-time case, for different
densities of the discrete-time points for different values of T. We observe thatfor T = 1and M = 12
(corresponding to A = 1/12) the agreement between the continuous- and the discrete-time results is fairly
goodupto A = 10%. For T = 10and M = 36, such thaton average 3.6 points are recorded for a unit of time, the
discrete-time result agrees with the continuous-time one upto A = 3 x 102 Increasing the number of points
up to M = 60, so that we have now 6 (instead of 3.6) points per unit of time, a perfect agreement between
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equations (A3) and (A8) extendsupto A = 10°. Lastly, for the observation time 7' = 20 with 60 recorded points
(which corresponds to just 3 points per unit of time T) we have a perfect agreement between the discrete- and
continuous-time predictions for values of \upto A = 3 x 10”and a significant departure for \ exceeding these
values. In contrast, for T = 20 and M = 10, such that we have 5 points for each unit of time, a perfect
agreement is observed for the whole range of variation of A\. We thus conclude that, in fact, once we seek to
achieve a good agreement between the continuous- and discrete-time expressions for the moment-generation
function, we do not need a very high precision in approximating the continuous-time trajectory by a discrete-
time one.

Next, in the lower panel of figure A1 we compare the probability density functions obtained for the
continuous-time and the discrete-time cases. Since the distribution in the discrete-time case is a finite sum of
delta-functions (see equation (A9)) it is appropriate to compare not the distributions themselves, but rather their
integrated forms, the cumulative distribution functions F, obtained by integrating the forms in equations (A4)
and (A9) over dR from 0 to R. From figure A1 (lower panel) we conclude that here too just 16 recorded points per
unit of time appear to be enough to get a fairly good agreement between the distributions in the continuous- and
the discrete-time cases.

Appendix B. Several exact results for the moment-generating function and the
distribution of a single-trajectory periodogram

In this appendix we present several stray examples for which the moment-generating function in equation (50a)
and the distribution of a single-trajectory periodogram in equation (500) can be calculated exactly. Our aim here
is to demonstrate that in all these particular cases the exact moment-generating function and the distribution
converge to the forms (56) and (57) as M — oo, which validates our conjecture. These particular choices of the
frequency within the prime period are: fA = 7, fA = /2, fA = 27/3 and the endpoint of the prime period,
fA = 2. Wenote that for all choices of the frequency the first moment px( f;, T) and the variance or(f, T)
convergeas M — oo to different values, as compared to their continuous-time counterparts. This means, in
turn, that for fT'within the prime period these are the forms in equations (56) and (57) which describe the
moment-generating function and the distribution of the periodogram in the limit M — oo, but not the
continuous-time results derived in section 3.

B.1.ThecasefA = =

We start with the simplest case, where the convergence of the moment-generating function (50a) and of the
distribution of a single-trajectory periodogram (50b) to the limiting forms in equations (56) and (57) can be
established analytically. We will again assume, for simplicity, that M is divisible by 4. We hasten to remark that
such a constraint is not crucial—an exact solution can be obtained in the general case of an arbitrary M, but the
resulting expressions will be more cumbersome.

For fA = ,the coefficients b;in equation (42b) all vanish, such that the ‘random walk’ V), (51b) stays at the
origin. The coefficients a;in equation (424) are periodic with period 2; that being, a; = a;,,, and are given by
aj = (1 + (—1)/) /2 when M s divisible by 4. Consequently, the random walk W) in equation (51a) steps at
even time moments and pauses at the odd ones. In this case, the first moment and the variance of a single-
trajectory periodogram are, respectively, given by equations (454) and (45b), while the coefficient of variation
obeys equation (45¢) and tends to /2 as M — o0o. This means that the limiting form of the distribution of a
single trajectory periodogram for such a choice of fshould be the x*-distribution. We show below that this is
indeed the case.

For M divisible by 4, the kernel in (524) is given by

M
H cos(ajx + bjy) = cos? (x) =
j=1

~[=

cos(2 mx), (B1)

l:.)g| =
I
' M=
wlz
[

+
3

where Z is the binomial coefficient. Substituting equation (B1) into equation (52a) and integrating term by

term, we find that for fA = 7 the moment-generating function is given by the following sum of exponential
functions:
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s 1
Ryl == =
A( M(A)) 2,

and hence, the distribution of a single-trajectory periodogram is given explicitly as a sum of delta-functions

(B2)

=
g
3
o
4
ae]
—_——

M —
1

M M M
m 1|5 i > 8D/2 2)
PRyl Z ) =R| = —|| 2 |6®) +2 s|r - m?| | B3
(M(A) ) 22 % w mz::l%er ( M )

Note that again the delta-peak at R = 0is a consequence of the specific choice of M. For M not divisible by 4 such
apeak is absent, precisely as it happens for a standard random walk, for which the parity of the number M of
steps matters.

In thelimit M — oo itislegitimate to replace the summation operation by an integration and use

M
- 2 (m—M, 4)2

2‘% 2 e M/ , (B4)
m NT™M

to get from expression (B2) the following limiting expression for the moment-generating function

™ M/4 2 2y 4m?
N R d —(14+2DA2x)4m?
A( M(A)) L a2
erf(yM(1 + 2DAN) /2)
J1 + 2DA?N '

(B5)

Recalling that pup (m/A, T) = DA? we see then that for M — oo the right-hand-side of the latter equation

converges to
T T -1/2
o 5))~ (e 2l(5o7)) o

which is precisely our conjectured expression (56) corresponding to 7, = /2. The distribution is then obtained
upon inverting the Laplace transform to get

plR (1)13); ,L) (B7)
( a 2mpie (55 T) R . 21(55 T)

which is the y*-distribution conjectured in equation (57). The convergence of equation (B2)—(B6), and also of
(B3)—(B7) for different values of M is demonstrated in figure B1.

B.2.Thecase fA = /2
Consider the case when fT is at one-quarter of the prime period. In this case the coefficients a;and b; are periodic
functions of jwith period 4, 1i.e., a; = aj,4and b; = bj 4. Within the period, their values are given by

aj 0] 0 1 (B8)

such that random walk W), (51a) pauses at first two ‘time’ moments and steps on two consecutive ones. The
random walk V), (51b) pauses at the first time moment, then makes two steps and pauses again.
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Figure B1. The case fA = 7 (one-half of the prime period). Upper panel: the moment-generating function as a function of | = A/ pig.
The solid (cyan) curve shows the limiting form of the moment-generating function in equation (56) (or equivalently, in

equation (B5)). Dotted (red) and dotted—dashed (blue) curves represent the exact discrete-time moment-generating function in
equation (B2) for M = 60 and M = 20, respectively. The dashed curve depicts our continuous-time prediction in equation (21) with
f= m/Aand T = 1:itis presented here to demonstrate that the moment-generating function obtained in the discrete-time case does
converge to the form in equation (21) but to a distinctly different form in equation (56). Lower panel: the cumulative distribution
function F versus p = R/ju,. The solid curve represents the cumulative distribution function of our conjectured distribution in
equation (57) (or equivalently, in equation (B3)), while the symbols correspond to the cumulative distribution function of the exact
distribution in equation (B3): M = 40 (squares), M = 240 (triangles) and M = 300 (circles). The dashed curve depicts the cumulative
distribution function of the continuous-time result in equation (22) withf = 7/Aand T = 1.

Now, we again assume that M is divisible by 4. Then, the kernel in (52a) reduces to

M
H cos(a;jx + bjy) = [cosx cosy cos(x — y)]%

j=1

N

(cosx cosy)%‘ "(sinx sin y)™", (B9)
—m

Il
=
S

3
Il
o

such that the contributions dependent on x and on y appear in the factorized form. Inserting the latter expansion
into equation (52a) and integrating term by term, we get

©

I
=
3 =[x

uz(A; L m) (B10)
4 4

where U is defined by

UN;s m, n) = _M " dx cos™ x sin” x ex (—sz) (B11)
YT\ b J o P\ span™ )
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The function U(A; m, n)isidentically equal to zero for odd n. For even n, n = 2k, we write

k
. k
cos™x sin** x = cos™x(1 — cos’x)* = > (—l)P( )coszl’“”x. (B12)
p=0

Further on, for even m, m = 2, the latter sum can be written down as a finite series of cosines

cos? x sin?k x = COSqu(l — cos?x)k
p ptq
Z - P > P24 cosat), (B13)
p04pq p]:,p,q p+q+l
such that U(\; 2g, 2k) is given explicitly by
U 2g, 26) = zk: (P [k %q 2+ 29 exp(SDAZIz A) (B14)
p=0 4p+q P I=—p—q p + q + l M

Foroddm, m = 2q + 1,wehave

(=P P 2p + 2q
2q+1
cos?tlxsin?x = = E aria (p) E

pO I=—p—q p+q+l
X (cos((2] + 1)x) + cos((2] — 1)x)), (B15)
which gives
(=1yp [ 2+ 29
U 2q + 1, 2k
(2 73 pzo 4br (p)z—zp:q(p +aq+1
2 2 2097 _ 1)2
X [exp(——SDA @+ D )\) + exp(——SDA @ -1 )\)) (B16)
M M

Equations (B10), (B14) and (B16) define completely the moment-generating function of a single-trajectory
periodogram in the case f = 7/(2A). The distribution function follows straightforwardly by expanding 24 ina
series of exponentials and taking the inverse Laplace transform.

In figure B2 we plot our exact result for the moment-generating function in equation (B10) and the
corresponding result for the distribution function of a single-trajectory periodogram, together with the
conjectured expressions (56) and (57) with pu, (f, T) and g defined by equations (47a) and (47c). We observe a
very convincing convergence of the exact results, upon an increase of M, to the conjectured forms.

B.3.Thecase fA = 27/3
In this case the coefficients a; (42a) and b; (42b) are periodic functions of j with period 3, and are given by

2 3
a; |0 1/2 |1 (B17)
b [0]—+/3/2{0

within their period.
We assume now that M is divisible by 3. In this case the kernel

M
M 3
— 3 M
H cos(ajx + bjy) = (cosx cos[%)] = COS3 X

j=1
M N—p
3 ] cos d cos ﬁy sm sin \/—y . (B18)
p 2 2 2

X

0=
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Figure B2. The case fA = 7/2 (one-quarter of the prime period). Upper panel: the solid curve is the conjectured moment-generating
function in equation (56). The dotted and the dotted—dashed curves give the exact moment-generating functions in the discrete-time
case with M = 8and M = 16, respectively. The dashed line depicts our continuous-time prediction in equation (21) with f = 7/(2A)
and T = 1. Lower panel: solid curve depicts the cumulative distribution function of the conjectured distribution in equation (57) with
R = 2DA?, "= J51 —12/(5M),D = 1/2,M = 12and T = 1. Symbols represent the exact cumulative function of the
distribution in the discrete-time case: squares correspond to M = 36, triangles to M = 48 and circles to M = 60.

Next, we use

M

M Mg
coss x = (ZCOS 3" 1) Z( Dk ;{ (2cos2 %) (B19)

which gives, in combination with (B18), the following representation of the kernel

M M X M M M
v (CDY S &) S
T costape + o =253 C0 5 | 55
j=1 k=0 2 k p=0 p
3 3
X cosPt" ‘Zkgsms ;C cos? % sins P % (B20)

Inserting the latter expansion into equation (524) and integrating term by term, we obtain the following exact
result for the moment-generating function of a single-trajectory periodogram

¥ MY (4
n=2 |
k=0 k p:Op
A 2M 3\ M
U +——2k—— sps — — 7l B21
x (41) 3 3 p)(4p3 p) (B2D)

where U is defined in equations (B14) and (B16). The moment-generating function is a finite sum of
exponentials and the corresponding distribution is a sum of delta-functions with coefficients which can be
readily deduced from equation (B21). In figure B3 we demonstrate that @ in equation (B21), and also the
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Figure B3. The case fA = 27/3 (one-third of the prime period). Upper panel: the exact discrete-time moment-generating function in
equation (B21) versus | = \/pugfor M = 9 (dotted curve) and M = 15 (dotted—dashed curve). The solid curve is the conjectured
form in equation (56). The dashed curve is our continuous-time prediction in (21). Lower panel: the cumulative distribution function
F versus p = R/ pg. The solid curve is F associated with the conjectured form in equation (57). Symbols depict the cumulative
distribution function of the exact discrete-time distribution generated by equation (B21): squares correspond to M = 15, triangles to
M = 27 and circlesto M = 39. The dashed lineis F for the continuous-time result in equation (22).

cumulative distribution function of the distribution deduced from equation (B21), do indeed converge to the
conjectured forms (56) and (57) with 1, (27/(3A), T)and 0% (27/(3A), T), equations (484) and (48b).

B.4.ThecasefA = 27

We finally consider the special case when fT'is at the endpoint of the prime period. In this case, a; = M + 1 — j
and b; = 0, such that we are led to the special case (f= 0) studied already in appendix A. Convergence of the
discrete-time moment-generating function in equation (A8) and the cumulative distribution function of the
distribution in equation (A9) to the conjectured forms in equations (56) and (57) is evident.
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