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Abstract simultaneous measurements of saltation, wind speed, and rainfall performed in Niger before,
during, and after 18 rain events are used to investigate how rain events affect wind erosion in the Sahel.
The results show that the inhibition of saltation is rapid but progressive after the beginning of a rain event.
The decrease of sand transport during the rain event is better linked to the time elapsed from the beginning
of the rain event rather than to the cumulative rainfall. In the Sahel, after a rain event, less than 12 h is
necessary to almost fully restore the sand transport potential. Our results suggest that assuming that no sand
transport and dust emission occur during the 12 h following the end of a rain event could be a reasonable
alternative to existing parameterizations of the influence of soil moisture on the wind erosion threshold, at
least for the Sahelian conditions.

1. Introduction

Precipitation has the capability to limit wind erosion. Rain increases soil moisture and allows capillary forces
to develop between soil grains, reinforcing soil cohesion, thus increasing the minimum threshold wind
friction velocity required to initiate the movement of soil by wind [i.e., Belly, 1964].

Many experiments have been conducted to quantify the influence of soil moisture on the wind erosion thresh-
old [Chepil, 1956; Belly, 1964; Bisal and Hsieh, 1966; Hotta et al., 1984; McKenna-Neuman and Nickling, 1989; Selah
and Fryrear, 1995; Chen et al., 1996, among others]. These experiments encompassed a large range of soil water
contents and soil types (sand, silt, loam, and clayed soils). They were always performed in wind tunnels to
control the experimental conditions. For most of these experiments, soil moisture was determined in the very
superficial top layer of the soils (generally the first 0.1 or 0.2 cm), i.e., the soil directly transported by wind.

Based on these measurements, Fécan et al. [1999] proposed a semiempirical parametrization of the ratio of
wet to dry wind erosion thresholds as a function of the soil moisture and the soil texture. Briefly, this parame-
terization assumes that water is first adsorbed on soil grains and that the excess water filling the space
between the grains is responsible for the capillary forces that increase soil cohesion and thus the wind erosion
threshold. The amount of water adsorbed on the soil grains depends on soil texture, so that the minimum
water amount at which an increase of the erosion threshold is detected also depends on soil texture. This
parameterization was developed to be used in dust emission models and thus was only based on parameters
that may be easily accessible at large scale (namely, soil moisture and soil clay content).

However, when included into dust emission models, this parameterization generally predicts an increase of
the threshold wind friction velocity that appears far too high to be realistic [Zender et al., 2003; Grini et al.,
2005]. This is mainly due to the fact that neither regional nor global models are able to provide precise soil
moisture estimates for a superficial soil layer as thin as those measured in the wind tunnel experiments used
to build the Fécan et al.’s parameterization. Indeed, as mentioned by Darmenova et al. [2009], dust emission
models commonly use the soil moisture simulated by the land surface module of regional or global models
[e.g., Zender et al., 2003; Sun et al., 2006; Zhao et al., 2006]. However, these land surface models calculate the
soil moisture in a limited number of soil layers, with a topmost layer of at least 2 to 10 cm thick. In the
same way, Xi and Sokolik [2015] indicated that when using the Weather Research and Forecasting
model-Chem-Dumo with the Noah Land Surface Model, the soil moisture derived from this model for
its top layer (0-10cm) induces a complete suppression of the dust emission.

An alternative to account for the effects of precipitation (and thus of soil moisture) on wind erosion and dust
emission consists in determining the time during which wind erosion is suppressed (or at least significantly
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reduced) after a rain event. Because it concerns the very thin superficial top layer of the soil, the influence of
soil moisture on the wind erosion threshold should act very rapidly after the start of a rain event. For the same
reason, this superficial layer probably dries rapidly after the end of rain (especially in the windy conditions
required for wind erosion). If these durations are short enough and can be precisely determined, they could
be used in dust emission models to inhibit and/or limit the dust emission for a given time period after a rain
event.

2. Material and Method
2.1. Site and Material

In the framework of the AMMA (African Monsoon Multidisciplinary Analysis) [Redelsperger et al., 2006]
program, a wind erosion/dust measuring station was implemented in 2006 close to the village of
Banizoumbou (13.5217°N; 2.6291°E), a remote Sahelian location about 60 km east of Niamey (Niger). This site,
mainly devoted to agricultural activities, has been used since the early 1990s, when measurements of soil
erosion were performed on a cultivated field and a fallow [Rajot et al., 1995; Rajot, 2001]. In addition to
instruments dedicated to aerosol measurements (see for details Rajot et al. [2008] and Marticorena et al. [2011]),
this station was instrumented to identify the local wind erosion events and to quantify the resulting saltation
[Abdourhamane Touré et al., 2011] and dust emission [Sow et al., 2009].

For this study, we used the data obtained from a saltiphone (Eijkelkamp®, Giesbeek, the Netherlands) which
records the number of impacts of saltating sand grains on a microphone membrane [Spaan and van den
Abeele, 1991]. The saltiphone was installed at 7cm above the soil surface and the number of impacts was
cumulated over a 10's time step. A Windsonic 2-D anemometer (Gill® Instruments Ltd.) provided the wind
speed and direction averaged over a 5min time step at 6.5m height. Rainfall was monitored using an
ARG100 aerodynamic precipitation sensor (Campbell® Scientific Instruments) working according to the prin-
ciple of the “tipping bucket” mechanism. It provides a contact closure at each tipping (i.e., for each 0.2 mm of
rainfall). The number of tips was cumulated over a 5 min time step, and so the beginning and the end of each
rain event are known with an uncertainty range within this time interval. Data acquisition was performed
using CR10X and CR200X Campbell® Scientific Instruments data loggers.

The agricultural field on which the experiment was set up is one of the largest in the area (450 x 400 m). At the
time of the experiment (June to mid-July 2006), the soil surface was almost vegetation free. The soil is sandy
(~95%) like about 50% of the soils in the Sahelian region [e.g., Hoogmoed and Stroosnijder [19841]. The soil is
classified as a sandy siliceous isohyperthermic psammentic Haplustalf [Bielders et al., 2000]. Rajot et al. [2003]
found that the topsoil (0-5 cm) has a low content in fine particles (clay = 2.8%; silt = 2.4%) and in organic car-
bon (0.21%). Crusting of this soil and its effects on wind erosion were also intensively studied by Rajot et al.
[2003]. These authors showed that immediately after the first rain, a “sieving crust” [Valentin and Bresson,
1992] was formed on the experimental plot and that its main characteristics remained unchanged during
the rainy season. The amount of loose sand grains present at the crust surface was reduced by 75%, but
the proportion of the soil surface covered by this layer of loose particles remained the same after the rain
event as before. At the same time, the amount of fine particles in this layer dropped from 2.5% to about
1.5%. Nevertheless, these stock reductions did not lead to any detectable decrease in the measured horizon-
tal or vertical fluxes. Rajot et al. [2003] concluded that even after crusting, the sand grain layer remains thick
enough to avoid saltation supply limitation and that the sandblasting process is very efficient at extracting
fine particles from the soil even when its fine-particle content is as low as 1.5%.

2.2. Data and Method

In the Sahel, most of the rain events occurring during the rainy season are associated with regional Mesoscale
Convective Systems (MCS) [e.g., Lebel and Ali, 2009]. These MCS generate violent cold pool outflows caused
by moist deep convection [Houze, 1977, 2004] and have been identified as responsible for dust emission in
the region [e.g., Marsham et al., 2008; Williams, 2008; Marticorena et al., 2010]. During the period 1 June to
17 July 2006, 18 rain events were recorded at Banizoumbou (Table S1 in the supporting information). In this
study, a rain event is considered to start at the 5 min time step during which the first tipping of the rain gauge
occurred and to finish at the 5 min period during which the last tipping of the rain gauge was recorded.
These rain events spanned a large range of duration (from 5 min to more than 5 h) and cumulative rainfall
(from 0.4 mm to more than 35 mm).
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Figure 1. Time series of wind speed (black curve), cumulative rainfall (blue phone counts were summed over a

curve), and saltiphone counts (red curve) during 1 June 2006 rain event. 5 min period to be in perfect phasing
Red arrows indicate periods during which 10 s saltiphone measurements with the wind speed and rainfall
were saturated. measurements. This also enabled us

to obtain saltiphone records having
a better statistical representativeness for each time period. Note that the 10 s saltiphone counts can be satu-
rated during periods with very intense saltation. In our data set, saturation of the saltiphone was only
observed just before the beginning or during the first 5-10 min for some rain events. In these cases, the salt-
iphone counts reported for the corresponding 5 min periods are underestimated. Saltiphone count can also
be affected by rain splash. Indeed, during precipitation periods associated with high wind speed, soil particles
can be lifted into the air by raindrop splash and transported by wind [e.g., de Lima et al., 1992]. However, it has
been shown that the contribution of wind-driven rain splash-saltation to the total saltation fluxes is much
lower than that of the rainless saltation (especially for high wind speeds) until the soil moisture is sufficiently
high to totally inhibit rainless saltation [e.g., Cornelis et al., 2004].

3. Results

3.1. Inhibition of Saltation During a Rain Event

Figure 1 reports the saltiphone counts, wind speed, and cumulative rainfall recorded during the rain event
that occurred on 1 June 2006. Rain started at 18h55, and strong wind speeds, up to 16ms™', were observed
during the first 15 min following the beginning of this rain event. These high wind speeds induced intense
saltation and very high saltiphone counts (ranging from 68,000 to more than 125,000 per 5min) were
recorded during this time period.

After 15 min, wind speed decreased progressively, ranging from 8 to 12ms™". This decrease in wind speed
was accompanied by a more rapid decrease in the saltiphone counts. Thirty minutes after the beginning
of the rain event, saltation was considerably reduced since saltiphone counts were only of the order of
10,000 and 3 per 5 min for wind speeds respectively of 13.53 and 9.82 m s~ i.e, 8 and 100 times lower than
those recorded 15 min after the beginning of the rain event for similar wind speeds, i.e., 13.53 and 8.78 m s
During the last period of the rain event (from 19h35) and just after the end of the rain event, wind speeds

ranging between 7 and 10ms ™' produced saltiphone counts never greater than 5 per 5 min.

This confirms that a rain event can strongly limit saltation and also shows that this inhibition effect is not
immediately complete as suggested by the progressive reduction of the saltiphone counts observed during
the rain event.

In order to verify the generality of these observations, we analyzed all the saltiphone, wind speed, and rainfall
measurements performed during the 18 rain events. We reported the saltiphone counts for different wind
speed classes as a function (i) of the cumulative rainfall at the time of the measurements or (ii) of the time
elapsed from the beginning of the rain event.

No significant link was found between the cumulative rainfall at each 5min time step and the saltiphone
counts (see Figure S1), indicating that the amount of rainwater having reached the soil surface from the
beginning of the rain was not the primary driver of the saltation decrease. In contrast, a significant decreasing
relationship was observed between the saltiphone counts and the time elapsed since the beginning of the
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As shown in Figures 1 and 2, our results suggest that the increase in threshold wind velocity during a rain
event is progressive and that 10 to15min on average is necessary before the wind erosion threshold
becomes high enough to totally inhibit sand transport. Thus, the contribution of the high wind speeds that
occur just before or at the beginning of a rain event cannot be neglected in terms of sand transport. However,
it is also very likely that the mineral dust that might be generated during these first 10 to15 min after the
beginning of a rain event would be immediately washed out by the rain droplets.

3.2. Frequency of Sand Transport in Dry and Wet Conditions

To determine the time period following a rain event during which the frequency of sand transport is reduced,
we compared, for a given wind speed, the frequency of sand transport in dry conditions to that observed for
different elapsed times after a rain event. Thus, we first assumed that the superficial layer of the soil should be
dried no later than 48 h after a rain event in Sahelian conditions. Therefore, we selected all 5 min wind speed
measurements and coincident saltiphone counts subsequent to the end of the previous rain by at least 48 h
(n=5585), these selected data constituted the reference data set for sand transport occurring in dry condi-
tions. The remaining 5 min coincident measurements of wind speed and saltiphone counts were divided in
five groups corresponding, respectively, to elapsed times of 0-6h (n=1238), 6-12h (n=1162), 12-18h
(n=1008), 18-24h (n=879), and 24-48 h (n=2717) following the end of a rain event. Finally, six different
groups of data, characterized by the time elapsed since the last rain event, were constituted, including the
data set for dry conditions (see Table S2 in the supporting information).

For each of these groups, we defined, for wind speed classes ranging from0to 13 ms™ ' with0.5ms ™ interval,
P;, the probability of occurrence of saltation:

P,:n,/N,><100 (1)

un

where n; is the number of 5 min periods in wind speed class “;” during which saltation occurred and N; is the
total number of 5min periods in class ; [Abdourhamane Touré et al.,, 2011].

This probability was computed for two different thresholds in saltiphone counts: (i) more than 10 counts and
(if) more than 100 counts. We decided to use two thresholds to test the insensitivity of the analysis to the spe-
cific choice of the threshold, and these threshold values were chosen to be quite low to capture even very
small saltation events.

Figure 3 shows that the groups 12-18 h, 18-24 h, and 24-48 h exhibit probability curves very similar to those
obtained in dry conditions for both saltiphone counts >10 and >100. This clearly suggests that the inhibition
effect of a rain event on the frequency of sand transport has totally disappeared in about 12 h in average after
a rain event in the Sahelian conditions.

The wind speed class for which the 50% probability value (P*°) is reached is strongly shifted toward higher

wind speeds for the 0-6 h period (i.e., the period corresponding to the moistest soils) when compared to

dry conditions (Figure 3): for the 0-6 h period, P°° is reached for wind speeds close to 8.5 and 10ms™',
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Figure 3. Frequency of saltation counts (a) >10 counts and (b) >100 counts as a function of the wind speed for dry condi-
tions (i.e., t after the last rain event >48 h (black line)) and for different elapsed times (0-6 h (grey line), 6-12 h (green line),
12-18 h (red line), 18-24 h (blue dotted line), and 24-48 h (purple line)) since rainfall completion.

respectively, for saltiphone counts >10 and >100, while P*° is observed for wind speeds of only 6.5 and
7ms~", respectively, for dry conditions. More precisely, the probability of saltation is close to 100% in dry
conditions for the wind speed class 8-8.5ms™" but is only about 33% during the period 0-6 h after a rain
event and reaches about 50% for the 6-12 h period. Even if a rain event still has a significant effect on the
probability of sand transport up to 12 h after the end of rain, this effect is progressively attenuated as time
goes on.

Importantly, the role of the precipitation amount is not negligible. Indeed, the saltiphone counts >10 or
>100 measured for 0-6 h and 6-12 h groups were recorded only for rain events having a cumulative rainfall
lower than 2 mm (RE-3, RE-9, RE-13, and RE-14, see Table S1). This seems consistent with a more rapid drying
of the superficial soil layer after light rain events and suggests that the events with a cumulative rainfall lower
than 2 mm could have a shorter effect on the frequency of sand transport in the Sahel.

3.3. Intensity of Sand Transport in Dry and Wet Conditions

Rajot et al. [2003] showed that the saltiphone counts (when not saturated) are proportional to the horizontal
flux of sand. Thus, the number of counts recorded by the saltiphone during a period of time can be used as an
indicator of the intensity of sand transport. In order to check how much the sand transport is reduced after a
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Figure 4. Saltiphone counts (per 5 min) for different wind speed classesand  We observed that for the groups

for different elapsed times from the end of a rain event. corresponding to the time periods

of 0-6 and 6-12h after a rain event
the numbers of counts recorded by the saltiphone are about one third of those recorded for the groups
corresponding to time periods longer than 12 h after the end of rain. This ratio is even lower (1/10) for wind

speed classes <8ms™".

These results show that a rain event does not only reduce the frequency of sand transport but also significantly
reduces the intensity of the remaining saltation flux during the 12 h that follow a rain event. This is consistent
with Hotta et al. [1984] who showed from experiments performed in Japan that about 18 h after a rain stopped
the sand volume moved by wind was almost the same as that blown off a dry sand surface.

4, Conclusions

Using wind speed, saltation, and rainfall measurements performed in the Sahel during the first part of the
rainy season (June to mid-July 2006), we examine how rain inhibits sand transport during a rain event and
after rain stops. The results show that during a rain event, saltation is not immediately stopped but is progres-
sively inhibited. The sand transport is strongly reduced especially during the first 10-15 min following the
beginning of the rain event, and almost no significant sand transport occurs after 30 min. The progressive
inhibition of sand transport by the rain seems to be linked to the time elapsed from the beginning of the rain
and not to the cumulative rainfall, suggesting that whatever the rain amount, a minimum time is necessary to
allow the soil moisture to be sufficient to completely inhibit sand transport.

In the Sahel, rain events are frequently associated to gust fronts induced by convective cold pools; thus, high
wind speeds generally take place just before or just after the beginning of the rain event. Our results suggest
that when it rains, most of the sand transport occurs during these short periods of time during which (i) wind
speeds are sufficiently high to produce sand transport and (ii) the time elapsed from the beginning of the rain
is not sufficiently long to allow soil moisture to totally inhibit the wind erosion.

Our results also showed that both the frequency and the intensity of sand transport are reduced during the
hours that follow a rain event. However, this inhibition effect lasts no longer than 12 h after the end of the rain
event, even for rain event having a cumulative rainfall of 20 mm. Moreover, a partial recovery of the
frequency and intensity of the saltation can even be observed in a shorter time after rain stops (6 h or less)
in the case of light rain events (less than 2 mm).

These results suggest that considering a complete inhibition of dust emission during a rain event and in the
12 h following a rain event would not generate large errors in dust emission estimates for semiarid regions
having similar soil and climatic conditions to those observed in the Sahel during the rainy season (dominant
sandy soils and high air temperature). Indeed, the dust resulting from saltation occurring at the beginning of
a rain event should be for a large part washed out by rain droplets. Concerning the 12 h that follow rain, data
show that saltation is inhibited or significantly reduced and occurs mainly for rain events with low rainfall
(<2mm). Even if some saltation events will not be accounted for in dust emission models by inhibiting
saltation during the 12 h following a rain event, this “error” should be acceptable, these events generating
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