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ON A SUM INVOLVING THE EULER TOTIENT FUNCTION

J. WU

Abstract. In this short note, we prove that

4

π2
x log x+O(x) 6

∑
n6x

ϕ
([x
n

])
6
(1

3
+

4

π2

)
x log x+O(x),

for x→∞, where ϕ(n) is the Euler totient function and [t] is the integral part of real t.
This improves recent results of Bordellès-Heyman-Shparlinski and of Dai-Pan.

1. Introduction

As usual, denote by ϕ(n) the Euler totient function and by [t] the integral part of real
t. Very recently, Bordellès, Heyman and Shparlinski [1] studied the asymptotic behaviour
of the summatory function

(1.1) S(x) :=
∑
n6x

ϕ
([x
n

])
and proved that

S(x) 6

(
1

2
+

3

π2

)
x log x+ 4x+

√
x log x

4
+
√
x (x > 3),(1.2)

S(x) >

(
2629

4009
· 6

π2
+ o(1)

)
x log x (x→∞).(1.3)

They also posed a question: Is it true that

(1.4) S(x) =

(
6

π2
+ o(1)

)
x log x

as x→∞ ? Some numerical evidences were given.
The aim of this short note is to improve Bordellès, Heyman and Shparlinski’s (1.2) and

(1.3), by refining their method. Our result is as follows.

Theorem 1. We have

(1.5)
4

π2
x log x+O(x) 6 S(x) 6

(
1

3
+

4

π2

)
x log x+O(x)

for x→∞.
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For comparison, we have
1
2

+ 3
π2 ≈ 0.80396,

2629
4009

6
π2 ≈ 0.39841,

and


1
3

+ 4
π2 ≈ 0.73861,

4
π2 ≈ 0.40528.

As indicated by Bordellès, Heyman and Shparlinski in [1], the proof of (1.2) is rather
elementary. But the lower bound (1.3) uses a much deeper approach relying on the
theory of exponential pairs. In particular, to obtain the numerically stronger result, they
used the recently discovered exponent pair (13

84
+ ε, 55

84
+ ε) by Bourgain [2]. We infer the

reader to [5, Chapter 3, page 31] for the definition of the exponent pair.
Let ψ(t) := t− [t]− 1

2
and δ ∈ {0, 1}. For x > 2 and 1 6 D 6 x, define

(1.6) Sδ(x,D) :=
∑

D<d62D

ϕ(d)ψ
( x

d+ δ

)
.

The key of Bordellès, Heyman and Shparlinski’s method is to find θ as large as possible
such that

(1.7) Sδ(x, x
θ)� x.

They shew that θ = 2629
4009
≈ 0.65577 is admissible and obtained the constant θ 6

π2 in the
lower bound (1.3).

Our improvements come from two simple observations:

(a) Firstly we give a more careful treatment for the related exponential sum (see
Proposition 2.1 below). This allows us to show that θ = 2

3
≈ 0.66666 is admissible

for (1.7) and to get a better lower bound. It is worth to note that our argument
is simpler and that we do not need to use Bourgain’s new exponent pair. In fact
we only use the simplest exponent pair (1

2
, 1
2
), i.e. van der Corput inequality.

(b) Our argument about upper bound part is different from [1]. In order to improve
upper bound (1.2), we introduce exponential sum technique to show that the
constant in the upper bound can be improved to 1− θ + θ 6

π2 with θ = 2
3
.

It is clear that Bordellès-Heyman-Shparlinski ’s conjecture is equivalent to (1.7) with
θ = 1. This seems rather difficult to prove, since this requires a square root cancellation
in Sδ(x, x). (By (3.4) below, the trivial upper bound of Sδ(x, x) is O(x2).) However it
should be possible to further improve slightly the constants in Theorem 1 by applying
combinatorial identity on the Möbius function and more sophistic methods of multiple
exponential sums (see [4, 6]).

When we redact our manuscript, we note that Lixia Dai & Hao Pan [3] also have
remarked (b) above and obtained a better upper bound constant 1380

4009
+ 2629

4009
6
π2 ≈ 0.74288

than (1.2) by using Bordellès, Heyman and Shparlinski’s θ = 2629
4009

value.

2. A key estimate

The aim of this section is to prove the following bound for Sδ(x,D), which plays a key
role in the proof of Theorem 1.

Proposition 2.1. Under the previous notation, we have

(2.1) Sδ(x,D)� (xκD1+λ)1/(κ+1) + xκD1−2κ+λ log x+ x−1D3,
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where (κ, λ) is an exponent pair.

2.1. Two preliminary lemmas.

In order to prove Proposition 2.1, we need two standard lemmas in the exponential sum
theory. The first one is due to Vaaler (see [5, Theorem A.6] or [1, Lemma 4.1]).

Lemma 2.2. For x > 1 and H > 1, we have

ψ(x) = −
∑

16|h|6H

Φ
( h

H + 1

)e(hx)

2πih
+RH(x),

where e(t) := e2πit, Φ(t) := πt(1− |t|) cot(πt) + |t| and the error term RH(x) satisfies

|RH(x)| 6 1

2H + 2

∑
06|h|6H

(
1− |h|

H + 1

)
e(hx).

The second lemma is [5, Lemma 2.4].

Lemma 2.3. Let L(Q) :=
∑J

j=1CjQ
cj +

∑K
k=1DkQ

−dk , where Cj, cj, Dk, dk > 0. For any

Q > Q′ > 0, there exists some Q1 ∈ [Q′, Q] such that

L(Q1)�
J∑
j=1

K∑
k=1

(Cdk
j D

cj
k )1/(cj+dk) +

J∑
j=1

CjQ
′cj +

K∑
k=1

DkQ
−dk .

2.2. Proof of Proposition 2.1.

As usual, denote by µ(n) the Möbius function. By using the relation

ϕ(d) =
∑
mn=d

µ(m)n

and by a simple partial summation, we can write

(2.2)

Sδ(x,D) =
∑
m62D

µ(m)
∑

D/m<n62D/m

nψ
( x

mn+ δ

)
�

∑
m62D

D

m
max

D/m<N62D/m
|Sδ(x,D,m,N)|,

where

Sδ(x,D,m,N) :=
∑

D/m<n6N

ψ
( x

mn+ δ

)
.

With the help of Lemma 2.2 (separating the terms with h = 0 or h 6= 0 in RH(x)) and
noticing the fact that 0 < Φ(t) < 1 (0 < |t| < 1), we can derive

Sδ(x,D,m,N)� N

H
+
∑
h6H

1

h

∣∣∣∣ ∑
D/m<n6N

e
( hx

mn+ δ

)∣∣∣∣
for D/m < N 6 2D/m and 1 6 H 6 N .
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Applying the exponent pair (κ, λ) to the inner sum over n, we find that

Sδ(x,D,m,N)� N

H
+
∑
h6H

1

h

{(
hx

mN2

)κ
Nλ +

mN2

hx

}
� H−1N + xκHκm−κN−2κ+λ + x−1mN2

for all H ∈ [1, N ]. According to Lemma 2.3, there is a H ∈ [1, N ] such that

Sδ(x,D,m,N)� (xκm−κN−κ+λ)1/(κ+1) + xκm−κN−2κ+λ + x−1mN2

� (xκD−κ+λm−λ)1/(κ+1) + xκD−2κ+λmκ−λ + x−1D2m−1.

Inserting it into (2.2), we obtain the required result.

3. Proof of Theorem 1: Upper bound

Let 1 6 N <
√
x be a parameter to be chosen later. We write

(3.1) S(x) = S1(x) + S2(x)

with

S1(x) :=
∑
n6N

ϕ
([x
n

])
, S2(x) :=

∑
N<n6x

ϕ
([x
n

])
.

A. Upper bound of S1(x)

We have trivially

(3.2) S1(x) 6
∑
n6N

x

n
= x logN +O(x).

B. Upper bound of S2(x)

In order to bound S2(x), we put d = [x/n]. Then

x/n− 1 < d 6 x/n and x/(d+ 1) < n 6 x/d.

Thus

(3.3)

S2(x) =
∑
d6x/N

ϕ(d)
∑

x/(d+1)<n6x/d

1

=
∑
d6x/N

ϕ(d)
(x
d
− ψ

(x
d

)
− x

d+ 1
+ ψ

( x

d+ 1

))
= x

∑
d6x/N

ϕ(d)

d(d+ 1)
+
∑
d6x/N

ϕ(d)
(
ψ
( x

d+ 1

)
− ψ

(x
d

))
.

It is well known that

(3.4)
∑
n6x

ϕ(n)

n2
=

6

π2
log x+O(1),

∑
n6x

ϕ(n) =
3

π2
x2 +O(x log x).

With the help of these, it follows that

(3.5)
∑
d6x

ϕ(d)

d(d+ 1)
=
∑
d6x

ϕ(d)

d2

{
1 +O

(1

d

)}
=

6

π2
log x+O(1)



ON A SUM INVOLVING THE EULER TOTIENT FUNCTION 5

and

(3.6)

∣∣∣∣ ∑
d6
√
x

ϕ(d)
(
ψ
( x

d+ 1

)
− ψ

(x
d

))∣∣∣∣ 6 2
∑
d6
√
x

ϕ(d)� x.

It remains to bound

E(x,N) :=
∑

√
x<d6x/N

ϕ(d)
(
ψ
( x

d+ 1

)
− ψ

(x
d

))
.

Let Dk := x/(2kN) and let K be the integer such that DK+1 <
√
x 6 DK . By a simple

dyadic split and by Proposition 2.1 with (κ, λ) = (1
2
, 1
2
) (see [5, Theorem 3.10 or 2.2]), it

follows that

(3.7)

|E(x,N)| 6
∑

16k6K+1

(|S0(x,Dk)|+ |S1(x,Dk)|)

�
∑

16k6K+1

(
x1/3Dk + x1/2D

1/2
k log x+ x−1D3

k

)
� x1/3(x/N) + x1/2(x/N)1/2 log x+ x−1(x/N)3

� x4/3N−1 + xN−1/2 log x+ x2N−3.

Inserting (3.5), (3.6) and (3.7) into (3.3), we find

(3.8) S2(x) 6
6

π2
x log(x/N) +O

(
x4/3N−1 + xN−1/2 log x+ x2N−3

)
.

C. End of the proof

Inserting (3.2) and (3.8) into (3.1), we find that

S(x) 6 x logN +
6

π2
x log(x/N) +O

(
x4/3N−1 + xN−1/2 log x+ x2N−3 + x

)
,

which becomes, with the optimal choice of N = x1/3,

S(x) 6

(
1

3
+

4

π2

)
x log x+O(x).

4. Proof of Theorem 1: Lower bound

Similar to (3.3), we can write

S(x) =
∑
d6x

ϕ(d)
∑

x/(d+1)<n6x/d

1.
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Let
√
x 6 D 6 x be a parameter to be chosen later. Thus

(4.1)

S(x) >
∑
d6D

ϕ(d)
∑

x/(d+1)<n6x/d

1

= x
∑
d6D

ϕ(d)

d(d+ 1)
+
∑
d6D

ϕ(d)
(
ψ
( x

d+ 1

)
− ψ

(x
d

))
=

6

π2
x logD +O(x) +R(x,D),

where

R(x,D) :=
∑
d6D

ϕ(d)
(
ψ
( x

d+ 1

)
− ψ

(x
d

))
.

Let Dk := D/2k and let K be the integer such that DK+1 < 1 6 DK . By a simple dyadic
split and by Proposition 2.1 with (κ, λ) = (1

2
, 1
2
), it follows that

(4.2)

|R(x,D)| 6
∑

16k6K+1

(|S0(x,Dk)|+ |S1(x,Dk)|)

�
∑

16k6K+1

(
x1/3Dk + x1/2D

1/2
k log x+ x−1D3

k

)
� x1/3D + x1/2D1/2 log x+ x−1D3.

Inserting (4.2) into (4.1), we find

S(x) >
6

π2
x logD +O

(
x1/3D + x1/2D1/2 log x+ x−1D3

)
.

The required result follows from the optimal choice of D = x2/3.
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E-mail address: jie.wu@math.cnrs.fr


